
Vol.:(0123456789)

The Journal of Supercomputing          (2025) 81:452 
https://doi.org/10.1007/s11227-025-06963-y

CPU‑GPU co‑execution through the exploitation of hybrid 
technologies via SYCL

Nozal Raúl1 · Jose Luis Bosque1

Accepted: 17 January 2025 
© The Author(s) 2025

Abstract
The performance and energy efficiency offered by heterogeneous systems are highly 
useful for modern C++ applications, but the technological variety demands ade-
quate portability and programmability. Initiatives such as Intel oneAPI facilitate the 
exploitation of Intel CPUs and GPUs, but not NVIDIA GPUs, which are present in 
systems of all kinds and are necessarily leveraged by CUDA technology. Frequently, 
only GPUs are used, leaving the CPU for management tasks, with the consequent 
loss of energy and system utilization. In this work, the CoexecutorRuntime system 
design and API are extended to transparently integrate backends of diverse tech-
nologies, unifying offloading mechanisms under a consistent co-execution API and 
scheduling runtime. Moreover, CPU-GPU co-execution of hybrid technologies is 
enabled to ensure performance portability. Experimental results show performance 
improvements for all programs studied, achieving average efficiencies of 0.91 and 
speedups of 1.31 over using only the GPU.
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1  Introduction

Through the popularization and exploitation of heterogeneous systems, unprec-
edented levels of performance and energy efficiency are being achieved. These 
benefits generate a trend toward the incorporation of new and powerful program-
ming models, with the aim of being able to use specific accelerators by a whole 
amalgam of applications and languages. However, technologies such as oneAPI 
or CUDA, despite being able to efficiently exploit the devices, are constrained 
by the manufacturers themselves, limiting their use in a cooperative manner and 
between different architecture types and vendors.

In this situation, it is essential to provide tools that make life easier for pro-
grammers, offering code portability and programmability advantages. Consider-
ing the complexity of the business logic of modern C++ applications, the more 
abstraction, flexibility and maintainability given to these proposals, the better. 
Languages such as OpenCL are powerful and portable, but their low level of 
abstraction and verbosity keep them far from the program domain. In addition, 
their performance is not as good as with native technologies, which complicates 
their use. Faced with this situation, proposals and standards of a higher level of 
abstraction have emerged, such as SYCL, which attempt to favor a single lan-
guage for specifying execution kernels for heterogeneous devices. However, it 
does not allow the full potential of the machine to be exploited, since co-execu-
tion, load distribution and performance portability mechanisms are absent.

For this reason, software architectures and designs, such as CoexecutorRunt-
ime, allow to take advantage of the simultaneous execution of kernels on several 
devices  [1, 2]. It is a runtime system which provides a high-level API to abstract 
heterogeneous execution, maintaining compatibility with SYCL while incorporating 
flexible scheduling algorithms. Originally designed for oneAPI, it enables simulta-
neous kernel execution across multiple devices and offers an extensible architecture 
for performance and energy optimization. Its extensible scheduling system favors 
specific load balancing proposals without distracting the programmer from the intri-
cacies of the business logic. In this work, CoexecutorRuntime is used as API and co-
execution system on which to design and build a proposal that supports hybrid tech-
nologies, leveraging CUDA for NVIDIA GPUs and oneAPI for the system CPU. In 
this way, high maintainability and performance portability are assured.

Considering other related works, none has been found that achieves something 
similar to what is presented in this proposal, but they can be classified consider-
ing three aspects addressed. On the one hand, there are works related to the use 
of SYCL and NVIDIA, performing transformations and code portability, but they 
do not involve co-execution  [3–11]. On the other hand, there are efforts to per-
form execution through the specialization of kernels or the use of explicit hybrid 
technologies [12–22]. And finally, there are proposals that address the problem of 
CPU-GPU co-execution in SYCL, albeit involving the same execution technology 
for all devices [1, 2, 23].

