
Vol.:(0123456789)

The Journal of Supercomputing (2025) 81:452
https://doi.org/10.1007/s11227-025-06963-y

CPU‑GPU co‑execution through the exploitation of hybrid
technologies via SYCL

Nozal Raúl1 · Jose Luis Bosque1

Accepted: 17 January 2025
© The Author(s) 2025

Abstract
The performance and energy efficiency offered by heterogeneous systems are highly
useful for modern C++ applications, but the technological variety demands ade-
quate portability and programmability. Initiatives such as Intel oneAPI facilitate the
exploitation of Intel CPUs and GPUs, but not NVIDIA GPUs, which are present in
systems of all kinds and are necessarily leveraged by CUDA technology. Frequently,
only GPUs are used, leaving the CPU for management tasks, with the consequent
loss of energy and system utilization. In this work, the CoexecutorRuntime system
design and API are extended to transparently integrate backends of diverse tech-
nologies, unifying offloading mechanisms under a consistent co-execution API and
scheduling runtime. Moreover, CPU-GPU co-execution of hybrid technologies is
enabled to ensure performance portability. Experimental results show performance
improvements for all programs studied, achieving average efficiencies of 0.91 and
speedups of 1.31 over using only the GPU.

Keywords  Heterogeneous computing · Hybrid parallel computing · Co-execution ·
SYCL · OpenCL · CUDA · OneAPI · Performance portability · LLVM · Usability ·
Load balancing

Nozal Raúl and Bosque Jose Luis have contributed equally to this work.

 *	 Jose Luis Bosque
	 joseluis.bosque@unican.es

	 Nozal Raúl
	 raul.nozal@unican.es

1	 Department of Computer Engineering and electronics, Universidad de Cantabria, Avda. los
castros, s/n, 39.005 Santander, Spain

http://crossmark.crossref.org/dialog/?doi=10.1007/s11227-025-06963-y&domain=pdf

	 N. Raúl, J. L. Bosque 452   Page 2 of 17

1  Introduction

Through the popularization and exploitation of heterogeneous systems, unprec-
edented levels of performance and energy efficiency are being achieved. These
benefits generate a trend toward the incorporation of new and powerful program-
ming models, with the aim of being able to use specific accelerators by a whole
amalgam of applications and languages. However, technologies such as oneAPI
or CUDA, despite being able to efficiently exploit the devices, are constrained
by the manufacturers themselves, limiting their use in a cooperative manner and
between different architecture types and vendors.

In this situation, it is essential to provide tools that make life easier for pro-
grammers, offering code portability and programmability advantages. Consider-
ing the complexity of the business logic of modern C++ applications, the more
abstraction, flexibility and maintainability given to these proposals, the better.
Languages such as OpenCL are powerful and portable, but their low level of
abstraction and verbosity keep them far from the program domain. In addition,
their performance is not as good as with native technologies, which complicates
their use. Faced with this situation, proposals and standards of a higher level of
abstraction have emerged, such as SYCL, which attempt to favor a single lan-
guage for specifying execution kernels for heterogeneous devices. However, it
does not allow the full potential of the machine to be exploited, since co-execu-
tion, load distribution and performance portability mechanisms are absent.

For this reason, software architectures and designs, such as CoexecutorRunt-
ime, allow to take advantage of the simultaneous execution of kernels on several
devices [1, 2]. It is a runtime system which provides a high-level API to abstract
heterogeneous execution, maintaining compatibility with SYCL while incorporating
flexible scheduling algorithms. Originally designed for oneAPI, it enables simulta-
neous kernel execution across multiple devices and offers an extensible architecture
for performance and energy optimization. Its extensible scheduling system favors
specific load balancing proposals without distracting the programmer from the intri-
cacies of the business logic. In this work, CoexecutorRuntime is used as API and co-
execution system on which to design and build a proposal that supports hybrid tech-
nologies, leveraging CUDA for NVIDIA GPUs and oneAPI for the system CPU. In
this way, high maintainability and performance portability are assured.

Considering other related works, none has been found that achieves something
similar to what is presented in this proposal, but they can be classified consider-
ing three aspects addressed. On the one hand, there are works related to the use
of SYCL and NVIDIA, performing transformations and code portability, but they
do not involve co-execution [3–11]. On the other hand, there are efforts to per-
form execution through the specialization of kernels or the use of explicit hybrid
technologies [12–22]. And finally, there are proposals that address the problem of
CPU-GPU co-execution in SYCL, albeit involving the same execution technology
for all devices [1, 2, 23].

Our work offers a runtime with a high-level API, part of the program domain,
facilitating the integration in real-world C++ applications, mimicking the API

CPU‑GPU co‑execution through the exploitation of hybrid… Page 3 of 17  452

provided by CoexecutorRuntime, but completely compatible with SYCL, encap-
sulating the inner technology to increase its flexibility. Therefore, the co-exe-
cution system supports a new hybrid mode of execution, exploiting CUDA and
oneAPI programming models. It allows using NVIDIA GPUs and Intel CPUs
simultaneously, achieving performance portability through its scheduling system,
benefiting from a set of load balancing algorithms. Experimental results show
that the co-execution is worthwhile compared with the fastest device, the GPU. It
achieves speedups of up to 2.41 for irregular programs, and 1.12 for regular ones,
obtaining average efficiencies of 0.91 with the best scheduling configuration.

The main contributions of this work are:

•	 Providing a high-level SYCL runtime system and a compatible API that is based
on CoexecutorRuntime, but abstracted from the original oneAPI design, allow-
ing kernel offloading to NVIDIA GPUs and Intel CPUs.

•	 Integrating and enhancing the co-execution system to support hybrid technolo-
gies, computing simultaneously with oneAPI on the CPU and CUDA on the
GPU, leveraging the system with highly optimized load balancing algorithms.

The rest of the paper presents in Sect. 2 a motivation of this work, while Sect. 3
exposes the design of the novelties of the co-execution architecture to support the
new backend and the hybrid co-execution mode. Section 4 details the methodology
and the experimental results to validate the proposal and its enhancements. Finally,
Sect. 5 presents the most relevant related works while Sect. 6 highlights the most
important conclusions and future work.

