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Abstract
In recent years, energy consumption has become a limiting factor in the evolution 
of high-performance computing (HPC) clusters in terms of environmental concern 
and maintenance cost. The computing power of these clusters is increasing, together 
with the demands of the workloads they execute. A key component in HPC sys-
tems is the workload manager, whose operation has a substantial impact on the per-
formance and energy consumption of the clusters. Recent research has employed 
machine learning techniques to optimise the operation of this component. However, 
these attempts have focused on homogeneous clusters where all the cores are pooled 
together and considered equal, disregarding the fact that they are contained in nodes 
and that they can have different performances. This work presents an intelligent job 
scheduler based on deep reinforcement learning that focuses on reducing energy 
consumption of heterogeneous HPC clusters. To this aim it leverages information 
provided by the users as well as the power consumption specifications of the com-
pute resources of the cluster. The scheduler is evaluated against a set of heuristic 
algorithms showing that it has potential to give similar results, even in the face of 
the extra complexity of the heterogeneous cluster.
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1  Introduction

High-performance computing (HPC) systems are constantly evolving and reach-
ing greater heights in computing power, efficiency and scalability [1]. Along the 
way, energy consumption has always posed a significant obstacle in terms of 
environmental impact [2] and operational cost. The costs of running an HPC clus-
ter for two years can compare to the cost of purchase [3]. Currently, data centre 
and data transmission networks account for roughly 1.5% of global electricity use 
and 0.9% of energy-related greenhouse gas emissions [4]. This represents only a 
moderate increase with respect to 2010 thanks to improvements made in energy 
efficiency, but CO2 emissions must still be halved by 2030 to achieve the United 
Nations net zero objective.

In the context of high performance computing, job scheduling is a key aspect 
of cluster operation that deeply influences its energy consumption and efficiency. 
This task, which is carried out by a piece of software usually called Work-
load Manager or scheduler, determines the manner in which free resources are 
assigned to incoming jobs. The workload manager may seek different objectives 
through its scheduling policy, such as minimising response time or energy con-
sumption. To achieve this, it must take several considerations into account, like 
job requirements and cluster properties. Optimal job scheduling is an NP-com-
plete problem [5], meaning that there is no known algorithm that can solve it in 
polynomial time. For this reason, several methods have been proposed that can 
provide approximate solutions, initially heuristic algorithms and, more recently, 
artificial intelligence approaches [6–10]. The scheduling problem becomes more 
complex when considering that the compute resources, the cores, are grouped 
into nodes. And it is even more challenging when these nodes have different 
characteristics, like in heterogeneous clusters. In these cases, assigning a job to 
one resource or another produces different results depending on their hardware 
specifications. This work focuses on heterogeneous clusters, that have nodes with 
different capabilities, not on clusters of heterogeneous nodes, that contain nodes 
with compute accelerators.

Machine learning techniques aim to train a system, or model, to reproduce 
behaviours or make predictions in the context of a specific problem [11]. Recent 
advances have led to deep learning, which employs artificial neural networks 
with multiple layers to progressively extract features from an input at multiple 
levels. One of these techniques, called reinforcement learning, can be applied to 
the scheduling problem. Contrary to heuristic approaches, reinforcement learning 
does not require a prior knowledge of the problem, but rather it learns from expe-
rience. A deep reinforcement learning (DRL) scheduler can appreciate the com-
plex behaviour of a cluster and learn to improve some metric, like execution time 
or energy consumption [12–14]. However, these approaches have been developed 
for simplistic homogeneous clusters, where all the cores are equal and pooled into 
one large group, eluding the fact that they are contained in nodes and the impact 
this has on parallel applications. This simplifies the scheduling problem into one 
of choosing the next job. However, in heterogeneous clusters, allocating a job 
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to a faster node or a slower one has a significant impact in the performance and 
energy consumption. Therefore, the scheduler must consider the characteristics of 
the nodes and the jobs to make a decision.

Many approaches have been tested to reduce the energy consumption in the 
HPC field, some of which focus on making a better use of resources through 
scheduling techniques [15–17]. However, these contributions use exclusively 
time-related parameters to guide the scheduler into improving energy consump-
tion. It is worth considering that energy consumption is not only related to the 
time a job takes to execute, but also which node it is executed on. For instance, 
a job that is executed in a node with a higher performance might consume less 
energy than the same job executed in a slower node, even if it takes longer to 
complete. This is because most performant node can complete the job faster and 
enter a low power state, while the slower node will be consuming energy for a 
longer time.

