
Vol.:(0123456789)

The Journal of Supercomputing (2025) 81:427
https://doi.org/10.1007/s11227-024-06907-y

Intelligent energy pairing scheduler (InEPS)
for heterogeneous HPC clusters

Marta López1 · Esteban Stafford1 · Jose Luis Bosque1

Accepted: 27 December 2024
© The Author(s) 2025

Abstract
In recent years, energy consumption has become a limiting factor in the evolution
of high-performance computing (HPC) clusters in terms of environmental concern
and maintenance cost. The computing power of these clusters is increasing, together
with the demands of the workloads they execute. A key component in HPC sys-
tems is the workload manager, whose operation has a substantial impact on the per-
formance and energy consumption of the clusters. Recent research has employed
machine learning techniques to optimise the operation of this component. However,
these attempts have focused on homogeneous clusters where all the cores are pooled
together and considered equal, disregarding the fact that they are contained in nodes
and that they can have different performances. This work presents an intelligent job
scheduler based on deep reinforcement learning that focuses on reducing energy
consumption of heterogeneous HPC clusters. To this aim it leverages information
provided by the users as well as the power consumption specifications of the com-
pute resources of the cluster. The scheduler is evaluated against a set of heuristic
algorithms showing that it has potential to give similar results, even in the face of
the extra complexity of the heterogeneous cluster.

Keywords  Task scheduling · Deep reinforcement learning · High-performance
computing · Heterogeneous clusters · Energy consumption

Marta López, Esteban Stafford and Jose Luis Bosque have contributed equally to this work.

 *	 Esteban Stafford
	 esteban.stafford@unican.es

	 Marta López
	 marta.lopez@alumnos.unican.es

	 Jose Luis Bosque
	 joseluis.bosque@unican.es

1	 Department of Computer Engineering and Electronics, Universidad de Cantabria, Avda. los
castros, s/n, 39005 Santander, Spain

http://crossmark.crossref.org/dialog/?doi=10.1007/s11227-024-06907-y&domain=pdf

	 M. López et al. 427   Page 2 of 23

1  Introduction

High-performance computing (HPC) systems are constantly evolving and reach-
ing greater heights in computing power, efficiency and scalability [1]. Along the
way, energy consumption has always posed a significant obstacle in terms of
environmental impact [2] and operational cost. The costs of running an HPC clus-
ter for two years can compare to the cost of purchase [3]. Currently, data centre
and data transmission networks account for roughly 1.5% of global electricity use
and 0.9% of energy-related greenhouse gas emissions [4]. This represents only a
moderate increase with respect to 2010 thanks to improvements made in energy
efficiency, but CO2 emissions must still be halved by 2030 to achieve the United
Nations net zero objective.

In the context of high performance computing, job scheduling is a key aspect
of cluster operation that deeply influences its energy consumption and efficiency.
This task, which is carried out by a piece of software usually called Work-
load Manager or scheduler, determines the manner in which free resources are
assigned to incoming jobs. The workload manager may seek different objectives
through its scheduling policy, such as minimising response time or energy con-
sumption. To achieve this, it must take several considerations into account, like
job requirements and cluster properties. Optimal job scheduling is an NP-com-
plete problem [5], meaning that there is no known algorithm that can solve it in
polynomial time. For this reason, several methods have been proposed that can
provide approximate solutions, initially heuristic algorithms and, more recently,
artificial intelligence approaches [6–10]. The scheduling problem becomes more
complex when considering that the compute resources, the cores, are grouped
into nodes. And it is even more challenging when these nodes have different
characteristics, like in heterogeneous clusters. In these cases, assigning a job to
one resource or another produces different results depending on their hardware
specifications. This work focuses on heterogeneous clusters, that have nodes with
different capabilities, not on clusters of heterogeneous nodes, that contain nodes
with compute accelerators.

Machine learning techniques aim to train a system, or model, to reproduce
behaviours or make predictions in the context of a specific problem [11]. Recent
advances have led to deep learning, which employs artificial neural networks
with multiple layers to progressively extract features from an input at multiple
levels. One of these techniques, called reinforcement learning, can be applied to
the scheduling problem. Contrary to heuristic approaches, reinforcement learning
does not require a prior knowledge of the problem, but rather it learns from expe-
rience. A deep reinforcement learning (DRL) scheduler can appreciate the com-
plex behaviour of a cluster and learn to improve some metric, like execution time
or energy consumption [12–14]. However, these approaches have been developed
for simplistic homogeneous clusters, where all the cores are equal and pooled into
one large group, eluding the fact that they are contained in nodes and the impact
this has on parallel applications. This simplifies the scheduling problem into one
of choosing the next job. However, in heterogeneous clusters, allocating a job

Intelligent energy pairing scheduler (InEPS) for heterogeneous… Page 3 of 23  427

to a faster node or a slower one has a significant impact in the performance and
energy consumption. Therefore, the scheduler must consider the characteristics of
the nodes and the jobs to make a decision.

Many approaches have been tested to reduce the energy consumption in the
HPC field, some of which focus on making a better use of resources through
scheduling techniques [15–17]. However, these contributions use exclusively
time-related parameters to guide the scheduler into improving energy consump-
tion. It is worth considering that energy consumption is not only related to the
time a job takes to execute, but also which node it is executed on. For instance,
a job that is executed in a node with a higher performance might consume less
energy than the same job executed in a slower node, even if it takes longer to
complete. This is because most performant node can complete the job faster and
enter a low power state, while the slower node will be consuming energy for a
longer time.

This work follows the above lines of thought by proposing an intelligent
energy-aware workload manager based on deep reinforcement learning, with the
objective of either reducing the total energy consumption or the energy-delay
product (EDP), for heterogeneous HPC cluster architectures. The novelty of this
approach is the addition of an energy consumption estimation of the jobs to the
neural network, and considering the heterogeneous nature of the cluster, where
varying properties of nodes lead to different energy consumption. Through a set
of experiments the scheduler is evaluated to determine if it is capable of learning
the intricacies of scheduling in these conditions to reduce energy consumption.

