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Abstract
We report a theoretical and experimental study of phase noise in semiconductor lasers when the
bias current is below the threshold value. The theoretical study is performed by using two types of
rate equations, with additive and multiplicative noise terms. We find the conditions for which the
evolution in those rate equations can be described by 1-dimensional and two dimensional
Brownian motions, respectively. The main statistical differences between the additive and
multiplicative noise models are then illustrated by using the simplified Brownian motion models.
Additive and multiplicative noise models predictions are compared with measurements of the
phase noise with a coherent receiver using a 90◦ optical hybrid. We develop a novel method to
extract the phase noise directly from our measurements, that in contrast to the usual direct method
is not based on the analysis of the phase noise difference. The method permits a direct visualization
of the phase noise trajectories and a calculation of the averages and the distribution that is valid in
the short-time limit. Our results are in very good agreement with the results obtained with the
method based on the phase noise difference. Our experimental results show that the variance of the
phase noise grows linearly in time and has Gaussian statistics, supporting the modelization of the
phase noise statistics with the additive noise model.

1. Introduction

The study of the fluctuations of the phase of the light emitted by semiconductor lasers has been a subject of
interest since 1980s [1, 2]. Applications of single-frequency semiconductor lasers like coherent optical
communications [2–4], coherent Lidar [5], high-resolution spectroscopy [6], and fiber-optic sensing [7] are
behind that interest. In these applications the laser is mainly operated above its threshold current because a
high degree of temporal coherence is required.

Phase fluctuations are also relevant in some recent applications of semiconductor lasers like quantum key
distribution (QKD) [8, 9] and quantum random number generation (QRNG) [10]. QKD protocols provide
information-theoretic secure communications based on the exchange of quantum states. Implementations of
protocols typically rely on weak coherent pulses that usually consist of highly attenuated pulses generated by
gain-switching semiconductor lasers. In this situation the performance of QKD is limited by multiphoton
emissions for which an efficient solution, the decoy-state method, requires that the phases of all transmitted
pulses are independent and uniformly random [11].

QRNGs use the inherent randomness of quantum mechanics to generate completely unpredictable
random numbers with applications in QKD, Monte Carlo simulations, industrial testing, massive data
processing, fundamental physics tests, etc [10, 12–14]. One of the most extended QRNGs, the so called phase
noise QRNGs, are those based on gain-switching semiconductor lasers [9, 15–17]. These QRNGs have the
advantages of fast operation, robustness and integration in photonic integrated circuits [18, 19].

In the above mentioned applications in QKD and QRNG semiconductor lasers are gain-switched from
below to above their threshold current in order to generate trains of pulses with random phases. During the
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below threshold operation the optical phase becomes random due to the effect of spontaneous emission
noise that is a source of quantum randomness [20]. In this way characterization of phase fluctuations in the
gain-switching operation is a problem worth studying.

To the best of our knowledge just a few measurements of phase fluctuations have been performed in the
gain-switching regime [21, 22] or when the current is constant and below its threshold value [23]. Lovic et al
measured the histogram of intensities at the output of an asymmetric interferometer and obtained the
variance of the phase noise as the fitting parameter of that distribution [21]. Shakhovoy et al obtained the
standard deviation of the phase noise , σφ, from the visibility of the pulse interference fringes [22]. In [23] σφ

was obtained from the optical spectrum using the Schawlow-Townes law. A more direct way of measuring σφ

is by using an offline digital coherent receiver [4]. In this method the variance of the phase noise is obtained
from the average of the squared phase noise difference [4]. However, to our knowledge this method has only
been used for constant bias currents above threshold because of its application in coherent communications.

Phase fluctuations have been theoretically described with two types of stochastic rate equations. The first
one [24, 25] corresponds to that derived from first principles by Lax [26] and Henry [1] for a laser that is
subject to a constant bias current. The noise terms in the photon number and phase equations are additive,
so we will term this model as the additive noise model. In this way the phase evolution is analogous to that
found in a 1-dimensional Brownian motion (1D-BM) and so the phase noise has a Gaussian distribution
with a variance that increases linearly with time. The second type is considered when the laser is subject to a
high-frequency modulation of the bias current. This type of modelling has been used in the analysis of phase
noise QRNGs [9, 21, 22, 27–30] in which the laser is gain-switched with a switch-off current that is below the
threshold value. The laser is in a transient regime and the exact form of the spontaneous emission noise
terms is unknown [31]. In this modelling the averages of variables in the noise terms of the rate equations for
photon number and phase are substituted by the corresponding variables. In this way those noise terms
become multiplicative, so we will term this model as the multiplicative noise model. To the best of our
knowledge this approximation has not been justified in a rigorous way. Although the use of this
approximation has been successful for describing the experimental results relative to the transient statistics of
quantities related to the laser power, like the first passage time [32], a problem appears when describing the
phase statistics in the gain-switched regime with a below threshold switch-off current [30]. While the optical
power is small, the tip of the electrical field vector evolves in the complex plane similarly to a 2-dimensional
Brownian motion (2D-BM). In this situation the phase noise has an infinite variance with a statistics in the
long time limit given by Cauchy’s (or Lorentzian’s) distribution [30]. The divergence of the phase variance
means that numerical integration of this type of model can only give an approximation to the phase noise
variance because the results depend on the chosen integration time step, no matter how small it is [30]. Since
these results also hold when using the multiplicative noise models for a constant bias current below
threshold, our aim in this work will be to analyze this constant current case from both, theoretical and
experimental points of view.

In this paper we will first describe the additive and multiplicative noise rate equations models. The
numerical solution of the gain-switched multiplicative noise model will be used to describe the conditions
for which the additive and multiplicative noise models can be approximated by a 1-dimensional and
2D-BMs, respectively. Since the disparity of results lies mainly in the dimensionality of those motions we will
analyze theoretically the problem by using the simplest equations for the 1-dimensional and 2D-BMs. The
main statistical differences between the additive and multiplicative noise models will be illustrated and
explained by using these simplified models. We will also obtain the time that takes the phase statistics in the
multiplicative noise model to follow approximately Cauchy’s distribution. In this way we will quantify when
the condition of long-time limit [30] is reached.

In order to discern between the additive and multiplicative noise models we will measure the phase noise
with a phase-diversity coherent receiver using a 90◦ optical hybrid. We will focus only on the case of a
constant bias current below threshold since in that case the previous theoretical analysis has unveiled
significant differences. We will develop a novel method to extract the phase noise directly from our
measurements, that in contrast to the usual direct method [4], is not based on the analysis of the phase noise
difference. The method permits a direct visualization of the phase noise trajectories that is accurate in the
short time limit. Statistical moments of the phase noise are obtained by averaging over different phase noise
trajectories. The obtained results are in very good agreement with the results obtained with the method
based on the phase noise difference [4]. Our results show that the variance of the phase noise grows linearly
in time and has Gaussian statistics, supporting the modelization of the phase noise statistics with the additive
noise model. Our measurements also show that there is a dependence of the slope of the relation phase
variance versus time on the frequency detuning between the semiconductor laser and the tunable laser of the
coherent receiver. We find that there is a frequency detuning range around zero for which that slope is
approximately constant, permitting us then to measure the diffusion coefficient of the phase noise.
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The paper is organized as follows. We start with a description of the laser rate equations models. In
section 3 we solve numerically the rate equations and discuss the Brownian motion approaches. Sections 4
and 5 are devoted to the theoretical analysis of 1-dimensional and 2D-BM, respecively. In section 6 the
experimental method and results are presented. Finally, in section 7 we discuss our results and present our
conclusions.

