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ABSTRACT: Neural networks have become a focal point for their ability to effectively capture the complex nonlinear characteristics of
power amplifiers (PAs) and facilitate the design of digital predistortion (DPD) circuits. This is accomplished through the utilization of
nonlinear activation functions (AFs) that are the cornerstone in a neural network architecture. In this paper, we delve into the influence of
eight carefully selected AFs on the performance of the neural network-based DPD. We particularly explore their interaction with both the
depth and width of neural network. In addition, we provide an extensive performance analysis using two crucial metrics: the normalized
mean square error (NMSE) and adjacent channel power ratio (ACPR). Our findings highlight the superiority of the exponential linear
unit activation function (ELU AF), particularly within deep neural network (DNN) frameworks, among the AFs under consideration.

1. INTRODUCTION

Power amplifiers (PAs) are critical components in communi-
cation systems since they amplify the signal, at the trans-

mitter output, to be suitable for transmission. In fact, an in-
crease in the signal power can compensate for losses that occur
in the transmission channel. However, in modern communi-
cation, achieving higher spectral efficiency imposes stringent
requirements on the modulation and multiplexing techniques
at the expense of power efficiency. For instance, the orthogo-
nal frequency division multiplexing (OFDM), which has been
selected for the long term evolution (LTE), and the fifth genera-
tion (5G)mobile communication systems, generate signals with
high peak-to-average power ratio (PAPR) [1]. Transmitting
such signals without introducing nonlinear distortion constrains
the PA to operate in its linear region. This is not in concordance
with the fact that a PA provides its maximum power efficiency
when it operates in its saturation (nonlinear) region [2]. Con-
sequently, transmitting signals with high PAPR values is chal-
lenging since it introduces a conflict between power efficiency
and spectral efficiency. To deal with this issue, digital predis-
tortion (DPD) has been widely applied [3]. DPD is a lineariza-
tion technique that can significantly increase both power and
bandwidth efficiency of a power amplifier, hence taking full
benefit of its capabilities.
Traditionally, DPD design has relied on polynomial-based

models like memoryless polynomial [4], memory polynomials
(MP) [5], dynamic deviation-reduction-based Volterra (DDR-
Volterra) [6], and generalized memory polynomials (GMP) [7],
derived from Volterra series. Nevertheless, these models of-
ten face limitations due to high correlation between their basis
functions, especially with higher model orders.

* Corresponding author: Mostapha Ouadefli (ouadefli.mostapha@doctorant.
inpt.ac.ma).

Recently, artificial neural networks (ANNs) have garnered
attention for their ability to model nonlinear functions effec-
tively [8]. This is achieved through the use of nonlinear activa-
tion functions (AFs), which are considered the heart of any NN,
giving it the essence of artificial intelligence. The significance
of AFs has been explored in various domains, such as facial
expression recognition [9], visual pattern recognition [10], and
image classification [11]. Regarding the DPD design, the au-
thors in [12] have briefly discussed and analyzed different AFs,
concluding that the hyperbolic tangent function provides bet-
ter performance. However, the considered NN consists of only
one hidden layer with a limited number of coefficients (1000
or less). In addition, this analysis has been done disregarding
the latest AFs. In [13], another study has found sigmoid AF to
be superior when the coefficients count is below 2000, but it
is outperformed by ReLU AF when this count exceeds 2000.
Notably, this analysis solely focuses on two AFs and their ef-
fect on the adjacent channel leakage ration (ACLR) for signal
with bandwidth less than 6.6MHz. A similar analysis is per-
formed in [14], where the ELU activation function outperforms
the sigmoid activation function. In [15], an adaptive activation
function is proposed to improve the performance of the DPD.
However, this study is limited to a shallow neural network.
In this paper, we aim to demonstrate the pivotal role of select-

ing the right activation function in bolstering the performance
of the NN-based DPD model. Our study investigates the in-
fluence of eight distinct activation functions on the NN-DPD
model across various configurations of depth (number of hid-
den layers) and length (number of neurons per layer). Evalu-
ation of performance is conducted using two primary metrics:
the normalized mean square error (NMSE) for quantifying in-
band distortion and the adjacent channel power ratio (ACPR)
for measuring out-of-band distortion.
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The remainder of this paper is organized as follows. Sec-
tion 2 provides a brief introduction to PA behavioral modeling
and DPD design. Section 3 delves into the architecture of the
neural network used for designing the DPD and testing differ-
ent AFs. Section 4 highlights the significance of AFs in mod-
eling nonlinear systems and introduces several common AFs.
Section 5 presents numerical results and their analysis. Finally,
Section 6 concludes the paper.