The main contributions of this work are:

•	 Proposal of a workload manager based on a DLR agent for heterogeneous
clusters that improves the energy consumption or efficiency by considering
energy estimates of jobs and nodes.

•	 Implementation and public release of the proposed scheduler in the IRMaSim
open-source cluster simulator [18].

•	 Experimental evaluation of the scheduler, comparing its behaviour with other
well-known heuristic scheduling algorithms.

As far as the authors are aware, this is the first instance of a DRL scheduler being
proposed for heterogeneous clusters with a focus on energy consumption. This
proposal paves the way to a new generation of workload managers that can not
only adapt to job properties, but also considering node characteristics to make
better decisions. This will lead to intelligent schedulers that can reduce energy
consumption in heterogeneous clusters, which is a key factor for the evolution of
HPC systems.

The remainder of the paper is organised as follows. Section 2 gives some
background on machine learning concepts employed in the article. Section 3 pre-
sents the intelligent energy-aware workload manager. Section 4 establishes the
experimental setup used in the validation carried out in Sect. 5. A literary review
appears in Sect. 6 and finally Sect. 7 summarises the findings of this article.

	 M. López et al. 427   Page 4 of 23

2 � Background

This section delves into the basic ideas and theory behind reinforcement learn-
ing. To this aim, it introduces the main concepts of reinforcement learning that
revolve around the agent-environment interaction, and the neural networks that
are used to approximate the behaviour of the agent.

2.1 � Reinforcement learning

Reinforcement learning (RL) is a strategy that involves two main elements: an
agent and an environment. The first is the entity that learns to improve some met-
ric by interacting with the second, which is the system that the agent is trying
to control. The goal of RL is to teach the agent what action to take after having
observed a particular state in the environment, so as to optimise a given objec-
tive. The complexity of this model resides in the fact that each action taken by the
agent modifies the environment and therefore influences future behaviour [19].

More specifically, the agent learns a policy that maps states to actions. This
policy may be deterministic, always choosing the same action for a given state;
or stochastic, assigning a probability to each possible action based on the current
state. Neural networks are often used to approximate the policy in the latter case.
Every time the agent chooses an action and applies it to the environment, the state
of the environment changes and a reward is generated indicating how beneficial
that particular action was towards the end goal. These rewards are employed by
the agent to gradually refine the policy through successive iterations, as shown in
Fig. 1.

In the case at hand, the agent-environment interaction happens in discrete time
steps t = 0, 1, 2,… in each of which the following occurs. The agent receives an
observation of the state of the environment st ∈ S . Based this state observation, the
agent selects an action at ∈ A . As a consequence of applying the chosen action, the
agent receives a reward rt+1 ∈ R and the environment advances to state st+1 . Note
that st and rt are random variables. The final goal of the agent is to maximise the
expected return at each time step. The return Gt is a function of the reward sequence
given by Gt ≐ rt+1 + rt+2 + rt+3 +…+ rT , where T is a final time step.

Fig. 1   Agent-environment interaction in reinforcement learning

Intelligent energy pairing scheduler (InEPS) for heterogeneous… Page 5 of 23  427

2.2 � Neural networks

Neural networks can be considered universal function approximators, which makes
them a powerful tool for pattern recognition, classification and regression tasks.
They comprise a series of layers of interconnected artificial neurons, a structure
inspired by brain anatomy. Feed-forward neural networks, also known as multilayer
perceptrons (MLPs), are the simplest kind of neural network models.

Each of the m neurons of a layer generates a linear combination, called an acti-
vation, of the n input variables x according to its parameters, called weights w and
biases b . For a neuron j, the activation aj is calculated as follows:

where i would be the index of the input variable. Then, a differentiable, nonlinear
activation function h is applied to the activation to give the final output of each neu-
ron as zj = h(aj) . These outputs can then be used as inputs to a following layer of
neurons defined in the same manner [11].

Neural networks have to be trained in order to approximate a given function. This
process involves comparing the output of the network for a series of input vectors x
with the corresponding known correct values and adjusting the weights and biases
of the network in order to minimise the error En . This is usually done by making use
of the information provided by the gradient of the error function, often called loss or
objective function. This gradient can be computed efficiently through backpropaga-
tion, which involves the following steps [11]:

1.	 Forward propagation: an input vector xn is propagated through the network to
obtain the activations of all the hidden and output neurons, referred to as aj and
ak , respectively, from here on.

2.	 The errors �k ≡
�En

�ak
 are computed for all the output units.

3.	 Backpropagation: the errors of the output layer are backpropagated through the
network to obtain the corresponding �j error terms for each hidden unit using the
chain rule for partial derivatives: �j ≡

�En

�aj
=
∑

k

�En

�ak

�ak

�aj
.

4.	 The required derivatives are evaluated using �En

�wji

=
�En

�aj

�aj

�wji

= �jzi.

3 � Intelligent energy pairing scheduler (InEPS)

Developing a DRL scheduler requires the definition of the environment, which is the
interface between the agent and the cluster, and the agent itself, which is the neural
network that will make the scheduling decisions. This section describes the main
components of the InEPS scheduler, including the environment, the agent, and the
training process.

aj =

n
∑

i=1

wj,ixi + bj, 1 ≤ j ≤ m

	 M. López et al. 427   Page 6 of 23

3.1 � Overview

Applying machine learning to optimise time-related parameters in HPC clus-
ter scheduling is not a new idea [9]. However, the authors believe that these tech-
niques can be leveraged to produce a scheduler for heterogeneous clusters, which
can reduce energy consumption metrics. For this purpose, the scheduler takes into
account an estimation of the energy consumption of jobs in the different nodes of
the cluster. Therefore, a simple energy model is proposed, based on the requested
time and cores of the jobs and the static and dynamic powers of the nodes. This
novel Intelligent Energy Pairing Scheduler (InEPS) incorporates both the static and
dynamic power specifications of each node into its observations. Additionally, it
allows users to specify maximum energy constraints for jobs.