This work follows the above lines of thought by proposing an intelligent 
energy-aware workload manager based on deep reinforcement learning, with the 
objective of either reducing the total energy consumption or the energy-delay 
product (EDP), for heterogeneous HPC cluster architectures. The novelty of this 
approach is the addition of an energy consumption estimation of the jobs to the 
neural network, and considering the heterogeneous nature of the cluster, where 
varying properties of nodes lead to different energy consumption. Through a set 
of experiments the scheduler is evaluated to determine if it is capable of learning 
the intricacies of scheduling in these conditions to reduce energy consumption.

The main contributions of this work are:

•	 Proposal of a workload manager based on a DLR agent for heterogeneous 
clusters that improves the energy consumption or efficiency by considering 
energy estimates of jobs and nodes.

•	 Implementation and public release of the proposed scheduler in the IRMaSim 
open-source cluster simulator [18].

•	 Experimental evaluation of the scheduler, comparing its behaviour with other 
well-known heuristic scheduling algorithms.

As far as the authors are aware, this is the first instance of a DRL scheduler being 
proposed for heterogeneous clusters with a focus on energy consumption. This 
proposal paves the way to a new generation of workload managers that can not 
only adapt to job properties, but also considering node characteristics to make 
better decisions. This will lead to intelligent schedulers that can reduce energy 
consumption in heterogeneous clusters, which is a key factor for the evolution of 
HPC systems.

The remainder of the paper is organised as follows. Section  2 gives some 
background on machine learning concepts employed in the article. Section 3 pre-
sents the intelligent energy-aware workload manager. Section  4 establishes the 
experimental setup used in the validation carried out in Sect. 5. A literary review 
appears in Sect. 6 and finally Sect. 7 summarises the findings of this article.



	 M. López et al.  427   Page 4 of 23

2 � Background

This section delves into the basic ideas and theory behind reinforcement learn-
ing. To this aim, it introduces the main concepts of reinforcement learning that 
revolve around the agent-environment interaction, and the neural networks that 
are used to approximate the behaviour of the agent.

2.1 � Reinforcement learning

Reinforcement learning (RL) is a strategy that involves two main elements: an 
agent and an environment. The first is the entity that learns to improve some met-
ric by interacting with the second, which is the system that the agent is trying 
to control. The goal of RL is to teach the agent what action to take after having 
observed a particular state in the environment, so as to optimise a given objec-
tive. The complexity of this model resides in the fact that each action taken by the 
agent modifies the environment and therefore influences future behaviour [19].

More specifically, the agent learns a policy that maps states to actions. This 
policy may be deterministic, always choosing the same action for a given state; 
or stochastic, assigning a probability to each possible action based on the current 
state. Neural networks are often used to approximate the policy in the latter case. 
Every time the agent chooses an action and applies it to the environment, the state 
of the environment changes and a reward is generated indicating how beneficial 
that particular action was towards the end goal. These rewards are employed by 
the agent to gradually refine the policy through successive iterations, as shown in 
Fig. 1.

In the case at hand, the agent-environment interaction happens in discrete time 
steps t = 0, 1, 2,… in each of which the following occurs. The agent receives an 
observation of the state of the environment st ∈ S . Based this state observation, the 
agent selects an action at ∈ A . As a consequence of applying the chosen action, the 
agent receives a reward rt+1 ∈ R and the environment advances to state st+1 . Note 
that st and rt are random variables. The final goal of the agent is to maximise the 
expected return at each time step. The return Gt is a function of the reward sequence 
given by Gt ≐ rt+1 + rt+2 + rt+3 +…+ rT , where T is a final time step.

Fig. 1   Agent-environment interaction in reinforcement learning
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2.2 � Neural networks

Neural networks can be considered universal function approximators, which makes 
them a powerful tool for pattern recognition, classification and regression tasks. 
They comprise a series of layers of interconnected artificial neurons, a structure 
inspired by brain anatomy. Feed-forward neural networks, also known as multilayer 
perceptrons (MLPs), are the simplest kind of neural network models.

Each of the m neurons of a layer generates a linear combination, called an acti-
vation, of the n input variables x according to its parameters, called weights w and 
biases b . For a neuron j, the activation aj is calculated as follows:

where i would be the index of the input variable. Then, a differentiable, nonlinear 
activation function h is applied to the activation to give the final output of each neu-
ron as zj = h(aj) . These outputs can then be used as inputs to a following layer of 
neurons defined in the same manner [11].

Neural networks have to be trained in order to approximate a given function. This 
process involves comparing the output of the network for a series of input vectors x 
with the corresponding known correct values and adjusting the weights and biases 
of the network in order to minimise the error En . This is usually done by making use 
of the information provided by the gradient of the error function, often called loss or 
objective function. This gradient can be computed efficiently through backpropaga-
tion, which involves the following steps [11]: 

1.	 Forward propagation: an input vector xn is propagated through the network to 
obtain the activations of all the hidden and output neurons, referred to as aj and 
ak , respectively, from here on.