2. POWER AMPLIFIER BEHAVIOR AND DIGITAL PRE-
DISTORTION
As mentioned previously, even a PA increases the power of
its input signal to levels appropriate for transmission, it causes
signal distortion and can dramatically increase the power con-
sumption at the transmitter. This is due to the behavior of a PA,
consisting of nonlinearity and memory effects caused by the
blocks it comprises. It is worth noting that the memory effect
is nonlinear in modern communication systems as the transmit-
ted signal has a wider bandwidth. Accordingly, one should take
into account these aspects when modeling the PA behavior.
There are various approaches to PA behavioral models in-

cluding memoryless models, linear memory models, and non-
linear memory models. The most common approach to nonlin-
ear behavioral modeling of a PA is the polynomial model with
Volterra series.
Let x[k] and y[k] be the discrete-time signal at the input and

output of the PA. According to the Volterra model, the input-
output relationship of the PA is formulated as,

y[k] =
∞∑

m=0

Q2m+1∑
q2m+1=0

h2m+1[q2m+1]

m+1∏
r=1

x[k − qr]
2m+1∏
r=m+2

x∗[k − qr] (1)

where K = 2m + 1 and M = q are the order of nonlinearity
and the memory depth, respectively. hk represents the kernels
of the system. Although the model given in (1) can accurately
represent the nonlinear behavior of a power amplifier, it is com-
putationally expensive, especially when the nonlinear orderK
and memory depth M are high. To deal with this limitation,
some improvements are made on the Volterra model, resulting
in variants known as the modified Volterra series [16].

2.1. Digital Predistortion
DPD is primarily motivated by the need to mitigate nonlinear
distortions that arise from PAs within communication systems.
As mentioned earlier, PAs exhibit nonlinear behavior, espe-
cially when being driven at high power levels, contributing to
distortions in the transmitted signal. These distortions, includ-
ing intermodulation distortion (IMD), spectral regrowth, and
out-of-band emissions, degrade signal quality. DPD aims to
compensate for these nonlinear effects, enabling more efficient
and higher-quality transmission in communication systems.
DPD functions by preemptively applying an inverse distor-

tion to the signal before it passes through the PA. This inverse

distortion is specifically tailored to cancel out the nonlinear ef-
fects introduced by the PA, resulting in a cleaner output sig-
nal. The process involves modeling the nonlinear behavior of
the PA using techniques such as memory polynomial models
and lookup tables [17]. Once the distortion characteristics are
known, DPD algorithms generate a pre-distorted signal that,
when being passed through the PA, will produce the desired
undistorted output.
Conventional DPDmethods commonly rely onmathematical

models of the PA, which might not fully grasp all the complexi-
ties of its nonlinear behavior. In contrast, NN-based approaches
offer a more flexible and adaptable solution for DPD [18–20].
They have the capability to learn the nonlinear relationships be-
tween input and output signals directly from training data, elim-
inating the need for explicit models. This flexibility enables
NN-based DPD to adjust more effectively to variations in am-
plifier characteristics and operating conditions. Furthermore,
NN-based DPD can potentially achieve superior performance
and efficiency compared to traditional techniques, particularly
in situations where the amplifier’s behavior is highly nonlinear
or challenging to model accurately.

3. STRUCTURE OF NEURAL NETWORK-BASED AP-
PROACH TO DPD
To model the PA behavior and design the DPD in a neural net-
work perspective, we exploit the fact that the transfer function
of the DPD is the inverse of the PA’s transfer function. Then,
the actual input of the PA serves as the output for NN-DPD, and
the output of the PA is employed as the input for NN-DPD. The
structure of the neural network used, in this work, for emulating
the PA behavior and the DPD technique is depicted in Fig. 1,
and training process is based on the indirect learning architec-
ture. It consists of L (L ≥ 3) layers: an input layer, an output
layer, and multiple (L− 2) hidden layers.

