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Abstract
This study investigates the epistemic uncertainty associated with the wave propagation modeling in
wave climate projections. A single-forcing, single-scenario, seven-member global wave climate
projection ensemble is used, developed using three wave models with a consistent numerical
domain. The uncertainty is assessed through projected changes in wave height, wave period, and
wave direction. The relative importance of the wave model used and its internal parameterization
are examined. The former is the dominant source of uncertainty in approximately two-thirds of
the global ocean. The study reveals divergences in projected changes from runs of different models
and runs of the same model with different parameterizations over 75% of the ensemble mean
change in several ocean regions. Projected changes in the wave period shows the most significant
uncertainties, particularly in the Pacific Ocean basin, while the wave height shows the least. Over
30% of global coastlines exhibit significant uncertainties in at least two out of the three wave
climate variables analyzed. The coasts of western North America, the Maritime Continent and the
Arabian Sea show the most significant wave modeling uncertainties.

1. Introduction

Ocean wind waves play a key role in the impact the
ocean may have on human activities. Wind waves
transport more than half of the energy propagating
across the ocean surface [1, 2], thus conditioning the
shape and size of the elements confronting them, both
in the open ocean (e.g. offshore structures [3] or
vessels [4]) and in the coastal zone (e.g. coastal pro-
tection infrastructures [4, 5]). In line with the latter,
the energy transported by waves shapes the coastline,
eroding andmovingmaterials, seeking to reach a nat-
ural equilibrium [6]. Extreme events of wind waves
may therefore significantly impact offshore activities
such as route shipping or the offshore wind industry
[7, 8], and the coast, through flooding episodes [9,
10] and major erosion events [11, 12]. An accurate

characterization of the wave climate and its variability
is crucial for a range of applications, including infra-
structure design and assessment of coastal impacts,
among others.

Ocean wind waves are projected to change over
the twenty-first century under a warming climate
[13]. Climate change is affecting the main forcing of
wind waves, the surface wind [14, 15], changing the
transmitted energy [16] and, hence, the characterist-
ics of the waves. In addition, the ice melting accel-
eration in high latitudes triggered by the increasing
temperatures [17] is generating an expansion of wave
generation areas [18, 19], thus inducing an increase
in the wave energy propagating from the poles [20].

The assessment of the future behavior of wind
waves under climate change has been a compelling
subject of analysis for the last two decades [20–30],
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encouraged by the severe implications these changes
may have, especially for extreme events [31, 32].
The standard approach to conduct these studies is
based on wave climate projections [24–26, 33]. These
products represent future wave climates, for different
scenarios, developed using forcing drivers fromglobal
climate models (GCMs) or regional climate models
(RCMs). Multiple studies on the matter have led to
a community consensus about the projected beha-
vior of climatologicalmeanwave conditions in several
ocean regions, such as an increase in significant wave
height (Hs) in the Southern Ocean and in the tropical
Eastern Pacific, and a decrease in the North Atlantic
Ocean, Northwestern Pacific and Mediterranean Sea
[21, 34]. The projected changes in extremes are,
however, still characterized by great uncertainty
[30, 35, 36].

The uncertainty associated with the projected
changes in wind waves based on wave climate pro-
jection ensembles is normally assessed through the
agreement in the sign and magnitude of the changes
projected for the different ensemble members [24,
37]. Nevertheless, this integrated assessment is
unable to unravel the origin of the uncertainties
found. Several sources of uncertainty are present in
assessing projected changes in wave climate condi-
tions. Uncertainty propagates through all the stages
involved in this assessment (figure 1), a process
known as the uncertainty cascade [38, 39]. Lower
steps within the uncertainty cascade will there-
fore accumulate the uncertainty inherited from top
sources [40, 41].

Beyond the aleatoric uncertainty associated with
the chaotic natural variability of the climate variables
involved [38, 39], the uncertainty in wave climate
projected changes also integrates the socio-economic
scenario uncertainty, the uncertainty related toGCMs
and the epistemic uncertainty associated with the
wave modeling part. These sources of uncertainty are
usually embraced by including representative mem-
bers of different configurations. For example, it is
common practice to include several scenarios and
GCM forcings to consider these uncertainties in the
assessment [30, 42]. The use of different wave models
and/or wave model setups, however, is uncommon in
studies of this kind.