This scheduler is based upon the idea of pairing jobs to the compute nodes of the
cluster, which was also used to develop a scheduler aimed at reducing time-related
metrics in heterogeneous clusters [20]. In both cases, the core idea is assigning a
score to each possible job-node pair, and then selecting a pair based on these scores.
To limit the complexity of the neural network, the jobs can be parallel, but the pro-
cesses or threads they might spawn must execute in a single node. Thus, the obser-
vations of the platform are divided in nodes, concealing their internal architecture,
but including its impact.

If in this previous work time-related metrics were considered for optimisation,
InEPS is exclusively focused on improving energy consumption or EDP. This is
achieved by modifying the features that compose the observation, for instance, by
adding an estimate of energy consumption of job-node pairs. The neural network
is also adapted to this new observation space by changing its internal architecture.
Since the objective is to reduce energy consumption or EDP, two new reward func-
tions have been defined.

3.2 � Main components

The InEPS scheduler can be described through two main aspects: the environment,
which describes what information flows it receives and generates, and the agent,
which is the machine learning core that will make scheduling decisions.

These components are interrelated as shown in Fig. 2. It can be seen that the envi-
ronment acts as an interface between the agent and the heterogeneous cluster and job
queue.

The training of the agent is performed with the IRMaSim simulator, which
presents it with a set of jobs and nodes [18]. Before proceeding on to the spec-
ification of each of the components, it is necessary to consider how the train-
ing sequence progresses. In addition to a description of a computer cluster, each
training process is characterised by a workload, which is a list of job descriptions.
This is a list of job descriptions logged at a real computer cluster. Job descrip-
tions include arrival times and user-specified parameters, such as requested time
or number of cores. The training is divided into a number of trajectories, which

Intelligent energy pairing scheduler (InEPS) for heterogeneous… Page 7 of 23  427

are fixed-length sequences of jobs taken at random from the workload. Processing
a trajectory involves analysing the impact of many events, like job submissions or
completions. The agent evaluates the situation for each event and determine the
appropriate next action. This process is illustrated in Fig. 3.

3.3 � Environment

The environment is mainly responsible for providing the agent with the necessary
information to make a decision, and updating the cluster state after the decision
of the agent. The observation gives a view of the state of the cluster and the job
queue, whereas the action encapsulates the decision that the scheduler must carry
out. This section describes observation and action spaces which define the con-
veyed values, together with the reward functions and how the scheduler estimates
energy consumption.

Fig. 2   Main components and their relations in InEPS

Fig. 3   Flowchart depicting a high-level view of the main simulation loop using a reinforcement learning
agent in IRMaSim

	 M. López et al. 427   Page 8 of 23

3.3.1 � Observation space

Observations are created by recording features for each jobs-nodes pairing, as
defined in [20]. It must contain a fixed number of values or features. This is a
requirement of the neural network that will be used by the agent. Since the job queue
does not meet this condition, a eligible job vector is defined. This is a list of the first
NUM_JOBS jobs from the job queue, that is padded with null jobs if necessary.

The features of the observations are values bounded between 0.0 and 1.0 organ-
ised in an array of dimensions (NUM_NODES × NUM_JOBS, NUM_FEATURES).
Where each row contains the features that describe a given pairing of node and
job. A list of the considered features considered is presented next, with summary
in Table 1. The features that were added to those introduced in [20] are highlighted
with a *.

•	 The submit time* of a job serves as an indicator of its position in the queue.
•	 The static power* of a node is the sum of the static power of its cores if it is run-

ning at least one task. Otherwise, this value is set to the idle power of the node,
which is a percentage of its static power.

•	 The dynamic power* of a node is the sum of the dynamic powers of the cores in
said node that are currently running a task.

•	 The availability is defined as the ratio of free cores to total cores in the node and
is meant to provide useful information in the presence of memory contention.

•	 The energy estimate* is the amount of energy that the job could consume if it
is scheduled in the node. This is obtained from the model described later in this
section.

•	 The can schedule feature tells if the node has enough free cores to fit the job, and
the energy estimation is below the maximum energy constraint of the job.

3.3.2 � Action space

An action identifies a job and a node, directing the scheduler to allocate the node to
the job. Thus, the action space is defined as a discrete space of size (NUM_NODES ×
NUM_JOBS), referred to as ACTIONS_SIZE. Actions are encoded as indices to the
rows in the observation space, mapping nodes to the jobs in the eligible queue.

It is worth pointing out that some job-node pairs are not feasible and should
not be chosen by the agent. Specifically, when the job is a null used to pad the

Table 1   Observation features
considered for each job-node
pair in Energy scheduler

Job Wait time, Requested time,
Submit time*, Requested cores

Node Availability, Static power*,
Dynamic power*, Average
clock rate

Common Energy estimate*, can schedule

Intelligent energy pairing scheduler (InEPS) for heterogeneous… Page 9 of 23  427

eligible job array or when the job does not fit in a node. As neural networks oper-
ate probabilistically, invalid pairs must be masked before selecting the action.

3.3.3 � Reward functions

The environment also contains the current reward function that the agent will try
to optimise. This is a function that takes the state of the cluster and the action
taken by the agent as input, and returns a scalar value, that will be used by the
agent in the training process. The definition of the reward function will determine
which objective the agent will try to minimise.

Only two reward functions are implemented in InEPS, one to reduce energy
consumption and the other to improve energy-delay product (EDP) [21]. The first
function returns the negative increment in energy consumption, and the other
is the same but multiplied by the time increment. This is so because the agent
is programmed to minimise the sum of the reward values. The increments are
obtained using marker variables, which are updated each time a reward is gener-
ated. It should be noted that the sum of the EDP rewards throughout a trajectory
is not equivalent to the EDP of executing its jobs, since this value is impossible
to calculate beforehand. Instead, these incremental rewards are exclusively envi-
sioned to offer guidance during training.

3.3.4 � Energy estimation

One observation passed to the agent is the estimated energy consumption for
scheduling a job on a node. This is computed as the product of the estimated
runtime and power consumption when the job is run on the node, taking into
account the current status of the cluster. The resulting formula can be expressed
as follows:

In equation 1, treq ⋅
fmin

f
 is the expected runtime. The treq user-specified job parameter

indicates the expected runtime of executing the job on the slowest node of the clus-
ter, running at a frequency fmin , so this value has to be adjusted to the frequency of
the target node, f.