2 � Motivation

With the emergence and popularization of heterogeneous systems, a new world
of possibilities opens up in terms of performance and energy efficiency. However,
all this variety of devices and architectures exposes a complexity in programming
models and standardization of computing techniques that makes the use of open,
powerful and reliable technologies indispensable. One of the most recent ones, Intel
oneAPI, provides the mechanisms to efficiently exploit modern C++ applications
through the SYCL language. This programming model offloads the most computa-
tionally intensive regions to all types of Intel devices.

However, many heterogeneous nodes have discrete graphics cards that are not
usable with this technology, such as NVIDIA, which is present in both commodity
nodes and large HPC clusters. Moreover, with the popularization of CUDA technol-
ogy for all kinds of applications and areas of knowledge, in many cases one has to
make the uncomfortable decision of choosing between computing using the GPU or
the CPU. In these situations, the former is favored, due to the popularization of the
CUDA language and the efficiency of these accelerators [4–6, 12], leaving the CPU
to perform the management tasks, which is typical in the host-device programming
model. This facilitates programming, as it is not involved in the program compu-
tation. However, in most cases these are powerful CPUs that continue consuming

	 N. Raúl, J. L. Bosque 452   Page 4 of 17

energy without contributing anything to the computation. Therefore, it is conveni-
ent to co-execute the problem to void harming both the performance and energy
consumption of the system [24, 25]. The co-execution allows all devices, including
the CPU, to operate on the same problem, consuming less time and energy to solve
it. This technique has proved that it can achieve very good results, maximizing the
performance and efficiency of heterogeneous systems [26].

In order to take advantage of these devices, it is necessary to provide mechanisms
so that the computing modes of both devices can operate simultaneously. Since it
is necessary to maintain software portability and facilitate the implementation of
business logic for the programmers, it is required to use the same language. Using
OpenCL for CPU and GPU takes the programmer away from the problem domain,
due to its verbosity and low level compared to the high-level C++ applications.

It is not sufficiently maintainable, it is error prone and, above all, it does not
achieve an appropriate performance compared to the native technology in some of
these devices, such as OpenCL or OpenMP compared with CUDA, for the NVIDIA
GPUs. For this reason, the choice is to provide a co-execution system based on
SYCL, but capable of exploiting the full potential of CUDA for the GPU.

However, this approach introduces yet another challenge, and that is to ensure
performance portability, an issue that has to be addressed transparently to the pro-
grammer. Not only does it have to allow working with a single code that implements
the kernel, but it has to be efficient in distributing the load between CPU and GPU,
as well as allowing to exploit each device with the appropriate compute technology.

3 � CoexecutorRuntime/SYCL

Below are the key decisions and enhancements made to the CoexecutorRuntime
runtime and its original proposal. This section focuses on the novelties, affected
components and new design decisions that enable the use of CPUs and NVIDIA
GPUs, as well as efficient co-execution with hybrid technologies, while maintaining
a compatible API.

3.1 � Mixing technologies via LLVM and SYCL

CoexecutorRuntime is based on performing an abstraction on Intel oneAPI technol-
ogy, entirely focused on Intel devices, specifically to perform co-execution of a CPU
and an integrated GPU. This abstraction provides a higher-level API with the goal of
facilitating the programmability and maintainability of modern C++ applications,
so that programmers can focus on business logic. But, at the same time, it provides
an exposition of the oneAPI primitives, with the goal of being easily extensible and
having a smooth porting of a traditional host-device application to the co-execution
scheme offered by CoexecutorRuntime. In addition, some of the oneAPI functionali-
ties have been integrated into CoexecutorRuntime and exposed through its API, such
as the possibility of using pointers and memory regions of the running application.

CPU‑GPU co‑execution through the exploitation of hybrid… Page 5 of 17  452

This proposal extends its use to multivendor devices, specifically for NVIDIA
and Intel. The original architecture was constrained to the oneAPI technology for
Intel CPUs and integrated GPUs, but the runtime needs to be extended to support
NVIDIA discrete GPUs. Thus, a conversion of the runtime core is performed to
accommodate other technologies and its support to simultaneously mix them dur-
ing the application execution. The encapsulation software layers and the different
technologies involved are shown in Fig. 1. The difficulties to support NVIDIA GPUs
could be bypassed by using OpenCL for the NVIDIA GPU, but as demonstrated in
previous studies, it is not an efficient solution and would penalize the maintainabil-
ity and performance. This approach would require the OCL interoperability layer of
oneAPI, involving multiple kernel codes. This layer provides an OpenCL interoper-
ability API so that OpenCL code can be used from oneAPI to offload kernels to an
OpenCL-compliant device. Therefore, the designed runtime system is built on top of
SYCL, as an abstraction that encapsulates the behaviors and optimizations provided
by the SYCL programming model implementations, satisfying the original design
decisions of CoexecutorRuntime. To this end, the system is built by combining two
fundamental technologies, oneAPI for the CPU and NVIDIA CUDA for the GPU.

The fundamental idea is to provide a programming model compatible with
SYCL, avoiding the creation of a new language to interact with the accelerators,
while using efficient technologies to compute on the devices involved. Therefore,
hybrid technologies are used to compute, but are not exposed to the programmer.
The ease of use is given by the single source code property, and the performance is
given by exploiting the best technology for each device, even though they are based
on different programming models. In this proposal, CoexecutorRuntime/SYCL
has been designed, implemented and evaluated using the LLVM compiler, build-
ing it with support for the experimental NVIDIA CUDA backend and the OpenCL/
DPC++ backend for CPUs, using a modern version of the Khronos OpenCL ICD
to match symbols. Fat binaries generated using this system require both the SYCL
libraries provided directly by oneAPI, providing SPIR-V binaries (spir64) for the
CPU, as well as CUDA and OpenCL libraries provided by the NVIDIA CUDA

Fig. 1   Architectural layers of the CoexecutorRuntime to enable CPU and NVIDIA GPU devices

	 N. Raúl, J. L. Bosque 452   Page 6 of 17

runtime (nvptx64-nvidia-cuda). One particularity of this technological combination
is that the possibility of efficiently co-executing using the SYCL fallback host device
is lost, since it lacks multithreading support. However, this is not a disadvantage
since the system is provided with oneAPI for CPU, and in cases where it is not sup-
ported, thanks to the new software architecture, it is possible to provide, for exam-
ple, a backend based on C++ STL threads.