This study particularly focuses on the epistemic
uncertainty associated with the wave modeling com-
ponent of the simulations inwave climate projections.
Wave models (e.g. SWAN, WAM) reproduce the gen-
eration, propagation and dissipation of wind waves
through numerical equations, but have inherent sim-
plifications that cause the numerical output to diverge
from reality. Model differences mainly arise from
the numerical scheme used to solve the governing
equations, the number of wave propagation features
modeled (e.g. bottom friction, white-capping, ice
interaction) and the equations used to represent each

of these features. Model internal parameterization
can also be tuned, leading to variations between runs
of the same model [43]. In this context, predefined
internal parameterizations, known as source term
packages, are available. These source terms packages
comprise a set of equations that address the wave gen-
eration and dissipation, also including some tunable
parameters. Nevertheless, these source terms pack-
ages do not encompass the entire model parameteriz-
ation, as some other issues, such as the wave–bottom
interaction, fall outside of them and can also affect the
wave model outcomes.

To date, only a very few studies have addressed
the uncertainty associated with wave modeling in
projected changes in wave climate [21, 22]. These
studies assessed the contribution of wave modeling
uncertainty to the total uncertainty in the projec-
ted changes, distinguishing its significance fromother
sources such as those associated with the GCMs and
the future scenarios. Nevertheless, a specific study
that focuses on isolating and analyzing in detail
the epistemic uncertainty related to wave model-
ing has not yet been conducted. Thus, several ques-
tions still arise and remain unanswered, such as the
actual influence of wave model selection on projec-
ted changes in wave climate, the extent to which the
parameterization of the numerical model affects the
changes, and which of these sources of uncertainty is
more significant. The aim of this study is to address
these and related questions by isolating the epistemic
uncertainty associated with wave modeling, examin-
ing the relative importance of its main sources in
wave climate projected changes, and quantifying its
magnitude.

2. Methods

2.1. Wave climate projection ensemble
This study uses a wave climate projection ensemble
forced by a single run (r1i1p1f1) of the CMIP6 [44]
GCM EC-EARTH3 [45], which has been proven to
performwell in reproducing climatemetrics [46], and
a single future climate scenario (SSP5-8.5 [47, 48]).
Runs use three-hourly surface wind fields and daily
ice coverage fields as forcings (more details in previ-
ous articles [43, 49]). The time slices 1995–2014 and
2081–2100 are used as baseline and future periods,
respectively. The wave climate projection ensemble
is produced using the most popular wave models
within the climate community: WaveWatch III v6.07
[50] (hereinafter WW3), WAM v4.6 [51] and SWAN
v41.20AB [52, 53].

The three models used are third-generation spec-
tral wavemodels that share a similar theoretical back-
ground. The main characteristic of this type of mod-
els is not restricting the shape of the wave spectrum as
in previous generations. All of them are based on the
solution of the action balance equation (equation (1))
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where N(x, y, σ,θ) is the wave action density, c
is the propagation celerity of the wave energy, σ
is the intrinsic frequency and θ is the propaga-
tion direction. Stot is the total sum of source terms
of different physical processes parameterized in the
model.

WAM and WW3 use explicit numerical propaga-
tion schemes limited by time steps due to Courant–
Friedrichs–Lewy (CFL) criteria, whereas SWAN uses
an iterative approximation to a fully implicit scheme
to avoid such limitations [54, 55]. As a result, WW3
and WAM models are more efficient in regional and
global domains, whereas SWAN model is computa-
tionally more efficient in coastal areas. Models are
also different regarding the processes solved and the
parameterizations used to solve them. SWAN model
differs from WAM and WW3 on including coastal-
specific parametrizations (e.g. triads, quadruplets) to
solve processes in limited water depths and complex
coastal areas. All this makes WAM and WW3 models
to be typically used for global [56–61] and regional
[42, 62–64] scales, while SWAN model is extensively
used to develop coastal-scale studies [65–67].

Each ensemble member is developed using a wave
model with a different numerical parameterization.
Differences lie in the source term package selected
to develop each ensemble member. Default paramet-
ers are employed for each simulation. The ensemble
comprises seven members, integrating four WW3
runs developed with the source term packages ST2,
ST3, ST4 and ST6, two SWAN runs with the source
term packages ST1 and ST6 and one WAM run
with the Cycle 4.5 source term package. Each source
term package parameterization implements different
approximations for the wind–wave interaction and
the wave dissipation. A succinct definition of each
source term package is provided in supplementary
material.

