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The use of Ethernet and Linux is becoming common in industrial applications, even for those with real-time 

requirements, although neither of them were originally designed for this purpose. The emergence of Indus- 

try 4.0 (also known as Industrial Internet of Things, IIoT) has encouraged the evolution of these technologies 

to better handle real-time issues. On the one hand, Linux now supports mechanisms to configure certain 

real-time parameters, as well as core isolation and interrupt allocation facilities in multicore processors. On 

the other hand, the set of Ethernet standards IEEE 802.1 Time-Sensitive Networking (TSN) includes a high 

precision clock synchronization protocol (IEEE 802.1AS). The purpose of this work is to outline an execu- 

tion framework for distributed systems based on TSN and Linux, which allows the execution of time-aware 

applications. We have studied and evaluated different configurations available for the proposed execution 

framework. In particular, a detailed characterization of the clock synchronization mechanism, from the ap- 

plication point of view, has been performed. Some conclusions about the current real-time capabilities of 

these technologies are also presented. 
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 Introduction 

owadays, there is a growing interest in using Commercial Off-The-Shelf (COTS) compo-
ents within the real-time industrial domain. This trend is mainly driven by the need to minimize
evelopment costs and time to market along with the increase of non-functional requirements
f real-time applications. In this context, the main benefits of using an operating system such
s Linux become apparent: It provides comprehensive support for processors and peripherals,
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acilities for customization and high availability of open-source and proprietary software, includ-
ng device drivers and development tools. Although the Linux kernel prioritizes throughput over
eterminism, its real-time capabilities have been improved over the past years [ 1 ]. Two of the most
otable approaches include (1) the PREEMPT_RT kernel patch [ 2 ], which reduces the latency by
aking most of the kernel preemptable; and (2) the CPU isolation capabilities [ 3 , 4 ], which aim

o isolate a core in a multicore processor to execute specific tasks. Furthermore, there are already
ome previous experiences where real-time applications have been executed over Linux, such as
n the case of High-Performance Computing (HPC) applications [ 1 ]. 

A recent survey [ 5 ] conducted on 120 industry practitioners in the field of real-time embedded
ystems showed that Linux is present in 55.88% of respondents’ applications. Most of the applica-
ions analyzed employed multiple operating systems, and the combination of Linux and a Real-

ime Operating System (RTOS) was used by 42% of respondents. These values show a relevant
resence of Linux in industry and motivates our work to extend its usability to the kind of collab-
rative applications envisaged by Industry 4.0 [ 6 , 7 ], where Time Sensitive Networking (TSN)

rotocols are key to build distributed application with real-time requirements [ 8 ]. For instance,
igh clock synchronization accuracy can be considered a key requirement in power and smart
rid applications [ 9 ]. This accuracy requirement is also present in factory assembly lines where
he coordination of robotic arms and specific industrial machinery requires communication and
ontrol with timing requirements below 1 millisecond. 

The set of TSN standards defines IEEE 802.1AS [ 10 ] for precise time synchronization of devices
n Ethernet networks, thus introducing the notion of a global clock in a distributed system. IEEE
02.1AS can be considered a profile of the IEEE 1588 standard [ 11 ], which defines the basis of a
rotocol for synchronizing the clocks of a distributed system known as Precision Time Protocol

PTP) . IEEE 1588 is a more general standard that can be applied to various domains beyond TSN-
nabled Ethernet networks. 

The fact of synchronizing precisely the clocks of a distributed system enables the development of
ime-aware applications that require global timestamping (e.g., sensor data [ 8 ]) or runtime check-
ng of end-to-end deadlines. Furthermore, it can also play a significant role in kernel scheduling
ervices for distributed real-time systems that aim to leverage global scheduling policies such as
DF (Earliest Deadline First) . Compared to more common policies based on static scheduling
 12 , 13 , 14 ], EDF schedulers can optimize processors utilization when a global clock is available
 15 , 16 ], thus increasing the overall schedulability of the distributed system. 

This article outlines a feasible execution framework designed for industrial distributed real-time
pplications in which nodes requires accurate time synchronization and some parts of the system
ely on a Linux-based OS. The key contributions of this work include: 

—Identification and analysis of different features within the Linux kernel that can be used to
execute applications with real-time requirements while minimizing the interactions with
other non-real-time applications. 