3.2 � Hybrid co‑execution with NVIDIA GPUs

One of the advantages of decoupling the CoexecutorRuntime architecture is that it
allows interacting with the various components in near isolation, facilitating their
extension. Since the goal of the runtime is to facilitate programmability and allow to
take advantage of various type of devices on heterogeneous nodes, it is necessary to
satisfy the needs of co-execution. Considering that this is a hybrid execution model,
the software architecture of the system has been affected in the modules in charge
of building and launching work packages and kernels (dispatcher_inter-
face) as well as in the co-execution units that encapsulate the hardware devices
(CoexecutionUnit).

Figure 2 shows the general overview of the CoexecutorRuntime/SYCL schedul-
ing system, updated to represent the variation produced in this proposal with respect
to the work performed by the load balancing algorithms. Thanks to the encapsu-
lation of the system, all the components of the system have been ported without
modifications, such as Director, Scheduler or CommanderLoop, despite
variations in the CoexecutionUnit, the SYCL runtime with its backends and
the dispatcher mechanism. In this way, all original design decisions are preserved,
so there is no impact on the design of the load distribution system, the synchroniza-
tion and monitoring, the collection of results and other necessary stages during the
co-execution cycles. This is a fundamental aspect to achieve an efficient offloading
when co-executing, as will be seen in the experimental evaluation.

CoexecutionUnits are now provided with mechanisms to detect, filter and config-
ure devices, adapting to the requirements of the programmer, allowing the speciali-
zation of kernels, buffers or data transfers per device or backend, such as applying
certain optimizations in the case of the GPU. These variations have been prepared
with runtime extensibility in mind, as this proposal is focused on the co-execution of

Fig. 2   Scheduling system overview and its encapsulated interaction with the CoexecutionUnits

CPU‑GPU co‑execution through the exploitation of hybrid… Page 7 of 17  452

Intel CPUs with an NVIDIA GPU, but more diverse configurations could be accom-
modated in the future.

Having different backends in the SYCL runtime facilitates the construction of
the application and the necessary toolchains, as well as the execution through a sin-
gle-entry point to the application. This is fundamental due to all the implications it
entails in terms of portability and in order to exploit optimizations and co-execution
mechanisms, without the need for multiple compilation steps or costly inter-process
calls and memory mappings.

Variations in the dispatcher interface have affected the way kernels are built and
in the case of certain extensions, since backends other than SYCL are being used.
It has been required to generate kernels based on the backend and the scheduling
algorithm used, something that was not affected when only oneAPI was used. This
implication is given by the different passes made in the compilation process and the
translation units. Therefore, kernels are compiled for different architectures and bun-
dled in the final binary. For example, for the NVIDIA GPU used in Methodology
Sect. 4.1, the final PTX has been built using CUDA 11.6 for the SM60 architecture.

Finally, one of the fundamental points of this proposal is to be compatible with
the CoexecutorRuntime high-level co-execution API, and with SYCL in terms of
the kernel to be executed. Listing Fig. 3 shows a code snippet using the simple API
mode exposed by CoexecutorRuntime, but with the mechanisms introduced by this
proposal and offered to programmers. Lines 5 to 9 enable the selection of the co-
execution units involved in the computation, being the CPU and any NVIDIA GPU.

Thanks to these mechanisms, the same filters can be applied during the co-exe-
cution process, inside of the launch region (lines 10 to 27). For instance, in this
example the GPU and CPU exploit the new feature of kernel specialization, altering
the computation based on specific properties of each device or backend involved
(lines 12 and 27). The final code remains as maintainable as in the original proposal
and being compatible with any SYCL kernel (lines 20 to 24), but benefiting from the
simultaneous execution on a CPU and a NVIDIA GPU. Therefore, thanks to these
decisions, performance portability is still ensured, leveraging the node performance
through the exploitation of any of the different load balancing algorithms provided
(lines 2 to 4).

3.3 � Load balancing algorithms

To achieve efficient co-execution, one of the fundamental aspects is to distribute the
workload proportionally to the computational capacity of the devices, CPU/GPU.
The way to do this is to divide the dataset to be processed into a series of packages
and assign them correctly to the devices. The CoexecutorRuntime currently supports
three well-known load balancing algorithms which are described briefly below [24,
27]. The programmer should decide which one to use in each case, depending on the
characteristics and knowledge he has of the architecture.

Static This algorithm works before the kernel is executed by dividing the
workload in as many packages as devices are in the system. The division relies
on knowing the relative computational capacity of each device, in advance. Then

	 N. Raúl, J. L. Bosque 452   Page 8 of 17

the execution time of each device can be equalized by proportionally dividing
the workload among the devices. It minimizes the number of synchronization
points; therefore, it performs well when facing regular loads with known comput-
ing powers that are stable throughout the workload execution. However, it is not
adaptable, so its performance might not be as good with irregular kernels, where
the execution time of each package varies along the execution (for instance, in
sparse computing).

Dynamic It divides the workload in a given number of equal-sized packages.
The number of packages is well above the number of devices in the heterogeneous
system. During the execution of the kernel, the Scheduler is in charge of assign-
ing packages to the different devices, including the CPU. This algorithm adapts
to the irregular behavior of some applications. However, each completed package
represents a synchronization point between the device and the host, where data is
exchanged and a new package is launched. This overhead has a noticeable impact
on performance if the number of packages is high. The dynamic algorithm takes
the size of the packages as a parameter.