2. Semiconductor laser rate equations

In this section we detail the sets of rate equations that are typically used to describe the dynamics of the light
emitted by semiconductor lasers. These are Ito’s stochastic differential equations (SDE) with various degrees
of complexity. The first SDE consider noise terms that have been derived from first principles for a system
where the matter and the radiation have reached equilibrium [26]. These equations read [1, 24, 25, 33]

dP

dt
=

[
GN (N−Nt)

1+ ϵP
− 1

τp

]
P+βBN2 +

√
2βBP̄N̄Fp (t) (1)

dϕ

dt
=

α

2

[
GN (N−Nt)−

1

τp

]
+

√
βB

2P̄
N̄Fϕ (t) (2)

dN

dt
=

I

e
−
(
AN+BN2 +CN3

)
− GN (N−Nt)P

1+ ϵP
(3)

where P(t) is the photon number inside the laser, ϕ(t) is the optical phase in the reference frame
corresponding to the resonant frequency at the threshold current [33], and N(t) is the number of carriers in
the active region. The parameters appearing in the equations are the following: GN is the differential gain, Nt

is the carrier number at transparency, ϵ is the non-linear gain coefficient, τ p is the photon lifetime, β is the
fraction of spontaneous emission coupled into the lasing mode, α is the linewidth enhancement factor, I is
the injected current, e is the electron charge, and A,B and C are the non-radiative, spontaneous, and Auger
recombination coefficients, respectively. The Langevin terms Fp(t) and Fϕ(t) in equations (1) and (2),
represent fluctuations due to spontaneous emission. They are are taken as Gaussian variables with zero
average,< Fi(t)>= 0, and with the following correlation properties,< Fi(t)Fj(t ′)>= δijδ(t− t ′), where
δ(t) is Dirac’s delta function and δij the Kronecker delta function with the subindexes i and j referring to the
variables P and ϕ. Two important points must be highlighted. First, i) the bias current I has a constant value,
and ii) the constant steady-state average values of the variables, P̄ and N̄, corresponding to I appear
multiplying the Langevin terms, Fp(t) and Fϕ (t), that is why we term equations (1)–(3) as the additive noise
model. When the steady-state has been reached ϕ diffuses in such a way that it has a Gaussian distribution
with a variance, σ2

ϕ, that increases linearly with t, σ2
ϕ = 2Dϕ t, where Dϕ is the diffusion coefficient, given by

[1, 23, 24]

Dϕ =
βBN̄2

4P̄
if I< Ith, and Dϕ =

βBN2
th

4P̄

(
1+α2

)
if I> Ith (4)

where Nth is the carrier number at threshold given by Nth = Nt + 1/(GNτp) and Ith is the threshold current.
In many applications semiconductor lasers are used in pulsed mode. The modulation of the bias current,

that is I= I(t), is a simple method to obtain those pulses. In particular, gain-switched laser pulses are
obtained when the bias current goes from a below-threshold to an above threshold value. No semiconductor
laser rate equations have been derived from first principles when I= I(t). The procedure for describing laser
dynamics in this case is the substitution of the averages in equations (1) and (2) by their corresponding
variables. The considered equations are then [9, 16, 21, 22, 27–30, 34]:

dP

dt
=

[
GN (N−Nt)

1+ ϵP
− 1

τp

]
P+βBN2 +

√
2βBPNFp (t) (5)

dΦ

dt
=

α

2

[
GN (N−Nt)−

1

τp

]
+

√
βB

2P
NFϕ (t) (6)

dN

dt
=

I(t)

e
−
(
AN+BN2 +CN3

)
− GN (N−Nt)P

1+ ϵP
. (7)

In these equations P and Φ are the photon number and optical phase, respectively. In the equations for P
and Φ the noise terms are multiplied by functions of the variables, P and N, that is why we term
equations (5)–(7) as the multiplicative noise model. We distinguish the optical phase obtained from
equation (6), Φ, to that obtained from equation (2), ϕ, because their evolution equations are different. In
fact, when the injected current is below its threshold value the statistics of ϕ at the steady-state is Gaussian [1,
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24, 25, 33] while the corresponding statistics of Φ in the long-time limit is given by Cauchy’s distribution
[30]. The analysis in [30] was performed by using the equations for the complex electrical field, E(t), that are
equivalent to equations (5)–(7). These equations are [30]:

dE

dt
=

[(
1

1+ ϵ | E |2
+ iα

)
GN (N−Nt)−

1+ iα

τp

]
E

2
+

√
βB

2
Nξ (t) (8)

dN

dt
=

I(t)

e
−
(
AN+BN2 +CN3

)
− GN (N−Nt) | E |2

1+ ϵ | E |2
(9)

where E(t) = E1(t)+ iE2(t) is the complex electric field, P(t) =| E |2= E21 + E22, Φ(t) = arctan(E2/E1), and
ξ (t) = ξ1(t)+ iξ2(t) is the complex Gaussian white noise with zero average and correlation given by
< ξ(t)ξ∗(t ′)>= 2δ(t− t ′) that represents the spontaneous emission noise. These equations can be
integrated to find Φ with no numerical instabilities, in contrast to equations (5)–(7) in which the integration
is unstable when the current is below threshold due to the presence of P1/2 and P−1/2 in the terms
multiplying the noise terms [30]. As mentioned above the statistical properties of Φ are very different to
those of ϕ when the current is below threshold. In fact, due to Cauchy’s distribution of Φ the variance of Φ
diverges [30], that is σ2

Φ =∞, while the variance of ϕ, σ2
ϕ, remains finite. In other words, no convergence of

the value of σΦ is found when the integration time step is decreased, even to tiny values. The difference
between the values of σϕ and σΦ lies on the dimensionality of the Brownian motion that the variables are
displaying, as we will detail in the next sections. The evolution of ϕ can be well approximated by a 1D-BM in
equation (2) when I< Ith because the noise term dominates over the deterministic term. In this way the
distribution of ϕ is Gaussian and finite values of σ2

ϕ are obtained with the linear dependence on t
characteristic of the 1-dimensional diffusion process. The situation is different for Φ. For bias currents below
threshold the evolution of E(t) in the complex plane can be approximated by a 2D-BM. This is the main
reason of the previously mentioned results: σ2

Φ is infinite because the variance of the polar angle in 2D-BM is
infinite [35], and the statistical distribution of Φ in the long time limit tends to Cauchy’s distribution because
that is the theoretical result obtained for the polar angle in 2D-BM [36].

3. Numerical analysis of the rate equations: the Brownianmotion approach

In this section we first solve numerically equations (8) and (9) in the pulsed regime to illustrate the
approximation of the dynamics of the variables using Brownian motion. We show in figure 1 the dynamical
evolution of P,Φ ,N, and of the frequency chirp. Since Φ is the optical phase with respect to that
corresponding to the resonant frequency at the threshold current, νth, the electrical field is written as

E(t) = E1 (t)+ iE2 (t) =
√

P(t)ei(2πνtht+Φ(t)) (10)

the instantaneous optical frequency is given by

ν (t) = νth +
1

2π

dΦ

dt
(11)

and the frequency chirp is defined as 1
2π

dΦ
dt = ν− νth.