Our work offers a runtime with a high-level API, part of the program domain, 
facilitating the integration in real-world C++ applications, mimicking the API 
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provided by CoexecutorRuntime, but completely compatible with SYCL, encap-
sulating the inner technology to increase its flexibility. Therefore, the co-exe-
cution system supports a new hybrid mode of execution, exploiting CUDA and 
oneAPI programming models. It allows using NVIDIA GPUs and Intel CPUs 
simultaneously, achieving performance portability through its scheduling system, 
benefiting from a set of load balancing algorithms. Experimental results show 
that the co-execution is worthwhile compared with the fastest device, the GPU. It 
achieves speedups of up to 2.41 for irregular programs, and 1.12 for regular ones, 
obtaining average efficiencies of 0.91 with the best scheduling configuration.

The main contributions of this work are:

•	 Providing a high-level SYCL runtime system and a compatible API that is based 
on CoexecutorRuntime, but abstracted from the original oneAPI design, allow-
ing kernel offloading to NVIDIA GPUs and Intel CPUs.

•	 Integrating and enhancing the co-execution system to support hybrid technolo-
gies, computing simultaneously with oneAPI on the CPU and CUDA on the 
GPU, leveraging the system with highly optimized load balancing algorithms.

The rest of the paper presents in Sect.  2 a motivation of this work, while Sect.  3 
exposes the design of the novelties of the co-execution architecture to support the 
new backend and the hybrid co-execution mode. Section 4 details the methodology 
and the experimental results to validate the proposal and its enhancements. Finally, 
Sect. 5 presents the most relevant related works while Sect. 6 highlights the most 
important conclusions and future work.

2 � Motivation

With the emergence and popularization of heterogeneous systems, a new world 
of possibilities opens up in terms of performance and energy efficiency. However, 
all this variety of devices and architectures exposes a complexity in programming 
models and standardization of computing techniques that makes the use of open, 
powerful and reliable technologies indispensable. One of the most recent ones, Intel 
oneAPI, provides the mechanisms to efficiently exploit modern C++ applications 
through the SYCL language. This programming model offloads the most computa-
tionally intensive regions to all types of Intel devices.

However, many heterogeneous nodes have discrete graphics cards that are not 
usable with this technology, such as NVIDIA, which is present in both commodity 
nodes and large HPC clusters. Moreover, with the popularization of CUDA technol-
ogy for all kinds of applications and areas of knowledge, in many cases one has to 
make the uncomfortable decision of choosing between computing using the GPU or 
the CPU. In these situations, the former is favored, due to the popularization of the 
CUDA language and the efficiency of these accelerators [4–6, 12], leaving the CPU 
to perform the management tasks, which is typical in the host-device programming 
model. This facilitates programming, as it is not involved in the program compu-
tation. However, in most cases these are powerful CPUs that continue consuming 
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energy without contributing anything to the computation. Therefore, it is conveni-
ent to co-execute the problem to void harming both the performance and energy 
consumption of the system [24, 25]. The co-execution allows all devices, including 
the CPU, to operate on the same problem, consuming less time and energy to solve 
it. This technique has proved that it can achieve very good results, maximizing the 
performance and efficiency of heterogeneous systems [26].

In order to take advantage of these devices, it is necessary to provide mechanisms 
so that the computing modes of both devices can operate simultaneously. Since it 
is necessary to maintain software portability and facilitate the implementation of 
business logic for the programmers, it is required to use the same language. Using 
OpenCL for CPU and GPU takes the programmer away from the problem domain, 
due to its verbosity and low level compared to the high-level C++ applications.

It is not sufficiently maintainable, it is error prone and, above all, it does not 
achieve an appropriate performance compared to the native technology in some of 
these devices, such as OpenCL or OpenMP compared with CUDA, for the NVIDIA 
GPUs. For this reason, the choice is to provide a co-execution system based on 
SYCL, but capable of exploiting the full potential of CUDA for the GPU.

However, this approach introduces yet another challenge, and that is to ensure 
performance portability, an issue that has to be addressed transparently to the pro-
grammer. Not only does it have to allow working with a single code that implements 
the kernel, but it has to be efficient in distributing the load between CPU and GPU, 
as well as allowing to exploit each device with the appropriate compute technology.

3 � CoexecutorRuntime/SYCL

Below are the key decisions and enhancements made to the CoexecutorRuntime 
runtime and its original proposal. This section focuses on the novelties, affected 
components and new design decisions that enable the use of CPUs and NVIDIA 
GPUs, as well as efficient co-execution with hybrid technologies, while maintaining 
a compatible API.