Each ensemble member produces a global three-
hourly time series of significant wave height (Hs),
mean wave period (Tm) and mean wave direction
(θm), with one-degree spatial resolution. Grid nodes
covered by ice for more than 30% of time are not
considered in the analysis. A global validation against
buoy and reanalysis data has been undertaken [49]. A
detailed description of the numerical configuration of
the experiments can be found in two previous articles
[43, 49].

2.2. Projected changes in wave climate
Projected changes are computed as the relative pro-
jected change (in %) between the baseline period and
the future period, normalized by the historical value.
In the case of wave direction, the relative projected
changes are normalized by 360◦.

2.3. Analysis of variance
The relative contribution to the total uncertainty
between the wave model used and the model
parameterization—i.e. the inter-model and intra-
model uncertainties, respectively, is estimated
through a one-way analysis of variance (one-way
ANOVA), similarly as it has been done in previous
studies [22, 40]. ANOVA method is used to compute
the explained variance (EV; equations (2) and (3))
of each source of uncertainty based on the sum
of squares (SS) between individual member runs
[68, 69].

EVinter (%) =
SSinter
SStotal

× 100, (2)

EVintra (%) = 100− EVinter (3)

where SStotal is the total SS and SSinter is the SS between
wave models:

SStotal =
∑
i

∑
j

(
∆ij − ∆̄

)2
, (4)

SSinter =
∑
j

nj
(
∆̄j − ∆̄

)2
, (5)

where∆ij is the relative projected change for run i of
model j, ∆̄j is the mean relative projected change of
model j runs, ∆̄ is the overall mean projected change
and nj is the number of runs of each propagation
model.

2.4. Quantification of uncertainty
The inter-model and intra-model uncertainties are
independently quantified by assessing the differ-
ences between the projected changes from different
wave models and different model parameterizations,
respectively. Discrepancies are measured through the
relativemean difference (RMD)metric, computed as:

RMD(%) =
∆n −∆m

∆̄
× 100, (6)

where ∆n and ∆m represent the relative change in
runs n and m, respectively; and ∆̄ represent the
ensemble mean relative change.

The inter-model uncertainty (Ie; equation (4)) is
quantified by computing, first, the RMDs between
runs from each possible combination of wave models
(i.e. WW3–SWAN,WW3–WAM andWAM–SWAN).
Thus, the number of RMDs between two different
wave models is equal to the number of runs for the
first model multiplied by the number of runs for the
second one. Since the number of runs differs between
models, so does the number of RMDs for each model
combination. Thus, a weighted mean and a weighted
standard deviation are computed, to avoid results
biasing, as follows:

Ie = x̄w ±σw (7)
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where, x̄w is the weighted mean uncertainty and σw
is the weighted standard deviation of the uncertainty,
estimated as:

x̄w =
i=N∑
i=1

RMDi ·
1

N · ni
, (8)

σw =

√√√√i=N∑
i=1

∣∣RMDi −RMDi

∣∣2 · 1

N · ni
(9)

whereN is the number of combinations, RMDi is the
mean RMD for the combination i and ni is the num-
ber of elements within combination i.

The intra-model uncertainty (Ia) quantifica-
tion is analogous to the inter-model uncertainty
(equation (4)). RMDs are computed between model
runs from the same wave model with a different
numerical parameterization. However, since the dif-
ferent number of model runs would lead to a strong
imbalance between the number of RMDs for each
wave model (six for WW3, one for SWAN, none for
WAM), only the runs for WW3 are considered to
quantify Ia.

2.5. Significance of uncertainty
The relevance of uncertainty is assessed to identify
areas where it may have a greater impact. This
is achieved by evaluating the magnitude of uncer-
tainty, the projected changes, and the discrepan-
cies among members. Thus, a specific ocean loca-
tion (i.e. ocean grid point) is considered to have sig-
nificant uncertainty if the mean uncertainty value
is greater than 25% (the same approach is applied
for inter- and intra-model uncertainties). In addi-
tion, uncertainty values are deemed significant if the
absolute ensemblemean projected changes exceed the
absolute global median projected change and/or if
the standard deviation of individual member pro-
jected changes is greater than twice the ensemble
mean projected change. The latter two conditions aim
to exclude regions exhibiting very high uncertainty
values, which arise from low ensemble mean values
derived from low individual member changes.