The parenthesised term corresponds to the power estimate for the job-node
pair. ps is the static power consumption of the target node, whereas pd represents
the dynamic power consumption of a single core. The static power is distributed
among the j jobs that are currently running on the node, plus one for the target
job. This gives the fraction of the static power consumed by the incoming job.
The dynamic power estimate is obtained by adding the dynamic powers of the n
cores needed to allocate the n tasks of the target job.

(1)treq ⋅
fmin

f
⋅

(

ps

j + 1
+ n ⋅ pd

)

	 M. López et al. 427   Page 10 of 23

3.4 � Agent

The agent implements the PPO algorithm [22] in an actor-critic paradigm and
therefore contains three key components: two deep neural networks, called an
actor and a critic, and a buffer used to store the collected training data. In addi-
tion, the agent contains two Adam optimisers [23] to update the parameters of
both networks. The initial value of the network weights and optimisers is set
randomly.

Stochastic weight averaging (SWA) [24] is applied exclusively to the actor net-
work, starting after 75% of the training epochs. The learning rate decreases lin-
early over 15% of the remaining epochs before stabilising. This addition has only
been implemented for the actor, since it is directly responsible for scheduling.

During training, the agent receives an observation of the state of the environ-
ment and produces the action predicted by the actor, the value predicted by the
critic for the observed state and the log probability of the chosen action in the
probability distribution over actions output by the actor.

Both networks are trained for a number of epochs with independent loss func-
tions. The loss function corresponding to the actor includes a term corresponding
to the entropy of the policy, which may be set to a nonzero value to encourage
exploration [25]. In each epoch, the collected training data is sampled in mini-
batches of a fixed size and used to obtain the gradients of the loss functions and
apply a step of the optimisers to the parameters of the networks.

3.4.1 � Actor

The actor network is a deep neural network with six hidden layers, starting with
an input size of NUM_FEATURES and decreasing dimensions of 16, 16, 8, 8, 4,
and 4, before producing a single output. The initial weights are normalised to
zero mean and unit variance and the Scaled Exponential Linear Unit (SELU) is
used as the activation function between layers, making the actor a self-normalis-
ing neural network. It is defined as follows:

After forwarding the observation through the network and flattening it to obtain a
tensor of dimension (ACTIONS_SIZE), a mask is applied to artificially lower the
scores of invalid job-node combinations, preventing the model from selecting them
in most scenarios. The masked output is then used to initialise a categorical distribu-
tion from which an action is sampled. The actor computes the Proximal Policy Opti-
misation (PPO) loss function for a minibatch of collected data, optimising the policy
to improve performance in subsequent actions.

SELU(x) = 𝜆

{

x if x > 0

𝛼(ex − 1) if x ≤ 0

Intelligent energy pairing scheduler (InEPS) for heterogeneous… Page 11 of 23  427

3.4.2 � Critic

The critic neural network contains a total of ten hidden layers divided into two
phases. The input layer is identical to that of the actor network. The following
five hidden layers have decreasing sizes 32, 16, 8, 4 and 1. At this point, the result
is squeezed to a shape of (ACTIONS_SIZE) for a single observation. The five
following hidden layers further reduce the dimensionality from ACTIONS_SIZE
to 1 in the sequence 128, 64, 32, 16, 8 and 1 for the output layer, resulting in a
single numerical value. SELU is also used as the activation function in this net-
work, and the weights are initialised with zero mean and unit variance as well.

The loss function is the standard mean squared error (MSE) comparing the pre-
diction supplied by the network to the expected return values collected during train-
ing, which is defined as follows

where n is the number of observations, yi are the actual values, and ŷi are the pre-
dicted values.

3.4.3 � Buffer

The agent contains a storage area to collect values after each time step, necessary
for computing the losses and training the actor and critic. The values include obser-
vations, actions, rewards, values, action log probabilities, advantages and expected
returns. The first five are stored after each time step, whereas the last two are com-
puted after each complete trajectory as discounted sums from the collected data,
using generalised advantage estimate (GAE) in the case of the advantages.

4 � Methodology

The evaluation process has been carried out on the IRMaSim cluster simulation
framework, which makes training possible without the need to deploy the new
scheduler in a real HPC environment [18]. InEPS can be configured to optimise a
single metric, that can be either energy consumption or EDP.

For comparison, a set of heuristic algorithms is used. Since the proposed sched-
uler targets heterogeneous clusters, these algorithms must be adapted to this kind
of platform. Thus, they are based on two sorting criteria, one for the jobs and one
for the nodes. The operation of these heuristic schedulers is as follows. Every time
there are free resources in the cluster, a list of jobs that could fit in the available
nodes is generated from the job queue. This list is sorted according to the job selec-
tion policy. For instance, under the shortest policy, jobs are sorted by requested
time, with the shortest job first. Next, the available nodes are sorted according to the
node selection policy. If the policy is high_gflops, the nodes are sorted by the peak

MSE =
1

n

n
∑

i=1

(yi − ŷi)
2

	 M. López et al. 427   Page 12 of 23

compute capability, with the most powerful node being the first in the list. Then the
first job in the eligible job queue is allocated to the first node in the available node
list. This process is repeated until there are no more jobs to allocate. The available
policies are given in Table 2.

Although all the heuristics are used in the experiments, the graphs only include
the one with the best performance and the following four, which are considered rel-
evant: first-high_gflops, first-high_cores, first-high_mem_bw, and random-random.
The first three focus on node selection rather than job selection, while the last is
included as a worst-case scenario.

5 � Experimental results

This section evaluates the InEPS scheduler in two different scenarios, the first vali-
dates the convergence and the behaviour of the proposal, while the other tests how
the scheduler copes with situations different from those used during training. Also,
depending on the target metric there are two alternative models of the scheduler:
Energy InEPS tries to minimise energy consumption, whereas EDP InEPS strives to
improve energy efficiency.

5.1 � Convergence analysis experiment

This experiment has been designed to analyse the convergence and behaviour of
both versions of InEPS. The details of the used platform and workload are shown in
Tables 3 and 4, with a total of 1040 cores and 180 jobs.

