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Inference in High-Himensional two-way Panel Data Models

Abstract

The aim of this master thesis is to obtain a
√
NT - consistent and asymptotically

normal estimation for a triangular simultaneous two-way high-dimensional panel data
model. Estimating such models is challenging due to endogeneity from two sources: the
correlation between variables in a two-way panel and the dependence between covariates
and the error term. This thesis proposes a two-stage estimator where individual and
time effects are first removed, followed by an instrumental variable estimation. Given
high-dimensional data sets where the number of covariates exceeds the sample size,
traditional methods fail. Instead, the Lasso method and its variants, Cluster-Lasso and
Post-Lasso, are used for estimation, providing consistency and asymptotic normality
under specific conditions.

Resumen

El objetivo de este trabajo de fin de máster es obtener una estimación
√
NT - consistente

y asintóticamente normal para un modelo de datos de panel triangular simultáneo de
alta dimensión con efectos fijos individuales y temporales. La estimación de este tipo
de modelos supone un reto debido a la endogeneidad de dos fuentes: la correlación
entre variables en un panel con dos efectos fijos y la dependencia entre covariables y el
término de error. Este trabajo propone un estimador en dos etapas en el que primero se
eliminan los efectos individuales y temporales, seguido de una estimación de variables
instrumentales. Ante conjuntos de datos de alta dimensión en los que el número de
covariables supera el tamaño de la muestra, los métodos tradicionales fallan. En su
lugar, el método Lasso y sus variantes, Cluster-Lasso y Post-Lasso, se utilizan para
la estimación, proporcionando consistencia y normalidad asintótica bajo condiciones
específicas.
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Notation

Before start, let us define a number of mathematical concepts to facilitate the under-
standing of the following work. We have based ourselves on [10] and [4].

• #M ; given a set M , it means the cardinal of that set, that is, the number of
elements that the set has.

• ∥π∥0; the l0 norm returns the number of non-zero elements of the vector π, i.e.,
∥π∥0 = #{i : πi ̸= 0}.

• ∥π∥1; the l1 norm is defined as ∥π∥1 =
∑p

j=1 |πj|.

• ∥π∥2; the l2 norm is defined as ∥π∥2 =
√∑p

j=1 π
2
j .

• o(1), N → ∞ ; a function v(N) that depends on N is o(1), N → ∞, if
lim

N→∞
v(N) = 0.

• oP (1); a sequence of random variables {XN} is said to be oP (1) if XN
p−→ 0.

• O(1), N → ∞; a function v(N) that depends on N is O(1), N → ∞, if |v(N)|
remains bounded as N → ∞.

• OP (1); a sequence of random variables {XN}, with respective distribution func-
tions {FN}, is said to be bounded in probability (OP (1)) if for every ϵ > 0 there
exist Mϵ and Nϵ such that FN(Mϵ)− FN(Mϵ) > 1− ϵ all N > Nϵ.

• p ∨ NT ; it means that it is taking the higher of the following values p and NT ,
i.e. p ∨NT = max(p,NT ).
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Chapter 1

Introduction

The aim of this master thesis dissertation is to obtain a
√
NT - consistent and asymp-

totically normal estimation of a triangular simultaneous two-way high- dimensional
panel data model. Traditionally, in a standard fully parameter setting, it has been
challenging to estimate these type of models due to the double source of endogeneity
they present. On one side, two-way panel data model exhibit the correlation of two
random variables, one fixed effect that accounts for unknown individual effects that
are usually correlated with the covariates and a time effect. On the other side, the
second source of endogeneity comes from the dependence between the covariates of the
structural equation and the idiosyncratic error term

The solution to these problems has been a two-stage estimator procedure where, in
the first stage, a transformation that removes both individual and time effects is per-
formed. Then, in a second stage, an instrumental variable estimator is derived over
the transformed model. Under fairly general conditions the IV estimation is consistent
and asymptotically normal. To obtain consistency, one of the conditions assumed in
the reduced form equation is that the number of explanatory variables (instruments) is
much smaller than the sample size and furthermore the matrix of explanatory variables
is full row rank. This assumption is classic in linear regression models but nowadays,
with the availability of big data, it might become rather unrealistic.

Increasingly, in Econometrics and Statistics we find high-dimensional data sets where
the number of covariates is larger than the sample size. This situation raises problems of
sparseness and violates a crucial assumption for the existence of different estimators in
the linear regression model (full row rank condition). Indeed, in our econometric setting,
the availability of a high-dimensional data set in the reduced form equation rends the
IV estimation procedure asymptotically biased and therefore alternative estimation
procedures are needed.
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Inference in High-Himensional two-way Panel Data Models

In the field of high-dimensional data there are numerous methods employed to achieve
sparse models. Sparsity describes the presence of few non-zero values in a data set.
Sparse models are easier to interpret as fewer variables make it easier to understand
how the predictions are made. In our case we will rely on the Lasso method and two
of its variants known as Cluster-Lasso and Post-Lasso, which are one of the key ideas
of the article [2].

Under the presence of high-dimensional data sets in the reduced form equation, in
this master thesis dissertation, we propose a Lasso and Cluster-Lasso type estimation
to compute the reduced form equation and then a two-stage least squares estimation
of the structural parameters. Under some conditions we show that the 2SLS of the
structural parameters are

√
NT - consistent and asymptotically normal.

This results follows the same lines as in [2] where a triangular simultaneous fixed effects
panel data model with high-dimensional data was estimated. Unfortunately they did
not include the time dimensional component in both the reduced form and the structural
model.

In Section 1 we present the econometric model, in Section 2 we introduce the estimation
procedure and we show the asymptotic properties, in Section 3 we conduct a Monte
Carlo simulation study. Finally we conclude.
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1.1 The econometric model

Let us consider the following econometric model:

yit = βdit + αi + γt + ϵit, (1.1)

dit = h(wit) + fi + lt + uit,

i = 1, ..., N ; t = 1, ..., T,
(1.2)

with h(wit) = z′itπ + r(wit) where zit = z(wit) a 1 × p vector, can be any unknown
transformation of the instrument wit and r(wit) is the remainder term. The term π is
a p × 1 vector, so the dit term has dimension 1 × 1. In addition, we should mention
that p >> N , i.e. the number of instruments is larger than the number of individuals
observed. yit is the outcome variable of interest, dit represents an endogenous variable,
(αi, fi) are the individual fixed effects and (γt, lt) are time fixed effects which represent
the effects of the omitted variables that are specific to both individual units and time
periods. ϵit, uit are the idiosyncratic error terms.

Since dit is defined as endogenous, E[ϵitdit|αi, γt] ̸= 0 for i = 1, ..., N and t = 1, ..., T .
Endogeneity arises for a variety of reasons, three common sources of endogeneity stand
out in the literature: omitted variables, a measurement error or simultaneity (see [14]).