HGuided This algorithm offers a variation over the dynamic by establish-
ing how the workload is divided. The algorithm makes larger packages at the

Fig. 3   CoexecutorRuntime API is preserved while adding extensions to interact with NVIDIA devices
and CoexecutionUnit behavior specialization

CPU‑GPU co‑execution through the exploitation of hybrid… Page 9 of 17  452

beginning and reduces the size of the subsequent ones as the execution pro-
gresses. Thus, the number of synchronization points and the corresponding over-
head is reduced, while retaining a small package granularity toward the end of the
execution to allow all devices to finish simultaneously. Since it is an algorithm
for heterogeneous systems, the size of the packets is also dependent on the com-
puting power of the devices. The size of the package for device i is calculated as
follows:

where k is a constant, for which, in previous works [25], it has been empirically
obtained that the best results are obtained with values of k equal between 2 or 3. The
smaller the k constant, the faster decreases the packet size. Tweaking this constant
prevents too large packet sizes when there are only a few devices, with cases such as
giving half the workload in the first packet to a device, unbalancing the load.

Gr is an integer number that stores the amount of workload (threads) pending to
be executed in each new assignment, and it is updated with every package launch.
The parameters of the HGuided are the computing powers and the minimum pack-
age size of the devices to be used. Pi is the computational power of the device i, and
the

∑n

j=1
Pj represents the total computational power of the system, where n is the

number of devices in the system. The computational power value for each device
( Pi ) is obtained by normalizing the benchmark execution time on each device by
the time of the most powerful device. Thus, the Pi of the most powerful device will
be 1.0, and the values for the rest of the devices will be between 0 and 1. In this
way, for example, a total computational power ( 

∑n

j=1
Pj ) equal to 1.5 means that the

whole system has the computational power equivalent to 1.5 times that of the most
powerful device. The minimum package size is a lower bound for the packet_sizei
and the minimum package sizes are usually dependent on the computing power of
the devices, being bigger package sizes in the most powerful devices.

4 � Evaluation

This section presents the methodology and experimental results that determine the
behavior of the proposal, CoexecutorRuntime/SYCL, using CPU and GPU with two
different technologies (oneAPI and CUDA), performing the co-execution for a set of
applications with respect to the most efficient device, the GPU.

4.1 � Methodology

The experiments are carried out on a computer with 16 GiB of RAM com-
posed of an Intel Core i7-10700 CPU and an NVIDIA GeForce GT 1030 GPU
with 2 GiB of GDDR5. The CPU has 8 cores and 2 threads per core, employ-
ing OpenCL 3.0 to provide 16 compute units at 2.9GH, while the GPU uses

packet_sizei = ⌊
Gr Pi

k n
∑n

j=1
Pj

⌋

	 N. Raúl, J. L. Bosque 452   Page 10 of 17

the Compute Capability 6.1 of the CUDA backend, powered by the NVIDIA
driver version 510, to expose 3 compute units at 1468 MHz, as it has 3 Stream-
ing Multiprocessors.

Five programs have been selected to evaluate the behavior of the runt-
ime [28]. Gaussian and matmul present regular behavior, and Rap, Rayc and Ray
are irregular, where each part of the problem involves different computational
complexities when executed on the same device. Rayc and Ray are Raytracing
computations, but Rayc uses C++ classes to package its data types (vectors) and
involves many more lights and objects. These have been chosen as they validate
the co-execution behavior for both regular and irregular problem types, showing
sufficiently diverse offloading pattern types and with good results, as demon-
strated in previous studies [24].

To guarantee integrity of the results, the values reported are the arithmetic
mean of 25 executions, discarding a previous first one to avoid warm-up penal-
ties. The standard deviation is not shown because it is negligible in all cases. To
measure the energy consumption, another 25 executions are performed to avoid
introducing time delays due to the sampling overheads.

The validation of the proposal is done by analyzing the performance and
energy efficiency of the new hybrid CPU-GPU co-execution mode compared
with the fastest and most energy efficient device, the GPU. The total response
time is measured, including kernel computing and data transfer. Two Coexecu-
torRuntime scheduling configurations are evaluated when co-executing, static
and HGuided (an improved version of dynamic) [29].

Three metrics are used to evaluate the proposal, speedup, heterogeneous effi-
ciency and energy efficiency [29]. The speedup is calculated as S =

TGPU

Tco−exec
 , being

TGPU and Tco−exec the execution times for the GPU and the co-execution, respec-
tively. Due to the heterogeneity of the system and the different behavior of the
benchmarks, the maximum achievable speedups depend on each program. As a
result of this, the heterogeneous efficiency has been computed as the ratio
between the empirically obtained speedup and the maximum achievable
speedup, for each benchmark [24]. The maximum speedup is computed as the
sum of the computational power of each of the devices in the system, since, as
explained in section 3.3, this value represents the computational capacity of the
complete system, and therefore the maximum acceleration that can be obtained:

Finally, energies are measured using RAPL counters for the CPU and RAM, and
nvidia-smi along a real-time power usage monitor to measure the whole system and
the GPU, giving the total consumption in Joules. The energy-delay product (EDP) is
used to evaluate the energy efficiency, measured in Js [30]. Since the values obtained
have a very wide range, this metric is provided normalized with respect to the EDP
of the GPU execution.

Spmax =

n∑

i=1

Pi

CPU‑GPU co‑execution through the exploitation of hybrid… Page 11 of 17  452

4.2 � Experimental results

This section presents the experimental results with respect to the performance,
the load balancing and the energy efficiency of the proposal.

Regarding the performance of the CoexecutorRuntime, Figs. 4 and 5 show,
respectively, the speedup and the heterogeneous efficiency obtained, for all
the benchmarks and the two load balancing algorithms evaluated, static and
HGuided, together with the geometric mean, in the platform described in the pre-
vious section.