2.	 The errors �k ≡
�En

�ak
 are computed for all the output units.

3.	 Backpropagation: the errors of the output layer are backpropagated through the 
network to obtain the corresponding �j error terms for each hidden unit using the 
chain rule for partial derivatives: �j ≡

�En

�aj
=
∑

k

�En

�ak

�ak

�aj
.

4.	 The required derivatives are evaluated using �En

�wji

=
�En

�aj

�aj

�wji

= �jzi.

3 � Intelligent energy pairing scheduler (InEPS)

Developing a DRL scheduler requires the definition of the environment, which is the 
interface between the agent and the cluster, and the agent itself, which is the neural 
network that will make the scheduling decisions. This section describes the main 
components of the InEPS scheduler, including the environment, the agent, and the 
training process.

aj =

n
∑

i=1

wj,ixi + bj, 1 ≤ j ≤ m
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3.1 � Overview

Applying machine learning to optimise time-related parameters in HPC clus-
ter scheduling is not a new idea [9]. However, the authors believe that these tech-
niques can be leveraged to produce a scheduler for heterogeneous clusters, which 
can reduce energy consumption metrics. For this purpose, the scheduler takes into 
account an estimation of the energy consumption of jobs in the different nodes of 
the cluster. Therefore, a simple energy model is proposed, based on the requested 
time and cores of the jobs and the static and dynamic powers of the nodes. This 
novel Intelligent Energy Pairing Scheduler (InEPS) incorporates both the static and 
dynamic power specifications of each node into its observations. Additionally, it 
allows users to specify maximum energy constraints for jobs.

This scheduler is based upon the idea of pairing jobs to the compute nodes of the 
cluster, which was also used to develop a scheduler aimed at reducing time-related 
metrics in heterogeneous clusters [20]. In both cases, the core idea is assigning a 
score to each possible job-node pair, and then selecting a pair based on these scores. 
To limit the complexity of the neural network, the jobs can be parallel, but the pro-
cesses or threads they might spawn must execute in a single node. Thus, the obser-
vations of the platform are divided in nodes, concealing their internal architecture, 
but including its impact.

If in this previous work time-related metrics were considered for optimisation, 
InEPS is exclusively focused on improving energy consumption or EDP. This is 
achieved by modifying the features that compose the observation, for instance, by 
adding an estimate of energy consumption of job-node pairs. The neural network 
is also adapted to this new observation space by changing its internal architecture. 
Since the objective is to reduce energy consumption or EDP, two new reward func-
tions have been defined.

3.2 � Main components

The InEPS scheduler can be described through two main aspects: the environment, 
which describes what information flows it receives and generates, and the agent, 
which is the machine learning core that will make scheduling decisions.

These components are interrelated as shown in Fig. 2. It can be seen that the envi-
ronment acts as an interface between the agent and the heterogeneous cluster and job 
queue.

The training of the agent is performed with the IRMaSim simulator, which 
presents it with a set of jobs and nodes [18]. Before proceeding on to the spec-
ification of each of the components, it is necessary to consider how the train-
ing sequence progresses. In addition to a description of a computer cluster, each 
training process is characterised by a workload, which is a list of job descriptions. 
This is a list of job descriptions logged at a real computer cluster. Job descrip-
tions include arrival times and user-specified parameters, such as requested time 
or number of cores. The training is divided into a number of trajectories, which 
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are fixed-length sequences of jobs taken at random from the workload. Processing 
a trajectory involves analysing the impact of many events, like job submissions or 
completions. The agent evaluates the situation for each event and determine the 
appropriate next action. This process is illustrated in Fig. 3.

3.3 � Environment

The environment is mainly responsible for providing the agent with the necessary 
information to make a decision, and updating the cluster state after the decision 
of the agent. The observation gives a view of the state of the cluster and the job 
queue, whereas the action encapsulates the decision that the scheduler must carry 
out. This section describes observation and action spaces which define the con-
veyed values, together with the reward functions and how the scheduler estimates 
energy consumption.

Fig. 2   Main components and their relations in InEPS

Fig. 3   Flowchart depicting a high-level view of the main simulation loop using a reinforcement learning 
agent in IRMaSim
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3.3.1 � Observation space

Observations are created by recording features for each jobs-nodes pairing, as 
defined in [20]. It must contain a fixed number of values or features. This is a 
requirement of the neural network that will be used by the agent. Since the job queue 
does not meet this condition, a eligible job vector is defined. This is a list of the first 
NUM_JOBS jobs from the job queue, that is padded with null jobs if necessary.