In our model the source of endogeneity is simultaneity. Simultaneity arises when at least
one of the explanatory variables dit is determined simultaneously along with yit. If, for
example, dk is determined partly as a function of y, dk and ϵit are usually correlated.
For example if yit is the number of patients admitted to hospital for a specific disease
and dit is the number of doctors in charge of curing this disease, the number of doctors
depends on the number of patients (see [14]).

Under the econometric problem (1.1) and (1.2) and having E[ϵitdit|αi, γt] ̸= 0, clearly
the OLS estimator of β is inconsistent. In addition, it should be mentioned that con-
sidering only the equation (1.1) and E[ϵitdit|αi, γt] = 0, the OLS estimation will be
inconsistent due to the fixed effects (see [14]). The fixed effects problem can be solved
with a transformation that will be explained in the next chapter.

The problem of correlation between variables and the error term can be solved using the
method of instrumental variables (IV) (see [3]), more specifically, as mentioned in [2],
we will use the two-stage least squares (2SLS) estimator. IVs are variables uncorrelated
with the error term (disturbance term) but correlated with the endogenous explanatory
variables, although they do not represent explanatory variables in the original regression
model. The instrumental variables wit appear in the second equation of our model which
is often known as reduced form equation for the endogenous explanatory variable dit.
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It is also known as the linear projection of dit on wit.

In recent years, several researchers have studied the case in which the number of avail-
able variables for each observation is much larger than the number of observations
which is known as high-dimensional data panels. The problem with these models is
that we have too much information, i.e. too many variables, many of which are not
relevant. This causes problems during estimation, making it necessary to use a method
for selecting relevant variables.

In our model, the high-dimension is found in the second equation as the number of in-
struments is much larger than the sample size. Since, as previously mentioned, p >> N .
As mentioned in [9], if in the case of high-dimensional an ordinary least squares esti-
mation is performed, we find an overfitting of data which translates as a large variance
and a very low bias implying that the estimate is not valid. The problem of overfitting
is commonly known in the field of machine learning and statistics, which occurs when
a model gives accurate predictions for training data but not for new data. This can
occur for many reasons and one of them is that if the training data contains a lot of
noise or irrelevant features, the model may try to fit the noise along with the under-
lying patterns. In our case we have a model with too many instrumental variables to
estimate and many of them are not relevant. When we find ourselves in these situa-
tions, we resort to the so-called sparse or regularization methods, which use a penalty
to reduce the number of explanatory variables in the model thus providing a solution to
the bias-variance tradeoff. Ideally, a model should be chosen that accurately captures
the regularities of the training data, but also generalises well to unseen data. Unfor-
tunately, it is often impossible to do both at the same time. With this regularization
methods we achieve a balance between variance and bias.

Another reason we cannot perform OLS when dealing with high-dimensional models is
that the matrix containing the observations of the explanatory variables does not have
full rank, i.e. since p >> n, the number of columns exceeds the number of rows, meaning
there cannot be p linearly independent columns. Consequently, the rank of the matrix
is at most N , which is less than p, making the matrix not full rank. A matrix that is
not full rank is singular, meaning it has a determinant of zero and cannot be inverted.
Since inverting that matrix is a crucial step in the OLS estimation, this singularity
makes it impossible to compute the OLS solution using the standard formula.
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Chapter 2

Estimation strategy and asymptotic
properties

In this chapter, we present the estimation procedure that provides consistent estimation
of the parameters of interest in high-dimensional panel data models under endogeneity.
We will also explain some regularization methods such as Lasso, Cluster-Lasso and
Post-Lasso. Finally we will present the regularity and asymptotic properties and some
theorems related to them.

2.1 Transformation

When we have a model that includes only individual fixed effects, the most common
transformation used to eliminate these fixed effects is the within transformation. In
our case, in addition to an individual fixed effect, we also have a time fixed effect, as
defined in (1.1). Therefore, our aim is to eliminate both fixed effects, for which we have
used the following transformation:

ÿit = yit −
1

T

T∑
t=1

yit −
1

N

N∑
i=1

yit +
1

NT

N∑
i=1

T∑
t=1

yit (2.1)

Analogously, we define d̈it, ϵ̈it z̈it, r̈(wit) and üit. After applying the above transforma-
tion our model is as follows

ÿit = d̈itβ + ϵ̈it,

d̈it = ḧ(wit) + üit = z̈′itπ + r̈(wit) + üit.
(2.2)
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As the reader can see, applying this transformation we have obtained a model without
fixed effects. If E[ϵ̈itd̈it] = 0 then the OLS estimator of β is consistent and asymptoti-
cally normal. Unfortunately, under endogeneity of d̈it, E[ϵ̈itd̈it] ̸= 0, the OLS estimator
of β presents an asymptotic bias. In the following we present the estimation technique
that enables us to obtain consistent estimates of β in the presence of endogenous co-
variates dit. Previously, we will explain some of the regularization methods that are
part of the estimation process.

2.2 Regularization Methods

As mentioned above, in many occasions, we encounter panel data sets in which the
number of explanatory variables per observation is very large, i.e. p >> N . In these
cases, regularization methods are recommended to reduce the number of explanatory
variables in the model as we see in [9]. These methods have the advantage that they
simultaneously perform the selection of variables and the estimation of the coefficients
of the selected variables.

Regularization methods are a class of techniques widely used in statistics and machine
learning to address high-dimensional problems, where the number of explanatory vari-
ables or features p is large compared to the number of observations N . These methods
are essential when dealing with models where the features may outnumber the observa-
tions, which can lead to problems such as overfitting, multicollinearity, and instability
of the estimated coefficients.

The key idea of the regularization methods is to incorporate a penalty term to the
cost function that penalises models with many large parameters. By minimising this
new function, some coefficients become zero, simplifying the model and thus achieving
a sparse model. The choice of the penalty parameter determines the intensity of this
penalty term and is crucial to obtain a good model. It is therefore necessary to use
appropriate methods to estimate it from the data.

In our case we find a high-dimensional problem in the reduced form (1.2) since the
length of the vector zit is p , the size of our sample is N and p >> N . Therefore, in
order to estimate it consistently we have to apply regularization methods.

2.2.1 Ridge Regularization

In 1970 Robert Hoerl and Kennard introduced Ridge regression which is one of the
best known regularization methods (see [7]). With Ridge regularization we estimate
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the coefficients π0, π1, ..., πp that minimise the following expression:

1

NT

N∑
i=1

T∑
t=1

(d̈it − z̈′itπ)
2 +

λ

NT

p∑
j=1

π2
j (2.3)

where λ ≥ 0 is a parameter and the second term,
λ

NT

∑p
j=1 π

2
j , called as shrinkage

penalty, makes small when π0, π1, ..., πp are close to zero.