Both models have been trained with the hyperparameters shown in Table 5.
In each simulation, five random sets of up to ninety jobs were selected from the

Table 2   Job and node sorting criteria for heuristic schedulers

Job selection policies

Random Any job
First Oldest job in the job queue
Shortest Job with the lowest expected execution time
Smallest Job with the least requested cores
Low_mem Job with the lowest requested memory
Low_mem_ops Job with the lowest memory access volume

Node selection policies

Random Any node
High_gflops Node with the highest peak compute capability
High_cores Node with the most currently available cores
High_mem Node with the highest currently available memory
High_mem_bw Node with the highest currently available memory bandwidth
Low_power Node with the lowest power consumption

Intelligent energy pairing scheduler (InEPS) for heterogeneous… Page 13 of 23  427

workload and scheduled with the same policy. The graphs shown in Fig. 4 rep-
resent the evolution of the loss and reward functions throughout the training of
Energy InEPS.

Despite the spikiness of the policy and value loss plots, it can be seen that
they tend to zero, which leads to the conclusion that the model is converging.
The spikes can be attributed to the change in the features of the jobs and the
usage of the cluster during the different trajectories used for training. Simulat-
ing shorter trajectories reduces training time, but introduces variance because the
sampled workload fragments may not be well-balanced. The dips in the reward
can be explained by the fact that only fragments of the complete workload are
being scheduled in each simulation, and these may have contained heavy jobs.

Table 3   Platform details for
convergence analysis experiment

Node type 0 1 2 3

Number of Nodes 10 10 10 10
Cores 8 16 32 48
Clock rate (GHz) 4.2 3.8 3.4 3.0
Static power (W) 68.81 56.33 45.09 35.11
Dynamic power (W) 6.49 5.32 4.26 3.31
Min. power (%) 39.59 39.59 39.59 39.59

Table 4   Workload details for
convergence analysis experiment

Profile A B C

Number of Jobs 10 10 10
Req. cores 8 8 4
Req. ops ( ×1010) 1.375 6.25 12.5
Req. time (s) 4.6 20.8 41.7
Mem. vol. (MB/s) 1 103 106

Table 5   Training
hyperparameters for
convergence analysis experiment

Simulations 100
Trajectories 5
Trajectory length 90
Minibatch size 32
Epochs 50
SWA Yes
Seed 1024
� 0.1
� 0.99
� 0.95
Actor lr 0.001
Critic lr 0.001

	 M. López et al. 427   Page 14 of 23

Fi
g.

 4
  

C
on

ve
rg

en
ce

 A
na

ly
si

s E
xp

er
im

en
t -

 L
os

s a
nd

 re
w

ar
d

pl
ot

s f
or

 E
ne

rg
y

In
EP

S

Intelligent energy pairing scheduler (InEPS) for heterogeneous… Page 15 of 23  427

The loss and reward data of the EDP InEPS training closely resemble those of
Energy InEPS as shown in Fig. 4.

Once both models have been trained, they are evaluated by applying them to the
complete workload. The results given by the models and the heuristic schedulers for
energy consumption and efficiency are shown in Figs. 5 and 6, respectively. The best
heuristic in this experiment is smallest - high_mem.

Considering the random heuristic as the baseline, the best heuristic reduces the
energy consumption by 38% and the EDP by 70.6%. The results of the models vary
depending on the simulation, therefore the corresponding bars show the average
consumption and EDP. The models obtained for both objectives behave in a similar
manner regardless of the evaluated metric. In both metrics, the models have results
close to the best heuristics. The Energy InEPS model reduces the energy in 26% and
the EDP in 44% on average, and the EDP InEPS model shows average reductions of
28% and 47% in energy consumption and EDP, respectively. It is worth pointing out

Fig. 5   Convergence Analysis Experiment - Energy consumption comparison

Fig. 6   Convergence analysis experiment—EDP comparison

	 M. López et al. 427   Page 16 of 23

that the EDP InEPS gives slightly better results than the Energy InEPS. The slight
advantage of the former cannot be clearly attributed to the chosen objective, though
it is be a reasonable hypothesis, as execution time and energy consumption appear
correlated in this problem.

The above results show that the proposed scheduler is capable of giving fair
results in some instances, close to the best heuristics, but does not give consistent
results. Three out of five heuristics have beaten the Energy InEPS model. It can be
said that the new scheduler has been capable of offering reasonable performance, but
adjustments to the training hyperparameters or the actor and critic models should be
made to achieve more stable convergence.

5.2 � Workload adaptability experiment

This second scenario has been designed with the objective of determining how well
the InEPS scheduler is capable of adapting to different workloads. To this end, the
scheduler has been trained on a generic workload and then tested on two other work-
loads, one is memory-intensive and the other is computation-intensive.

To avoid long training times, the size of the platform and the number of jobs
have been reduced with respect to the previous experiment. The target platform is
composed of ten instances of Node 0 and two instances of Node 3, following the
descriptions given in Table 3. In this way, multiple jobs may be assigned to the same
48-core node or single jobs can be allocated to faster 8-core nodes.

Two workloads containing one hundred jobs each have been defined using the job
profiles introduced in Table 6: a memory-intensive workload using A1, B1 and C1;
and a computation-intensive workload using A2, B2 and C2. In each workload, jobs
arrive in one-second intervals in a random order. A separate mixed workload of four
hundred jobs combining all six profiles has been used to train the scheduler, mostly
using the hyperparameters from the Convergence Analysis Experiment, except for
the number of trajectories, the trajectory length and minibatch size, which have been
adjusted to 3, 50 and 25, respectively.

The training process of the Energy InEPS model with the mixed workload is
illustrated in Fig. 7. Only the critic seems to have converged to an adequate degree,
according to the value loss plot. The policy loss and the rewards, on the other hand,
show a slight improvement over time, but still oscillate considerably at the end of
the training execution.