3.1 � Mixing technologies via LLVM and SYCL

CoexecutorRuntime is based on performing an abstraction on Intel oneAPI technol-
ogy, entirely focused on Intel devices, specifically to perform co-execution of a CPU 
and an integrated GPU. This abstraction provides a higher-level API with the goal of 
facilitating the programmability and maintainability of modern C++ applications, 
so that programmers can focus on business logic. But, at the same time, it provides 
an exposition of the oneAPI primitives, with the goal of being easily extensible and 
having a smooth porting of a traditional host-device application to the co-execution 
scheme offered by CoexecutorRuntime. In addition, some of the oneAPI functionali-
ties have been integrated into CoexecutorRuntime and exposed through its API, such 
as the possibility of using pointers and memory regions of the running application.
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This proposal extends its use to multivendor devices, specifically for NVIDIA 
and Intel. The original architecture was constrained to the oneAPI technology for 
Intel CPUs and integrated GPUs, but the runtime needs to be extended to support 
NVIDIA discrete GPUs. Thus, a conversion of the runtime core is performed to 
accommodate other technologies and its support to simultaneously mix them dur-
ing the application execution. The encapsulation software layers and the different 
technologies involved are shown in Fig. 1. The difficulties to support NVIDIA GPUs 
could be bypassed by using OpenCL for the NVIDIA GPU, but as demonstrated in 
previous studies, it is not an efficient solution and would penalize the maintainabil-
ity and performance. This approach would require the OCL interoperability layer of 
oneAPI, involving multiple kernel codes. This layer provides an OpenCL interoper-
ability API so that OpenCL code can be used from oneAPI to offload kernels to an 
OpenCL-compliant device. Therefore, the designed runtime system is built on top of 
SYCL, as an abstraction that encapsulates the behaviors and optimizations provided 
by the SYCL programming model implementations, satisfying the original design 
decisions of CoexecutorRuntime. To this end, the system is built by combining two 
fundamental technologies, oneAPI for the CPU and NVIDIA CUDA for the GPU.

The fundamental idea is to provide a programming model compatible with 
SYCL, avoiding the creation of a new language to interact with the accelerators, 
while using efficient technologies to compute on the devices involved. Therefore, 
hybrid technologies are used to compute, but are not exposed to the programmer. 
The ease of use is given by the single source code property, and the performance is 
given by exploiting the best technology for each device, even though they are based 
on different programming models. In this proposal, CoexecutorRuntime/SYCL 
has been designed, implemented and evaluated using the LLVM compiler, build-
ing it with support for the experimental NVIDIA CUDA backend and the OpenCL/
DPC++ backend for CPUs, using a modern version of the Khronos OpenCL ICD 
to match symbols. Fat binaries generated using this system require both the SYCL 
libraries provided directly by oneAPI, providing SPIR-V binaries (spir64) for the 
CPU, as well as CUDA and OpenCL libraries provided by the NVIDIA CUDA 

Fig. 1   Architectural layers of the CoexecutorRuntime to enable CPU and NVIDIA GPU devices
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runtime (nvptx64-nvidia-cuda). One particularity of this technological combination 
is that the possibility of efficiently co-executing using the SYCL fallback host device 
is lost, since it lacks multithreading support. However, this is not a disadvantage 
since the system is provided with oneAPI for CPU, and in cases where it is not sup-
ported, thanks to the new software architecture, it is possible to provide, for exam-
ple, a backend based on C++ STL threads.

3.2 � Hybrid co‑execution with NVIDIA GPUs

One of the advantages of decoupling the CoexecutorRuntime architecture is that it 
allows interacting with the various components in near isolation, facilitating their 
extension. Since the goal of the runtime is to facilitate programmability and allow to 
take advantage of various type of devices on heterogeneous nodes, it is necessary to 
satisfy the needs of co-execution. Considering that this is a hybrid execution model, 
the software architecture of the system has been affected in the modules in charge 
of building and launching work packages and kernels (dispatcher_inter-
face) as well as in the co-execution units that encapsulate the hardware devices 
(CoexecutionUnit).