FIGURE 1. Block diagram of NN-DPD.
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The input layer of the neural network comprises passive neu-
rons or units transmitting their assigned values to each neuron
in the first hidden layer. Moreover, to enhance the modeling
accuracy, the input signal includes current and past samples
of the in-phase (I) and quadrature (Q) components, along with
envelope-dependent terms, as described in [12]. The vector, de-
noted as x(1)1 , representing the signal at the input of the neural
network, is split into K + 1 sub-vectors, x(1)1 , x(1)2 , . . . , x(1)K+1,
each of sizeM . It is expressed as follows,

x(1) =
[
x(1)1 , x(1)2 , . . . , x(1)K+1

]
(2)

where the two first sub-vectors represent the in-phase (real part)
and the quadrature (imaginary) components of the complex-
valued input signal, and their past samples. They are given by,

x(1)1 = [xi(n), xi(n− 1), . . . , xi(n−M)]

x(1)2 = [xq(n), xq(n− 1), . . . , xq(n−M)] (3)

The remaining K − 1 sub-vectors represent the powers of the
amplitudes of the input complex-valued samples. For k =
3, . . . ,K + 1, we have,

x(1)k =
[
|x(n)|k−2, |x(n− 1)|k−2, . . . , |x(n−M)|k−2] (4)

It is worth noting that the optimal values of the nonlinearity
order K and memory depthM will be selected through an op-
timization process that we will explain later in this paper.
Hidden layers of an NN are located between the input layer

and output layer. They play a vital role in learning complex
features and representations. When an NN consists of only one
hidden layer (L = 3), it is called shallow neural network. Oth-
erwise, if it has more than one hidden layer (L ≥ 3), it is named
deep neural network (DNN).
In our approach, we opted for fully-connected layers where

all neurons from the preceding (l− 1)th layer are connected to
those of the lth current layer. The output of the ith neuron in
the lth layer is given by,

x
(l)
i = g(l)

Nh∑
j=1

w
(l)
i,jx

(l−1)
j + b

(l)
i

 (5)

where x
(l−1)
j is the output of the jth neuron in the (l − 1)th

layer;w(l)
i,j represents the weight associated with the connection

between the ith neuron of the lth layer and jth neuron of the (l−
1)th layer; b(l)i and g(l)(·) are the bias and activation function
of the lth layer, respectively. The importance of this function
will be thoroughly explained in the next section.
The final layer in the NN is the output layer, which consists

of two neurons. The first neuron generates the predicted in-
phase component of the output signal, denoted as yi(n), while
the second neuron computes the predicted quadrature compo-
nent, denoted as yq(n). It is worth mentioning that the activa-
tion function of this layer is linear, which makes it typical for
regression problems. Accordingly, the output components can
be expressed as follows,

yi(n) = x
(L)
1 =

Nh∑
j=1

w
(L)
1,j x

(L−1)
j + b

(L)
1 (6)

yq(n) = x
(L)
2 =

Nh∑
j=1

w
(L)
2,j x

(L−1)
j + b

(L)
2 (7)

4. ACTIVATION FUNCTIONS

4.1. Importance of Activation Functions
Consider the NN presented in Fig. 1 and examine the output of
the ith neuron of the lth hidden layer. As shown in Fig. 2, the
inputs to this neuron are the weighted outputs computed by the
neurons of the (l− 1)th hidden layer. If the activation function
g(·) is not involved in the computation of the hidden layers’ out-
puts, the NN is equivalent to a linear regression model, where
each node’s output is a linear combination of its inputs plus a
bias. Accordingly, Equation (5) becomes,

x
(l)
i =

Nh∑
j=1

w
(l)
i,jx

(l−1)
j + b

(l)
i (8)

Obviously, the number of hidden layers becomes irrelevant in
this scenario, as the composition of two linear functions re-
mains linear. This model is not suitable to emulate the behavior
of complex systems such as PAs, and the DPD technique, which
are inherently nonlinear. To deal with this problem, it is imper-
ative to use an activation function to introduce the nonlinearity
aspect in the computations within the NN layers. This enables
it to capture intricate relationships in the data and extract rele-
vant features. With the AF, the output of the ith neuron in the
lth layer can be calculated using Equation (5). For an accu-
rate modeling, AFs should be continuous and differentiable to
facilitate back-propagation optimization, enabling the compu-
tation of errors or losses with respect to weights. This makes it
easy to apply gradient-based techniques for weights optimiza-
tion. Furthermore, desirable attributes of AFs include bounded-
ness within a specific range, monotonic behavior, and compu-
tational efficiency. In the subsequent subsection, we introduce
various AFs for NN-based DPD modeling. To the best of our
knowledge, some of them have been previously employed in
the DPD design, while the others have not been utilized in this
context.