The results provided by the Energy InEPS model for the memory-intensive
and computation-intensive workloads over one hundred test iterations have been

Table 6   Workload details
for Workload Adaptability
Experiment

Profile A1 B1 C1 A2 B2 C2

Req. cores 8 8 8 8 8 8
Req. ops ( ×1010) 2.75 6.25 12.5 5.5 8.25 12.5
Req. time (s) 9.2 20.8 41.7 18.4 27.5 41.7
Mem. vol. (MB/s) 105 106 108 1 1 1

Intelligent energy pairing scheduler (InEPS) for heterogeneous… Page 17 of 23  427

Fi
g.

 7
  

W
or

kl
oa

d
ad

ap
ta

bi
lit

y
ex

pe
rim

en
t—

lo
ss

 a
nd

 re
w

ar
d

fo
r t

he
 E

ne
rg

y
In

EP
S

	 M. López et al. 427   Page 18 of 23

compared to the energy consumption produced by three of the heuristics. It can be
argued that the first - high_gflops heuristic gives the best results with the computa-
tion-intensive workload, since jobs are sent to the fastest node available. The first
- high_cores prioritises nodes with high free core counts. Finally, the first - high_
mem_bw heuristic should be able to reduce energy consumption in the presence of
memory contention, assigning jobs to the nodes with the highest available band-
width. Figure 8 illustrates the differences in energy consumption of the different
schedulers for each of the two workloads. Table 7 presents the corresponding reduc-
tion percentages.

Unexpectedly, high_gflops is the best-performing heuristic for the memory-inten-
sive workload. High_mem_bw, on the contrary, has achieved the worst performance
in this case. A possible explanation could be that it estimates the currently available
bandwidth as the negative sum of the requested bandwidths of the jobs currently
running on the target node. High_cores offers an intermediate solution. When com-
pared to these three heuristics for the same workload, the Energy InEPS model is
closest to high_gflops.

As for the computation-intensive workload, in this case high_gflops and high_
mem_bw produce similar energy consumption, and it is high_cores that manages to
offer a considerable reduction, of around 22%. The Energy InEPS only provides a
reduction of 4% on average with respect to the worst heuristic.

In summary, the Energy InEPS model is capable of giving good results in some
cases, showing a promising perspective. Furthermore, it should be taken into
account that even if the tested model did not converge completely, and was trained

Fig. 8   Workload adaptability experiment—Energy consumption comparison for the memory-intensive
(left) and computation-intensive (right) workloads

Table 7   Workload adaptability experiment—Percentage reductions in energy consumption obtained by
Energy InEPS with respect to the three tested heuristics for both workloads

Energy cons. High_gflops High_cores High_mem_bw

reduction (%) Min Avg Max Min Avg Max Min Avg Max

Mem. workload 12.66 −1.31 −12.87 15.32 1.77 −9.43 21.98 9.50 −0.83
Comp. workload 23.36 4.02 −0.35 2.28 −22.37 −27.95 23.36 4.02 −0.35

Intelligent energy pairing scheduler (InEPS) for heterogeneous… Page 19 of 23  427

on trajectories of half the test-time length, it still was able to produce reasonable
results for both workloads. It is also important to note that its behaviour did not
vary as much as that of the high_gflops and high_cores heuristics across different
workloads.

6 � Related work

The scheduling problem has been exacerbated in recent years owing to several fac-
tors including, but not limited to, the steady rise in the processing power of super-
computers, the emergence of new hardware resources and novel hardware structure
and the appearance of increasingly diverse workloads that combine compute-inten-
sive and data-intensive applications [26]. Furthermore, the majority of modern
HPC cluster systems display a heterogeneous architecture combining resources with
different frequencies, number of processing units, bandwidth or memory capacity
[27]. This scenario creates a need to consider a variety of trade-offs in a dynamic
environment where new jobs may be received at any given time [28]. As an exam-
ple, resources with higher clock rates complete jobs faster, but may consume more
energy during execution due to their greater power consumption [29].

Traditional scheduling approaches have relied on heuristic schedulers that assign
priorities to jobs waiting in the queue to the cluster based on their attributes, effec-
tively determining which job shall be scheduled next. These range from simple one-
parameter heuristic priority functions such as FCFS (First Come First Served) or
SJF (Shortest Job First) to complex metrics combining multiple parameters such as
WFP, UNICEF or F1 [30].

In [17], the authors address the challenge of scheduling in heterogeneous com-
puter clusters by proposing heuristic algorithms that prioritise node properties over
job properties. Experimental results show that these algorithms outperform tradi-
tional heuristic approaches that focus on job properties.

Another frequently employed approach is backfill scheduling, which relies on
user-defined job runtime estimates to schedule lower-priority jobs, located later in
the queue, on already allocated resources if this will not result in an already running
job missing its deadline or breaching any other kind of restriction. Backfilling pro-
vides good results on production systems, but relies heavily on user-established job
time estimates, which usually are not very accurate, strongly impacting on the qual-
ity of the scheduler [31].

Machine learning approaches have been applied to job scheduling in HPC clus-
ters before, especially in academia. DeepRM [9] was one of the first initiatives to
apply reinforcement learning to the scheduling problem as an alternative to heuris-
tic approaches. It assumes a single large resource pool, abstracting away machine
boundaries and resource fragmentation. It can learn to optimise objectives such as
average job slowdown or completion time through the application of a standard pol-
icy gradient reinforcement learning algorithm. Years later, DeepRM2 and DeepRM_
Off [10], continuous online resource scheduling and offline resource scheduling
designs, were proposed as improvements upon DeepRM. All of them assume very
simplistic homogeneous clusters. Decima [32] employs reinforcement learning

	 M. López et al. 427   Page 20 of 23

techniques and neural networks to learn workload-specific scheduling algorithms
given a high-level objective such as minimising average job completion time. It is
capable of scheduling while taking into account job dependencies represented as a
DAG.

RLScheduler [12] combines a reinforcement learning resource manager with a
simplistic data centre simulator to accelerate the training process. In RLScheduler,
an observation represents the state of the environment by means of a vector that
contains the attributes of all the eligible jobs. However, RLScheduler only considers
homogeneous cluster architectures, so it was used as a starting point in [20], where it
was adapted to heterogeneous architectures.