The features of the observations are values bounded between 0.0 and 1.0 organ-
ised in an array of dimensions (NUM_NODES × NUM_JOBS, NUM_FEATURES). 
Where each row contains the features that describe a given pairing of node and 
job. A list of the considered features considered is presented next, with summary 
in Table 1. The features that were added to those introduced in [20] are highlighted 
with a *.

•	 The submit time* of a job serves as an indicator of its position in the queue.
•	 The static power* of a node is the sum of the static power of its cores if it is run-

ning at least one task. Otherwise, this value is set to the idle power of the node, 
which is a percentage of its static power.

•	 The dynamic power* of a node is the sum of the dynamic powers of the cores in 
said node that are currently running a task.

•	 The availability is defined as the ratio of free cores to total cores in the node and 
is meant to provide useful information in the presence of memory contention.

•	 The energy estimate* is the amount of energy that the job could consume if it 
is scheduled in the node. This is obtained from the model described later in this 
section.

•	 The can schedule feature tells if the node has enough free cores to fit the job, and 
the energy estimation is below the maximum energy constraint of the job.

3.3.2 � Action space

An action identifies a job and a node, directing the scheduler to allocate the node to 
the job. Thus, the action space is defined as a discrete space of size (NUM_NODES × 
NUM_JOBS), referred to as ACTIONS_SIZE. Actions are encoded as indices to the 
rows in the observation space, mapping nodes to the jobs in the eligible queue.

It is worth pointing out that some job-node pairs are not feasible and should 
not be chosen by the agent. Specifically, when the job is a null used to pad the 

Table 1   Observation features 
considered for each job-node 
pair in Energy scheduler

Job Wait time, Requested time, 
Submit time*, Requested cores

Node Availability, Static power*, 
Dynamic power*, Average 
clock rate

Common Energy estimate*, can schedule
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eligible job array or when the job does not fit in a node. As neural networks oper-
ate probabilistically, invalid pairs must be masked before selecting the action.

3.3.3 � Reward functions

The environment also contains the current reward function that the agent will try 
to optimise. This is a function that takes the state of the cluster and the action 
taken by the agent as input, and returns a scalar value, that will be used by the 
agent in the training process. The definition of the reward function will determine 
which objective the agent will try to minimise.

Only two reward functions are implemented in InEPS, one to reduce energy 
consumption and the other to improve energy-delay product (EDP) [21]. The first 
function returns the negative increment in energy consumption, and the other 
is the same but multiplied by the time increment. This is so because the agent 
is programmed to minimise the sum of the reward values. The increments are 
obtained using marker variables, which are updated each time a reward is gener-
ated. It should be noted that the sum of the EDP rewards throughout a trajectory 
is not equivalent to the EDP of executing its jobs, since this value is impossible 
to calculate beforehand. Instead, these incremental rewards are exclusively envi-
sioned to offer guidance during training.

3.3.4 � Energy estimation

One observation passed to the agent is the estimated energy consumption for 
scheduling a job on a node. This is computed as the product of the estimated 
runtime and power consumption when the job is run on the node, taking into 
account the current status of the cluster. The resulting formula can be expressed 
as follows:

In equation 1, treq ⋅
fmin

f
 is the expected runtime. The treq user-specified job parameter 

indicates the expected runtime of executing the job on the slowest node of the clus-
ter, running at a frequency fmin , so this value has to be adjusted to the frequency of 
the target node, f.

The parenthesised term corresponds to the power estimate for the job-node 
pair. ps is the static power consumption of the target node, whereas pd represents 
the dynamic power consumption of a single core. The static power is distributed 
among the j jobs that are currently running on the node, plus one for the target 
job. This gives the fraction of the static power consumed by the incoming job. 
The dynamic power estimate is obtained by adding the dynamic powers of the n 
cores needed to allocate the n tasks of the target job.

(1)treq ⋅
fmin

f
⋅

(

ps

j + 1
+ n ⋅ pd

)
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3.4 � Agent

The agent implements the PPO algorithm [22] in an actor-critic paradigm and 
therefore contains three key components: two deep neural networks, called an 
actor and a critic, and a buffer used to store the collected training data. In addi-
tion, the agent contains two Adam optimisers [23] to update the parameters of 
both networks. The initial value of the network weights and optimisers is set 
randomly.

Stochastic weight averaging (SWA) [24] is applied exclusively to the actor net-
work, starting after 75% of the training epochs. The learning rate decreases lin-
early over 15% of the remaining epochs before stabilising. This addition has only 
been implemented for the actor, since it is directly responsible for scheduling.

During training, the agent receives an observation of the state of the environ-
ment and produces the action predicted by the actor, the value predicted by the 
critic for the observed state and the log probability of the chosen action in the 
probability distribution over actions output by the actor.