This method helped a lot in improving the simulation of high-dimensional models and
has served as an inspiration for many other regularization methods. However, this regu-
larization model uses the l2 norm which does not achieve a sparse model. This is because
using the l2 norm we cannot get any coefficient to be exactly zero. As λ increases, the
coefficients tend to zero, but they never become zero and this creates a problem for
interpretation because all variables both relevant and irrelevant, are included in the
final model. This is the main disadvantage of this method of regularization because
even if the irrelevant variables have a very small coefficient, they will always have a
non-zero value, making it difficult to interpret the results.

When we perform least squares estimation, we seeks coefficients that minimize only the

first term of the expression above
1

NT

∑N
i=1(d̈it− z̈′itπ)

2. But with Ridge reguralization,
we introduce the penalty term and with that we can control the variance. As λ increases,
the variance decreases but, at the same time the bias increases. When the penalty term
has no effect, λ = 0, Ridge regression will produce least squares estimation and in this
case the variance is high and there is no bias.

In this regularization, the way in which the penalty term is defined causes all variables
to be included in the model. As λ increases, the coefficients towards zero,but they never
become zero and this creates a problem for interpretation because all variables, relevant
and irrelevant, are included in the final model.

2.2.2 Lasso Regularization

In 1996 Robert Tibshirani introduced an improved alternative to the Ridge regression,
(see [11]), the Lasso (Least Absolute Shrinkage and Selection Operator). The Lasso
coefficient estimate πL is the solution to the penalised minimization problem defined as
follows:

1

NT

N∑
i=1

T∑
t=1

(d̈it − z̈′itπ)
2 +

λ

NT

p∑
j=1

|πj|. (2.4)

It uses the l1 norm, which allows some estimated coefficients in the Lasso regularization
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to be exactly zero when the parameter λ is sufficiently large, i.e. to obtain a sparse
model at the same time as the parameter estimation. This is one of the advantages of
the Lasso because in the Ridge method all variables are included in the model, but in
the Lasso a variable selection is performed. As a result of that, models produced by
Lasso regularization are easier to interpret than those generated from Ridge regression.

2.2.3 Cluster-Lasso Regularization

Another estimation method for obtaining sparse models is the Cluster-Lasso, an exten-
sion of the Lasso technique based on the Group-Lasso introduced by Yuan and Lin in
2006 (see [15]). While traditional Lasso selects variables individually, these techniques
group related variables together, which facilitates the interpretation of the results and
reduces the dimension of the model.

In many practical problems, such as genetics, variables (such as genes) are organised
into groups based on their function or location. Selecting whole groups rather than
individual variables improves the interpretability of the model and the robustness of the
estimates. In addition, variables within a group are often highly correlated. Traditional
Lasso can have difficulty selecting relevant variables in the presence of multicollinearity,
as it tends to select only one variable from a group of correlated variables. Cluster-
Lasso addresses this problem by allowing the selection of complete groups of variables,
which improves the stability of the estimates.

The main difference between Group-Lasso and Cluster-Lasso lies in how the groups of
variables are defined. In Group-Lasso, the groups are previously established by the
researcher, whereas in Cluster-Lasso, the groups are discovered automatically during
the model fitting process. This is particularly useful when no prior information on the
structure of the data is available. Group-Lasso is simpler and more computationally
efficient, but less flexible. On the other hand, Cluster-Lasso is more flexible and can
discover hidden structures in the data, but is computationally more expensive.

As defined in [2], the Cluster-Lasso coefficient estimate π̂CL minimizes the following
optimization problem:

1

NT

N∑
i=1

(d̈it − z̈′itπ)
2 +

λ

NT

p∑
j=1

ϕ̂j|πj|. (2.5)

In this case in order to solve this optimization problem we need to assign a value to
both the penalty level, λ, and covariates penalty loadings {ϕ̂j}

p

j=1.

According to [2], it is important that the regularization event is verified for the Cluster-
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Lasso estimates to be correct. The condition is as follows

λϕ̂j

NT
≥ 2c

∣∣∣∣∣ 1

NT

N∑
i=1

T∑
t=1

z̈itjüit

∣∣∣∣∣ for each 1 ≤ j ≤ p, (2.6)

where c > 1 is a constant slack parameter. It should be noted that
1

NT

∑N
i=1

∑T
t=1 z̈itjüit

is a natural measure for the noise in estimating πj.

Therefore, the regularization event corresponds to the choice of a penalty parameter
that is large enough to dominate the noise in the model coefficient estimates. We can
see that the regularization event causes all coefficients whose amplitudes are not large
enough relative to the sampling noise to be set exactly to zero in the Lasso solution. This
property makes Lasso-based methods attractive for prediction and variable selection in
order to achieve sparse models, where many model parameters can be assumed to be
zero, and it is desirable to exclude from the model all variables that cannot be reliably
determined to have a strong distribution.

It is necessary that condition (2.6) is fulfilled with high probability. To achieve the
condition, according to the authors in [2] the intuition for suitable choices can be seen
by considering the following equality for ϕj, where

ϕ2
j =

1

NT

N∑
i=1

(
T∑
t=1

z̈itjüit

)2

=
1

NT

N∑
i=1

T∑
t=1

T∑
t′=1

z̈itj z̈it′jüitjüit′j,

captures the sampling variability in learning about coefficient πj. It can be observed
that the values of ϕj depend on the unobservable error term, üit. Therefore, in order
to estimate ϕj, we must first estimate ˆ̈uit and then calculate ϕ̂j . To obtain ˆ̈uit we use
use an algorithm designed by [2] that we will explain later in the simulations chapter.
Thus, after applying the algorithm to calculate ˆ̈uit, our optimal ϕ̂j is as follows

ϕ̂2
j =

1

NT

N∑
i=1

(
T∑
t=1

z̈itj ˆ̈uit

)2

=
1

NT

N∑
i=1

T∑
t=1

T∑
t′=1

z̈itj z̈it′j ˆ̈uit
ˆ̈uit′ .

It is important that the penalty loading verifies the following

ℓϕj ≤ ϕ̂j ≤ rϕj,with probability close to 1,

for some r ≤ C < ∞ and ℓ → 1, uniformly for j = 1, ..., p.
(2.7)

According to [2], under the above condition and setting :

λ = 2c
√
NTΦ−1(1− ζ/2p),
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where c > 1 is a constant, ζ = o(1) and Φ−1 is the inverse cumulative normal distribu-
tion function. The regularization event is verified with probability close to one.

2.2.4 Post-Lasso/Post-Cluster-Lasso Regularization

The Post-Lasso method is a statistical technique that is used as a kind of ‘second
step’ after applying the Lasso. Post-Lasso takes the model obtained with Lasso and
refines it to obtain better statistical properties. The Post-Cluster-Lasso method works
in exactly the same way as Post-Lasso but using the model obtained with the Cluster-
Lasso method. For this reason and to simplify the notation, we will use Post-Lasso to
refer to both methods.