—Characterization of the 802.1AS clock synchronization mechanism from applications’ per-
spective, which includes estimating the overheads, the latencies, and the effective synchro-
nization of the global clock at the application level. 

—A set of recommended settings for both the Linux kernel and the 802.1AS clock synchro-
nization protocol. 

Unlike other works that are focused on evaluating the internals of the clock synchronization
rotocol closer to the physical layer (granularity, drift, PHY jitter, etc.) [ 17 , 18 ], our work deals
ith measurements at the software layer (operating system and application). These measurements
CM Trans. Embedd. Comput. Syst., Vol. 24, No. 1, Article 13. Publication date: December 2024. 
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ill provide us with insights on the practical applicability of the proposed execution framework
n industrial applications. 

The document is organized as follows: Section 2 introduces the concepts of TSN that are relevant
or this work, and it also describes the related work. The execution framework proposed in this
rticle together with the available options and configuration details are presented in Section 3 .
ection 4 presents the tests used to measure clock overheads, event-handling latencies, and an
stimation of the real synchronization between nodes. The evaluation of the global clock for the
ifferent configurations considered is presented in Section 5 . Finally, we draw out our conclusions
nd possible future work in Section 6 . 

 Background 

.1 Background on TSN 

SN is a set of standards that defines mechanisms for robust time-sensitive transmission of data
ver deterministic Ethernet networks. It was developed by the TSN task group of the 802.1 working
roup, and its target is to provide deterministic services through IEEE 802 networks, i.e., guaran-
eed packet transport with bounded latency, bounded jitter, and zero congestion loss. 

One key functionality of TSN networks is provided by IEEE 802.1AS [ 10 ], which focuses on
lock synchronization over bridged local area networks. Among other functionalities, it includes
1) the transport of synchronized time, (2) the selection of a timing source, and (3) the indication
f timing errors. This standard ensures that the jitter and time synchronization requirements are
et for time-sensitive applications, such as audio and video, as long as specific TSN hardware

s present in network cards (NICs) and switches involved in the distributed real-time system
e.g., hardware for timestamping incoming and outgoing network packets). 

The synchronization protocol proposed by 802.1AS is called gPTP (generalized PTP) , which
an be considered a constrained profile of IEEE 1588 (widely known as PTP) [ 11 ] in which new
iming features are also added. Networking devices such as end-stations (computing nodes) or
ridges (switches) that are compliant with IEEE 802.1AS are referred to as time-aware systems by
he specification. 

This protocol generates a master-slave hierarchy among the clocks of the network. One clock
s used as a reference time source (i.e., GrandMaster (GM) ) and the remaining clocks are used
s slaves. The choice of GM is usually performed through the Best Master Clock Algorithm

BMCA) . Once the GM is selected, the slaves adjust their clocks to the time broadcasted by the
M. The synchronization procedure is done periodically to refresh the slave clock and avoid clock
rift over time. If the current GM is removed or a new better one is added to the network, then
MCA will automatically select a new GM again. According to IEEE 802.1AS, both switches and
omputing nodes can be selected as GM. Finally, other alternatives to BCMA can be applied such
s the External Port Configuration Mechanism [ 10 ]. 

.2 Related Work 

owadays, there is a significant amount of research work related to IEEE 802.1AS focused on esti-
ating the clock accuracy at the physical layer. For instance, the authors in Reference [ 19 ] provide
 preliminary performance evaluation based on simulations and initial hardware implementations.
heir evaluation included networks up to 7 hops (8 nodes) between master and slaves, and it also
onsidered the influence of background traffic. The results show that a synchronization require-
ent of 500 ns can be easily met on 1 Gbit/s Ethernet links. A significant amount of research is

urrently focused on evaluating the accuracy of simulations. The works in References [ 20 ] and
 21 ] showed that simulations generally obtain lower latencies compared to TSN hardware and
ropose several enhancements to available network models. Similarly, Reference [ 22 ] addressed
ACM Trans. Embedd. Comput. Syst., Vol. 24, No. 1, Article 13. Publication date: December 2024. 
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he creation of digital replicas able to accurately model the behavior of time synchronization and
raffic shaping in TSN systems. 