Numerical integration has been performed by using the Euler–Maruyama algorithm [37, 38] with an
integration time step of∆t = 0.01 ps. We have chosen the following values of the parameters:
GN = 1.48× 104s−1, Nt = 1.93× 107, ϵ= 7.73× 10−8, τp = 2.17 ps, α= 3, β = 5.3× 10−6, A= 2.8× 108

s−1, B= 9.8 s−1, and C= 3.84× 10−7 s−1. These parameters correspond to the extracted parameters of a
single longitudinal mode discrete mode laser with a threshold current of Ith = 14.14 mA at 25 ◦C [29, 34].
We consider that I(t) follows a square-wave modulation of period T with I(t) = Ion during T/2, and
I(t) = Ioff during the rest of the period. We take Ion = 30 mA, T= 4 ns, and a switch-off current below
threshold, Ioff = 14 mA.

Figure 1(a) shows that the optical pulse builds up from very small noisy values at short values of t. Typical
relaxation oscillations are observed in figures 1(a) and (c) until the system reaches the steady-state
corresponding to Ion at around 1 ns. For t> 2 ns the current changes to a value below Ith and both P and N
decrease until P reaches the levels in which spontaneous emission dominates the evolution. Figure 1(c)
shows that N recovers up to the constant value corresponding to the steady-state, N̄. The value of N̄ depends
on the current I in such a way that is below (above) Nth if I< Ith (if I> Ith) (see figure 1(c) where N̄ and Nth

are indicated). Analytical expressions of N̄ can be found for I< Ith [23] and for I> Ith [39]. Figures 1(b) and

4



J. Phys. Photonics 7 (2025) 015013 I Pascual de Zulueta and A Valle

Figure 1. (a) Photon number, (b) optical phase, (c) carrier number, and (d) frequency chirp as a function of time during one
modulation period. The value of Nth and the zero value of the frequency chirp are shown with horizontal blue and red lines in
part (c) and (d), respectively.

(d) also show relaxation oscillations in the initial stages of the evolution of the phase and frequency chirping.
Oscillations in the chirping are directly related to the oscillations in N because equation (6) can be rewritten,
using equation (11), as

ν− νth =
αGN (N−Nth)

4π
+

1

2π

√
βB

2P
NFϕ (t) . (12)

Figure 1(d) shows that at short times (t< 0.1 ns) the chirping has strong fluctuations because P is small
and so the noise term is much larger than the deterministic term in equation (12). As t increases, the laser is
in a transient regime where P and N oscillate with large values of P (see figures 1(a) and (c) for 0.1 ns< t<
0.6 ns). In this situation the noise term in equation (12) is smaller than the deterministic term, the frequency
chirp is mainly deterministic and so it is directly proportional to N. As time increases, N begins to reach its

steady state value, N̄, and the deterministic term in equation (12) becomes αGN(N̄−Nth)
4π . This term is called the

adiabatic chirp. In this time region the deterministic term is slightly larger than the noise term. From data in
figure 1(d) we calculate the averaged and standard deviation of ν− νth in the interval (1.7,2) ns: their values
are 1.85 GHz and 0.62 GHz, respectively. This average value can be easily estimated because
αGN(N̄−Nth)

4π ≈ αϵ(Ion−Ith)
4π e [39], that for our parameters is 1.83 GHz. In the time region in which the frequency

chirp is dominated by the adiabatic chirp the optical phase increases linearly with t (see figure 1(b) for t< 2

ns) with a slope given by αϵ(Ion−Ith)
2e .

The most interesting evolution region appears when t> 2 ns because most of the phase randomization

occurs there. The deterministic part of the frequency chirping, αGN(N−Nth)
4π , becomes negative because

N< Nth (see figure 1(c)), causing an initial deterministic decrease of Φ that can be seen in figure 1(b).
Fluctuations of Φ become important when P reaches small values (t> 2.3 ns) that makes the frequency
chirping being dominated by the noise term (see also figure 1(d)). When t increases in such a way that the

steady-state is approached this deterministic part tends to αGN(N̄−Nth)
4π that is -0.67 GHz for our parameters.

This value is much smaller than the noise term in equation (12), as it can be seen in figure 1(d): when 3 ns
< t< 4 ns, ν− νth fluctuates with amplitudes much larger than the deterministic chirp (they can go up to
several hundred GHz). Therefore in the time region where N is close to its steady-state value, equation (12)

5
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can be approximated by

ν− νth =
1

2π

√
βB

2P
N̄Fϕ (t) . (13)

Written in terms of Φ this equation is

dΦ

dt
=

√
βB

2P
N̄Fϕ (t) (14)

that leads to an equation for the electrical field given by

dE

dt
=

√
βB

2
N̄ξ (t) (15)

that corresponds to a 2D-BM in the (E1,E2) plane.
If our departure equations were equations (1)–(3) instead equations (8) and (9) we get that

dϕ

dt
=

√
βB

2P̄
N̄Fϕ (t) (16)

would describe the evolution in a similar regime to that considered for obtaining equation (15). In this
regime ϕ is describing a 1D-BM. The difference in the evolution equations for ϕ andΦ is that P is averaged in
equation (16) while it is not in equation (14). This difference will be essential for determinining the statistical
differences between ϕ and Φ. The equations describing 1D-BM and 2D-BM will be solved numerically in the
following sections to highlight their main differences. We will restrict to situations in which the injected
current is constant and below threshold. In this way the equations describing 1D-BM, equation (16), and
2D-BM, equation (15), have constant diffusion coefficients. Also, in order to simplify our analysis as much as
possible, we will consider the dimensionless 1D-BM and 2D-BM with diffusion coefficients equal to one.

4. Analysis of the 1D-BM

The stochastic process X(t) known as 1D-BM satisfies the following Langevin equation

dx

dt
=
√
2Dξ (t) (17)

where−∞< x<∞, D is the diffusion coefficient and ξ(t) is a real Gaussian white noise with< ξ (t)>= 0,
and< ξ(t)ξ(t ′)>= δ(t− t ′). This equation can be solved analytically for X(0) = x0 to obtain that X(t) has
Gaussian statistics with< X(t)>= x0 and a variance, σ2

X(t) = 2Dt [40].
We now solve numerically this equation by using the Euler–Maruyama algorithm with D= 1 and x0 = 0

in order to illustrate the shape of the obtained trajectories. Figure 2(a) shows three different trajectories
obtained with an integration time step of∆t= 10−5. In order to obtain results statistically significant we
generate N= 104 different trajectories to calculate averages as a function of time. The mean value (not
shown) is very close to zero and the variance grows linearly with t with a slope of 2 as it can be seen in
figure 2(b). In this figure we also include the results obtained with different∆t in order to check the
convergence of the numerical integration method. Figure 2(b) shows how the variance converges to the
theoretical line σ2

X(t) = 2Dt when reducing∆t. In fact even the results obtained with the largest value of
∆t= 10−3 show good agreement with the theoretical result. We have also checked that the distribution of
X(t) gradually changes from Dirac’s delta at t= 0, towards a Gaussian as t increases. We have checked (not
shown) that the distribution at t= 1 closely follows the theoretical Gaussian shape. The application of these
results to the optical phase, that is, X(t) = ϕ(t), gives some of the initial expressions. For instance, the
comparison of equations (16) and (17) gives the expression of the phase diffusion coefficient when I< Ith in
equation (4).

5. Analysis of the 2D-BM

The 2D-BM is defined by two stochastic processes, X1(t) and X2(t), that satisfy the Langevin equations

dxi
dt

=
√
2Dξi (t) (18)

6
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Figure 2. (a) Temporal dependence of three trajectories of 1D Brownian motion obtained with∆t= 10−5. (b) Variance of X as a
function of t for∆t= 10−3, 10−4 and 10−5.