Figure 2 shows the general overview of the CoexecutorRuntime/SYCL schedul-
ing system, updated to represent the variation produced in this proposal with respect 
to the work performed by the load balancing algorithms. Thanks to the encapsu-
lation of the system, all the components of the system have been ported without 
modifications, such as Director, Scheduler or CommanderLoop, despite 
variations in the CoexecutionUnit, the SYCL runtime with its backends and 
the dispatcher mechanism. In this way, all original design decisions are preserved, 
so there is no impact on the design of the load distribution system, the synchroniza-
tion and monitoring, the collection of results and other necessary stages during the 
co-execution cycles. This is a fundamental aspect to achieve an efficient offloading 
when co-executing, as will be seen in the experimental evaluation.

CoexecutionUnits are now provided with mechanisms to detect, filter and config-
ure devices, adapting to the requirements of the programmer, allowing the speciali-
zation of kernels, buffers or data transfers per device or backend, such as applying 
certain optimizations in the case of the GPU. These variations have been prepared 
with runtime extensibility in mind, as this proposal is focused on the co-execution of 

Fig. 2   Scheduling system overview and its encapsulated interaction with the CoexecutionUnits
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Intel CPUs with an NVIDIA GPU, but more diverse configurations could be accom-
modated in the future.

Having different backends in the SYCL runtime facilitates the construction of 
the application and the necessary toolchains, as well as the execution through a sin-
gle-entry point to the application. This is fundamental due to all the implications it 
entails in terms of portability and in order to exploit optimizations and co-execution 
mechanisms, without the need for multiple compilation steps or costly inter-process 
calls and memory mappings.

Variations in the dispatcher interface have affected the way kernels are built and 
in the case of certain extensions, since backends other than SYCL are being used. 
It has been required to generate kernels based on the backend and the scheduling 
algorithm used, something that was not affected when only oneAPI was used. This 
implication is given by the different passes made in the compilation process and the 
translation units. Therefore, kernels are compiled for different architectures and bun-
dled in the final binary. For example, for the NVIDIA GPU used in Methodology 
Sect. 4.1, the final PTX has been built using CUDA 11.6 for the SM60 architecture.

Finally, one of the fundamental points of this proposal is to be compatible with 
the CoexecutorRuntime high-level co-execution API, and with SYCL in terms of 
the kernel to be executed. Listing Fig. 3 shows a code snippet using the simple API 
mode exposed by CoexecutorRuntime, but with the mechanisms introduced by this 
proposal and offered to programmers. Lines 5 to 9 enable the selection of the co-
execution units involved in the computation, being the CPU and any NVIDIA GPU.

Thanks to these mechanisms, the same filters can be applied during the co-exe-
cution process, inside of the launch region (lines 10 to 27). For instance, in this 
example the GPU and CPU exploit the new feature of kernel specialization, altering 
the computation based on specific properties of each device or backend involved 
(lines 12 and 27). The final code remains as maintainable as in the original proposal 
and being compatible with any SYCL kernel (lines 20 to 24), but benefiting from the 
simultaneous execution on a CPU and a NVIDIA GPU. Therefore, thanks to these 
decisions, performance portability is still ensured, leveraging the node performance 
through the exploitation of any of the different load balancing algorithms provided 
(lines 2 to 4).

3.3 � Load balancing algorithms

To achieve efficient co-execution, one of the fundamental aspects is to distribute the 
workload proportionally to the computational capacity of the devices, CPU/GPU. 
The way to do this is to divide the dataset to be processed into a series of packages 
and assign them correctly to the devices. The CoexecutorRuntime currently supports 
three well-known load balancing algorithms which are described briefly below [24, 
27]. The programmer should decide which one to use in each case, depending on the 
characteristics and knowledge he has of the architecture.

Static This algorithm works before the kernel is executed by dividing the 
workload in as many packages as devices are in the system. The division relies 
on knowing the relative computational capacity of each device, in advance. Then 
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the execution time of each device can be equalized by proportionally dividing 
the workload among the devices. It minimizes the number of synchronization 
points; therefore, it performs well when facing regular loads with known comput-
ing powers that are stable throughout the workload execution. However, it is not 
adaptable, so its performance might not be as good with irregular kernels, where 
the execution time of each package varies along the execution (for instance, in 
sparse computing).