FIGURE 2. The importance of AF in NN.
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4.2. Study of Activation Functions
Due to their importance in neural networks, hereafter we pro-
vide an extensive analysis of various activation functions.

• Sigmoid AF [21], also known as logistic sigmoid, stands
as one of the earliest activation functions employed in neu-
ral networks. It is expressed as,

g(x) = sigmoid(x) =
1

1 + e−x
(9)

This function transforms any real-valued input into a range
between 0 and 1. When the output value approaches 1, the
neuron becomes active, facilitating the flow of informa-
tion, whereas a value closer to 0 signifies inactivity. De-
spite its advantages, sigmoid function has the main draw-
back of vanishing gradient. This issue arises when the
gradient of the loss function with respect to the weights
of early layers diminishes significantly, resulting in inad-
equate updates to these weights.

• The tangent hyperbolic AF [22], often denoted as tanh, is
a shifted version of the sigmoid function that maps real-
valued inputs to outputs within a range spanning from −1
to 1. Mathematically, this is formulated as,

g(x) = tanh(x) =
ex − e−x

ex + e−x
=

e2x − 1

e2x + 1
(10)

One notable characteristic of this function is its zero-
centered nature, which ensures faster convergence. How-
ever, similar to the sigmoid function, tanh does not solve
the vanishing gradient problem.

• Symmetric Elliot AF [23] is a high-speed approach to the
sigmoid AF, with an output ranging from −1 to 1, similar
to tanh. Unlike tanh, it is smoother and grows polynomi-
ally rather than exponentially, which mitigates issues with
vanishing gradients. However, it has a higher computa-
tion complexity than tanh AF because it involves complex
derivatives. It is expressed as,

g(x) = SElliot(x) =
x

1 + |x|
(11)

It is noteworthy that this function is a special case of the
parametric Elliot function, with a hyperparameter a, which
is given by,

g(x) = PElliot(x) =
x(1 + a|x|)

1 + |x|(1 + a|x|)
(a ≥ 0) (12)

This function is explored alongside its parametric coun-
terpart in the design of the DPD system discussed in this
paper.

• The rectified linear function [24], or ReLU, is a straight-
forward calculation that returns the input value directly if

it is positive, or 0 if it is negative. Its equation is presented
as:

g(x) = ReLU(x) = max(x, 0) =

{
0 if x ≤ 0

x if x > 0
(13)

Unlike sigmoid and tanh AFs, ReLU does not encounter
the vanishing gradient problem for positive inputs, allow-
ing for more stable and efficient training of deep neural
networks. Nevertheless, one of its drawbacks is the oc-
currence of ‘dead’ neurons. When dealing with negative
input values, the gradient flowing through the neuron al-
ways remains 0 during back-propagation. Consequently,
this prevents weight updates, rendering the node useless.

• Exponential Linear Unit (ELU) [25] represents a variant
of the ReLU function. While retaining the identity op-
eration for positive inputs, ELU employs an exponential
nonlinearity for negative inputs. This unique characteris-
tic ensures ELU’s smoothness and differentiability across
all values, including around 0, effectively mitigating the
‘dying ReLU’ problem and enhancing training stability.
However, this improved functionality comes at a computa-
tional cost compared to the simple thresholding operation
of ReLU. Moreover, ELU introduces an additional hyper-
parameter, α, which governs the negative slope for nega-
tive inputs. Proper tuning of α is essential for optimizing
performance. The mathematical expression for ELU is as
follows:

g(x) = ELU(x) =

{
x if x > 0

α(ex − 1) if x ≤ 0
(14)

where α is an hyperparameter controlling the negative
slope for negative inputs. Note that a proper tuning of this
hyperparameter is essential for optimizing performance.