Another common approach to validate TSN systems is through experimental frameworks that
ely on real hardware. For instance, the TSN-FlexTest framework [ 23 ] obtained sub-microsecond
recision for time synchronization in the presence of cross network traffic. Similar results were
btained by Reference [ 24 ] with a custom hardware-assisted implementation of the PTP protocol.
In the context of automotive systems, the performance of IEEE 802.1AS was evaluated using

ardware timestamping [ 25 ]. On average, the synchronization offset between master and slaves
as 5 μs (with a maximum of 8 μs). Other research work [ 17 ] analyzed IEEE 802.1AS in large-scale
etworks. Their simulations showed a synchronization precision of around 2 μs for the last time-
ware system in a chain of 100 hops. Sub-microsecond precision was obtained using a Wide Area

etwork (WAN) in smart grid applications [ 26 ]. The authors in Reference [ 27 ] ran a set of TSN-
elated experiments in a cloud-based environment and obtained synchronization offsets below
 μs. In the industrial automation domain, Reference [ 28 ] explored the use of OPC UA distribution
acilities over TSN networks. 

The use of IEEE 802.1AS in wireless networks is also a notable field of research. The work in
eference [ 29 ] outlines the general issues of deploying clock synchronization protocols to wire-

ess networks. The combination of TSN and popular broadband technologies (Wi-Fi, 4G, and 5G)
s studied in Reference [ 30 ]. The authors in Reference [ 31 ] explored hybrid TSN networks (wired–
ireless). Finally, Reference [ 32 ] described the requirements and challenges for time synchroniza-

ion in different wireless use cases. 
Reference [ 33 ] presents a method for practical performance evaluation of PTP clock syn-

hronization within a distributed environment consisting of nodes running the QNX real-time
perating system. Similarly to our work, the authors in Reference [ 34 ] presented an approach to
ynchronize the Linux system clock to the PTP clock, as well as the estimation of latencies through
yclictest [ 35 ]. In their opinion, having a synchronization accuracy of 100 μs or lower should be
ufficient for a wide range of applications. Using IEEE 802.1AS for virtualized distributed real-time
ystems is an interesting approach presented in Reference [ 36 ], where global time data is read by
irtual machines via shared memory. According to their measurements, the virtual machine with
irect access to the network hardware can achieve sub-microsecond synchronization precision.
urthermore, the authors in Reference [ 37 ] outline a distributed real-time system based on Linux,
ut using specialized hardware and focusing on the scheduling of the network traffic through IEEE
02.1Qbv. Our work complements these efforts by proposing a different execution framework
ased on native Linux with the configuration of its isolation capabilities and evaluating how the
lobal time is managed at the application level. 

 Real-time Distributed Execution Framework 

.1 Overview 

he Linux kernel is attracting more and more adopters in the industry [ 5 ] due to its broad platform
upport, customization facilities, and high availability of software, including device drivers and
evelopment tools. Although Linux is geared towards general-purpose computing, the real-time
erformance has steadily improved over the past few years by means of different mechanisms such
s the isolation of one or more cores for executing specialized applications or making the kernel
ully preemptible [ 38 ]. 

Figure 1 illustrates the proposed software execution framework for a multicore system. Under
his execution framework, real-time applications are executed as a standard Linux process, and
hey can rely on different Linux facilities, such as networking or timing services. Isolating a core
CM Trans. Embedd. Comput. Syst., Vol. 24, No. 1, Article 13. Publication date: December 2024. 
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Fig. 1. The execution framework. 

Table 1. Configuration Flags for PTP Tools 

Tool Flag Purpose 

ptp4l i NIC interface to use 
ptp4l f Configuration file used 

ptp4l step_threshold Change clock frequency instead of stepping the clock 

phc2sys a Timing source from ptp4l 
phc2sys r Synchronize the system clock 

phc2sys transportSpecific Select between the IEEE 1588 and the IEEE 802.1AS domains 
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an enhance the predictability of the real-time application by limiting user and kernel preemptions.
odern kernels provide different mechanisms to facilitate the execution of threads in isolated

ores, which will be presented and evaluated in subsequent sections. Furthermore, most of the in-
errupts should be also removed from the isolated core to reduce possible sources of interferences,
lthough a few of them are bounded to each core and cannot be migrated. 