Dynamic It divides the workload in a given number of equal-sized packages. 
The number of packages is well above the number of devices in the heterogeneous 
system. During the execution of the kernel, the Scheduler is in charge of assign-
ing packages to the different devices, including the CPU. This algorithm adapts 
to the irregular behavior of some applications. However, each completed package 
represents a synchronization point between the device and the host, where data is 
exchanged and a new package is launched. This overhead has a noticeable impact 
on performance if the number of packages is high. The dynamic algorithm takes 
the size of the packages as a parameter.

HGuided This algorithm offers a variation over the dynamic by establish-
ing how the workload is divided. The algorithm makes larger packages at the 

Fig. 3   CoexecutorRuntime API is preserved while adding extensions to interact with NVIDIA devices 
and CoexecutionUnit behavior specialization
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beginning and reduces the size of the subsequent ones as the execution pro-
gresses. Thus, the number of synchronization points and the corresponding over-
head is reduced, while retaining a small package granularity toward the end of the 
execution to allow all devices to finish simultaneously. Since it is an algorithm 
for heterogeneous systems, the size of the packets is also dependent on the com-
puting power of the devices. The size of the package for device i is calculated as 
follows:

where k is a constant, for which, in previous works [25], it has been empirically 
obtained that the best results are obtained with values of k equal between 2 or 3. The 
smaller the k constant, the faster decreases the packet size. Tweaking this constant 
prevents too large packet sizes when there are only a few devices, with cases such as 
giving half the workload in the first packet to a device, unbalancing the load.

Gr is an integer number that stores the amount of workload (threads) pending to 
be executed in each new assignment, and it is updated with every package launch. 
The parameters of the HGuided are the computing powers and the minimum pack-
age size of the devices to be used. Pi is the computational power of the device i, and 
the 

∑n

j=1
Pj represents the total computational power of the system, where n is the 

number of devices in the system. The computational power value for each device 
( Pi ) is obtained by normalizing the benchmark execution time on each device by 
the time of the most powerful device. Thus, the Pi of the most powerful device will 
be 1.0, and the values for the rest of the devices will be between 0 and 1. In this 
way, for example, a total computational power ( 

∑n

j=1
Pj ) equal to 1.5 means that the 

whole system has the computational power equivalent to 1.5 times that of the most 
powerful device. The minimum package size is a lower bound for the packet_sizei 
and the minimum package sizes are usually dependent on the computing power of 
the devices, being bigger package sizes in the most powerful devices.

4 � Evaluation

This section presents the methodology and experimental results that determine the 
behavior of the proposal, CoexecutorRuntime/SYCL, using CPU and GPU with two 
different technologies (oneAPI and CUDA), performing the co-execution for a set of 
applications with respect to the most efficient device, the GPU.

4.1 � Methodology

The experiments are carried out on a computer with 16 GiB of RAM com-
posed of an Intel Core i7-10700 CPU and an NVIDIA GeForce GT 1030 GPU 
with 2 GiB of GDDR5. The CPU has 8 cores and 2 threads per core, employ-
ing OpenCL 3.0 to provide 16 compute units at 2.9GH, while the GPU uses 

packet_sizei = ⌊
Gr Pi

k n
∑n

j=1
Pj

⌋
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the Compute Capability 6.1 of the CUDA backend, powered by the NVIDIA 
driver version 510, to expose 3 compute units at 1468 MHz, as it has 3 Stream-
ing Multiprocessors.

Five programs have been selected to evaluate the behavior of the runt-
ime [28]. Gaussian and matmul present regular behavior, and Rap, Rayc and Ray 
are irregular, where each part of the problem involves different computational 
complexities when executed on the same device. Rayc and Ray are Raytracing 
computations, but Rayc uses C++ classes to package its data types (vectors) and 
involves many more lights and objects. These have been chosen as they validate 
the co-execution behavior for both regular and irregular problem types, showing 
sufficiently diverse offloading pattern types and with good results, as demon-
strated in previous studies [24].