Figure 3. Different trajectories of 2D-BM in the plane (X1,X2), with starting point (a) (x
(0)
1 ,x

(0)
2 ) = (0,0), and (b)

(x
(0)
1 ,x

(0)
2 ) = (1,0). In this figure D= 1, the final time is tf = 1, and∆t= 10−5.

where−∞< xi <∞, D is the diffusion coefficient, ξ1(t) and ξ2(t) are real Gaussian white noises,
statistically independent one from the other, with< ξi(t)>= 0,< ξi(t)ξj(t ′)>= δ(t− t ′)δij, and i, j = 1,2.

The starting point is (X1(0),X2(0)) = (x(0)1 ,x(0)2 ).
As the two variables X1 and X2 are independent, and both follow the 1D-BM equations, analysing them

separately will give the exact same results already discussed in the previous section. However, the study of the
trajectories in polar coordinates, that is in terms of a radius a(t) and an angle or phase Φ = Φ(t), gives novel
results with respect to the 1-dimensional case. These variables are written in terms of Xi(t) as
P(t) = a2(t) = X2

1 +X2
2, and Φ(t) = arctan(X2/X1).

Figures 3(a) and (b) show the numerical solution of equation (18) with D= 1 for two different initial

conditions (x(0)1 ,x(0)2 ) = (0,0), and (1,0), respectively. Three different trajectories, obtained with an
integration time step of∆t= 10−5, are shown for each figure. The trajectories are shown in the (X1,X2)
plane. The highly irregular trajectories, typical of Brownian motion, will be discussed in relation to
figures 4(a) and 5(a) in which the corresponding temporal evolution of the optical phase will be shown . This
phase is a continuous and unbounded quantity that can be calculated from Φ(t) = arctan(X2/X1). Since this
function only takes values in the interval [−π/2,π/2], it is important to count how many times the trajectory
crosses the vertical axis X1 = 0 to obtain a continuous and unbounded phase. We have used the algorithm
described in appendix B of [30] to calculate Φ(t). Figure 4(a) shows the values of Φ(t) for the trajectories
shown in figure 3(a). At a first look, Φ(t) could resemble the phase for 1D-BM trajectories shown in figure 2.
However a better comparison can be made if statistical moments ofΦ are calculated. We generate numerically
104 trajectories to calculate those moments. The average of Φ(t) (not shown) is very close to zero, simlarly to
the 1D-BM case. However the dynamical evolutions of the variance in 1D-BM and 2D-BM are very different.
Figure 4(b) shows the variance of Φ(t), σ2

Φ, for three different integration steps. Two main points can be
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Figure 4. (a) Optical phase of the trajectories shown in figure 3(a) as a function of t. (b) Variance ofΦ as a function of t for

different∆t= 10−3, 10−4 and 10−5. The starting point is (x
(0)
1 ,x

(0)
2 ) = (0,0).

highlighted. First, σ2
Φ is no longer a linear function of t, in contrast to the linearity observed in figure 2(b).

Second, σ2
Φ does not converge as∆t decreases, in contrast to the convergence observed in figure 2(b).

The analysis of individual trajectories in figure 4(a) show that Φ changes very fast at initial times,
increasing or decreasing to certain positive or negative value. Then, it can stabilise for a long period of time
like in the yellow and blue trajectories (see figures 4(a) and 3(a)). Later on, the trajectory might change
abruptly again, like in the red trajectory of figure 4(a). This occurs since the starting point is the origin (0,0)
and at the beginning the trajectories can move around the quadrants with very small steps, making the phase
vary abruptly. Later, it is reasonable to think that the trajectory will displace from (0,0) to one of the
quadrants, thus making it more difficult for Φ to change so abruptly. In the case that (X1,X2) for any chance
come back close to the origin again, like the red trajectory does, (see figure 3(a)) these abrupt changes can
occur again as shown in figure 4(a) for t∼ 0.9.

The reason why no convergence of σ2
Φ is obtained in figure 4(b) as∆t decreases is that σ2

Φ =∞. This
occurs since X1 and X2 are independent Gaussian random variables. From these variables the distribution of
P can be calculated: P(t) is an exponential random variable, with a probability density f (P) given by

f(P) = e
− P

<P>

<P> if P⩾ 0, and 0 if P< 0. The mean value of P can be calculated as follows:

< P>=< X2
1 >+< X2

2 >= σ2
X1
+< X1 >

2 +σ2
X2
+< X2 >

2 = 2Dt+(x(0)1 )2 + 2Dt+(x(0)2 )2, so

< P(t)>= P(0)+ 4Dt. The Langevin equation that describes Φ(t) is dΦ
dt =

√
2D
P Fϕ (t), where Fϕ(t) is a real

Gaussian white noise such that< Fϕ(t)>= 0, and< Fϕ (t)FΦ (t ′)>= δ(t− t ′) [30]. σ2
Φ =∞ since the

variance of the phase is σ2
Φ = 2D< 1/P> t, and< 1/P>=

´∞
0

1
P
e
− P

<P>

<P> dP=∞ [30].
Figure 4(b) shows that for small times, the variance increases almost vertically. This is because as said

before, (0, 0) is a singular point, and when trajectories are close to it they might vary really fast and
σ2
Φ ∝< 1/P>. Near (0, 0) P is almost 0, and 1/P tends to infinity. When P increases, i.e. the square of the

distance to the origin increases, 1/P is smaller and the variance of the phase σ2
Φ will increase slower. This

perfectly summarizes this idea that getting closer to (0, 0) involves faster variability in Φ, and getting away
from it means the trajectory is deep into some quadrant, with high P and low phase variability.

To further analyse 2D-BM, it seems reasonable to study processes with a starting point further away from
the origin. Thus, the rapid increase of the variance for smaller times should be avoided. That is why the case

(x(0)1 ,x(0)2 ) = (1,0) is studied next, which also has a starting phase Φ = 0 and hence the mean< Φ > is also
zero. Three trajectories are shown in figure 3(b) and their respective phases in figure 5(a). The first result to
notice is how now the phase does not abruptly change at initial times, as was expected. The variance of the
phase σ2

Φ over time is also shown in figure 5(b). The variance does not increase faster for small times than
longer times. Moreover, as seen before, when∆t is reduced, the variance always increases, showing that the
divergence of σ2

Φ appears independently of the initial condition, as was shown theoretically in [35]. Also σ2
Φ

is not a linear function of time like in 1D-BM. This is once again because σ2
Φ ∝< 1/P>, which is not

constant since P is a time-dependent random variable. As an illustration of the time dependence of the
statistics of P we show in figure 6(a) the mean value of P over time when∆t= 10−3, 10−4 and 10−5. The

plot shows how< P(t)>= P(0)+ 4Dt is fulfilled. In this case P(0) = (x(0)1 )2 +(x(0)2 )2 = 1 and since D= 1,
the slope of the line is 4. Similar results are obtained for all∆t, showing that P, contrary to Φ, has finite
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Figure 5. (a) Optical phase of the trajectories shown in figure 3(a) as a function of t. (b) Variance ofΦ as a function of t for

different∆t= 10−3, 10−4 and 10−5. The starting point is (x
(0)
1 ,x

(0)
2 ) = (1,0).