The proposed execution framework provides the notion of global time by means of the imple-
entation of the IEEE 802.1AS protocol [ 10 ], which is responsible for synchronizing all the PTP

ardware Clocks (PHC) for each node belonging to the distributed system. 
Modern Linux kernels can execute applications with some kind of real-time requirements as

ong as the kernel can be configured accordingly [ 1 ]. To this end, the recommended settings for
he proposed platform are detailed next. 

.2 Configuration Details 

he platform configuration requires tuning both Linux compilation and runtime parameters, as
ell as configuring the PTP service, which are described next. 

3.2.1 PTP Configuration. The Linux PTP Project implements the PTP standard for Linux, in-
luding the gPTP profile proposed by IEEE 802.1AS. Linux PTP provides two relevant tools whose
ain configuration options are shown in Table 1 : 
ACM Trans. Embedd. Comput. Syst., Vol. 24, No. 1, Article 13. Publication date: December 2024. 
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—The ptp4l tool is responsible for implementing the synchronization protocol. Besides using
the default gPTP profile, this tool is also configured to provide monotonically increasing
times (i.e., clock corrections are performed by changing the clock frequency). 

—The phc2sys tool enables the synchronization of two local clocks in the computing node
[ 34 ]. For instance, it has been used to synchronize the system clock to the PHC clock pro-
vided by the NIC. This increases the portability of the approach, and it also allows using
some POSIX calls such as clock_nanosleep that cannot directly rely on the PHC clock device.

The platform relies on version 3.0 of Linux PTP. To minimize interruptions on clocks’ synchro-
ization, both ptp4l and phc2sys are executed as real-time processes and they are scheduled under
he SCHED_FIFO real-time policy. 

3.2.2 Setting up the Isolation of Cores. By executing a real-time process in an isolated core,
he competition with the rest of the system workload is avoided and thus interferences may be
inimized. For our purposes, the platform requires allocating one or more cores to execute the

eal-time application, while leaving the remaining cores to execute the general-purpose workload
f the system. Core isolation capabilities in Linux are provided by cpuset and isolcpus facilities.
oth mechanisms are widely available in modern kernels and therefore they will be evaluated and
ompared in Section 5 to determine the advantages of applying one or another. A brief overview
f each mechanism is described next: 

—The cpuset facilities provide support for attaching processes to cores and memory node
subsets. This means that a Linux process can only be executed on the cores belonging to
the cpuset. 
Two cpusets are created in our platform. By default, Linux boots with a single cpuset so
the new configuration is applied explicitly at runtime. Some kernel threads are tied to a
specific core and may not be migrated. 

—Unlike cpuset, the isolcpus facilities are applied during system startup as a boot parameter.
In the context of this article, isolcpus is applied as part of the TuneD service . This Linux ser-
vice is based on scenario profiles to facilitate the proper configuration of different system
settings. There are profiles for predefined scenarios such as low-latency, high-throughput,
powersave, or CPU partitioning. The latter profile has been applied to the platform to re-
move user and kernel workload from the isolated core. 

To enhance the isolation, the isolated cores should be specified in the nohz_full kernel parameter
 38 ] to enable the adaptative tick mode. This mode offloads the kernel tick to a non-isolated core
henever some conditions are met. For instance, there should be only one runnable thread at most

n the isolated core. However, it is worth noting that this parameter cannot offload a residual 1 Hz
ick, which remains as a source of interference. 

3.2.3 Other Configurations. To further reduce the source of interferences, other additional set-
ings can be applied to the platform. For instance, some power management mechanisms such as
ower performance states (P-states) and the Processor idle sleep states (C-states) may affect

he determinism of the kernel [ 39 ] (i.e., a real-time application may suffer from unexpected de-
ays when the CPU is switching from a power-save mode). The tradeoff between determinism and
ower-saving is specific to the real-time requirements of each system and it should be analyzed
n a per-case basis. 
As it was commented earlier, interrupts should be migrated to the non-isolated cores whenever

t is possible. This can be accomplished by modifying the corresponding smp_affinity property
f each interrupt. In Linux, interrupts are processed in interrupt context. This context is not
CM Trans. Embedd. Comput. Syst., Vol. 24, No. 1, Article 13. Publication date: December 2024. 
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Fig. 2. Configuration process for the execution framework. 
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reemptible and therefore interrupt handlers should be configured to run in a threaded context
hrough the threadirqs kernel parameter. 