• GELU stands for Gaussian Error Linear Unit [26]. It is
designed to overcome some of the limitations of ReLU,
such as the ‘dying ReLU’ problem and its inability to ef-
fectively model negative values. GELU accomplishes this
by allowing small negative values when the input is less
than 0, thereby providing a richer gradient for backpropa-
gation. Its mathematical expression is defined as follows,

g(x) = GELU(x) = xϕ(x)

= x · 1
2

(
1 + erf

(
x√
2

))
(15)

where ϕ is the cumulative distribution function of the stan-
dard normal distribution. Additionally, we can approxi-
mate GELU using Equation (16) if the speed of feedfor-
ward computation outweighs the necessity for exactness.
Then, we have,

g(x) = GELU(x)

= 0.5x

[
1+tanh

(√
2

π

(
x+ 0.044715x3

))]
(16)
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FIGURE 3. Block diagram of the test setup.

where erf( x√
2
) ≈ tanh (

√
2
π (x+ 0.044715x3)).

• Swish has attracted considerable attention in deep learning
circles due to its advantageous characteristics, including
smoothness and non-monotonicity. Originally introduced
by Hendrycks and Gimpel [26] under the name SiLU, the
term ‘swish’ gained more popularity after its explicit in-
troduction and naming in [27]. This function is a slight
modification of the sigmoid function. Mathematically, it
is expressed as,

g(x) = Swish(x) = x ∗ sigmoid(βx) (17)

where β serves as a flexible and trainable parameter.
Swish effectively addresses the vanishing gradient issue
often encountered with sigmoid functions, although this
improvement may come with a higher computational cost
than ReLU. Moreover, its performance can be sensitive to
the initialization of β. In numerous scenarios, this parame-
ter is commonly set to 1, which is the case in this particular
study.

4.3. Computational Complexity of Activation Functions
In addition to their impact on linearization performance, the
computational complexity of AFs is a critical factor in the real-
time implementation of neural network-based DPD systems.
The AFs considered in this study vary in their computational
demands due to differences in their mathematical formulations.
Functions like sigmoid and tanh involve exponential calcula-

tions, which are computationally intensive and may slow down
processing speed. ELU and GELU functions include exponen-
tial and error function components, respectively, adding to their
complexity.
Moreover, AFs that incorporate adjustable parameters, such

as ELU, parametric Elliot, and Swish, require fine-tuning of
these parameters (the parameter α for ELU, a for parametric
Elliot, and β for Swish) to achieve optimal performance. This
fine-tuning process can increase the computational load during
the training phase, as it involves additional iterations and vali-
dation steps to find the best parameter values. In contrast, AFs
like ReLU and symmetric Elliot rely on basic arithmetic oper-
ations such as addition, multiplication, and comparison, and do
not require parameter tuning, making them more efficient for
implementation.
Considering these complexities and the need for parameter

tuning is essential when selecting an AF. It affects not only the
performance metrics like NMSE and ACPR but also the fea-
sibility of deploying the DPD system in resource-constrained
environments where computational resources and time are lim-
ited.

5. NUMERICAL SIMULATIONS AND RESULTS
To evaluate and analyze the performance of the NN-based ap-
proach to PAmodeling andDPD design, we run numerous com-
puter simulations onMATLAB platform. The utilized dataset is
provided by MathWorks [28]. It comprises measured input and
output signals obtained from an NXP Airfast LDMOS Doherty
PA operating within the frequency band of 3.6–3.8GHz, deliv-
ering a gain of 29 dB and is suitable and commonly used for
LTE and 5G applications. The test signal utilized is a 100MHz
5G-like OFDMwaveform, incorporating 16-QAM symbols for
each subcarrier. It is worth noting that our study employs a PA
model to evaluate the performance of NN-based DPD systems
instead of using an actual PA. This approach has inherent limi-
tations, as simulatedmodelsmay not capture all real-world non-
linearities, environmental factors, and hardware-specific im-
pairments such as temperature variations and component aging.