Figure 6. (a) Mean of P over time t for different∆t= 10−3, 10−4 and 10−5. (b) pdf ofΦ(tf) of a 2D-BM for tf = 1, D= 1,

(x
(0)
1 ,x

(0)
2 ) = (0,0), and∆t= 10−5. Theoretical values of Cauchy (blue line) that best fit the numerical data, and Gaussian (red

line) distribution with a standard deviation given by the standard deviation of the data.

moments, which do converge when∆t is decreased. This happens because P is described by an exponential
distribution, as shown previously.

It is also insightful to study the probability density function (pdf) of the phase at the last integration
time, Φ(tf). This is shown in figure 6(b), using a vertical logarithmic scale for visualising better the tails of the
distribution. The plot also shows Cauchy (also known as Lorentzian) pdf with mean value 0 and γ parameter:

f(Φ) =
1

πγ

1

1+
(

Φ
γ

)2 . (19)

We have chosen the γ value for which the best fit of the numerical results is obtained. Cauchy’s probability
approximates the data closely, also on the tails of the distribution. We have also plotted the Gaussian
distribution with the standard deviation of the data. Figure 6(b) shows that the Gaussian pdf fails to describe
the distribution of the numerical data.

These results are in agreement with Spitzer’s theorem [36] that shows that Φ tends to a Cauchy
distribution for t→∞, showing that a good approximation to that distribution is already obtained at t= 1.
Therefore, it is insightful to analyse the distribution of Φ also at intermediate times, to try to visualise its
evolution in time. It is clear that at t= 0 the distribution is Dirac’s delta, since all trajectories start at
Φ(0) = 0. But with time, trajectories start to spread, going away from zero. In figure 7 the distributions for
t= tf/100, t= tf/10 and t= tf/2 are plotted. The results in figure 7 show that the distribution of trajectories
approaches Cauchy distribution very quickly in time. For t= tf/100≡ 0.01 and t= tf/10≡ 0.1, the
distribution is already close in the center, but is quite far in the tails. For a time t= tf/2≡ 0.5, the
distribution already approximates the data closely, in the centre and the tails, just like what happens for
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Figure 7. Probability density function of the optical phase in 2D-BM at different times: (a)Φ(tf/100), (b) Φ(tf/10) and

(c)Φ(tf/2). In this figure tf = 1,D= 1, and (x
(0)
1 ,x

(0)
2 ) = (0,0). Cauchy distributions that best fit the data are also plotted in blue.

Figure 8. Experimental setup.

t= tf ≡ 1. This shows that t→∞, in the sense of Spitzer’s theorem, in this case is already achieved for times
greater than t= 0.5.

6. Experimental analysis of the optical phase

The experimental setup is shown in figure 8. A single polarization 90◦ optical hybrid (kylia COH24) is used
to measure the phase from a single longitudinal mode discrete mode laser (DML) described in [29, 34]. The
bias current and the temperature of the laser were controlled with a laser driver and a temperature controller
(Luzwavelabs LDC/E-Current200 and LDC/E-Temp3), respectively. The temperature and the current of the
device were held constant at 25 ◦C and 14 mA, respectively. This value of the current is below the threshold
current, Ith = 14.14 mA, measured at that temperature. The optical wavelength measured at 14 mA is λs =
1546.864 nm. The light emitted by the DML passes through an optical isolator (OI) and a polarization
controller (PC) entering into one of the inputs of the hybrid. The other input is fed with light from a tunable
laser (TL) (Pure Photonics PPCL300) with a narrow linewidth (75 kHz) and a constant power of 4 mW. The
outputs from the hybrid go to two balanced amplified photodetectors (PD1 and PD2, Thorlabs
PDB480C-AC) with 1.6 GHz bandwidth that are connected to two channels of a real-time oscilloscope (OSC,
Keysight DSO91204A, with 13 GHz bandwidth).

The electrical output at photodetectors 1 and 2, PD1 and PD2, are proportional to PD1(t) =
1√
2
AsATL

sin[(ωs −ωTL)t+φ(t)], and PD2(t) =
1√
2
AsATL cos[(ωs −ωTL)t+φ(t)], respectively. In these equations As is

the amplitude of the signal (the electrical field corresponding to the DML is S(t) = As exp [i(ωst+φ(t))] ),
ATL is the amplitude of the electrical field corresponding to the TL, TL(t) = ATL exp [iωTLt], ωs and ωTL are
the angular optical frequencies of DML and TL, and φ(t) is the phase noise of the DML, the quantity that we
want to measure. In these equations we have also considered that the TL has phase noise much smaller than
the DML, a condition that is clearly fulfilled for the values of the current that we apply to the DML, close to
Ith.

We calculate the phase that appears in PD1(t) and PD2(t), θ(t), given by

θ (t) = ∆ωt+φ(t) , (20)

where∆ω = ωs −ωTL, from the values of the electrical signals at each photodetector by using the algorithm
detailed in appendix B of [30]. θ(t) is an unbounded phase from which we can extract φ(t) providing∆ω is
calculated. We show in figure 9(a) the evolution of five trajectories obtained for a current of I= 14 mA, and 2
GSa/s sampling rate. The wavelength of the TL, λTL, is 1546.864 nm that is the value that maximizes the
amplitude of the signals at the oscilloscope (Vrms ∼ 330 mV). These trajectories are obtained from a long
sequence of data (of 0.01 s duration) as follows. This sequence is divided in windows of duration Tw = 1µs.
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Figure 9. (a) Phase of the output signal from the photodetectors for five consecutive temporal windows. (b) Temporal derivative
of the phase corresponding to the blue and green trajectories in (a). In this figure I= 14 mA and Tw = 1µs.

Results corresponding to five consecutive windows are overlayed in this temporal window in such a way that
the initial value, θ(0), is that corresponding to the end of the previous window but converted into the [−π ,π)
interval. θ(t) fluctuates with a clear decreasing drift that corresponds to negative and small values of∆ω.

Fluctuations of the instantaneous optical frequency of semiconductor lasers appear due to several causes
like fluctuations in the internal temperature of the laser and 1/f noise [4]. Fluctuations of the instantaneous
frequency on long time scales are large [41] so measurements in short time windows must be performed so
that those instantaneous frequencies, and so∆ω, can be considered as approximately constant in each
window. The measurement of∆ω is performed for each temporal window in the following way. We derive
equation (20) to obtain

dθ

dt
=∆ω+

dφ

dt
. (21)

Deriving the phase of the DML, ωst+φ(t), we obtain ωs +
dφ
dt . The average of this quantity over different

trajectories, ωs+< dφ
dt >must be the angular frequency of the DML, ωs, and therefore<

dφ
dt >= 0. Applying

this result in the average of equation (21) we obtain that

∆ω =<
dθ

dt
> . (22)

Since our bias current is constant, dθ
dt is a stationary stochastic process. This is illustrated in figure 9(b) in

which the values of 1
2π

dθ
dt corresponding to the blue and green trajectories of figure 9(a) are plotted.

Figure 9(b) shows that statistical properties of dθ
dt do not change with t, confirming the stationary character

of the process. For this type of processes averages over different trajectories coincide with time averages, and
therefore

∆ω =
dθ

dt
(23)

where dθ
dt is the temporal average of dθ

dt over a window of duration Tw. After calculating time averages in
figure 9(b) over the 1 µs window, we obtain that∆ω/(2π ) is−89.6 and−52.8 MHz for the blue and green
trajectories, respectively. To better illustrate the fluctuations of these quantities we have plotted in
figure 10(a) the values of∆ω/(2π ) for the first 1000 windows contained in our long sequence.∆ω/(2π )
fluctuates around its averaged value,<∆ω/(2π )>=−62.2 MHz, with a standard deviation of 18.6 MHz.