To guarantee integrity of the results, the values reported are the arithmetic 
mean of 25 executions, discarding a previous first one to avoid warm-up penal-
ties. The standard deviation is not shown because it is negligible in all cases. To 
measure the energy consumption, another 25 executions are performed to avoid 
introducing time delays due to the sampling overheads.

The validation of the proposal is done by analyzing the performance and 
energy efficiency of the new hybrid CPU-GPU co-execution mode compared 
with the fastest and most energy efficient device, the GPU. The total response 
time is measured, including kernel computing and data transfer. Two Coexecu-
torRuntime scheduling configurations are evaluated when co-executing, static 
and HGuided (an improved version of dynamic) [29].

Three metrics are used to evaluate the proposal, speedup, heterogeneous effi-
ciency and energy efficiency [29]. The speedup is calculated as S =

TGPU

Tco−exec
 , being 

TGPU and Tco−exec the execution times for the GPU and the co-execution, respec-
tively. Due to the heterogeneity of the system and the different behavior of the 
benchmarks, the maximum achievable speedups depend on each program. As a 
result of this, the heterogeneous efficiency has been computed as the ratio 
between the empirically obtained speedup and the maximum achievable 
speedup, for each benchmark  [24]. The maximum speedup is computed as the 
sum of the computational power of each of the devices in the system, since, as 
explained in section 3.3, this value represents the computational capacity of the 
complete system, and therefore the maximum acceleration that can be obtained:

Finally, energies are measured using RAPL counters for the CPU and RAM, and 
nvidia-smi along a real-time power usage monitor to measure the whole system and 
the GPU, giving the total consumption in Joules. The energy-delay product (EDP) is 
used to evaluate the energy efficiency, measured in Js [30]. Since the values obtained 
have a very wide range, this metric is provided normalized with respect to the EDP 
of the GPU execution.

Spmax =

n∑

i=1

Pi
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4.2 � Experimental results

This section presents the experimental results with respect to the performance, 
the load balancing and the energy efficiency of the proposal.

Regarding the performance of the CoexecutorRuntime, Figs.  4 and 5 show, 
respectively, the speedup and the heterogeneous efficiency obtained, for all 
the benchmarks and the two load balancing algorithms evaluated, static and 
HGuided, together with the geometric mean, in the platform described in the pre-
vious section.

The main conclusion that can be drawn from the speedup results is that co-exe-
cution is profitable in all the cases studied, since it provides speedup results always 
higher than 1.0. Looking at the average values, it can be seen that the gains obtained 
are 1.31x with the HGuided algorithm and 1.18x with the static algorithm, which 
can be considered very good results considering the performance difference between 
the CPU and GPU devices. Analyzing the results of the benchmarks individually, 
it can be seen that the static algorithm provides slightly higher speedups in regular 
benchmarks (Gaussian and matmul), but HGuided presents much better results in 
irregular ones, reaching a gain of even 2.41x in rap.

The results of the heterogeneous efficiency, presented in Fig. 5, provide an idea 
about the utilization of the system as a whole, reaching a value of 1.0, when both 
devices are used at 100% in the co-execution. This metric reaches mean values of 
0.82 for static and 0.91 for HGuided, which means a very good utilization of both 
devices in all benchmarks. These results can be considered very good, taking into 
account that we are working with a very heterogeneous platform, i.e., the computa-
tional capacity of both devices is very different and with irregular benchmarks.

Fig. 4   Speedup when co-executing CPU-GPU compared with the GPU

Fig. 5   Heterogeneous efficiency when co-executing CPU-GPU compared with the GPU
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The benefits are higher for irregular benchmarks (RAP, Rayc and Ray) than for 
regular ones, where the efficiency rises to 0.96. Gaussian has a time-consuming ini-
tialization phase of the data structures on both devices, which cannot be parallelized. 
Therefore, in co-execution this phase has to be performed by both devices.

As for load balancing algorithms, Fig. 6 presents the balancing efficiency, defined 
as the ratio between the execution time of both devices. Therefore, the optimal value 
of this metric is 1.0, where both devices finish simultaneously without idle times. 
Generally, the imbalance is below 1.0 due to the overheads introduced by the CPU 
because it has to process part of the workload as a device, but also to manage the 
CoexecutorRuntime, as the host.