3. Results

This study isolates and quantifies the wave modeling
epistemic uncertainty. To that end, a single-scenario,
single-forcing wave climate projection ensemble
developed with multiple wave models and para-
meterizations is used (see section 2). Using a single
scenario and a single forcing GCM avoids attrib-
uting inter-member divergences to the uncertainty
associated with the scenario and the forcing climate
model. In the same vein, all numerical propagation
runs are developed, as much as possible, using the
same bathymetry and computational grid [49], hence
avoiding model set-up discrepancies. The differences

can, therefore, only be attributed to the numerical
parameterization of the model—in other words,
to the wave modeling epistemic uncertainty. This
is illustrated in figure 1. The colored boxes in the
uncertainty cascade depict the sources of uncertainty
associated with the projected changes assessed in this
study. In contrast, the gray boxes represent sources of
uncertainty not linked to the discrepancies observed
among ensemble members.

The wave modeling epistemic uncertainty can be
seen as the addition of two sources of uncertainty:
(i) the selection of the numerical model and (ii) the
internal parameterization of the model. Regarding
the former, each numerical model has some spe-
cific features not shared with the others, thus indu-
cing differences in the results. On the other hand,
despite all model runs sharing most of the numer-
ical parameterization, the numerical approximation
of some specific processes may differ. This study
considers both sources of uncertainty by including
numerical simulations developed with different wave
models and with different parameterizations of the
same model (see section 2).

The discrepancies between ensemble members
are addressed in figure 2. Figure 2 shows the regional
and global (ocean regions are defined in figure SM1)
uncertainty cascades [40] for projected changes (see
section 2) in mean Hs, Tm and θm (panels (a)–(c),
respectively). Each cascade is divided in three levels.
From top to bottom, each level displays the ensemble
mean projected change, the wave model mean pro-
jected changes, calculated as the mean change from
all members of a specific model, and the projec-
ted change for each ensemble member, along with
the 5%–95% range (assuming normal distribution).
Results for 99% percentileHs (Hs99) are also assessed
and shown in figure SM2. The width of the dis-
played uncertainty cascades reflects the divergence
between ensemble members (lower level) and wave
models (intermediate level). Projected changes in
mean Hs (figure 2(a)) show the greatest differences
in the North Pacific Ocean. In particular, TWNP
is the ocean region where the greatest differences
between member runs (from −9.5% to −5%) and
wave model means (from −8.5% to −4.8%) can be
seen. On the other hand, TESP shows the lowest dif-
ferences. Note that most regions show an agreement
between all ensemble members in terms of the sign
of change. The main exceptions are TESP, ETSA and
ETSI, where two out of the seven members diverge in
this change feature. Projected changes inHs99 (figure
SM2) show the greatest differences in TWNP and
TWSP. Additionally, only TNIO shows discrepancies
in the sign of change between ensemble members.

Projected changes in Tm (figure 2(b)) show a gen-
eral homogenous behavior between ocean regions
as most of them show 5%–95% ranges for indi-
vidual member runs lower than 2.5%. TWNP is the
only exception, showing a 5%–95% range between
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Figure 1. General outline of the uncertainty cascade related to the assessment of wave modeling uncertainty in wave climate
projected changes. The left diagram depicts the uncertainty cascade. Colored boxes represent the sources of uncertainty linked to
the projected changes assessed in this study. Right diagram displays the configuration of the experiment in relation to the sources
of uncertainty.

ensemble members of approximately 3%. Changes
in mean θm (figure 2(c)) show the strongest spa-
tial heterogeneity across ocean regions among all the
wave climate metrics analyzed. In general, except for
ETNA, the differences are significantly higher in the
Pacific Ocean than in the rest of the ocean basins,
especially in the tropical region. On the other hand,
regions such as TNAO, TSAO and TSIO show very
good agreements between individual member runs
and wave models, with differences lower than 1% in
both cases. For completeness, the individual member
projected changes and the ensemble mean changes
across the global ocean are included in figures SM3–6.

The relative importance between the wave model
used and its internal parameterizationwithin the total
wave modeling uncertainty in wave climate projected
changes (i.e. inter-model and intra-model uncer-
tainty, respectively) is assessed through an ANOVA
(see section 2). Figure 3 presents the results, illus-
trating that, for example, the uncertainty in global
projected changes in mean Hs is approximately 80%
attributable to the chosen model and 20% to the
model setup configuration. Results show an overall
higher contribution of the inter-model uncertainty to
the total uncertainty with respect to the intra-model
uncertainty—namely, the use of different models has
a greater influence on the differences found in the
wave climate projected changes than the use of dif-
ferent model parameterizations. In fact, at least 60%
of the ocean regions show a higher importance of
the inter-model uncertainty for each metric analyzed
(69%, 62%, 85% and 62% for mean Hs, Hs99, mean
Tm and mean θm, respectively).