We can now plot the phase noise by using φ(t) = θ(t)−∆ωt. The results corresponding to the five
realizations shown in figure 9(a) are plotted in figure 10(b). This figure shows the typical broadening of the
trajectories during the initial stages of the window. However that broadening is not maintained because it is
clear that the value of φ(t) approaches zero at the end of the window, φ(Tw)∼ 0, for all the trajectories.

The previous result can be understood as follows. From equation (21) we obtain that dφ
dt =

dθ
dt −∆ω. dφ

dt

is a stationary process (it is obtained from dθ
dt by substracting a constant) so<

dφ
dt >= dφ

dt . Since<
dφ
dt >= 0

we obtain that

dφ

dt
= 0=

1

Tw

ˆ Tw

0

dφ

dt
dt (24)
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Figure 10. (a) Optical frequency difference between the DML and the TL for the first 1000 windows. (b) Phase noise for the
trajectories shown in figure 9(a).

Figure 11. (a) Average of the phase noise versus time. (b) Variance of the phase noise as a function of time for three different
values of Tw = 1000, 500, and 100 ns. Averages have been performed over 104 windows.

where we have used the definition of temporal average over Tw. The value of φ(Tw) in terms of dφ
dt is

φ(Tw) =
´ Tw

0
dφ
dt dt and using equation (24) we obtain that φ(Tw) = 0.

Let us now calculate the averages of the phase as done previously for the Brownian motion. We show in
figure 11 the mean value and the variance of φ. The mean value is calculated by averaging over 104 windows
of duration Tw = 1000 ns. As expected, the average is close to zero for all times. The variance is shown in
figure 11(b) for three different values of Tw, being averaged also over 104 windows. The qualitative behavior
of σ2

φ is similar in the three cases. After an initial linear increase, the variance reaches a maximum and then
decreases until σ2

φ(Tw) = 0 because, as previously explained, φ(Tw) = 0 for all the trajectories.
The results in figure 11(b) are overall significantly different for every choice of Tw. However, the more

relevant regime for our analysis is the initial one, when t<< Tw. In this regime we observe a linear increase
of σ2

φ, similarly to that observed in 1D-BM. A zoom of figure 11(b) for the initial regime is shown in
figure 12(a). Since when t<< Tw σ2

φ does not depend on Tw (as seen in the figure for t< 5 ns) we can
calculate a unique value of the phase diffusion coefficient. Figure 12(a) also shows that as Tw increases the
range of times in which σ2

φ does not depend on Tw is larger.
We now check if the results obtained with our method are in agreement with those obtained with a more

conventional method [4, 24]. In [4, 24] the difference in phase fluctuations at times t and t+ τ ,
∆φτ (t) = φ(t+ τ)−φ(t), that is a stationary random process, is considered. For each value of τ , the
variance of the phase noise, σ2

φ(τ) =<∆φ2
τ (t)> can be calculated from the temporal average∆φ2

τ (t)

because<∆φ2
τ (t)>=∆φ2

τ (t) because of the stationary character of∆φτ (t). σ2
φ(τ) is plotted in

figure 12(a) when using a time averaging of 100 µs. This figure shows that there is an excellent agreement
between both methods. In this way we calculate the diffusion coefficient, Dφ, by using a linear fitting of the
results since σ2

φ = 2Dφ t when t is small. The linear fit of the results for Tw = 1000 ns in figure 12(a) gives
Dφ = 5.57± 0.02 rad2/ns with a regression coefficient of 0.9997.
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Figure 12. (a) Temporal evolution of the variance of the phase noise for short values of t. Results for three different values of
Tw = 1000, 500, and 100 ns and for the variance calculated from∆φτ (t) with an averaging time of 100 µs are plotted. (b)
Experimental distribution of the phase noise at t= 20 ns (solid line) and its corresponding Gaussian fit (dashed line). Averages
have been performed over 104 windows. The pdf has been obtained with 104 values of phase.

Figure 13. Diffusion coefficient of the phase noise as a function of the averaged frequency detuning between the semiconductor
laser and the TL. Three different set of measuments are shown with squares, circles and triangles.

We now consider the distribution of the values of the phase noise in the short time regime t<< Tw. We
show in figure 12(b) the experimental distribution of the phase noise at t= 20 ns when Tw = 1000 ns. The
plot also shows the Gaussian distribution obtained with the parameters corresponding to the mean value and
standard deviation of the experimental data (0.19 rad and 14.88 rad, respectively). The good agreement
found between both distributions indicates that the phase noise measured in this experiment has a Gaussian
distribution.

The experimental results that we have shown have been obtained for a single value of the optical
wavelength of the TL, λTL, very close to λs since<∆ω/(2π )>=−62.2 MHz. It is then pertinent to
investigate the degree of reproducibility of our results and their dependence on λTL. In order to do that we
have performed three different sets of measurements whose results are included in figure 13. In the first batch
we have considered four values of λTL and optical attenuation after the TL in order to have a weaker signal at
the oscilloscope (Vrms ≈ some tens of mV). In the other two batches we have not considered attenuation. In
the second batch we have obtained 20 consecutive set of data for a fixed λTL. In the third batch we have
changed λTL and slight changes of the DML’s temperature (smaller than 0.02 ◦C) to record much more set of
data than in the first batch. We have also considered a time separation between different batches of several
weeks.

In figure 13 we show the dependence of Dφ on<∆ω/(2π )> that is obtained when changing λTL under
the conditions previously described. The results from batch 1 follow the same trend than the remaining
results. This indicate that reproducible results are obtained for very different levels of signal. Also results of
batch 2 indicate that, even in the most similar conditions that we can experimentally get, there is some
dispersion, but still following the trend of batch 3. The dependence of Dφ on<∆ω/(2π )> becomes clear
from the results of batch 3. For<∆ω/(2π )> between−115 and 25 MHz the value of Dφ fluctuates around
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a constant value. For the other values of<∆ω/(2π )> there is a clear decrease of Dφ as the absolute value of
<∆ω/(2π )> increases. The value of Dφ should not depend on λTL as it is an intrinsic characteristic of the
DML laser. Then, in order to have a definite value of Dφ it seems reasonable to consider only the values in the
(−11 525) MHz interval. In this way we obtain that Dφ = 5.48± 0.10 rad2/ns.

Phase noise characterization can be performed from the measurement of the laser linewidth by using the
heterodyne [42], self-homodyne [43], self-heterodyne [44], delayed self-homodyne [45], delayed
self-heterodyne [46, 47], and phase-diversity homodyne and heterodyne receiver [2, 4] methods. An indirect
way of obtaining the phase diffusion coefficient from the laser linewidth is to use the
Schawlow–Townes–Henry formula [24]. A more direct method for phase noise characterization is to
calculate the variance of the phase noise as the temporal average of the squared difference in phase
fluctuations at times t and t+ τ [4, 43, 47]. Our method instead calculate the variance of the phase noise by
averaging over different trajectories. This has the advantage of a direct calculation of the statistical moments
of the phase noise by averaging it over the different trajectories, instead of temporal averaging of a quantity
that is not directly the phase noise.