It is worth highlighting the good results obtained in this metric, especially for the 
HGuided algorithm, with a value above 0.99 in all cases. However, being a dynamic 
algorithm, it introduces a slight overhead that penalizes the total execution time. 
This overhead is more detrimental in regular benchmarks, so the performance in 
those cases is better with the static algorithm.

Another very interesting metric is energy efficiency, which relates performance 
and energy consumption. In this case, it is represented by the ratio of the energy-
delay product of the GPU with respect to the co-execution, presented in Fig.  7. 
Therefore, values higher than 1.0 indicate that the co-execution is more energy effi-
cient than the GPU.

The results show that only in some cases (Gaussian with static and RAP in 
both cases) it is worthwhile to co-execute in terms of energy efficiency, compared 
with just using the GPU. This is reasonable since the GPU is a much more energy 
efficient device than the CPU, specifically a low-profile GeForce GPU. Thus, the 
time reduction achieved with co-execution cannot compensate, in many cases, the 

Fig. 6   Balancing efficiency when co-executing CPU-GPU

Fig. 7   Energy efficiency improvement of the co-execution over the GPU
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additional energy cost of using two devices. However, the differences are not so sig-
nificant (15% on average), and are acceptable for the performance improvements 
achieved. Future work plans to use an integrated GPU as a device, which is likely to 
improve these energy efficiency results.

5 � Related work

There is a clear interest in the scientific community in the study of performance 
portability between different heterogeneous platforms and programming models. In 
this sense, two kinds of work can be distinguished.

Firstly, those that carry out comparative analyses of benchmarks or mini-apps on 
different architectures and with different programming models. Among them, [31] 
compares the performance of the NIVIDIA V100 GPU using SYCL and CUDA, 
with three applications: BabelStream, Mixbench and Tiled Matrix-Multiplication. 
The study analyzes the performance in terms of DRAM bandwidth, kernel execu-
tion time, compilation time and throughput. The main conclusion is that, the per-
formance of SYCL and CUDA is similar, but in some cases, the latter outweighs the 
former.

Meanwhile, Breyer et al. compare the different competing programming frame-
works OpenMP, CUDA, OpenCL and SYCL, paying special attention to the two 
SYCL implementations hipSYCL and DPC++ [32]. The paper investigates the 
different frameworks with respect to their usability, performance and performance 
portability on a variety of hardware platforms from different vendors, i.e., GPUs 
from NVIDIA, AMD, and Intel and CPUs from AMD and Intel. The authors evalu-
ate the performance of the least squares support vector machines for scientific com-
puting. They point out that performance portability has not yet been fully achieved 
by any SYCL implementation.

Finally, Homerding and Tramm [5] evaluate the performance of benchmarks 
and mini-apps having both SYCL and CUDA implementations on a NVIDIA V100 
GPU. While there is missing functionality support, the performance of running 
SYCL is competitive with using CUDA directly. The authors find that many of the 
performance differences are due to the ordering and choices of memory accesses.

Secondly, a lot of work has been done on the migration of different applications 
from CUDA to SYCL. For instance, [33] describes the experience of converting a 
CUDA implementation of a high-order epistasis detection algorithm to SYCL. The 
paper performs a detailed description of migration paths between CUDA and SYCL 
that can be useful to application and compiler developers. Evaluating the CUDA and 
SYCL applications on an NVIDIA V100 GPU, concluding that successful migra-
tion requires a good understanding of the two programming models. Christgau and 
Steinke [9] use both the compatibility tool dpct of oneAPI, as well as SYCL exten-
sions for the CUDA base code of the easyWave simulator. They compare the perfor-
mance of the original code running on Xeon processors using OpenMP as well as 
CUDA with the performance of the DPC++ counterpart on multicore CPUs as well 
as integrated GPUs. Jin and Vertter migrate representative kernels in bioinformatics 
applications from CUDA to SYCL, evaluate their performance on an NVIDIA GPU 
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and explain the performance gaps through performance profiling and analyses [34]. 
The results indicate that whether the performance of running SYCL is competitive 
with using CUDA directly depends on the applications and how they are optimized.