Both networks are trained for a number of epochs with independent loss func-
tions. The loss function corresponding to the actor includes a term corresponding 
to the entropy of the policy, which may be set to a nonzero value to encourage 
exploration [25]. In each epoch, the collected training data is sampled in mini-
batches of a fixed size and used to obtain the gradients of the loss functions and 
apply a step of the optimisers to the parameters of the networks.

3.4.1 � Actor

The actor network is a deep neural network with six hidden layers, starting with 
an input size of NUM_FEATURES and decreasing dimensions of 16, 16, 8, 8, 4, 
and 4, before producing a single output. The initial weights are normalised to 
zero mean and unit variance and the Scaled Exponential Linear Unit (SELU) is 
used as the activation function between layers, making the actor a self-normalis-
ing neural network. It is defined as follows:

After forwarding the observation through the network and flattening it to obtain a 
tensor of dimension (ACTIONS_SIZE), a mask is applied to artificially lower the 
scores of invalid job-node combinations, preventing the model from selecting them 
in most scenarios. The masked output is then used to initialise a categorical distribu-
tion from which an action is sampled. The actor computes the Proximal Policy Opti-
misation (PPO) loss function for a minibatch of collected data, optimising the policy 
to improve performance in subsequent actions.

SELU(x) = 𝜆

{

x if x > 0

𝛼(ex − 1) if x ≤ 0
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3.4.2 � Critic

The critic neural network contains a total of ten hidden layers divided into two 
phases. The input layer is identical to that of the actor network. The following 
five hidden layers have decreasing sizes 32, 16, 8, 4 and 1. At this point, the result 
is squeezed to a shape of (ACTIONS_SIZE) for a single observation. The five 
following hidden layers further reduce the dimensionality from ACTIONS_SIZE 
to 1 in the sequence 128, 64, 32, 16, 8 and 1 for the output layer, resulting in a 
single numerical value. SELU is also used as the activation function in this net-
work, and the weights are initialised with zero mean and unit variance as well.

The loss function is the standard mean squared error (MSE) comparing the pre-
diction supplied by the network to the expected return values collected during train-
ing, which is defined as follows

where n is the number of observations, yi are the actual values, and ŷi are the pre-
dicted values.

3.4.3 � Buffer

The agent contains a storage area to collect values after each time step, necessary 
for computing the losses and training the actor and critic. The values include obser-
vations, actions, rewards, values, action log probabilities, advantages and expected 
returns. The first five are stored after each time step, whereas the last two are com-
puted after each complete trajectory as discounted sums from the collected data, 
using generalised advantage estimate (GAE) in the case of the advantages.

4 � Methodology

The evaluation process has been carried out on the IRMaSim cluster simulation 
framework, which makes training possible without the need to deploy the new 
scheduler in a real HPC environment [18]. InEPS can be configured to optimise a 
single metric, that can be either energy consumption or EDP.

For comparison, a set of heuristic algorithms is used. Since the proposed sched-
uler targets heterogeneous clusters, these algorithms must be adapted to this kind 
of platform. Thus, they are based on two sorting criteria, one for the jobs and one 
for the nodes. The operation of these heuristic schedulers is as follows. Every time 
there are free resources in the cluster, a list of jobs that could fit in the available 
nodes is generated from the job queue. This list is sorted according to the job selec-
tion policy. For instance, under the shortest policy, jobs are sorted by requested 
time, with the shortest job first. Next, the available nodes are sorted according to the 
node selection policy. If the policy is high_gflops, the nodes are sorted by the peak 

MSE =
1

n

n
∑

i=1

(yi − ŷi)
2
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compute capability, with the most powerful node being the first in the list. Then the 
first job in the eligible job queue is allocated to the first node in the available node 
list. This process is repeated until there are no more jobs to allocate. The available 
policies are given in Table 2.

Although all the heuristics are used in the experiments, the graphs only include 
the one with the best performance and the following four, which are considered rel-
evant: first-high_gflops, first-high_cores, first-high_mem_bw, and random-random. 
The first three focus on node selection rather than job selection, while the last is 
included as a worst-case scenario.

5 � Experimental results

This section evaluates the InEPS scheduler in two different scenarios, the first vali-
dates the convergence and the behaviour of the proposal, while the other tests how 
the scheduler copes with situations different from those used during training. Also, 
depending on the target metric there are two alternative models of the scheduler: 
Energy InEPS tries to minimise energy consumption, whereas EDP InEPS strives to 
improve energy efficiency.

5.1 � Convergence analysis experiment

This experiment has been designed to analyse the convergence and behaviour of 
both versions of InEPS. The details of the used platform and workload are shown in 
Tables 3 and 4, with a total of 1040 cores and 180 jobs.