This estimator is simply ordinary least squares applied to the data after removing the
regressors that were not selected by Cluster-Lasso, which we define as P̂π = {j : π̂j ̸= 0}.
The Post-Lasso estimator π̂PL minimizes

1

NT

N∑
i=1

(d̈it − z̈′itπ)
2, (2.8)

only on the set P̂π.

2.2.5 Data driven selection of the λ parameter

In all of this regularization methods is critical to select a good value of the parameter λ.
The parameter λ in these regularisation methods mentioned above acts as a regulator
that allows us to control the balance between bias and variance. The Bias-Variance
tradeoff is a fundamental concept in statistics and machine learning that describes the
relationship between two sources of error that affect the performance of a predictive
model: bias and variance.

Bias refers to the systematic difference between the model’s predictions and the actual
values it is trying to predict. High bias implies that the model is making simplifying
assumptions about the data, which can lead to underfitting. Underfitting occurs when
the model is too simple to capture the underlying patterns in the data.

Variance refers to the sensitivity of the model to fluctuations in the training data. A
model with high variance fits the training data very closely, capturing both real patterns
and noise. This can lead to overfitting, where the model performs extremely well on
the training set, but fails to generalise to new data.

Bias-variance tradeoff describes the tradeoff needed between these two types of errors
to minimise the total prediction error of a model. In general models with high bias tend
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to be simpler, but may not capture the complexity of the data (underfitting). Models
with high variance tend to be more complex, capturing both real patterns and noise in
the training data (overfitting).

The goal is to find a middle ground where the model is complex enough to capture the
true patterns in the data, but not so complex as to be influenced by noise. This balance
results in a model that generalises well to new data.

As we increase λ, the penalty term becomes stronger and more coefficients go to zero.
This introduces bias in the model, as we are forcing some coefficients to be zero, even
if they have a real effect on the dependent variable. by reducing the complexity of the
model (fewer variables), we reduce the variance. A model with fewer variables is less
likely to over-fit the training data and will therefore generalise better to new data.

If λ is very small, the penalty term is weak and the model will closely resemble a
standard linear regression model. This can lead to overfitting and high variance. Con-
versely, if λ is very large, the penalty term is strong and many coefficients will shrink
to zero. This can lead to an underfitted model and high bias.

It is important to choose a parameter that provides a balance between small variance
and controlled bias. Although a small variance is important, a very large bias can
produce inaccurate estimation. Therefore, the confidence in the results decreases, thus
affecting the interpretation of these estimations.

The authors in [2] use for the Lasso and Cluster-Lasso methods the previously defined
λ. However, there are many other methods to obtain the most suitable value. The
following are some of the most well-known methods.

Cross-validation (CV)

One of the most commonly used methods for the estimation of the λ term is the k-fold
cross-validation, which consists on dividing the data set into k subsets or ‘folds’ of the
same size. The idea is to train the model k times, using k − 1 folds for training and
the remaining fold for validation, each of the folds used exactly once as the testing set.
The mean square error, MSE, is then calculated for each of the folds (see [9]).

In the specific case of the selection of the λ parameter, the steps to be followed to obtain
the best value with CV are the following:

1. Select the number of folds k.

2. Divide the data into training and test sets.

3. Define a grid of values for λ.
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4. For each λ calculate the validation MSE within each fold.

5. For each λ calculate the overall cross-validation MSE.

6. Selecting the λ that minimises the cross-validation MSE.

Based on [6], we denote by M = {(d̈it, z̈it), i = 1, .., N and t = 1, ..., T} for the
set of all the data, and the training and test set by M −M v and M v respectively, for
v = 1, ..., p. Each M v is made up of a fixed proportion of randomly selected elements of
M . The value of λ obtained by k-folds CV shall be the λ that minimises the following
expression:

CV (λ) =
1

k

k∑
v=1

1

#M v

N∑
(d̈it,z̈it)∈Mv

(d̈it − z̈′itπ̂v(λ))
2, (2.9)

By evaluating the performance of the model on different subsets of the data, we can
find the value of λ that best fits our data.

AIC and BIC

According to [12], although it has been found that the CV method is a better way
to choose the λ parameter, the Akaike Information Criterion (AIC) and the Bayesian
Information Criterion (BIC) are methods which can be used to obtain the value of the
λ term, but their use is restricted to estimates that are linear in their parameters.

The optimum λ for the AIC method is the one that minimises the following expression

AIC = −2 · log(L̂) + 2 · p, (2.10)

where L̂ is the maximum value of the likelihood function for the model and p is the
number of regressors (in our case the length of the vector zit).

In the case of the BIC method, the optimal λ is the one that minimises the following
expression

BIC = −2 · log(L̂) + p · log(NT ). (2.11)

The expression is very similar to the previous one but in this case the logarithm of the
number of observations is used.
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2.3 Two-stage least squares estimator

In this section we will explain the procedure we have used to estimate the full model
formed by the two equations (1.1) and (1.2). According to [14], the two-stage least
squares (2SLS) estimator is the most efficient IV estimator. The first thing to do is to
apply the transformation explained in the previous section to remove the fixed effects
from our model. Once the fixed effects have been eliminated, we can start applying the
2SLS to our transformed model (2.2).

In the first stage, we estimate the reduced form model, as mentioned above, we have a
high-dimensional problem since p >> N , where p is the length of the vector zit and N

the size of our sample. Therefore, in order to estimate consistently it we have to apply
regularization methods. For this purpose we apply the Lasso or Cluster-Lasso method
to estimate π̂ and simultaneously obtain a sparse model. In this way we manage to
reduce the size of the vector of instruments zit. Once one of these two methods has
been applied, we are able to define the subset P̂π = {j : π̂j ̸= 0} and then apply the
Post-Lasso to the reduced form on that subset.

The second stage of the 2SLS estimator consists of estimating the first equation of
the model and obtaining the value of β̂. The second stage of the 2SLS estimator is
essentially an ordinary least squares (OLS) regression, but using the predicted values
of the first stage as the explanatory variable. After performing OLS, the estimation of
β is

β̂ =

(
1

NT

N∑
i=1

T∑
t=1

d̈it
ˆ̈Hit

)−1(
1

NT

N∑
i=1

T∑
t=1

ˆ̈Hitÿit

)
, (2.12)

where ˆ̈Hit = z̈′itπ̂PL.

This estimator is also known as the IV estimator (see [14]). In the following, we sum-
marise what has been explained in this section in an algorithm that will be used in
subsequent simulations.

Algorithm to calculate 2SLS estimator

We will now describe the steps necessary to obtain the estimator presented above.

1. Apply the transformation (2.1) to the two equations (1.1) and (1.2).

2. Use the Lasso or Cluster-Lasso technique to estimate the transformed reduced
form equation.

3. Apply the Post-Lasso method to the transformed reduced form equation only with
the variables selected in step 2 (i.e. the variables that the Lasso or Cluster-Lasso
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considers non-zero).