Finally, another feature that can impact the response times of real-time applications in Linux is
eal-time throttling (i.e., a safeguard limit for the execution of real-time tasks) [ 38 ], which should
e disabled by means of the kernel.sched_rt_runtime_us kernel parameter. 
A summary of the process followed to configure the execution framework is illustrated in

igure 2 . 

 Benchmarking 

his section proposes a set of tests to characterize the real-time behavior associated with the IEEE
02.1AS global clock from the application point of view. In particular, the tests have been developed
o obtain the following key metrics: 

—The overhead of getting the global time. 
—The latency in the handling of events. 
—The timing offset between the clocks of two computing nodes when they are synchronized.

Furthermore, it is also worthy to evaluate the various settings that can be applied to implement
he proposed execution framework. To this end, different types of scenarios can be considered
ased on the configurations used for core isolation and clock synchronization, as follows: 

—Three types of scenarios are defined based on the isolation mechanism applied: no isolation,

cpuset, and TuneD . The former scenario can be considered the traditional approach to build
and execute a real-time application in Linux and it is used as a reference in the context of
this article. 

—Two types of scenarios are defined based on the settings used for clock synchronization:
SMS (Slave-Master-Slave) , where the switch is the GM and propagates the global time to
ACM Trans. Embedd. Comput. Syst., Vol. 24, No. 1, Article 13. Publication date: December 2024. 
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Table 2. Scenarios for the Analysis 

Scenario Id Core isolation Clock sync Target Node 

RT-SMS-SLAVE No isolation SMS Slave 
RT-MBS-MASTER No isolation MBS Master 
RT-MBS-SLAVE No isolation MBS Slave 
TUNED-SMS-SLAVE TuneD SMS Slave 
TUNED-MBS-MASTER TuneD MBS Master 
TUNED-MBS-SLAVE TuneD MBS Slave 
CPUSET-SMS-SLAVE cpuset SMS Slave 
CPUSET-MBS-MASTER cpuset MBS Master 
CPUSET-MBS-SLAVE cpuset MBS Slave 
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the slaves (i.e., the computing nodes), and MBS (Master-Bridge-Slave) , where one of the
computing nodes is the GM. In the case of SMS, tests can be executed only in one of the
slave nodes, since both nodes share the same role in the distributed system. In the case of
MBS, both nodes should run the tests as they have different roles (i.e., master and slave). 

As a result of the combination of both types of scenarios, the nine scenarios summarized in
able 2 are defined. The set of tests proposed in this section will be executed in each one of these
cenarios. 

est 1: Estimation of the clock overhead 

his test measures the extra time used by the kernel to perform a clock operation. In particular,
he test measures the overhead of getting the time from the local clock (i.e., the POSIX monotonic
lock) and from the global clock when it is accessed through the POSIX real-time clock by config-
ring phc2sys accordingly. To determine the overhead, the test calculates the difference between
wo consecutive accesses to the same clock. The pseudo-code for the test is as follows: 

or 1 to 1000000: 
t1 = gettime(clock) 
t2 = gettime(clock) 
overhead = t2 − t1 

est 2: Cross estimation of clock overhead 

his test aims at measuring the overhead of one clock using the opposite as reference; that is, the
ocal clock is measured with the global clock and vice versa. The motivation behind this test is
hecking possible variations in the measurements depending on the clock used. The pseudo-code
ssociated with this test is as follows: 

or 1 to 1000000: 
t1 = gettime (ref_clock) 
gettime(clock_under_analysis) 
t2 = gettime (ref_clock) 
overhead = t2 − t1 

est 3: Event-handling latency 

n the context of this article, the notion of event-handling latency is considered as the time interval
etween the triggering of an event (e.g., the firing of a timer interrupt) and the time when that
vent can be actually handled. This latency includes the overhead associated with several factors
uch as IRQ handling or scheduling. 
CM Trans. Embedd. Comput. Syst., Vol. 24, No. 1, Article 13. Publication date: December 2024. 
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This kind of latency can be measured using cyclictest [ 35 ], a tool available in a suite used for
enchmarking a set of real-time Linux features. Among other configurable options, this tool allows
electing the clock to use (e.g., POSIX monotonic or real-time clock), the event-triggering period,
r the number of iterations, which perfectly suits to perform this test. 