7. Discussion and conclusions

The comparison between experimental and theoretical results must take into account that the theoretical
phases are written in the reference frame of the threshold frequency, ωth. This means that the theoretical
phase of the laser, ωtht+ϕ(t), must equal the experimental phase, ωst+φ(t), obtaining that
ϕ(t) = (ωs −ωth)t+φ(t). Since we consider that within each temporal window ωs is constant, ϕ(t) and φ(t)
differ in a quantity that is not a random variable. In this way the statistical properties of ϕ(t) and φ(t)must
be the same. That is σ2

ϕ = σ2
φ, and if φ(t) is Gaussian, ϕ(t)must be Gaussian with a mean value different by a

constant (ωs −ωth)t. As discussed previously, the experimental values obtained with our method are valid in
the small time regime, while they do not depend on the chosen temporal window. In that time regime the
values of σ2

φ depend linearly on time and the probability density function of φ(t) approaches a Gaussian.
These results are compatible with the predictions of the additive noise model or the 1D-BM. Also, we have
not found signs in our experimental results of Cauchy’s distributions nor abrupt changes in the values of the
phase typical of the multiplicative noise model or the 2D-BM (see figures 1(b), 4(a) or 5(a)). These results
indicate that our experimental results are not compatible with the predictions of the multiplicative noise
model. As the laser is biased closer to threshold the differences between the theoretical results obtained with
the additive and multiplicative models become smaller. In fact, above threshold results are similar because
the noise terms in the phase equations for both models become similar.

Stochastic rate equation models such as those used in this work are approximations that worsen as the
photon number decreases, that is for bias currents well below the threshold value. A rigorous treatment of
spontaneous emission in that limit would require the quantization of the electric field. A proper description
would then be given by a quantum mechanical formulation of the rate equations using quantum Langevin
terms [48, 49] or master equations [49].

Our proposed experimental method has limitations in practical applications, particularly regarding
measurement accuracy as the laser current is decreased well below the threshold value. In this case
bandwidth of both, balanced photodetectors and real time oscilloscope, must be increased in order to
capture the rapid fluctuations of the generated signals. In our experimental method we have also disregarded
the effect of the noise in the photodetectors. On one hand rapid oscillations of the laser’s optical field can not
be directly resolved by the photodetectors due to their limited bandwidth. On the other hand the
amplification stage in our detectors introduce extra noise. In this way our measured value of the diffusion
coefficient overestimates the real one and is just an upper bound of its value. Future work will be devoted to
introduce post-processing routines based on parametric Wiener filters that have given excellent results in the
measurement of laser linewidth even in the presence of strong detector noise [50].

Future work will also be devoted to analyze the experimental dependence of the phase diffusion
coefficient on the injected bias current close to threshold to compare with the evolution of the spectral
linewidth found in that region [51]. It has been shown [51] that the spectral linewidth of semiconductor
lasers is not always a decreasing function of the bias current: lasers with large values of α can have a
maximum of the spectral linewidth just above the threshold current. Since the spectral linewidth is directly
connected to the phase diffusion coefficient we could also expect some non-monotonous dependence of this
coefficient as a function of the bias current. We could also expect that the phase diffusion coefficient in lasers
with small values of α, like quantum dot lasers, would decrease as a function of the current. Preliminar
experimental results using our method in a DFB laser indicate that the phase diffusion coefficient decreases
as the bias current increases when crossing the threshold value. Also experimental Gaussian distributions for
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the phase are obtained. The theoretical and experimental analysis of the phase statistics in the pulsed regime
will be also the subject of future work.

The additive model works better than the multiplicative model because it has been deduced from first
principles [1, 26] for a constant bias current, contrary to the multiplicative one. When the laser is in
gain-switching regime there are no derivations from first principles for the additive nor for the multiplicative
model. The adopted solution has been to use the multiplicative model since strengths of the noise terms are
written in terms of the variables, instead of their averages, making it appropriate for describing the time
dependence inherent to gain-switching. However, we remark that this model has not been deduced from first
principles and results derived from it can be problematic, like the infinite value of the variance of the optical
phase when the bias current is below threshold. Future work will be devoted to the development of new
stochastic rate equations models from which finite values of the phase variance are obtained and that can be
used in the gain-switching regime.

In summary, we have analyzed theoretically and experimentally the phase noise in semiconductor lasers
biased below threshold. The theoretical study has been performed by using two sets of semiconductor laser
rate equations, with additive and multiplicative noise terms, that can be approximated by 1-dimensional and
two dimensional Brownian motions, respectively, when the laser approaches its steady-state. We have
compared the predictions of both models with the results of measurements of the phase noise with a
coherent receiver using a 90◦ optical hybrid. Trajectories, averages and the distribution of the phase noise are
experimentally obtained with good agreement with the results obtained with the well established method
based on the phase noise difference. Our experimental results have shown that the variance of the phase
noise grows linearly in time and has Gaussian statistics, in agreement with the predictions of the model with
additive noise, while the main characteristic of the model with multiplicative noise, that is Cauchy’s
distribution of the phase noise has not been observed. Finally, we have also obtained that the slope of the
linear relation between the phase noise variance and time depends on the frequency detuning in the coherent
receiver. The measurement of the diffusion coefficient of the phase noise can be performed because we have
found that there is a frequency detuning range for which that slope is approximately constant.
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[12] Stipčevíc M and Koç ÇK 2014 True random number generators Open Problems in Mathematics and Computational Science

(Springer) 275–315
[13] Ma X, Yuan X, Cao Z, Qi B and Zhang Z 2016 npj Quantum Inf. 2 1–9
[14] Herrero-Collantes M and Garcia-Escartin J C 2017 Rev. Mod. Phys. 89 015004

15

https://orcid.org/0000-0002-3307-5485
https://orcid.org/0000-0002-3307-5485
https://doi.org/10.1109/JLT.1986.1074721
https://doi.org/10.1109/JLT.1986.1074721
https://doi.org/10.1109/JLT.2015.2463719
https://doi.org/10.1109/JLT.2015.2463719
https://doi.org/10.1364/OE.19.000B90
https://doi.org/10.1364/OE.19.000B90
https://doi.org/10.1364/OE.20.005291
https://doi.org/10.1364/OE.20.005291
https://doi.org/10.1109/LPT.2022.3203063
https://doi.org/10.1109/LPT.2022.3203063
https://doi.org/10.3390/rs12172771
https://doi.org/10.3390/rs12172771
https://doi.org/10.1109/LPT.2005.853258
https://doi.org/10.1109/LPT.2005.853258
https://doi.org/10.1103/RevModPhys.92.025002
https://doi.org/10.1103/RevModPhys.92.025002
https://doi.org/10.1002/qute.202100062
https://doi.org/10.1002/qute.202100062
https://doi.org/10.1002/andp.202300289
https://doi.org/10.1002/andp.202300289
https://doi.org/10.1088/2058-9565/ad141c
https://doi.org/10.1088/2058-9565/ad141c
https://doi.org/10.1038/npjqi.2016.21
https://doi.org/10.1038/npjqi.2016.21
https://doi.org/10.1103/RevModPhys.89.015004
https://doi.org/10.1103/RevModPhys.89.015004