4. Calculate d̈it with coefficients estimated with Post-Lasso, i.e. ˆ̈Hit = z̈′itπ̂PL

5. Apply OLS to the first equation transformed using ˆ̈Hit instead of d̈it to obtain β̂.
Note that this is equivalent to estimate β in (1.1) through an IV estimator using
ˆ̈Hit as instruments.
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2.4 Regularity and asymptotic properties

In this section, we present the conditions under which the Cluster-Lasso and Post-Lasso
methods are valid and allows us to make inference. Therefore, we analyse the main
asymptotic features of the proposed estimator. In order to present these conditions, we
consider the following additive fixed effects model, which for simplicity of notation is
identical to the reduced form previously presented.

dit = h(wit) + fi + lt + uit i = 1, ..., N t = 1, ..., T,

where E[uit|wi1, ...wiT , fi, l1, ..., lT ] = 0. The time invariant individual specific hetero-
geneity is represented by fi. The term lt represents the time fixed effects which are
identical for all individuals in the sample. Note that both fixed effects are correlated
with wit and we assume that the sequence {dit, wit}Tt=1 is independent and identically
distributed (i.i.d.) across i but does not impose any restrictions on the dependence
within individuals. Furthermore, in this case we consider

h(wit) = z′itπ + r(wit).

Before explaining the conditions, we define the index of information, which was used in
[2] allowing for within-individual dependence. It is defined as

ιT := T min
1≤j≤p

E

[
1

T

∑T
t=1 z̈

2
itjü

2
itj

]
E

[
1

T
(
∑T

t=1 z̈itjüitj)2
] (2.13)

We have two extreme cases of this index

• ιT = 1; in this case we have no information and corresponds to perfect dependence
within the cluster i.

• ιT = T ; we have maximal information that corresponds to perfect independence
within the cluster i.

Apart from these two cases, there are many more in between. Now, having defined this
index, let us enumerate the conditions under which the estimator performs well and
returns sparse estimations with good predictive properties and convergence rate.
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2.4.1 Regularity conditions and results

1. Condition ASM (Approximately Sparse Model)
A function h(wit) is said to be well-approximate by a linear combination of trans-
formations zit = ZNT (wit), where ZNT is a measurable map and zit is a vector of
length p, if for each i and t

h(wit) = z′itπ + r(wit),

where the remainder term r(wit) and the coefficient β satisfy

∥π∥0 ≤ s = o(NιT ) and

[
1

NT

N∑
i=1

T∑
t=1

r(wit)
2

]1/2
≤ Bs = OP (

√
s/NιT ).

This condition indicates that the number of non-zero coefficients of the vector β,
i.e. the number of predictor variables selected by the model is less than or equal
to s. The condition o(NιT ) means that the number of non-zero coefficients is of
order less than NιT . This means that the number of non-zero coefficients in the
model grows at a rate smaller than N , as the sample size increases.

The remainder inequality relates the l2 norm to Bs and establishes that the l2
norm of the error term is upper bounded by Bs, and in turn, Bs is upper bounded
by
√

s/NιT with high probability as the sample size increases. Therefore, we
can see how the l2 norm of the approximation error is bounded by a value that
depends both on the number of non-zero predictors, the sample size and also on
the index of information.

In summary, these restrictions suggest that as the sample size and the index of in-
formation increase, the number of significant predictors does not grow excessively
fast and also the mean square error decreases as the sample size increases. This
helps to maintain a balance between the number of predictors in the model and
the amount of information available in the data, which can be crucial to avoid
overfitting or unreliable models.

The following condition allows us to control the behaviour of the Gram matrix,
which is a p× p matrix of the covariances between the variables.

M̈ = {Mjk}pj,k=1, Mjk =
1

NT

N∑
i=1

T∑
t=1

z̈itj z̈itk.

In standard regression analysis, when the sample size is larger than the number
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of variables, the Gram matrix must have full rank. In high-dimensional panel
models, usually the Gram matrix will be singular, because we have more variables
than observations, and for the matrix to be of full rank the sample size should
be the same as the number of variables, i.e. N = p. However, for Lasso and
Cluster-Lasso to work properly, it only requires good behaviour of certain moduli
of continuity of M̈ .

Before setting out the condition we define the minimal and maximal i-sparse
eigenvalues of this matrix as follows

φmin(i)(M̈) := min
δ∈△(i)

δ′M̈δ and φmax(i)(M̈) := max
δ∈△(i)

δ′M̈δ,

where
△(i) = {δ ∈ Rp : ∥δ∥0 ≤ i, ∥δ∥2 = 1} ,

is the i-sparse subset of a unit sphere.

2. Condition SE (Sparse Eigenvalues)
For any C > 0, there exist k′, k′′ ∈ R, where 0 < k′ < k′′ < ∞, which may depend
on C but do not depend on N , such that with probability approaching one, as
N −→ ∞, k′ ≤ φmin(Cs)(M̈) ≤ φmax(Cs)(M̈) ≤ k′′

The above condition refers to the fact that only certain Cs × Cs sub-matrices
smaller than the original matrix, the Gram matrix, are required to be well-behaved
for the estimator to work properly. The size of this submatrices depends on a
constant C and s, the number of non-zero predictors.

3. Condition R (Regularity Conditions) Suppose that for the data {dit, wit} the
following conditions are satisfied with zit defined as in the first condition, that is
zit = ZNT (wit) ,with probability close to 1:

•
(
1

T

∑T
t=1E[z̈2itjü

2
itj]

)
+

(
1

T

∑T
t=1E[z̈2itjü

2
itj]

)−1

= O(1), as T −→ ∞

The previous equality implies that the relationship between the explanatory
variables and the error terms should neither increase nor decrease excessively
as the number of time periods increases.

• 1 ≤ max
1≤j≤p

ϕj/ min
1≤j≤p

ϕj = O(1).

This condition ensures that the relation between the maximum of the penal-
ties and the minimum is bounded between 1 and a constant.
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• 1 ≤ max
1≤j≤p

ϖj

√
Eϕ2

j = O(1) where ϖj =

(
E

[∣∣∣∣ 1√
T

∑T
t=1 z̈itjüitj

∣∣∣∣3
])1/3

.

• log3(p) = o(NT ) and slog(p ∨NT ) = o(NιT ).

The first part of this affirmation states that the cube of the logarithm of the
number of predictors, p, grows at a slower rate than the total sample size
multiplied by the number of time periods. This indicates that the growth
of p is relatively slow compared to the sample size and the number of time
periods.
The second part implies that the product of s and the logarithm of the
maximum between p and NT grows at a slower rate than NιT .

• max
1≤j≤p

∣∣∣ϕj −
√

Eϕ2
j

∣∣∣ /√Eϕ2
j = o(1).