RLSchert [13] is a job scheduler based on deep reinforcement learning and
remaining runtime prediction. On the one hand, it estimates the state of a cluster by
means of a dynamic job remaining runtime predictor that employs a recurrent neural
network to encode time series information. DRAS (Deep Reinforcement Agent for
Scheduling) [14] focuses on improving upon heuristic scheduling strategies in HPC
environments with dynamic application workloads, preventing resource underutili-
sation and job starvation. This is achieved through resource reservation, combin-
ing a reinforcement learning approach with backfilling and employs a hierarchical
neural network for decision-making. DRAS does not consider heterogeneous cluster
architectures.

Other works that specifically tackle energy consumption through job schedul-
ing, can also be found in the literature. ExpREsS [28] is a scheduler for the Apache
Spark processing framework. Its main goal is to orchestrate the execution of multi-
ple big data applications in distributed processing systems while satisfying perfor-
mance requirements and minimising energy consumption. This is achieved through
adaptive dynamic voltage and frequency scaling (DVFS) and accurate models capa-
ble of predicting the execution time and power consumption of an application before
it starts executing. The HEA-PAS scheduling algorithm [33] minimises the response
time of parallel DAG applications subject to energy constraints in heterogeneous
HPC systems. In HEA-PAS, the energy that can be allocated by an application is
quantified and distributed among its tasks according to their energy demand rate.
The energy allocated to each task is used to find the optimal processor and frequency
combination to execute the entire application. Finally, the work presented in [16]
explores the use of application signatures instead of full dynamic power profiling to
obtain application data for use in conjunction with energy-aware task scheduling in
data centres, including HPC systems. Signatures can therefore be used to estimate
the energy consumed by applications without having to monitor and profile their
execution until completion.

7 � Conclusion

This work presents a scheduler for heterogeneous HPC systems that focuses
on reducing either energy consumption or EDP, depending on how it is config-
ured. It is based on deep reinforcement learning agent, but its novelty lies in that
it uses power specifications of the compute resources and jobs, to improve its

Intelligent energy pairing scheduler (InEPS) for heterogeneous… Page 21 of 23  427

decision-making, among other job and node metrics. This implies the definition
of observation and action spaces, that take into account the energy consumption
of jobs and nodes.

Both the training and validation has been done using the IRMaSim cluster simu-
lation framework using a series of synthetic experiments that explore various aspects
of the implementation. The results have been compared to various heuristic sched-
ulers. The observed results show potential regarding the possibilities of energy-
focused job scheduling based on deep reinforcement learning.

The design space of these schedulers is vast, as there are many alternatives in the
structure of the agents, and a huge amount of parameters that have to be determined
to tune its behaviour. Therefore, future work could consider alternative configura-
tions of the agent components as well as the parameters considered in the observa-
tion and action spaces.

Author contributions  All authors contributed equally to the manuscript.

Funding  Open Access funding provided thanks to the CRUE-CSIC agreement with Springer Nature.
This work has been supported by the Spanish Science and Technology Commission under contract
PID2022-136454NB-C21, the Ministerio de Ciencia e InnovaciÃ³n; Proyectos de TransiciÃ³n EcolÃ³gica
y Digital 2021 under grant TED2021-131176B-I00 and the European HiPEAC Network of Excellence.

Data availability  The trace data used in this study is available at https://​www.​cs.​huji.​ac.​il/​labs/​paral​lel/​
workl​oad/l_​kit_​fh2/​index.​html.

Code availability  The simulator used in this study, IRMaSim, is available at https://​github.​com/​irmas​im/​
IRMaS​im.

Declarations 

Conflict of interest  The authors declare no competing interests.

Ethical approval  Not applicable.

Open Access  This article is licensed under a Creative Commons Attribution 4.0 International License,
which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long
as you give appropriate credit to the original author(s) and the source, provide a link to the Creative
Commons licence, and indicate if changes were made. The images or other third party material in this
article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line
to the material. If material is not included in the article’s Creative Commons licence and your intended
use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permis-
sion directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/
licenses/by/4.0/.

References

	 1.	 Bosque JL, Robles OD, Toharia P, Pastor L (2011) Evaluating scalability in heterogeneous systems. J
Supercomput 58(3):367–375

	 2.	 Uddin M, Rahman AA (2012) Energy efficiency and low carbon enabler green it framework for data cent-
ers considering green metrics. Renew Sustain Energy Rev 16(6):4078–4094

	 3.	 Witkowski M, Oleksiak A, Piontek T, Weglarz J (2013) Practical power consumption estimation for real
life hpc applications. Futur Gener Comput Syst 29(1):208–217

https://www.cs.huji.ac.il/labs/parallel/workload/l_kit_fh2/index.html
https://www.cs.huji.ac.il/labs/parallel/workload/l_kit_fh2/index.html
https://github.com/irmasim/IRMaSim
https://github.com/irmasim/IRMaSim
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

	 M. López et al. 427   Page 22 of 23

	 4.	 Agency IE (2022) Data Centres and Data Transmission Networks
	 5.	 Ullman JD (1975) Np-complete scheduling problems. J Comput Syst Sci 10(3):384–393
	 6.	 Mu’alem AW, Feitelson DG (2001) Utilization, predictability, workloads, and user runtime estimates in

scheduling the ibm sp2 with backfilling. IEEE Trans Parallel Distrib Syst 12(6):529–543
	 7.	 Brucker P (2013) Scheduling Algorithms. Springer, Berlin, Heidelberg
	 8.	 Sun H, Elghazi R, Gainaru A, Aupy G, Raghavan P (2018) Scheduling parallel tasks under multiple

resources: list scheduling vs. pack scheduling. In: 2018 IEEE International Parallel and Distributed Pro-
cessing Symposium (IPDPS), pp 194–203

	 9.	 Mao H, Alizadeh M, Menache I, Kandula S (2016) Resource management with deep reinforcement learn-
ing. In: Proceedings of the 15th ACM Workshop on Hot Topics in Networks. HotNets ’16, Association
for Computing Machinery, New York, NY, USA, pp 50–56