J. Phys. Photonics 7 (2025) 015013 I Pascual de Zulueta and A Valle

[15] Jofre M, Curty M, Steinlechner F, Anzolin G, Torres J, Mitchell M and Pruneri V 2011 Opt. Express 19 20665–20672
[16] Abellán C, Amaya W, Jofre M, Curty M, Acín A, Capmany J, Pruneri V and Mitchell M 2014 Opt. Express 22 1645–1654
[17] Yuan Z, Lucamarini M, Dynes J, Fröhlich B, Plews A and Shields A 2014 Appl. Phys. Lett. 104 261112 2014
[18] Abellan C, Amaya W, Domenech D, Munoz P, Capmany J, Longhi S, Mitchell MW and Pruneri V 2016 Optica 3 989–994
[19] Marangon D G et al 2024 Nat. Electron. 1–9
[20] Loudon R 2000 The Quantum Theory of Light (OUP Oxford)
[21] Lovic V, Marangon D G, Lucamarini M, Yuan Z and Shields A J 2021 Phys. Rev. Appl. 16 054012
[22] Shakhovoy R et al 2023 Phys. Rev. A 107 012616
[23] Quirce A and Valle A 2021 Opt. Express 29 39473–39485
[24] Agrawal G P and Dutta N K 2013 Semiconductor Lasers (Springer)
[25] Coldren L A, Corzine S W and Mashanovitch M L 2012 Diode Lasers and Photonic Integrated Circuits vol 218 (Wiley)
[26] Lax M and Louisell W 1969 Phys. Rev. 185 568
[27] Septriani B, de Vries O, Steinlechner F and Gräfe M 2020 AIP Adv. 10 055022
[28] Shakhovoy R, Sharoglazova V, Udaltsov A, Duplinskiy A, Kurochkin V and Kurochkin Y 2021 IEEE J. Quantum Electron. 57 1–7
[29] Quirce A and Valle A 2022 Opt. Laser Technol. 150 107992
[30] Valle A 2023 Phys. Rev. Appl. 19 054005
[31] Balle S, De Pasquale F, Abraham N and San Miguel M 1992 Phys. Rev. A 45 1955-1966
[32] Spano P, D’Ottavi A, Mecozzi A, Daino B and Piazzolla S 1989 IEEE J. Quantum Electron. 25 1440–1449
[33] Petermann K 1991 Laser Diode Modulation and Noise vol 3 (Springer Science & Business Media)
[34] Rosado A, Pérez-Serrano A, Tijero J M G, Valle A, Pesquera L and Esquivias I 2019 IEEE J. Quantum Electron. 55 2001012
[35] Lévy M P 1940 Am. J. Math. 62 487–550
[36] Spitzer F 1958 Trans. Am. Mac. Soc. 87 187–197
[37] Risken H 1996 The Fokker-Planck Equation (Springer)
[38] Kloeden P E and Platen E 1992 Stochastic differential equations Numerical Solution of Stochastic Differential Equations (Springer)
[39] Quirce A, Rosado A, Díez J, Valle A, Pérez-Serrano A, Tijero J M G, Pesquera L and Esquivias I 2020 IEEE Photon. J. 12 1–14
[40] Gardiner C W et al 1985 Handbook of stochastic methods 3 (Springer)
[41] Igarashi K, Kiwata H, Kikuta M and Shigihara M 2021 J. Lightwave Technol. 39 6539–46
[42] Young B, Cruz F, Itano W and Bergquist J 1999 Phys. Rev. Lett. 82 3799
[43] Attia I, Wohlgemuth E, Balciano O, Cohen R J, Yoffe Y and Sadot D 2022 Opt. Express 30 14492–504
[44] Kueng A, Thevenaz L and Robert P A 1996 Laser linewidth determination in the sub-megahertz range using a brillouin fibre laser

Proc. European Conf. on Optical Communication vol 2 (IEEE) 305–308
[45] Nazarathy M, Sorin W V, Baney D M and Newton S A 1989 J. Lightwave Technol. 7 1083–1096
[46] Okoshi T, Kikuchi K and Nakayama A 1980 Electron. Lett. 16 630–631
[47] Huynh T N, Nguyen L and Barry L P 2011 IEEE Photon. Technol. Lett. 24 249–251
[48] Lax M 1966 Phys. Rev. 145 110
[49] Gardiner C and Zoller P 2004 Quantum Noise: A Handbook of Markovian and Non-Markovian Quantum Stochastic Methods with

Applications to Quantum Optics (Springer)
[50] Kantner M and Mertenskötter L 2023 Opt. Express 31 15994–16009
[51] Toffano Z 1997 IEEE J. Sel. Top. Quantum Electron. 3 485–490

16

https://doi.org/10.1364/OE.19.020665
https://doi.org/10.1364/OE.19.020665
https://doi.org/10.1364/OE.22.001645
https://doi.org/10.1364/OE.22.001645
https://doi.org/10.1063/1.4886761
https://doi.org/10.1063/1.4886761
https://doi.org/10.1364/OPTICA.3.000989
https://doi.org/10.1364/OPTICA.3.000989
https://doi.org/10.1103/PhysRevApplied.16.054012
https://doi.org/10.1103/PhysRevApplied.16.054012
https://doi.org/10.1103/PhysRevA.107.012616
https://doi.org/10.1103/PhysRevA.107.012616
https://doi.org/10.1364/OE.439337
https://doi.org/10.1364/OE.439337
https://doi.org/10.1103/PhysRev.185.568
https://doi.org/10.1103/PhysRev.185.568
https://doi.org/10.1063/5.0011418
https://doi.org/10.1063/5.0011418
https://doi.org/10.1109/JQE.2021.3055149
https://doi.org/10.1109/JQE.2021.3055149
https://doi.org/10.1016/j.optlastec.2022.107992
https://doi.org/10.1016/j.optlastec.2022.107992
https://doi.org/10.1103/PhysRevApplied.19.054005
https://doi.org/10.1103/PhysRevApplied.19.054005
https://doi.org/10.1103/PhysRevA.45.1955
https://doi.org/10.1103/PhysRevA.45.1955
https://doi.org/10.1109/3.29279
https://doi.org/10.1109/3.29279
https://doi.org/10.1109/JQE.2019.2943482
https://doi.org/10.1109/JQE.2019.2943482
https://doi.org/10.2307/2371467
https://doi.org/10.2307/2371467
https://doi.org/10.1090/S0002-9947-1958-0104296-5
https://doi.org/10.1090/S0002-9947-1958-0104296-5
https://doi.org/10.1109/JPHOT.2020.3009450
https://doi.org/10.1109/JPHOT.2020.3009450
https://doi.org/10.1109/JLT.2021.3101546
https://doi.org/10.1109/JLT.2021.3101546
https://doi.org/10.1103/PhysRevLett.82.3799
https://doi.org/10.1103/PhysRevLett.82.3799
https://doi.org/10.1364/OE.451758
https://doi.org/10.1364/OE.451758
https://doi.org/10.1109/50.29635
https://doi.org/10.1109/50.29635
https://doi.org/10.1049/el:19800437
https://doi.org/10.1049/el:19800437
https://doi.org/10.1109/LPT.2011.2174216
https://doi.org/10.1109/LPT.2011.2174216
https://doi.org/10.1103/PhysRev.145.110
https://doi.org/10.1103/PhysRev.145.110
https://doi.org/10.1364/OE.485866
https://doi.org/10.1364/OE.485866
https://doi.org/10.1109/2944.605698
https://doi.org/10.1109/2944.605698

	Theoretical and experimental analysis of phase noise in semiconductor lasers biased below threshold
	1. Introduction
	2. Semiconductor laser rate equations
	3. Numerical analysis of the rate equations: the Brownian motion approach
	4. Analysis of the 1D-BM
	5. Analysis of the 2D-BM
	6. Experimental analysis of the optical phase
	7. Discussion and conclusions
	References