All of these conditions are the same that have been used by the authors in [2], where
only a within transformation has been used. Remember that our transformation is the
following

d̈it = dit −
1

T

T∑
t=1

dit −
1

N

N∑
i=1

dit +
1

NT

N∑
i=1

T∑
t=1

dit.

Assuming E[dit] < ∞, E[zit] < ∞, E[uit] = 0 and that they are all i.i.d random
variables across i and that are stationary along t. For fixed T , applying the law of large

numbers (see [13]),
1

N

∑N
i=1 dit

a.s.−−→ E[dit].

Also by the law of large numbers and by the stationary,
1

NT

∑N
i=1

∑T
t=1 dit

a.s.−−→ 1

T

∑T
t=1 E[dit] =

E[dit].

Therefore, asymptotically our transformation is

d̈it = dit −
1

T

T∑
t=1

dit + oP (1),

that is commonly known as within transformation. The same applies to zit and uit as
explained for the variable dit. Consequently, the conditions ASM, SE and R are valid
for our transformation and attain favourable performance bounds. With all the above
conditions, we can establish the asymptotic Cluster-Lasso performance bounds that are
collected in the following theorem.

Theorem 1 (Selection properties of Cluster-Lasso and Post-Lasso models) Consider a
sequence of probability laws {Pn,T} for which {(dit, wit, zit)}Tt=1 ∼ PN,T i.i.d across i for
which N → ∞, T fixed. Assume that Conditions ASM, SE and R hold for probability

24



Lindes Domínguez Díaz

measure P = PN,T induced by PN,T . Consider a Lasso or Cluster-Lasso estimator
defined in previous sections with the penalties generated by the algorithm. The subset
P̂ satisfies with probability close to 1, ŝ = |P̂ | ≤ Ks for some K > 0 which does not
depend on the size of the sample, N. Then the Lasso or Cluster-Lasso estimator and
the Post-Lasso estimator verify the following conditions

1

NT

N∑
i=1

T∑
t=1

(z̈′itπ̂ − z̈′itπ)
2 = OP

(
s log(p ∨NT )

NιT

)
,

∥π̂ − π∥2 = OP

√s log(p ∨NT )

NιT

 ,

∥π̂ − π∥1 = OP

√s2 log(p ∨NT )

NιT

 .

Note that Theorem 1 only ensures asymptotic bounds for the Cluster-Lasso type esti-
mators obtained for the reduced form in equation (1.2).

2.4.2 Asymptotic conditions and results

In this section we will provide conditions to ensure that β̂ is a
√
NT - consistent esti-

mator and moreover, we will also give a consistent estimator for the variance-covariance
matrix. Let

yit = βdit + αi + γt + ϵit,

dit = h(wit) + fi + lt + uit,

i = 1, ..., N ; t = 1, ..., T.

It is important to mention that the above conditions (regularity conditions) must also
be fulfilled in order to achieve this. To simplify the notation we first define the following
quantities:

For any arbitrary random variables, A = {Ait}i≤N,t≤T

ϕ2(A) =
1

N

N∑
i=1

(
1√
T

T∑
t=1

Ait

)2

,

25



Inference in High-Himensional two-way Panel Data Models

ϖ(A) = E

[∣∣∣∣∣ 1√
T

T∑
t=1

A3
it

∣∣∣∣∣
]1/3

,

ιT (A) = T
E
[
1
T

∑T
t=1A

2
it

]
E[ϕ2(A)]

,

and with that we can define

ϕ2
j = ϕ2({z̈itjüit}), ϖj = ϖ({z̈itjüit}), ιT = min

1≤j≤p
ιT ({z̈itjüit})

ϕ2
H = ϕ2({Ḧitϵ̈it}), ϖH = ϖ({Ḧitϵ̈it}), ιHT = ιT ({Ḧitϵ̈it})

ϕ2
zjd = ϕ2({z̈itj d̈it}), ϖzjd = ϖ({z̈itj d̈it}), ιzjdT = ιT ({z̈itj d̈it})

ϕ2
zjϵ = ϕ2({z̈itj ϵ̈it}), ϖzjϵ = ϖ({z̈itj ϵ̈it}), ιzjϵT = ιT ({z̈itj ϵ̈it})

1. Condition SMIV

• 1
T

∑T
t=1E

[
Ḧ2

it

]
, 1
T

∑T
t=1E

[
ϵ̈2itḦ

2
it

]
, E
[(

1
T

∑T
t=1 d̈

2
it

)2]
are uniformly bounded

in N and T above and far from zero.

• Higher order moments are bounded, i.e., E
[(

1
T

∑T
t=1 ϵ̈

2
it

)q]
= O(1) for some

q > 4.

•
ϖD√
Eϕ2

H

= O(1), max
1≤j≤p

ϖzjϵ√
Eϕ2

zjϵ

= O(1).

• max
j

ιzjϵT

T
ϕ2
zjϵ

= OP (1),
ϕ2
dD

T
= OP (1), max

j

ϕ2
zjd

T
= OP (1).

•
s2 log2(p ∨NT )

NιT
max

{
1,max1≤j≤p

ιHT
ιzjϵT

}
= o(1) .

•
ιHT
ιT

N2/q s log(p ∨NT )

N
= o(1).

These conditions guarantee that the parameter β would be strongly identified if
Ḧit could be observed. It also implies that the use of a small number of variables
in zit is sufficient to identify β accurately,

Before enunciating the theorem, we define an estimator of the asymptotic variance of
β̂, which will be necessary to perform inference for the parameter β after appropriately
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rescaling, as

V̂ = Q−1

[
1

NT

n∑
i=1

T∑
t=1

T∑
t′=1

d̈itd̈it′ ˆ̈ϵitˆ̈ϵit′

]
Q−1,

where Q̂ = 1
NT

∑N
i=1

∑T
t=1 d̈it

ˆ̈Hit.

Theorem 2 (Estimation and Inference in IV Models) Let be a sequence of probability
laws {PN,T} for which {(yit, dit, zit)}Tt=1 ∼ PN,T i.i.d across i for which N → ∞, T fixed
and for which the instrumental variable model holds. Assume that the regularity and
asymptotic conditions are satisfied, then the estimator of β verify√

NιDT V −1/2(β̂ − β)
d−→ N (0, 1),

and

V − ιHT
T
V̂

P−→ 0.

where V is defined as

V =
ιHT
T
Q−1ΩQ−1,

and

Q =
1

T

T∑
t=1

E
[
Ḧ2

it

]
, Ω =

1

NT

N∑
i=1

T∑
t=1

T∑
t′=1

E
[
ḦitḦit′ ϵ̈itϵ̈it′

]
.