Both models have been trained with the hyperparameters shown in Table  5. 
In each simulation, five random sets of up to ninety jobs were selected from the 

Table 2   Job and node sorting criteria for heuristic schedulers

Job selection policies

Random Any job
First Oldest job in the job queue
Shortest Job with the lowest expected execution time
Smallest Job with the least requested cores
Low_mem Job with the lowest requested memory
Low_mem_ops Job with the lowest memory access volume

Node selection policies

Random Any node
High_gflops Node with the highest peak compute capability
High_cores Node with the most currently available cores
High_mem Node with the highest currently available memory
High_mem_bw Node with the highest currently available memory bandwidth
Low_power Node with the lowest power consumption
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workload and scheduled with the same policy. The graphs shown in Fig. 4 rep-
resent the evolution of the loss and reward functions throughout the training of 
Energy InEPS.

Despite the spikiness of the policy and value loss plots, it can be seen that 
they tend to zero, which leads to the conclusion that the model is converging. 
The spikes can be attributed to the change in the features of the jobs and the 
usage of the cluster during the different trajectories used for training. Simulat-
ing shorter trajectories reduces training time, but introduces variance because the 
sampled workload fragments may not be well-balanced. The dips in the reward 
can be explained by the fact that only fragments of the complete workload are 
being scheduled in each simulation, and these may have contained heavy jobs. 

Table 3   Platform details for 
convergence analysis experiment

Node type 0 1 2 3

Number of Nodes 10 10 10 10
Cores 8 16 32 48
Clock rate (GHz) 4.2 3.8 3.4 3.0
Static power (W) 68.81 56.33 45.09 35.11
Dynamic power (W) 6.49 5.32 4.26 3.31
Min. power (%) 39.59 39.59 39.59 39.59

Table 4   Workload details for 
convergence analysis experiment

Profile A B C

Number of Jobs 10 10 10
Req. cores 8 8 4
Req. ops ( ×1010) 1.375 6.25 12.5
Req. time (s) 4.6 20.8 41.7
Mem. vol. (MB/s) 1 103 106

Table 5   Training 
hyperparameters for 
convergence analysis experiment

Simulations 100
Trajectories 5
Trajectory length 90
Minibatch size 32
Epochs 50
SWA Yes
Seed 1024
� 0.1
� 0.99
� 0.95
Actor lr 0.001
Critic lr 0.001
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The loss and reward data of the EDP InEPS training closely resemble those of 
Energy InEPS as shown in Fig. 4.

Once both models have been trained, they are evaluated by applying them to the 
complete workload. The results given by the models and the heuristic schedulers for 
energy consumption and efficiency are shown in Figs. 5 and 6, respectively. The best 
heuristic in this experiment is smallest - high_mem.

Considering the random heuristic as the baseline, the best heuristic reduces the 
energy consumption by 38% and the EDP by 70.6%. The results of the models vary 
depending on the simulation, therefore the corresponding bars show the average 
consumption and EDP. The models obtained for both objectives behave in a similar 
manner regardless of the evaluated metric. In both metrics, the models have results 
close to the best heuristics. The Energy InEPS model reduces the energy in 26% and 
the EDP in 44% on average, and the EDP InEPS model shows average reductions of 
28% and 47% in energy consumption and EDP, respectively. It is worth pointing out 

Fig. 5   Convergence Analysis Experiment - Energy consumption comparison

Fig. 6   Convergence analysis experiment—EDP comparison
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that the EDP InEPS gives slightly better results than the Energy InEPS. The slight 
advantage of the former cannot be clearly attributed to the chosen objective, though 
it is be a reasonable hypothesis, as execution time and energy consumption appear 
correlated in this problem.

The above results show that the proposed scheduler is capable of giving fair 
results in some instances, close to the best heuristics, but does not give consistent 
results. Three out of five heuristics have beaten the Energy InEPS model. It can be 
said that the new scheduler has been capable of offering reasonable performance, but 
adjustments to the training hyperparameters or the actor and critic models should be 
made to achieve more stable convergence.

5.2 � Workload adaptability experiment

This second scenario has been designed with the objective of determining how well 
the InEPS scheduler is capable of adapting to different workloads. To this end, the 
scheduler has been trained on a generic workload and then tested on two other work-
loads, one is memory-intensive and the other is computation-intensive.

To avoid long training times, the size of the platform and the number of jobs 
have been reduced with respect to the previous experiment. The target platform is 
composed of ten instances of Node 0 and two instances of Node 3, following the 
descriptions given in Table 3. In this way, multiple jobs may be assigned to the same 
48-core node or single jobs can be allocated to faster 8-core nodes.