The main conclusion that can be drawn from the speedup results is that co-exe-
cution is profitable in all the cases studied, since it provides speedup results always
higher than 1.0. Looking at the average values, it can be seen that the gains obtained
are 1.31x with the HGuided algorithm and 1.18x with the static algorithm, which
can be considered very good results considering the performance difference between
the CPU and GPU devices. Analyzing the results of the benchmarks individually,
it can be seen that the static algorithm provides slightly higher speedups in regular
benchmarks (Gaussian and matmul), but HGuided presents much better results in
irregular ones, reaching a gain of even 2.41x in rap.

The results of the heterogeneous efficiency, presented in Fig. 5, provide an idea
about the utilization of the system as a whole, reaching a value of 1.0, when both
devices are used at 100% in the co-execution. This metric reaches mean values of
0.82 for static and 0.91 for HGuided, which means a very good utilization of both
devices in all benchmarks. These results can be considered very good, taking into
account that we are working with a very heterogeneous platform, i.e., the computa-
tional capacity of both devices is very different and with irregular benchmarks.

Fig. 4   Speedup when co-executing CPU-GPU compared with the GPU

Fig. 5   Heterogeneous efficiency when co-executing CPU-GPU compared with the GPU

	 N. Raúl, J. L. Bosque 452   Page 12 of 17

The benefits are higher for irregular benchmarks (RAP, Rayc and Ray) than for
regular ones, where the efficiency rises to 0.96. Gaussian has a time-consuming ini-
tialization phase of the data structures on both devices, which cannot be parallelized.
Therefore, in co-execution this phase has to be performed by both devices.

As for load balancing algorithms, Fig. 6 presents the balancing efficiency, defined
as the ratio between the execution time of both devices. Therefore, the optimal value
of this metric is 1.0, where both devices finish simultaneously without idle times.
Generally, the imbalance is below 1.0 due to the overheads introduced by the CPU
because it has to process part of the workload as a device, but also to manage the
CoexecutorRuntime, as the host.

It is worth highlighting the good results obtained in this metric, especially for the
HGuided algorithm, with a value above 0.99 in all cases. However, being a dynamic
algorithm, it introduces a slight overhead that penalizes the total execution time.
This overhead is more detrimental in regular benchmarks, so the performance in
those cases is better with the static algorithm.

Another very interesting metric is energy efficiency, which relates performance
and energy consumption. In this case, it is represented by the ratio of the energy-
delay product of the GPU with respect to the co-execution, presented in Fig. 7.
Therefore, values higher than 1.0 indicate that the co-execution is more energy effi-
cient than the GPU.

The results show that only in some cases (Gaussian with static and RAP in
both cases) it is worthwhile to co-execute in terms of energy efficiency, compared
with just using the GPU. This is reasonable since the GPU is a much more energy
efficient device than the CPU, specifically a low-profile GeForce GPU. Thus, the
time reduction achieved with co-execution cannot compensate, in many cases, the

Fig. 6   Balancing efficiency when co-executing CPU-GPU

Fig. 7   Energy efficiency improvement of the co-execution over the GPU

CPU‑GPU co‑execution through the exploitation of hybrid… Page 13 of 17  452

additional energy cost of using two devices. However, the differences are not so sig-
nificant (15% on average), and are acceptable for the performance improvements
achieved. Future work plans to use an integrated GPU as a device, which is likely to
improve these energy efficiency results.

5 � Related work

There is a clear interest in the scientific community in the study of performance
portability between different heterogeneous platforms and programming models. In
this sense, two kinds of work can be distinguished.

Firstly, those that carry out comparative analyses of benchmarks or mini-apps on
different architectures and with different programming models. Among them, [31]
compares the performance of the NIVIDIA V100 GPU using SYCL and CUDA,
with three applications: BabelStream, Mixbench and Tiled Matrix-Multiplication.
The study analyzes the performance in terms of DRAM bandwidth, kernel execu-
tion time, compilation time and throughput. The main conclusion is that, the per-
formance of SYCL and CUDA is similar, but in some cases, the latter outweighs the
former.

Meanwhile, Breyer et al. compare the different competing programming frame-
works OpenMP, CUDA, OpenCL and SYCL, paying special attention to the two
SYCL implementations hipSYCL and DPC++ [32]. The paper investigates the
different frameworks with respect to their usability, performance and performance
portability on a variety of hardware platforms from different vendors, i.e., GPUs
from NVIDIA, AMD, and Intel and CPUs from AMD and Intel. The authors evalu-
ate the performance of the least squares support vector machines for scientific com-
puting. They point out that performance portability has not yet been fully achieved
by any SYCL implementation.

Finally, Homerding and Tramm [5] evaluate the performance of benchmarks
and mini-apps having both SYCL and CUDA implementations on a NVIDIA V100
GPU. While there is missing functionality support, the performance of running
SYCL is competitive with using CUDA directly. The authors find that many of the
performance differences are due to the ordering and choices of memory accesses.

Secondly, a lot of work has been done on the migration of different applications
from CUDA to SYCL. For instance, [33] describes the experience of converting a
CUDA implementation of a high-order epistasis detection algorithm to SYCL. The
paper performs a detailed description of migration paths between CUDA and SYCL
that can be useful to application and compiler developers. Evaluating the CUDA and
SYCL applications on an NVIDIA V100 GPU, concluding that successful migra-
tion requires a good understanding of the two programming models. Christgau and
Steinke [9] use both the compatibility tool dpct of oneAPI, as well as SYCL exten-
sions for the CUDA base code of the easyWave simulator. They compare the perfor-
mance of the original code running on Xeon processors using OpenMP as well as
CUDA with the performance of the DPC++ counterpart on multicore CPUs as well
as integrated GPUs. Jin and Vertter migrate representative kernels in bioinformatics
applications from CUDA to SYCL, evaluate their performance on an NVIDIA GPU

	 N. Raúl, J. L. Bosque 452   Page 14 of 17

and explain the performance gaps through performance profiling and analyses [34].
The results indicate that whether the performance of running SYCL is competitive
with using CUDA directly depends on the applications and how they are optimized.