	10.	 Ye Y, Ren X, Wang J, Xu L, Guo W, Huang W, Tian W (2018) A New Approach for Resource Schedul-
ing with Deep Reinforcement Learning. arXiv:​ 1806.​08122

	11.	 Bishop CM (2006) Pattern Recognition and Machine Learning. Springer, New York
	12.	 Zhang D, Dai D, He Y, Bao FS, Xie B (2020) RLScheduler: An Automated HPC Batch Job Scheduler

Using Reinforcement Learning. arXiv:​ 1910.​08925
	13.	 Wang Q, Zhang H, Qu C, Shen Y, Liu X, Li J (2021) Rlschert: An hpc job scheduler using deep rein-

forcement learning and remaining time prediction. Appl Sci 11(20):9448
	14.	 Fan Y, Li B, Favorite D, Singh N, Childers T, Rich P, Allcock W, Papka ME, Lan Z (2022) Dras: deep

reinforcement learning for cluster scheduling in high performance computing. IEEE Trans Parallel Dis-
trib Syst 33(12):4903–4917

	15.	 Maroulis S, Zacheilas N, Kalogeraki V (2019) A holistic energy-efficient real-time scheduler for mixed
stream and batch processing workloads. IEEE Trans Parallel Distrib Syst 30(12):2624–2635

	16.	 Salinas-Hilburg JC, Zapater M, Moya JM, Ayala JL (2022) Energy-aware task scheduling in data cent-
ers using an application signature. Comput Electr Eng 97:107630

	17.	 Stafford E, Bosque JL (2024) Enhancing heterogeneous cluster efficiency through node-centric sched-
uling. J Supercomput 80(10):13738–13753

	18.	 Herrera A, Ibáñez M, Stafford E, Bosque JL (2021) A simulator for intelligent workload managers in
heterogeneous clusters. In: IEEE/ACM 21st International Symposium on Cluster, Cloud and Internet
Computing (CCGrid), pp 196–205

	19.	 Sutton RS, Barto AG (2018) Reinforcement Learning: An Introduction. A Bradford Book, Cambridge
	20.	 Fomperosa J, Ibañez M, Stafford E, Bosque JL (2023) Task scheduler for heterogeneous data centres

based on deep reinforcement learning. In: Parallel Processing and Applied Mathematics. Springer, Ber-
lin, Heidelberg, pp 237–248

	21.	 Castillo E, Alvarez L, Moretó M, Casas M, Vallejo E, Bosque JL, Beivide R, Valero M (2018) Archi-
tectural support for task dependence management with flexible software scheduling. In: IEEE Interna-
tional Symposium on High Performance Computer Architecture, HPCA 2018, Vienna, Austria, Febru-
ary 24–28, pp 283–295

	22.	 Schulman J, Wolski F, Dhariwal P, Radford A, Klimov O (2017) Proximal Policy Optimization Algo-
rithms. arXiv:​ 1707:​06347

	23.	 Kingma DP, Ba J (2017) Adam: A Method for Stochastic Optimization. arXiv:​ 1412.​6980
	24.	 Izmailov P, Podoprikhin D, Garipov T, Vetrov D, Wilson AG (2019) Averaging Weights Leads to

Wider Optima and Better Generalization. arXiv:​ 1803.​05407
	25.	 Bick D (2021) Towards Delivering a Coherent Self-Contained Explanation of Proximal Policy Optimi-

zation. Master’s thesis, Rijksuniversiteit Groningen, Netherlands
	26.	 Fan Y (2021) Job Scheduling in High Performance Computing. arXiv:​ 2109.​09269
	27.	 Stafford E, Bosque JL (2020) Improving utilization of heterogeneous clusters. J Supercomput

76(11):8787–8800
	28.	 Maroulis S, Zacheilas N, Kalogeraki V (2019) A holistic energy-efficient real-time scheduler for mixed

stream and batch processing workloads. IEEE Trans Parallel Distrib Syst 30(12):2624–2635
	29.	 Bosque JL, Toharia P, Robles OD, Pastor L (2013) A load index and load balancing algorithm for het-

erogeneous clusters. J Supercomput 65(3):1104–1113
	30.	 Tang W, Lan Z, Desai N, Buettner D (2009) Fault-aware, utility-based job scheduling on blue, gene/p

systems. In: 2009 IEEE International Conference on Cluster Computing and Workshops, pp 1–10
	31.	 Tsafrir D, Etsion Y, Feitelson DG (2007) Backfilling using system-generated predictions rather than

user runtime estimates. IEEE Trans Parallel Distrib Syst 18(6):789–803

http://arxiv.org/abs/1806.08122
http://arxiv.org/abs/1910.08925
http://arxiv.org/abs/1707:06347
http://arxiv.org/abs/1412.6980
http://arxiv.org/abs/1803.05407
http://arxiv.org/abs/2109.09269

Intelligent energy pairing scheduler (InEPS) for heterogeneous… Page 23 of 23  427

	32.	 Mao H, Schwarzkopf M, Venkatakrishnan SB, Meng Z, Alizadeh M (2019) Learning scheduling algo-
rithms for data processing clusters. ACM Special Interest Group on Data Communication. SIGCOMM
’19. Association for Computing Machinery, New York, pp 270–288

	33.	 Peng J, Li K, Chen J, Li K (2022) Hea-pas: A hybrid energy allocation strategy for parallel applications
scheduling on heterogeneous computing systems. J Syst Architect 122:102329

Publisher’s Note  Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

	Intelligent energy pairing scheduler (InEPS) for heterogeneous HPC clusters
	Abstract
	1 Introduction
	2 Background
	2.1 Reinforcement learning
	2.2 Neural networks

	3 Intelligent energy pairing scheduler (InEPS)
	3.1 Overview
	3.2 Main components
	3.3 Environment
	3.3.1 Observation space
	3.3.2 Action space
	3.3.3 Reward functions
	3.3.4 Energy estimation

	3.4 Agent
	3.4.1 Actor
	3.4.2 Critic
	3.4.3 Buffer

	4 Methodology
	5 Experimental results
	5.1 Convergence analysis experiment
	5.2 Workload adaptability experiment

	6 Related work
	7 Conclusion
	References