This theorem verifies that the estimator of β constructed with instruments selected by
Lasso or Cluster-Lasso in a linear IV model with fixed effects, is both consistent and
asymptotically normal. Furthermore,the theorem states that we can use V̂ to perform
valid inference for β after instrument selection. This inference remains valid uniformly
across a broad range of data-generating processes, including scenarios where perfect
instrument selection is unattainable.

27





Chapter 3

Simulation results

This section analyses the small sample properties of the estimator proposed in the
previous section. To this end, based on [2], we have performed Monte Carlo simulations
with both methods, Lasso and Cluster-Lasso. For both methods we have used the same
data set in order to see the performance of both and compare the results obtained.

We generate data from the following model, which has already been defined above:

yit = βdit + αi + γt + ϵit

dit = z′itπ + fi + lt + uit.

We define the error terms as

ϵit = ρϵϵit−1 + ν1,it,

uit = ρuuit−1 + ν2,it,

where (
ν1,it
ν2,it

)
∼ N

((
0

0

)
,

(
1 ρν
ρν 1

))
i.i.d.

We generate time fixed effects for t = 1, ..., T and for i = 1, ..., N we define the individual
fixed effects. In addition we set αi = fi and γt = lt.

γt ∼ N (0, 1), αi ∼ N
(
0,

4

T

)
.
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Our instruments are defined as follows

zitj = αi + ρzzi(t−1)j + ϕitj, t > 1, (3.1)

where ϕitj is a N (0, 1). Finally, the structure of the coefficients on the instruments, π.
The coefficient vector π is defined as

πj = (−1)j−1 1√
s
1{j≤s} +

1

j2
1{j>s}, s =

⌊
1

2
N1/3

⌋
,

for 1 ≤ j ≤ p and
⌊
1
2
N1/3

⌋
is the integer part of 1

2
N1/3. We consider two numbers

of instruments, p1 = N × (T − 2) and p2 = N × (T + 2). We have carried out 500
simulations for different sample sizes, N = 25, 50 and 100 all with T = 10.

When implementing the Lasso and Post-Lasso methods it is common to use the cross
validation technique to obtain the optimal λ value for the data set. In the case of the
λ based on [1] and [2], taking c=1.1 and ζ = 0.1/ log(p ∨ NT ), the value obtained
is too large, which results in no variable being selected in the first step of the 2SLS,
preventing the process from continuing. This could be because our transformation is
not the same as the one used by the authors in [1] and [2]. Although we have shown
that they behave asymptotically the same, for the sample sizes used, where our sample
is finite, their λ parameter does not provide an optimal result.

To show the difference between the λ parameter defined by the authors and the λ

parameter obtained with the cross-validation technique we have performed an iteration
and the results are as follows:
Cross-Validation: 0.121
Optimum λ according to [1] and [2]: 139.535

Seeing the difference, for our simulations we have used the λ provided by the cross-
validation technique. In addition, we have performed simulations for two other values
of λ which are 0.01 and 0.3, one value larger and one value smaller than the one obtained
with CV to see how the regularization methods behave with changes in the λ parameter.

In this case, it is not necessary to split the data into training and test sets when the
goal is to estimate a specific parameter, such as β, and calculate its bias and RMSE
with respect to a known value, because using all available data allows a more accurate
estimation of the parameter and a more direct assessment of the bias. Partitioning is
fundamental in machine learning to assess the predictive performance of the model on
unseen data and to prevent overfitting. As in our case we want to observe how well
our model estimates, we do not need to split the sample. The table below shows the
results of our simulations with the Lasso method, in the table we show the bias and
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the RMSE obtained for the different sample sizes in order to evaluate the robustness of
our model.

Table 3.1: Simulations Results (Lasso)

p1 = N × (T − 2) p2 = N × (T + 2)
Bias RMSE Bias RMSE

N = 25 0.377 0.393 0.383 0.396
λ = 0.01 N = 50 0.369 0.376 0.374 0.381

N = 100 0.370 0.374 0.379 0.382
N = 25 0.370 0.387 0.368 0.386

λ = CV N = 50 0.362 0.371 0.373 0.381
N = 100 0.365 0.370 0.370 0.375
N = 25 0.372 0.394 0.379 0.396

λ = 0.3 N = 50 0.364 0.375 0.369 0.379
N = 100 0.363 0.369 0.374 0.381

As we can see in the table, the Lasso method works optimally for the λ calculated
with CV, but not for the fixed λ of 0.01 and 0.3. Lasso with cross-validation allows
for more flexible adaptation to the data by automatically selecting the optimal λ value
for each data set. As the sample size increases, the prediction error estimate becomes
more accurate, which in turn leads to a more reliable selection of λ. This results in
a decrease in the RMSE, as the model better fits the underlying relationships in the
data. In contrast, a fixed value of λ imposes a rigid constraint on the model, regardless
of the variability in the data. Therefore, as the sample size increases, the model with
fixed λ may not improve significantly or even worsen its performance, especially if the
value of λ is not optimal for the new sample size as we see in our case.
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As mentioned in Chapter 1, the Cluster-Lasso has the advantage of adding {ϕ̂j}
p

j=1

to the traditional Lasso. To calculate the values of these parameters we have based
ourselves on the algorithm proposed by the authors in [2] but applied to our model.

Algorithm to calculate ϕ̂j

Define for j = 1, ....p an initial ϕ̂j value

Initial: ϕ̂j =

√√√√ 1

NT

N∑
i=1

T∑
t=1

T∑
t′=1

z̈itj z̈it′j d̈itd̈it′ , (3.2)

and a refined one

Refined: ϕ̂j =

√√√√ 1

NT

N∑
i=1

T∑
t=1

T∑
t′=1

z̈itj z̈it′j ˆ̈uit
ˆ̈uit′ . (3.3)

In both cases, the λ value is the previously defined. We denote by K ≥ 1 the number
of iterations.

Steps of the algorithm:

1. With the values of z̈itj and d̈it applied in (3.2) we obtain ϕj0.

2. Using ϕ̂j0 in the optimization problem (2.5) or (2.8) and solving this problem we
obtain π̂j. Then, we calculate ˆ̈uit = d̈it − z̈′itjπ̂j for i = 1, ..., N and t = 1, ..., T .

3. Update the penalty loadings using the ˆ̈uit calculated in the step 2 applied in (3.3).

4. Use the new ϕ̂j in one of the optimization problem and calculate π̂j.

5. Repeat the step 4 K − 1 times.

In practise this algorithm is performed for K number of iterations. The more iterations
the more accurate our estimation of üit will be. But it is important to take into account
the computational cost and find a balance between calculated cost and accuracy. We
have iterated the algorithm 12 times and after obtaining the refined {ϕ̂j}

p

j=1 we have
applied the Cluster-Lasso model to our data.
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As with the Lasso method, we performed the simulations for three different values
of the λ parameter. We have used the λ provided by the cross-validation technique and
two fixed values that are the same as in the Lasso method, 0.01 and 0.3. The following
table shows the results obtained in the simulations.