On the other hand, there are also many studies in the literature that propose the
co-execution of tasks in different devices. For example, [35] offers co-execution
evaluation but uses a static work-sharing technique, so the programmer must know
the assignation per device in advance, not adapting to irregular problems. Further-
more, it offers an independent runtime applied for a real-world application, giving
support for hybrid native code on the CPU combined with OpenCL code on GPU.
The authors evaluate the scalability and expose the trade-offs between performance
and power consumption. Proposals like SkelCL [36] and SkePU [37] provide data
management and composable primitives and skeletons to build parallel applications,
but the programmer is responsible of using their own data containers. The authors of
[38] apply fuzzy neural networks to the task distribution problem. MultiCL [39] is
an OpenCL runtime based on storing execution information for each kernel-device
pair for future kernel launches. Finally, Unicorn [40] presents a parallel program-
ming model based on a work-stealing task Scheduler. They are all based on OpenCL
and do not allow the use of the SYCL programming model, as CoexecutorRuntime
does.

Some authors also propose the use of hybrid technologies. As for instance, Hof-
mann et al. does a hybrid CPU/GPU implementation of particle simulations using
OpenCL, but they compute different kernels per device [41]. They do near-field
interactions in the GPU and far-field interactions in CPU, but they do not do co-
execution among the devices. Furthermore, [16] address the same problem offer-
ing from another perspective. Our work uses a high-level API for C++, proposes
a transformation of OpenCL code at compile time and offers two hybrid execution
models to offer simplicity or flexibility, allowing the programmer to use also hand-
made custom native parallelized/vectorized code.

Finally, it should be noted that LLVM-based compiler for SYCL (open source
effort led by Intel) provided support for NVIDIA GPUs via CUDA backend, since
its performance was inadequate on OpenCL backend. Previously, SYCL implemen-
tations targeted NVIDIA GPUs via the OpenCL backend. However, the problem
with such an approach was that NVIDIA’s OpenCL drivers offered limited support
in terms of features to its GPUs. Also, both Intel and CodePlay have announced sup-
port for SYCL code to run on NVIDIA GPUs. However, the big advantage of Coex-
ecutorRuntime is that it allows you to co-execute applications in different applica-
tions using the SCYL programming model on different devices, including NVIDIA
GPUs.

6 � Conclusions

Proposals such as CoexecutorRuntime provide high-level APIs that facilitate
the programmability and maintainability of modern C++ applications. In addi-
tion, thanks to their efforts in providing a co-execution system with various load

CPU‑GPU co‑execution through the exploitation of hybrid… Page 15 of 17  452

balancing algorithms, they squeeze heterogeneous nodes appropriately, contributing
to performance portability.

However, it is based on oneAPI technology, limiting its applicability to Intel
devices. Since there are many applications and systems that focus on exploiting
NVIDIA GPUs, it is necessary to offer solutions that take advantage of devices from
both types of manufacturers. For this reason, this work designs a system that allows
taking advantage of oneAPI for CPUs and CUDA for GPUs, based on the Coexecu-
torRuntime foundations, thus providing a compatible API. These native technologies
leverage these devices optimally, so efforts have been focused on providing an effi-
cient co-execution system that enables load distribution among devices and hybrid
technologies. In this way, any programmer can benefit from sophisticated scheduling
algorithms to further improve the performance of their applications, regardless of
the business logic and problem domain, facilitating maintainability.

Experimental validation has been performed by evaluating 5 types of programs,
always comparing the co-execution with respect to the fastest and most energy effi-
cient device, the GPU. Speedups of up to 2.41 have been obtained, considering a
specific program and scheduling configuration, but reaching average speedups and
efficiencies of 1.31 and 0.91, respectively. As it is a very energy efficient GPU, only
a few applications have been found in which co-executing with the CPU has com-
pensated, but in these cases, they achieve improvements of up to 2.15 with respect
to the GPU.

In the future, behavioral studies will be performed regarding multidevice execu-
tions and the exploitation of different memory models, including the co-execution
support for various accelerators along with the CPU.

Author contributions  All authors contributed equally to the manuscript.

Funding  Open Access funding provided thanks to the CRUE-CSIC agreement with Springer Nature.
This work has been supported by the Spanish Science and Technology Commission under contract
PID2022-136454NB-C21, the Ministerio de Ciencia e Innovación; Proyectos de Transición Ecológica
y Digital 2021 under grant TED2021-131176B-I00 and the European HiPEAC Network of Excellence.

Data availability  No datasets were generated or analyzed during the current study.

Declarations 

Conflict of interest  The authors declare no conflict of interest.

Open Access  This article is licensed under a Creative Commons Attribution 4.0 International License,
which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long
as you give appropriate credit to the original author(s) and the source, provide a link to the Creative
Commons licence, and indicate if changes were made. The images or other third party material in this
article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line
to the material. If material is not included in the article’s Creative Commons licence and your intended
use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permis-
sion directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/
licenses/by/4.0/.

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

	 N. Raúl, J. L. Bosque 452   Page 16 of 17

References

	 1.	 Nozal R, Bosque JL (2021) Exploiting co-execution with oneapi: heterogeneity from a modern per-
spective. In: European Conference on Parallel Processing, pp. 501–516

	 2.	 Nozal R, Bosque JL (2021) Straightforward heterogeneous computing with the oneapi coexecutor
runtime. Electronics 10(19):2386

	 3.	 Peccerillo B, Bartolini S (2019) Phast—a portable high-level modern c++ programming library
for GPUs and multi-cores. IEEE Trans Parallel Distrib Syst 30(1):174–189. https://​doi.​org/​10.​1109/​
TPDS.​2018.​28551​82

	 4.	 Alekseenko A, Páll S, Lindahl E (2021) Experiences with adding sycl support to gromacs. In:
IWOCL, pp. 17–1

	 5.	 Homerding B, Tramm J (2020) Evaluating the performance of the hipSYCL toolchain for HPC ker-
nels on NVIDIA v100 GPUs. In: Proceedings of the International Workshop on OpenCL, pp. 1–7