Two workloads containing one hundred jobs each have been defined using the job 
profiles introduced in Table 6: a memory-intensive workload using A1, B1 and C1; 
and a computation-intensive workload using A2, B2 and C2. In each workload, jobs 
arrive in one-second intervals in a random order. A separate mixed workload of four 
hundred jobs combining all six profiles has been used to train the scheduler, mostly 
using the hyperparameters from the Convergence Analysis Experiment, except for 
the number of trajectories, the trajectory length and minibatch size, which have been 
adjusted to 3, 50 and 25, respectively.

The training process of the Energy InEPS model with the mixed workload is 
illustrated in Fig. 7. Only the critic seems to have converged to an adequate degree, 
according to the value loss plot. The policy loss and the rewards, on the other hand, 
show a slight improvement over time, but still oscillate considerably at the end of 
the training execution.

The results provided by the Energy InEPS model for the memory-intensive 
and computation-intensive workloads over one hundred test iterations have been 

Table 6   Workload details 
for Workload Adaptability 
Experiment

Profile A1 B1 C1 A2 B2 C2

Req. cores 8 8 8 8 8 8
Req. ops ( ×1010) 2.75 6.25 12.5 5.5 8.25 12.5
Req. time (s) 9.2 20.8 41.7 18.4 27.5 41.7
Mem. vol. (MB/s) 105 106 108 1 1 1
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compared to the energy consumption produced by three of the heuristics. It can be 
argued that the first - high_gflops heuristic gives the best results with the computa-
tion-intensive workload, since jobs are sent to the fastest node available. The first 
- high_cores prioritises nodes with high free core counts. Finally, the first - high_
mem_bw heuristic should be able to reduce energy consumption in the presence of 
memory contention, assigning jobs to the nodes with the highest available band-
width. Figure  8 illustrates the differences in energy consumption of the different 
schedulers for each of the two workloads. Table 7 presents the corresponding reduc-
tion percentages. 

Unexpectedly, high_gflops is the best-performing heuristic for the memory-inten-
sive workload. High_mem_bw, on the contrary, has achieved the worst performance 
in this case. A possible explanation could be that it estimates the currently available 
bandwidth as the negative sum of the requested bandwidths of the jobs currently 
running on the target node. High_cores offers an intermediate solution. When com-
pared to these three heuristics for the same workload, the Energy InEPS model is 
closest to high_gflops.

As for the computation-intensive workload, in this case high_gflops and high_
mem_bw produce similar energy consumption, and it is high_cores that manages to 
offer a considerable reduction, of around 22%. The Energy InEPS only provides a 
reduction of 4% on average with respect to the worst heuristic.

In summary, the Energy InEPS model is capable of giving good results in some 
cases, showing a promising perspective. Furthermore, it should be taken into 
account that even if the tested model did not converge completely, and was trained 

Fig. 8   Workload adaptability experiment—Energy consumption comparison for the memory-intensive 
(left) and computation-intensive (right) workloads

Table 7   Workload adaptability experiment—Percentage reductions in energy consumption obtained by 
Energy InEPS with respect to the three tested heuristics for both workloads

Energy cons. High_gflops High_cores High_mem_bw

reduction (%) Min Avg Max Min Avg Max Min Avg Max

Mem. workload 12.66 −1.31 −12.87 15.32 1.77 −9.43 21.98 9.50 −0.83
Comp. workload 23.36 4.02 −0.35 2.28 −22.37 −27.95 23.36 4.02 −0.35
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on trajectories of half the test-time length, it still was able to produce reasonable 
results for both workloads. It is also important to note that its behaviour did not 
vary as much as that of the high_gflops and high_cores heuristics across different 
workloads.

6 � Related work

The scheduling problem has been exacerbated in recent years owing to several fac-
tors including, but not limited to, the steady rise in the processing power of super-
computers, the emergence of new hardware resources and novel hardware structure 
and the appearance of increasingly diverse workloads that combine compute-inten-
sive and data-intensive applications [26]. Furthermore, the majority of modern 
HPC cluster systems display a heterogeneous architecture combining resources with 
different frequencies, number of processing units, bandwidth or memory capacity 
[27]. This scenario creates a need to consider a variety of trade-offs in a dynamic 
environment where new jobs may be received at any given time [28]. As an exam-
ple, resources with higher clock rates complete jobs faster, but may consume more 
energy during execution due to their greater power consumption [29].

Traditional scheduling approaches have relied on heuristic schedulers that assign 
priorities to jobs waiting in the queue to the cluster based on their attributes, effec-
tively determining which job shall be scheduled next. These range from simple one-
parameter heuristic priority functions such as FCFS (First Come First Served) or 
SJF (Shortest Job First) to complex metrics combining multiple parameters such as 
WFP, UNICEF or F1 [30].