5.1. PA Behavioral Modeling
To obtain an accurate model of the PA behavior, it is impor-
tant to select the best input combination, as provided in (2).
This combination depends directly on the values of nonlinear-
ity (K) and memory depth (M) [29]. To select the values of
these two parameters, we assume that an NNwith only two hid-
den layers is sufficient to model the behavior of the PA. In fact,
according to [8], an NN with just one hidden layer containing
enough hidden neurons (or nodes) can approximate any mea-
surable function. Consequently, the number of hidden neurons
Nh per the l hidden layer is set to be large enough to efficiently
handle all possible combinations. It is noteworthy that the ac-
tivation function employed in this process is ReLU AF.
Afterward, we conducted an extensive training of the net-

work with various combinations of K and M . These values
are varied from 1 to 7, resulting in 49 training sessions. For
each combination, the network is trained, and the correspond-
ing root mean square error (RMSE) is calculated and saved for
selecting the optimal values of K and M that gives the best
modeling of the PA behavior.
Figure 4 illustrates the RMSE values as a function of K

and M . It is clearly observed that the lowest RMSE value is
achieved when K = 3 and M = 7. Consequently, these val-
ues were chosen to determine the optimal input combination for
training the NN-DPD and testing different activation functions.

5.2. DPD Design
The procedure for training the NN-DPD before it is deployed
alongside the PA is outlined in Fig. 5. Initially, we select the
activation function for the hidden layers. Afterwards, we set
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FIGURE 4. RMSE vs nonlinear degree k and memory depthm. FIGURE 5. Algorithm of NN-DPD models training.

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)
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(m) (n) (o)

(p)

(j) (k) (l)

FIGURE 6. NMSE and ACPR vs. number of coefficients for each AF: (a)–(b) Sigmoid, (c)–(d) Tanh, (e)–(f) SElliot, (g)–(h) PElliot, (i)–(j) ReLU,
(k)–(l) ELU, (m)–(n) GELU, and (o)–(p) Swich.

the number of hidden layers to one and systematically vary the
number of neurons from 10 to 100, with an increment of 10.
Once the maximum number of neurons is reached, we intro-
duce an additional hidden layer and repeat the process, gradu-
ally increasing the number of neurons per layer until the maxi-
mum number of hidden layers is attained. This process is then
repeated with another activation function. Each trained config-
uration of the NN-DPD, including the activation function, the
number of hidden neurons Nh, and the number of hidden lay-
ers L−2, is saved for subsequent cascade deployment with the
PA, as illustrated in Fig. 3. Finally, the performance of each
model is evaluated using two key metrics, namely normalized
mean square error (NMSE) and adjacent channel power ratio
(ACPR), which are mathematically given by,

NMSE =

∑
n

|y(n)− x(n)|2∑
n

|x(n)|2
(18)

ACPR =

∫
adj.

Y (f)df∫
ch.

Y (f)df

(19)

where y(n) is the PA’s output signal, x(n) the NN-DPD’s input
signal, and Y (f) the Fourier transform of PA output signal. No-
tably, the training process of the neural network was configured
with the following hyperparameters: 500 maximum epochs, a
mini-batch size of 256, an initial learning rate of 10−4, and the
Adam optimization algorithm.
Figure 6 illustrates the relationship among NMSE, ACPR,

the number of neurons Nh, and the number of hidden layers
L− 2. In Table 1, we present the best model for each AF, con-
sidering bothACPR andNMSE. These findings underscore that
the performance of the NN-DPD depends not only on the con-
figuration of layers and neurons but also on the selected AF. It
could be noticed that the linearity requirements for the down-
link imposed by the 5G NR standard are satisfied in terms of
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FIGURE 7. ACPR and NMSE using ReLU and ELU. FIGURE 8. Gain characteristics before and after linearization.

TABLE 1. The best model obtained using each AF.