est 4: Synchronization between nodes 

his test aims at evaluating the synchronization of clocks in a distributed system by measuring
he time difference of periodically setting/clearing a digital signal triggered at the same time in the
wo computing nodes. In this case, the metrics are taken by measuring the delay between the two
igital signals using an oscilloscope. 
To better evaluate the clock synchronization, the overhead of setting/clearing the General Pur-

ose I/O (GPIO) pins should also be taken into account. The pseudo-code associated with this
verhead measurement is as follows: 

or 1 to 1000000: 
t1 = gettime(clock) 
pulse up 
pulse down 
t2 = gettime(clock) 
time = t2 − t1 

est 5: Stressing situations 

his test adds workload to Test 3 and Test 4 for the SMS scenario to check how the isolation is
ffected. The workload is added through stress-ng [ 41 ], a tool that allows synthetic workloads to
e generated to stress different parts of the system (e.g., CPU or I/O). In this test, stress-ng has
een configured to execute a total of 6 threads: 3 threads run CPU synthetic workload (which
dd approximately a 25% of CPU workload per thread), 2 threads perform I/O operations such as
ommitting filesystem caches to disk or writing, reading, and removing files, and 1 thread creates
imer clock interrupts at a rate of 1 MHz. Each thread can only be run in any of the available
on-isolated cores. 

 Performance Evaluation 

o obtain the proposed metrics, the tests described in the previous section are executed on a plat-
orm using the execution framework depicted in Section 3 . In particular, the hardware platform
onsists of two computing nodes interconnected via a network switch with IEEE 802.1AS support
NXP LS1021ATSN). Each computing node has a quad-core Intel Atom E3845 processor at 1.91 GHz
nd a Gigabit Ethernet interface (Intel I210-IT). Both the switch and the computing nodes provide
upport for hardware timestamping (i.e., timestamping is performed by the PHC clock available in
he NIC). To further reduce the source of interferences and obtain comparable metrics, the power
anagement and frequency scaling have been disabled for the platform (i.e., disabling the Power

erformance states ( P-states ) and the Processor idle sleep states ( C-states )) [ 39 ]. 
The switch executes the Open Industrial Linux (OpenIL) operating system, a special dis-

ribution of Linux for industrial environments. The computing nodes use a Linux kernel v.4.9 in
hich the PREEMPT_RT patch has been applied. 
The set of tests are written in C. Besides applying the kernel configurations described in Sec-

ion 3 , tests have been coded following the latest recommendations in the community to develop
eal-time applications in a Linux kernel [ 1 , 4 , 40 ]. To better characterize the real-time behavior of
he global clock, tests are executed without any extra computational workload added to the regular
ernel workload except in those cases where it is explicitly stated (Test 5). Each test collects at least
ne million measurements at maximum priority. As each test uses a different logic, its duration
ACM Trans. Embedd. Comput. Syst., Vol. 24, No. 1, Article 13. Publication date: December 2024. 
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Fig. 3. Test 1- LC overhead. Fig. 4. Test 1- GC overhead. 

Fig. 5. Test 2- LC overhead measured with GC. Fig. 6. Test 2- GC overhead measured with LC. 
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aries (e.g., some tests trigger a periodic signal to obtain each measurement). Measurements are
tored in an array and post-processed to calculate the required performance metrics. 

To better illustrate the results, the Y-axis is presented with a logarithmic scale in all figures
xcept Figures 12 and 13 . Furthermore, the abbreviations GC and LC stand for global clock and
ocal clock, respectively. Last, each figure represents the maximum, minimum, and average values
ogether with the average plus standard deviation except in the following cases: 

—Test 3 does not include standard deviation, as the cyclictest tool does not provide it. 
—The tests that rely on an oscilloscope to perform the measurements do not include min-

imum times as negative values obtained during the test (interpreted as minimum by the
device) just indicate that the second signal is triggered first. 