Across extra-tropical regions, the inter-model
uncertainty for mean Hs remains above 60% relative
to intra-model uncertainty, regardless of the region
analyzed. In tropical regions this pattern is not so

clear, as there are regions where the contribution of
the model parameterization to the total uncertainty
is considerably higher than the wave model used (e.g.
TNAO, TWSP). Other regions such as TSIO, TNIO
and TESP show a split dominance between both
sources of uncertainty. The behavior of Hs99 is, in
general terms, very similar to the one for mean Hs.
Main exceptions can be found in ETNP and TNAO,
where the intra-model uncertainty clearly dominates
over the inter-model uncertainty for Hs99 and the
opposite for mean Hs. The analysis of the projected
changes in mean Tm evidence that this parameter is
the one in which the selection of the wavemodel plays
a more important role in contrast to the model para-
meterization in the total uncertainty found, as more
than 75% of the regions show this behavior. Only
TENP and TWSP show opposite results, both with
a relative importance of the intra-model uncertainty
above 65%. The analysis of mean θm shows a great
heterogeneity in the Southern Ocean as themain out-
come. In this regard, while ETSP and ETSA show the
relative importance of the inter-model uncertainty
higher than 80%, ETSI shows the opposite behavior
with less than 10%.

Nevertheless, results from figure 3 only informs
about the relative importance of each contribut-
ing element and nothing about the total amount of
uncertainty of each source. In order to compare the
existing uncertainty between regions, a regional (and
global) quantification of both sources of uncertainty
(see section 2) for mean Hs, Hs99, mean Tm and
mean θm is provided in figure 4. For each metric,
the mean inter-model and intra-model uncertainties,
along with the confidence intervals (estimated as the
mean± one standard deviation) are displayed.

The highest uncertainties in mean Hs are found
in TWSP, exceeding mean values of 100% for both

5
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Figure 2. Uncertainty cascades for (a) mean Hs, (b) mean Tm and (c) mean θm. Projected changes, per region and globally. Lower
levels of the cascades represent more disaggregated changes: Top level—ensemble mean relative change, intermediate level—wave
model mean relative changes, and lower level—ensemble member relative changes. Outside gray dashed lines represent the
5%–95% range. WAM—Cycle 4.5 is displayed as ST4 for the sake of simplicity.

inter- and intra-model uncertainties. The former also
shows mean values over 100% in ETSA and ETSI.
Note that figure 2 shows great discrepancies between
SWAN and the other two wave models in the lat-
ter two regions, likely causing the high inter-model
uncertainty values found. On the other hand, it
is also worth noticing the low uncertainties found
for projected changes in mean Hs in the Northern
Hemisphere, especially in the Atlantic Ocean, where
the inter- and intra-model uncertainties show mean

values lower than 15%. Hs99 shows the greatest
uncertainties in the tropical latitudes of the Indian
Ocean, exceeding mean values of 70% for both the
inter- and intra-model uncertainties, likely due to the
higher differences between WAM and the rest of the
wave models in these regions (figure 2).

The inter-model uncertainty formeanTm exceeds
mean values of 50% in 7 out of the 13 regions ana-
lyzed. This denotes Tm to be the parameter for which
the selection of the wave model causes the greatest
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Figure 3. Relative contribution to the total wave modeling epistemic uncertainty, expressed as the explained variance (in %), for
projected changes in mean Hs, Hs99, mean Tm and mean θm, per region and globally, between the inter-model (EV inter,
equation (1)) and intra-model (EV intra, equation (2)) uncertainties.

Figure 4. Quantification of the inter-model and intra-model wave modeling epistemic uncertainty for projected changes in mean
Hs, Hs99, mean Tm and mean θm, per region and globally. Black arrows indicate values higher than 100%.

differences in the estimated projected changes. On
the other hand, only two regions (ETNP and TWSP)
show mean values of intra-model uncertainty above
60%.Regardingmean θm, as expected from the results
presented in figure 2, sensitive differences can be seen
between regions. Inter-model uncertainties in ETNP,
TWSP, TESP, ETNA and TNIO exceed mean values
of 90%, whereas for the rest of the regions, it shows
mean values always lower than 40%. The same con-
clusions can be extracted for the intra-model uncer-
tainty: while ETNP, TESP and TNIO show mean val-
ues above 60%, the rest of the regions show values
lower than 30%.