AF Best Model ACPR (dB) with DPD ACPR (dB) No-DPD NMSE (dB) with DPD NMSE (dB) No-DPD
Sigmoid Nh = 40 & L− 2 = 1 −36.81 −28.83 −31.84 −22.06
Tanh Nh = 20 & L− 2 = 5 −39.25 −28.83 −35.42 −22.06
SElliot Nh = 100 & L− 2 = 1 −39.36 −28.83 −35.54 −22.06
PElliot Nh = 70 & L− 2 = 1 −39.1 −28.83 −35.1 −22.06
ReLU Nh = 50 & L− 2 = 1 −39.8 −28.83 −36.45 −22.06
ELU Nh = 30 & L− 2 = 2 −39.78 −28.83 −36.43 −22.06
GELU Nh = 20 & L− 2 = 4 −38.8 −28.83 −34.12 −22.06
Swish Nh = 20 & L− 2 = 2 −38.21 −28.83 −33.62 −22.06

NMSE but not in terms of ACPR. The latter could be improved
with the combination of DPD and some power back-off. How-
ever, the authors wanted to compare the different AFs based on
their performance without adding OPBO, for instance.
Building upon these findings, across most of the examined

AFs, optimal results were achieved with two or less hidden lay-
ers, except for Tanh, GELU, and Swish. However, the most
favorable outcomes emerged with ReLU and ELU. Notably,
for models requiring less than 12850 coefficients, both ReLU
and ELU demonstrated comparable performance. Neverthe-
less, with an increase in coefficients beyond this threshold,
ELU surpassed ReLU by up to 0.5 dB, as depicted in Fig. 7.
This discrepancy may be attributed to quantization-like errors
stemming from an inadequate number of binary-like switch-on
ReLU AF. It is worth noting that the optimal AF may vary with
the type of NN architecture employed. For instance, different
neural network types, such as convolutional neural networks
(CNNs) or recurrent neural networks (RNNs), might benefit
from distinct AF due to their structural differences.
In contrast to the findings in [13], our study identified mod-

els utilizing the sigmoid AF as the poorest performers. While
an increase in the number of layers improves the modeling per-
formance, these models still fall short of meeting the expected
accuracy.

It is noteworthy that the AF SElliot could be a valuable op-
tion for designing a DPD-NN. While its performance slightly
trails behind that of ReLU and ELU, it still outperforms other
alternatives, including PElliot, and its modified version. This
could be attributed to the selection of the hyperparameter a,
which might require additional fine-tuning.
Figure 8 displays the AM/AM feature both without DPD

(in blue) and with DPD based on ReLU, ELU, and Sigmoid.
For clarity, we opted not to include other activation functions.
However, it is notable that most activation functions exhibit
similar behavior to Sigmoid, which performs poorly, especially
at higher input power levels, unlike ReLU and ELU.
Figure 9 shows the power spectrum (PS) of the PA’s output,

comparing scenarios with and without DPD, using a 100MHz
source signal. Clearly, the choice of AF significantly influences
the PA’s linearization, with ELU and ReLU outperforming all
other aforementioned AFs.
To benchmark the performance of the neural network-based

DPD against traditional models, we conducted a comparative
analysis using the Memory Polynomial (MP) model. The MP
model is a widely adopted conventional DPD technique derived
from the Volterra series. While the Volterra series provides
a comprehensive framework for modeling nonlinear systems
with memory effects, it is often computationally intensive due
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FIGURE 9. PS of linearized output of the different DPD models.

FIGURE 10. PS comparison of the PA output after linearization using MP-based DPD and NN-based DPD (with ReLU and ELU AFs).

to its complexity. The MP model simplifies this by considering
only the most significant terms, making it more practical for
implementation in DPD systems.
Figure 10 presents the power spectral density of the power

amplifier output after linearization using two different DPD ap-
proaches.
As illustrated in Fig. 10, the NN-based DPD significantly

outperforms the traditional MP-based DPD in suppressing
spectral regrowth. The NN-based method reduces the spectral
regrowth by approximately 10 dB compared to the MP-based
DPD.

6. CONCLUSION

In this paper, we have investigated the effectiveness of various
nonlinear AFs within NN-based DPD circuits for capturing the
complex nonlinear characteristics of PAs. By examining eight
carefully selected AFs and their interaction with neural network
depth and width, we have conducted a comprehensive perfor-
mance analysis using metrics such as NMSE and ACPR. Our
results highlight the exponential linear unit activation function
(ELU AF) as particularly advantageous, especially within deep
neural network (DNN) architectures, compared to other consid-
ered AFs. This emphasizes the significance of AF selection in

optimizing NN-based DPD systems for enhancing signal qual-
ity and mitigating nonlinear distortions in PA-driven communi-
cation systems.
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