	 6.	 Crisci L, Salimi Beni M, Cosenza B, Scipione N, Gadioli D, Vitali E, Palermo G, Beccari A (2022)
Towards a portable drug discovery pipeline with SYCL 2020. In: International Workshop on
OpenCL, pp. 1–2

	 7.	 Castaño G, Faqir-Rhazoui Y, García C, Prieto-Matías M (2022) Evaluation of intel’s DPC++ com-
patibility tool in heterogeneous computing. J Parallel Distrib Comput 165:120–129

	 8.	 Reyes R, Brown G, Burns R (2020) Bringing performant support for NVIDIA® hardware to SYCL.
In: Proceedings of the International Workshop on OpenCL, pp. 1–1

	 9.	 Christgau S, Steinke T (2020) Porting a legacy cuda stencil code to oneapi. In: Proc. of IPDPSW,
pp. 359–367

	10.	 Shin W, Yoo K-H, Baek N (2020) Large-scale data computing performance comparisons on SYCL
heterogeneous parallel processing layer implementations. Appl Sci 10(5):1656

	11.	 Alpay A, Soproni B, Wünsche H, Heuveline V (2022) Exploring the possibility of a hipSYCL-based
implementation of oneapi. In: International Workshop on OpenCL, pp. 1–12

	12.	 Breyer M, Van Craen A, Pflüger D (2022) A comparison of sycl, opencl, cuda, and openmp for
massively parallel support vector machine classification on multi-vendor hardware. In: International
Workshop on OpenCL, pp. 1–12

	13.	 Baratta I, Richardson C, Wells G (2022) Performance analysis of matrix-free conjugate gradient
kernels using SYCL. In: International Workshop on OpenCL, pp. 1–10

	14.	 Doumoulakis A, Keryell R, O’Brien K (2017) Sycl c++ and opencl interoperability experimenta-
tion with triSYCL. In: Proceedings of the 5th International Workshop on OpenCL, pp. 1–8

	15.	 Nozal R, Niethammer C, Gracia J, Bosque JL (2021) Feasibility study of molecular dynamics ker-
nels exploitation using enginecl. In: Euro-Par 2021: Parallel Processing Workshops

	16.	 Moreton-Fernandez A, Gonzalez-Escribano A, Llanos DR (2019) Multi-device controllers: a library
to simplify parallel heterogeneous programming. Int J Parallel Prog 47(1):94–113

	17.	 Joó B, Kurth T, Clark MA, Kim J, Trott CR, Ibanez D, Sunderland D, Deslippe J (2019) Performance
portability of a wilson dslash stencil operator mini-app using kokkos and sycl. In: 2019 IEEE/ACM
International Workshop on Performance, Portability and Productivity in HPC (P3HPC), pp. 14–25

	18.	 Shin W, Yoo KH, Baek N (2020) Large-scale data computing performance comparisons on sycl
heterogeneous parallel processing layer implementations. Appl Sci 10:1656

	19.	 Jin Z, Morozov V, Finkel H (2020) A case study on the haccmk routine in sycl on integrated graph-
ics. In: Proceedings of IPDPSW, pp. 368–374. https://​doi.​org/​10.​1109/​IPDPS​W50202.​2020.​00071

	20.	 Wang Y, Zhou Y, Wang QS, Wang Y, Xu Q, Wang C, Peng B, Zhu Z, Takuya K, Wang D (2021)
Developing medical ultrasound beamforming application on gpu and fpga using oneapi. In: 2021
IEEE International Parallel and Distributed Processing Symposium Workshops (IPDPSW), pp.
360–370. IEEE

	21.	 Ashbaugh B, et al (2020) Data parallel c++: enhancing sycl through extensions for productivity
and performance. In: International Workshop on OpenCL. IWOCL. ACM. https://​doi.​org/​10.​1145/​
33883​33.​33886​53

	22.	 Tibrewala S, Faria ADO (2020) Making banking secure via bio metrics application built using one-
api and dpc++ based on sycl/c++. In: International Workshop on OpenCL. IWOCL ’20. ACM.
https://​doi.​org/​10.​1145/​33883​33.​33886​71

	23.	 Constantinescu DA, Navarro AG, Corbera F, Fernández-Madrigal JA, Asenjo R (2020) Efficiency
and productivity for decision making on low-power heterogeneous CPU+GPU SOCS. J Supercom-
put. https://​doi.​org/​10.​1007/​s11227-​020-​03257-3

https://doi.org/10.1109/TPDS.2018.2855182
https://doi.org/10.1109/TPDS.2018.2855182
https://doi.org/10.1109/IPDPSW50202.2020.00071
https://doi.org/10.1145/3388333.3388653
https://doi.org/10.1145/3388333.3388653
https://doi.org/10.1145/3388333.3388671
https://doi.org/10.1007/s11227-020-03257-3

CPU‑GPU co‑execution through the exploitation of hybrid… Page 17 of 17  452

	24.	 Nozal R, Bosque JL, Beivide R (2020) Enginecl: usability and performance in heterogeneous com-
puting. Future Gen Comp Syst 107(C):522–537. https://​doi.​org/​10.​1016/j.​future.​2020.​02.​016

	25.	 Nozal R, Bosque JL, Beivide R (2019) Towards co-execution on commodity heterogeneous sys-
tems: Optimizations for time-constrained scenarios. In: 17th International Conference on High Per-
formance Computing and Simulations HPCS, Ireland,, pp. 628–635. IEEE, https://​doi.​org/​10.​1109/​
HPCS4​8598.​2019.​91881​88

	26.	 Zhang F, Zhai J, He B, Zhang S, Chen W (2017) Understanding co-running behaviors on integrated
CPU/GPU architectures. IEEE Trans Parallel Distrib Syst 28(3):905–918. https://​doi.​org/​10.​1109/​
TPDS.​2016.​25860​74