Figure 3 shows the overhead results for Test 1 using the local clock, which presents similar values
or all the scenarios: around 13 μs of maximum, 71 ns of minimum, and 50 ns of standard deviation.
esults for the global clock are depicted in Figure 4 , which shows slightly higher maximum values

han those for the local clock. In this case, maximum times were around 18 μs. Figure 5 and Figure
 show the overhead results for Test 2 (i.e., cross estimation of clock overhead). They show similar
verhead results for all the scenarios in both approaches. 

For Test 1 and Test 2, there is a significant difference between maximum and minimum/average
alues, even in the scenarios in which isolation has been applied. It suggests that there are still
ources of interferences from the Linux kernel, which can lead to add extra latencies in the range
f tens of microseconds [ 2 ]. 
Figure 7 and Figure 8 show the results for Test 3 (event-handling latency) using local and global

lock, respectively. In this case, the event-triggering period has been set to 10 milliseconds. The
esults show that the scenarios without isolation have maximum values higher than the ones that
re isolated, while the average and minimum values are similar in all the scenarios. 
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Fig. 7. Test 3- Event-handling latency with LC. Fig. 8. Test 3- Event-handling latency with GC. 

Fig. 9. Test 4- GPIOs overhead. Fig. 10. Test 4- Nodes synchronization. 
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Before evaluating the timing offset in the synchronization of the global clock through Test 4,
he overhead of using the GPIO pins was measured, and the results are depicted in Figure 9 . These
esults show an average of 24 μs and a maximum and a minimum of 50 μs and 22 μs, respectively.

It is worth noting that Test 4 only considers 6 scenarios instead of 9, because master-and-slaves
cenarios are equivalent for the MBS configuration, as end-to-end delays are measured through
n oscilloscope. Figure 10 shows the results when a square wave signal that spends 10 ms at high
alue and 10 ms at low value is used (i.e., the signal has a period of 20 ms). While the standard
eviation is similar for isolated and non-isolated scenarios (around 1 μs), slightly higher maximum
alues are obtained for the non-isolated scenarios. 

For the first part of Test 5, Figure 11 shows the histogram obtained by adding workload to Test
 using the global clock for RT-SMS and CPUSET-SMS scenarios. As can be seen, the isolated
cenario obtains lower values for the maximum and the standard deviation. In both scenarios, the
dded workload has no significant impact on the maximum values obtained in Test 3. 

Figure 12 and Figure 13 show the results obtained for the second part of Test 5, in which work-
oad is added to Test 4 for the RT-SMS and CPUSET-SMS scenarios, respectively. For the former
cenario, the maximum delay observed between the two digital signals is 60 μs, with a standard
eviation of 3.2 μs. The CPUSET-SMS scenario obtained a maximum delay of 56 μs, with a stan-
ard deviation of 4 μs. Note that the maximum time should be obtained as the maximum absolute
alue of the Max and Min times illustrated in the figures, as negative values simply indicate that
he second signal is raised first. According to the results, CPUSET-SMS obtains a slightly lower
aximum value and better average times than the reference scenario. In both scenarios, the added
orkload slightly increases the average and standard deviation values obtained in Test 4. Compar-

ng the results in Figures 10 , 12 , and 13 , we can observe that the maximum overhead comes mainly
rom setting the signals and not from using the global clock. Furthermore, the overhead variability
s not drastically affected by using the global clock (i.e., the standard deviation is around 4 μs). 
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Fig. 11. Test 5- Event-handling latency with GC and workload. 
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In general, we can conclude that isolated scenarios obtain better timing results. However, we
annot identify an isolation mechanism (i.e., TuneD or cpuset) whose latencies are the lowest
n any case. The main advantage of using the cpuset mechanism is flexibility, as cpusets can be
reated/removed at runtime. However, the TuneD service allows the modification of other non-
unctional aspects, such as power saving or low-latency, in addition to the core isolation facilities
nalyzed in this article. 