Table 3.2: Simulations Results (Cluster-Lasso)

p1 = N × (T − 2) p2 = N × (T + 2)
Bias RMSE Bias RMSE

N = 25 0.376 0.393 0.383 0.397
λ = 0.01 N = 50 0.369 0.376 0.374 0.381

N = 100 0.370 0.374 0.379 0.382
N = 25 0.369 0.387 0.368 0.385

λ = CV N = 50 0.363 0.371 0.373 0.381
N = 100 0.365 0.370 0.371 0.375
N = 25 0.371 0.392 0.378 0.396

λ = 0.3 N = 50 0.362 0.372 0.369 0.379
N = 100 0.361 0.368 0.376 0.382

In the table we can see that for the λ value obtained with the cross-validation method
it works well because the RMSE decreases as we increase the sample size. For the two
cases where we have set the λ value to 0.01 and 0.3, the method stops working optimally
and the RMSE is not decreasing. It is important to mention that the values obtained
for the Cluster-Lasso method are for most cases identical to the results obtained with
the Lasso method.

3.1 Conclusions

The results in the two tables show that the two methods work very similarly. Therefore,
for the econometric model studied in this paper, it would be indifferent to use either
the Lasso or the Cluster-Lasso method. The simulations have shown that in our case it
was not appropriate to give a fixed value for the λ term because we do not get results
that improve as the sample size increases.

From the results obtained with the fixed values of λ, it is worth noting that there is
practically no difference in the results between those obtained with the value 0.01 and
the value 0.3, which indicates that the increase in λ does not give better results and we
only obtain good results by looking for a λ with CV or with some method that obtains
this parameter based on the data.
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However, it should also be noted that the computational cost of simulations with a
fixed λ and with a λ obtained with CV is very different. Implementing an algorithm to
obtain the λ value has a very high computational cost, but to obtain adequate results
it is necessary. Therefore, we can conclude that despite the computational cost, the
Lasso and Cluster-Lasso together with a λ obtained with CV works adequately.

Based on the simulations performed, and for the case where the λ parameter is obtained
with CV, we observe that both the bias and the RMSE of the estimators decrease as
we increase the sample size. It is true that there is a time when the bias increases, but
compared to the smaller sample size it does decrease. Since the RMSE decreases as
the sample size increases, the variance of the estimator is decreasing. This is consistent
with the theory that an estimator is asymptotically normal, since the variance decreases
as the sample increases, bringing the distribution of the estimator closer to a normal
one. In absolute terms (looking at the first size N = 25 and the last N = 100) we see
that the bias decreases, we can conclude that our estimator is consistent. Although we
have not directly calculated the consistency of the variance-covariance matrix estimator,
given that the estimators of the structural parameters are consistent and the variance-
covariance matrix is calculated based on these estimators, it is reasonable to expect
that it is also consistent.
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Appendix

R code to implement 2SLS estimator

Below is the R studio code that we have implemented in order to perform the 2SLS
estimator using the Lasso method.

The first stage of the two-stage least squares:

#Lasso
lasso.mod <- glmnet(z_transformed ,d_transformed ,alpha=1,lambda

=0.3)
coef_lasso_df <- as.data.frame(as.matrix(coef_lasso))
#Non -zero coefficients selected with Lasso
non_zero_coef <- coef_lasso_df[coef_lasso_df != 0, , drop=FALSE]
non_zero_variables <- rownames(non_zero_coef)[rownames(non_zero_

coef) != "(Intercept)"]
z_transformed_ filtered <- z_transformed[, non_zero_variables ,

drop=FALSE]
#Post -Lasso
post_lasso <-lm(d_transformed~z_transformed_ filtered)
# Calculate d with coefficients estimated with Post -Lasso
d_estimated <- coef(post_lasso)[1] + as.matrix(z_transformed_

filtered) %*% coef(post_lasso)[-1]

The second stage of the two-stage least squares is the following:

# Ordinary least squares estimation
ols <- lm(y_transformed~d_estimated)
# Beta estimated
beta_estimated <- coef(ols)["d_estimated"]
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Following is the R code to implement the 2SLS using the Cluster-Lasso method.

The first stage of the two-stage least squares:

#Cluster -Lasso
cluster.lasso.mod <- glmnet(z_transformed ,d_transformed ,penalty.

factor = phi_refined ,alpha=1,lambda =0.3)
coef_cluster_lasso <- coef(cluster.lasso.mod)
coef_cluster_lasso_df <- as.data.frame(as.matrix(coef_cluster_

lasso))
#Non -zero coefficients selected with Cluster -Lasso
non_zero_coef <- coef_cluster_lasso_df[coef_cluster_lasso_df !=

0, , drop=FALSE]
non_zero_variables <- rownames(non_zero_coef)[rownames(non_zero_

coef) != "(Intercept)"]
z_transformed_filtered <- z_transformed[, non_zero_variables ,

drop=FALSE]
#Post -Lasso
post_lasso <-lm(d_transformed~z_transformed_filtered)
# Calculate d with coefficients estimated with Post -Lasso
d_estimated <- coef(post_lasso)[1] + as.matrix(z_transformed_

filtered) %*% coef(post_lasso)[-1]

The second stage of the two-stage least squares is the following:

# Ordinary least squares estimation
ols <- lm(y_transformed~d_estimated)
# Beta estimated
beta_estimated <- coef(ols)["d_estimated"]
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Following is the R code to implement the 2SLS using the CV method.

The first stage of the two-stage least squares:

# CV
cv<-cv.glmnet(z_transformed ,d_transformed ,alpha =1)
bestlam <- cv$lambda.min
#Cluster -Lasso
cluster.lasso.mod <- glmnet(z_transformed ,d_transformed ,penalty.

factor = phi_refined ,alpha=1,lambda=bestlam)
coef_cluster_lasso <- coef(cluster.lasso.mod)
coef_cluster_lasso_df <- as.data.frame(as.matrix(coef_cluster_

lasso))
#Non -zero coefficients selected with Cluster -Lasso
non_zero_coef <- coef_cluster_lasso_df[coef_cluster_lasso_df !=

0, , drop=FALSE]
non_zero_variables <- rownames(non_zero_coef)[rownames(non_zero_

coef) != "(Intercept)"]
z_transformed_filtered <- z_transformed[, non_zero_variables ,

drop=FALSE]
#Post -Lasso
post_lasso <-lm(d_transformed~z_transformed_filtered)
# Calculate d with coefficients estimated with Post -Lasso
d_estimated <- coef(post_lasso)[1] + as.matrix(z_transformed_

filtered) %*% coef(post_lasso)[-1]

The second stage of the two-stage least squares is the following:

# Ordinary least squares estimation
ols <- lm(y_transformed~d_estimated)
# Beta estimated
beta_estimated <- coef(ols)["d_estimated"]
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