In [17], the authors address the challenge of scheduling in heterogeneous com-
puter clusters by proposing heuristic algorithms that prioritise node properties over 
job properties. Experimental results show that these algorithms outperform tradi-
tional heuristic approaches that focus on job properties.

Another frequently employed approach is backfill scheduling, which relies on 
user-defined job runtime estimates to schedule lower-priority jobs, located later in 
the queue, on already allocated resources if this will not result in an already running 
job missing its deadline or breaching any other kind of restriction. Backfilling pro-
vides good results on production systems, but relies heavily on user-established job 
time estimates, which usually are not very accurate, strongly impacting on the qual-
ity of the scheduler [31].

Machine learning approaches have been applied to job scheduling in HPC clus-
ters before, especially in academia. DeepRM [9] was one of the first initiatives to 
apply reinforcement learning to the scheduling problem as an alternative to heuris-
tic approaches. It assumes a single large resource pool, abstracting away machine 
boundaries and resource fragmentation. It can learn to optimise objectives such as 
average job slowdown or completion time through the application of a standard pol-
icy gradient reinforcement learning algorithm. Years later, DeepRM2 and DeepRM_
Off [10], continuous online resource scheduling and offline resource scheduling 
designs, were proposed as improvements upon DeepRM. All of them assume very 
simplistic homogeneous clusters. Decima [32] employs reinforcement learning 
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techniques and neural networks to learn workload-specific scheduling algorithms 
given a high-level objective such as minimising average job completion time. It is 
capable of scheduling while taking into account job dependencies represented as a 
DAG.

RLScheduler [12] combines a reinforcement learning resource manager with a 
simplistic data centre simulator to accelerate the training process. In RLScheduler, 
an observation represents the state of the environment by means of a vector that 
contains the attributes of all the eligible jobs. However, RLScheduler only considers 
homogeneous cluster architectures, so it was used as a starting point in [20], where it 
was adapted to heterogeneous architectures.

RLSchert [13] is a job scheduler based on deep reinforcement learning and 
remaining runtime prediction. On the one hand, it estimates the state of a cluster by 
means of a dynamic job remaining runtime predictor that employs a recurrent neural 
network to encode time series information. DRAS (Deep Reinforcement Agent for 
Scheduling) [14] focuses on improving upon heuristic scheduling strategies in HPC 
environments with dynamic application workloads, preventing resource underutili-
sation and job starvation. This is achieved through resource reservation, combin-
ing a reinforcement learning approach with backfilling and employs a hierarchical 
neural network for decision-making. DRAS does not consider heterogeneous cluster 
architectures.

Other works that specifically tackle energy consumption through job schedul-
ing, can also be found in the literature. ExpREsS [28] is a scheduler for the Apache 
Spark processing framework. Its main goal is to orchestrate the execution of multi-
ple big data applications in distributed processing systems while satisfying perfor-
mance requirements and minimising energy consumption. This is achieved through 
adaptive dynamic voltage and frequency scaling (DVFS) and accurate models capa-
ble of predicting the execution time and power consumption of an application before 
it starts executing. The HEA-PAS scheduling algorithm [33] minimises the response 
time of parallel DAG applications subject to energy constraints in heterogeneous 
HPC systems. In HEA-PAS, the energy that can be allocated by an application is 
quantified and distributed among its tasks according to their energy demand rate. 
The energy allocated to each task is used to find the optimal processor and frequency 
combination to execute the entire application. Finally, the work presented in [16] 
explores the use of application signatures instead of full dynamic power profiling to 
obtain application data for use in conjunction with energy-aware task scheduling in 
data centres, including HPC systems. Signatures can therefore be used to estimate 
the energy consumed by applications without having to monitor and profile their 
execution until completion.

7 � Conclusion

This work presents a scheduler for heterogeneous HPC systems that focuses 
on reducing either energy consumption or EDP, depending on how it is config-
ured. It is based on deep reinforcement learning agent, but its novelty lies in that 
it uses power specifications of the compute resources and jobs, to improve its 
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decision-making, among other job and node metrics. This implies the definition 
of observation and action spaces, that take into account the energy consumption 
of jobs and nodes.

Both the training and validation has been done using the IRMaSim cluster simu-
lation framework using a series of synthetic experiments that explore various aspects 
of the implementation. The results have been compared to various heuristic sched-
ulers. The observed results show potential regarding the possibilities of energy-
focused job scheduling based on deep reinforcement learning.

The design space of these schedulers is vast, as there are many alternatives in the 
structure of the agents, and a huge amount of parameters that have to be determined 
to tune its behaviour. Therefore, future work could consider alternative configura-
tions of the agent components as well as the parameters considered in the observa-
tion and action spaces.
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