On the other hand, there are also many studies in the literature that propose the 
co-execution of tasks in different devices. For example, [35] offers co-execution 
evaluation but uses a static work-sharing technique, so the programmer must know 
the assignation per device in advance, not adapting to irregular problems. Further-
more, it offers an independent runtime applied for a real-world application, giving 
support for hybrid native code on the CPU combined with OpenCL code on GPU. 
The authors evaluate the scalability and expose the trade-offs between performance 
and power consumption. Proposals like SkelCL [36] and SkePU [37] provide data 
management and composable primitives and skeletons to build parallel applications, 
but the programmer is responsible of using their own data containers. The authors of 
[38] apply fuzzy neural networks to the task distribution problem. MultiCL [39] is 
an OpenCL runtime based on storing execution information for each kernel-device 
pair for future kernel launches. Finally, Unicorn [40] presents a parallel program-
ming model based on a work-stealing task Scheduler. They are all based on OpenCL 
and do not allow the use of the SYCL programming model, as CoexecutorRuntime 
does.

Some authors also propose the use of hybrid technologies. As for instance, Hof-
mann et al. does a hybrid CPU/GPU implementation of particle simulations using 
OpenCL, but they compute different kernels per device [41]. They do near-field 
interactions in the GPU and far-field interactions in CPU, but they do not do co-
execution among the devices. Furthermore, [16] address the same problem offer-
ing from another perspective. Our work uses a high-level API for C++, proposes 
a transformation of OpenCL code at compile time and offers two hybrid execution 
models to offer simplicity or flexibility, allowing the programmer to use also hand-
made custom native parallelized/vectorized code.

Finally, it should be noted that LLVM-based compiler for SYCL (open source 
effort led by Intel) provided support for NVIDIA GPUs via CUDA backend, since 
its performance was inadequate on OpenCL backend. Previously, SYCL implemen-
tations targeted NVIDIA GPUs via the OpenCL backend. However, the problem 
with such an approach was that NVIDIA’s OpenCL drivers offered limited support 
in terms of features to its GPUs. Also, both Intel and CodePlay have announced sup-
port for SYCL code to run on NVIDIA GPUs. However, the big advantage of Coex-
ecutorRuntime is that it allows you to co-execute applications in different applica-
tions using the SCYL programming model on different devices, including NVIDIA 
GPUs.

6 � Conclusions

Proposals such as CoexecutorRuntime provide high-level APIs that facilitate 
the programmability and maintainability of modern C++ applications. In addi-
tion, thanks to their efforts in providing a co-execution system with various load 
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balancing algorithms, they squeeze heterogeneous nodes appropriately, contributing 
to performance portability.

However, it is based on oneAPI technology, limiting its applicability to Intel 
devices. Since there are many applications and systems that focus on exploiting 
NVIDIA GPUs, it is necessary to offer solutions that take advantage of devices from 
both types of manufacturers. For this reason, this work designs a system that allows 
taking advantage of oneAPI for CPUs and CUDA for GPUs, based on the Coexecu-
torRuntime foundations, thus providing a compatible API. These native technologies 
leverage these devices optimally, so efforts have been focused on providing an effi-
cient co-execution system that enables load distribution among devices and hybrid 
technologies. In this way, any programmer can benefit from sophisticated scheduling 
algorithms to further improve the performance of their applications, regardless of 
the business logic and problem domain, facilitating maintainability.

Experimental validation has been performed by evaluating 5 types of programs, 
always comparing the co-execution with respect to the fastest and most energy effi-
cient device, the GPU. Speedups of up to 2.41 have been obtained, considering a 
specific program and scheduling configuration, but reaching average speedups and 
efficiencies of 1.31 and 0.91, respectively. As it is a very energy efficient GPU, only 
a few applications have been found in which co-executing with the CPU has com-
pensated, but in these cases, they achieve improvements of up to 2.15 with respect 
to the GPU.

In the future, behavioral studies will be performed regarding multidevice execu-
tions and the exploitation of different memory models, including the co-execution 
support for various accelerators along with the CPU.
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