	27.	 Pérez B, Stafford E, Bosque JL, Beivide R (2021) Sigmoid: an auto-tuned load balancing algorithm
for heterogeneous systems. J Parallel Distrib Comput 157:30–42. https://​doi.​org/​10.​1016/j.​jpdc.​
2021.​06.​003

	28.	 Becker M, Brown C (2024) Heterogeneous Offloading Benchsuite. Last accessed Dec. https://​
github.​com/​Engin​eCL/​Bench​suite

	29.	 Nozal R (2022) Optimizing Performance and Energy Efficiency in Massively Parallel Systems. PhD
thesis, Universidad de Cantabria

	30.	 Nozal R, Pérez B, Bosque JL, Beivide R (2019) Load balancing in a heterogeneous world: CPU-
XEON phi co-execution of data-parallel kernels. J Supercomput 75(3):1123–1136. https://​doi.​org/​
10.​1007/​S11227-​018-​2318-5

	31.	 Reddy Kuncham GK, Vaidya R, Barve M (2021) Performance study of gpu applications using sycl
and cuda on tesla v100 gpu. In: 2021 IEEE High Performance Extreme Computing Conference
(HPEC), pp. 1–7. https://​doi.​org/​10.​1109/​HPEC4​9654.​2021.​96228​13

	32.	 Breyer M, Van Craen A, Pflüger D (2022) A comparison of sycl, opencl, cuda, and openmp for
massively parallel support vector machine classification on multi-vendor hardware. In: International
Workshop on OpenCL. IWOCL’22. Association for Computing Machinery, New York, NY, USA.
https://​doi.​org/​10.​1145/​35295​38.​35299​80

	33.	 Jin Z, Vetter JS (2022) Performance portability study of epistasis detection using sycl on nvidia gpu.
In: Proceedings of the 13th ACM International Conference on Bioinformatics, Computational Biol-
ogy and Health Informatics. BCB ’22. Association for Computing Machinery, New York, NY, USA.
https://​doi.​org/​10.​1145/​35355​08.​35455​91

	34.	 Jin Z, Vetter JS (2022) Understanding performance portability of bioinformatics applications in
sycl on an nvidia gpu. In: 2022 IEEE International Conference on Bioinformatics and Biomedicine
(BIBM), pp. 2190–2195. https://​doi.​org/​10.​1109/​BIBM5​5620.​2022.​99952​22

	35.	 LaKomski D, Zong Z, Jin T, Ge R (2015) Optimal balance between energy and performance in
hybrid computing applications. In: 2015 Sixth International Green and Sustainable Computing Con-
ference (IGSC), pp. 1–8. IEEE

	36.	 Steuwer M, Kegel P, Gorlatch S (2011) SkelCL - A portable skeleton library for high-level GPU
programming. In: IEEE International Symposium on Parallel and Distributed Processing Work-
shops and Phd Forum (May 2011), pp. 1176–1182 https://​doi.​org/​10.​1109/​IPDPS.​2011.​269

	37.	 Enmyren J, Kessler CW (2010) SkePU: a multi-backend skeleton programming library for multi-
gpu systems. In: Proceedings of 4th International Workshop on High-Level Parallel Programming
and Applications

	38.	 Zhang F, Zhai J, He B, Zhang S, Chen W (2017) Understanding co-running behaviors on integrated
CPU/GPU architectures. IEEE Trans Parallel Distrib Syst 28(3):905–918. https://​doi.​org/​10.​1109/​
TPDS.​2016.​25860​74

	39.	 Aji AM, Peña AJ, Balaji P, Feng W-C (2016) Multicl: enabling automatic scheduling for task-paral-
lel workloads in OpenCL. Parallel Comput 58:37–55. https://​doi.​org/​10.​1016/j.​parco.​2016.​05.​006

	40.	 Beri T, Bansal S, Kumar S (2017) The unicorn runtime: efficient distributed shared memory pro-
gramming for hybrid CPU-GPU clusters. IEEE Trans Parallel Distrib Syst 28(5):1518–1534. https://​
doi.​org/​10.​1109/​TPDS.​2016.​26163​14. (Cited by: 9)

	41.	 Hofmann M, Kiesel R, Leichsenring D, Rünger G (2018) A hybrid cpu/gpu implementation of com-
putationally intensive particle simulations using opencl. In: 17th IEEE International Symposium on
Parallel and Distributed Computing, pp. 9–16

Publisher’s Note  Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

https://doi.org/10.1016/j.future.2020.02.016
https://doi.org/10.1109/HPCS48598.2019.9188188
https://doi.org/10.1109/HPCS48598.2019.9188188
https://doi.org/10.1109/TPDS.2016.2586074
https://doi.org/10.1109/TPDS.2016.2586074
https://doi.org/10.1016/j.jpdc.2021.06.003
https://doi.org/10.1016/j.jpdc.2021.06.003
https://github.com/EngineCL/Benchsuite
https://github.com/EngineCL/Benchsuite
https://doi.org/10.1007/S11227-018-2318-5
https://doi.org/10.1007/S11227-018-2318-5
https://doi.org/10.1109/HPEC49654.2021.9622813
https://doi.org/10.1145/3529538.3529980
https://doi.org/10.1145/3535508.3545591
https://doi.org/10.1109/BIBM55620.2022.9995222
https://doi.org/10.1109/IPDPS.2011.269
https://doi.org/10.1109/TPDS.2016.2586074
https://doi.org/10.1109/TPDS.2016.2586074
https://doi.org/10.1016/j.parco.2016.05.006
https://doi.org/10.1109/TPDS.2016.2616314
https://doi.org/10.1109/TPDS.2016.2616314

	CPU-GPU co-execution through the exploitation of hybrid technologies via SYCL
	Abstract
	1 Introduction
	2 Motivation
	3 CoexecutorRuntimeSYCL
	3.1 Mixing technologies via LLVM and SYCL
	3.2 Hybrid co-execution with NVIDIA GPUs
	3.3 Load balancing algorithms

	4 Evaluation
	4.1 Methodology
	4.2 Experimental results

	5 Related work
	6 Conclusions
	References