Adding workload does not have much impact on the maximum values when the real-time appli-
ation is isolated and/or executed at maximum priority. Despite the isolation capabilities provided
y the Linux kernel, it is important to note that they do not provide full isolation, as there are still
ources of interferences such as shared caches, global work queues, or interprocessor interrupts.
dditionally, there are also a few kernel threads bound to each core whose workload cannot be
igrated. Finally, the role of the node in SMS and MBS scenarios seems to have little effect on the

erformance evaluation. 
Despite the fact that this type of measurement can vary depending on the hardware platform,

ystem workload, and kernel version, our results obtained at the application level complement
nd are consistent with those reported by similar studies [ 33 , 34 , 37 ]. Relevant testbeds, such as
SN-FlexTest [ 23 ] or EnGINE [ 21 ], have reported master-slave clock deviation in the nanosec-
nd range, which is an order of magnitude lower than the values obtained in our tests. However,
t is important to note that our approach is slightly different, as it focuses on estimating the ef-
ective synchronization achieved by the entire execution framework. This involves (1) collecting
easurements at the application level, (2) using standard kernel tools and configurations, and

3) adding extra computational workload to the regular kernel workload to mimic an industrial
ontext and provide insights into practical applicability. Furthermore, a synchronization accuracy
n the microseconds range can be sufficient for many different applications [ 34 ]. 

 Conclusions and Future Work 

owadays, Linux is actually present in many real-time industrial applications and Industry 4.0
nvisages new possibilities for it. Traditionally, the presence of a global clock in distributed real-
ime systems was limited to critical applications using time-triggered or table-driven schedulers.
evertheless, the set of Ethernet standards TSN introduces a high-precision clock synchronization
rotocol that can widely extend its potential applications. 
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Fig. 12. Test 5- Nodes synchronization with workload (RT-SMS). 

Fig. 13. Test 5- Nodes synchronization with workload (CPUSET-SMS). 
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In this research, we have outlined an execution framework designed for distributed real-time
ystems in multicore processors. To this end, this article has identified and analyzed two different
echanisms within the Linux kernel (i.e., cpusets and isolcpus ) for core isolation to enhance the

eal-time behavior by minimizing the interactions with the remaining non-real-time applications
unning in the same processor. Considering the results obtained, none of these two mechanisms
trictly provides full isolation, and therefore real-time applications may suffer from some unex-
ected latencies. Furthermore, as none of the isolation mechanisms performed better in all the
ests, the decision to select one or another should be based on other factors such as flexibility or
he ability to easily modify other non-functional aspects. 

Furthermore, this article has provided a characterization of the 802.1AS clock synchronization
echanism at the application level. We have evaluated the global clock performance by measur-

ng overheads and latencies, as well as the effective synchronization of the clock synchronization
echanism. This evaluation has been performed by characterizing the different configurations

hrough specific tests and also through cyclictest , a common tool for measuring kernel latencies in
inux. This article has obtained the following results for the set of proposed key metrics: 
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—Overheads in reading the global clock. We have found that applications running in the ex-
ecution framework have similar overheads for accessing the global clock as for accessing
local clocks. 

—Latencies in the handling of events . The tests have confirmed that their maximum values are
lower when an isolation mechanism is applied, as expected. 

—Offsets in the synchronization between nodes . When both nodes are synchronized, it is ob-
served that using isolation minimizes the interference from the kernel and other workload,
thus decreasing the maximum offset between two synchronized digital signals. According
to the results, the maximum offset measured is in the range of tens of microseconds. 

Finally, the article also provides a set of recommended settings for both the Linux kernel and
he 802.1AS clock synchronization protocol. Our recommendations aim to bound response times
n distributed real-time applications, and they also facilitate the replication of our software envi-
onment for testing purposes. 

As a general conclusion, the results from the evaluation show that devices’ clocks in a network
an be synchronized at the application level with a precision in the range of tens of microseconds.
herefore, it is possible to execute a wide range of industrial real-time applications with the pro-
osed execution framework. Future lines of work on this topic may include exploring other Linux
ernel features to enhance determinism at the network level (such as configuring the network
tack) or incorporating other TSN standards to the proposed framework. 
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