Despite figure 4 allowing the identification of the
regions showing the highest wave modeling uncer-
tainties, it precludes identifying precisely in which
areas these uncertainties aremore important. The fact
that RMDs are computed by normalizing with the
ensemble mean (see section 2), leads to large uncer-
tainties where the ensemble mean changes are very
low. Thus, it is relevant to distinguish between cases

in which low ensemble mean changes are caused by
low individual member changes, from ocean areas
where ensemble mean changes are very low due to
the balance between strong individual change sig-
nals of different signs. Figure 5 depicts the ocean
areas where the inter- and intra-model uncertainties
are significant for the projected changes in mean Hs,
Tm and θm (see section 2). It identifies ocean areas
where the high uncertainties found are relevant due
to the magnitude of the projected changes and/or
due to the great discrepancies between members.
Correspondingly, it facilitates the identification of
ocean regions where the wave modeling uncertainty
is not critical in the assessment of wave climate pro-
jected changes. Results forHs99 are included in figure
SM7.

Results indicate that inter-model uncertainty is
more important than intra-model uncertainty across
the global ocean. In this regard, the proportion of the
global ocean showing a significant inter-model uncer-
tainty for mean Hs, Tm and θm is always higher than
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Figure 5. Ocean areas showing significant (a) inter-model and (b) intra-model wave modeling uncertainty for mean Hs (blue),
mean Tm (green) and mean θm (orange) projected changes. Stippling indicates significant uncertainties for the three metrics
analyzed.

25%, whereas for the intra-model uncertainty the
percentages are always lower than 25%. Figure 5(a)
shows that the ocean areas where the inter-model
uncertainty is significant simultaneously for the three
metrics analyzed (8%of the ocean surface) aremainly
in the Pacific Ocean, particularly at TENP. Other
small ocean areas in the Atlantic Ocean (e.g. tropical
northeast) and Indian Ocean (e.g. western Arabian
Sea) also show this behavior.

The inter-model uncertainty in projected changes
inmeanHs is notably important in the tropical Pacific
basin and the Gulf of Alaska. Some dispersed areas in
the Atlantic and Indian Oceans also show significant
results, such as the southernmost part of the Atlantic,
the seas south of Sumatra and Java and the Arabian
Sea. Mean Tm presents the largest proportion of the
global ocean showing significant inter-model uncer-
tainties (53%). Most of the Pacific basin, with the
only exception of the western extra-tropical region,
shows this behavior. Additionally, a great propor-
tion of the Northwest Atlantic Ocean and the tropical
north IndianOcean also show significant inter-model
uncertainties for this metric. Regarding the projected

changes in mean θm, the Pacific Ocean is again the
basin where this source of uncertainty is more relev-
ant, especially in the tropical and the western extra-
tropical ocean regions. The tropical North Atlantic
and the Arabian Sea also show significant inter-model
uncertainties.

The proportion of the global ocean showing sig-
nificant intra-model uncertainties for all the met-
rics analyzed is very low (<1%; figure 5(b)). Besides,
among the three metrics, mean Hs shows signific-
ant results in the smallest proportion of the ocean
(8% vs. 23% and 20% for mean Tm and θm, respect-
ively). Ocean areas showing significant intra-model
uncertainty formeanHs projected changes aremainly
located in tropical latitudes, in both the Pacific and
Indian Oceans. Regarding the projected changes in
mean Tm, ocean areas showing significant intra-
model uncertainties are sparsely distributed across all
ocean basins. Among them, the easternmost part of
the Pacific Ocean shows the clearest results. Finally,
projected changes in mean θm show the most signi-
ficant results in the extra-tropical and eastern tropical
regions of the Pacific Ocean.
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Figure 6. Integrated qualitative assessment of the inter-model and intra-model uncertainty significance for the assessment of
projected changes in wave climate along the global coastlines. Two upward arrows indicate that at least two out of the three wave
climate metrics analyzed show significant uncertainty in projected changes. One upward arrow indicates that one or less of the
three wave climate metrics analyzed show significant uncertainty in projected changes. The green color highlights the case where
both sources of uncertainty show no significance (NS) in wave climate projected changes. The wave climate metrics analyzed are
mean Hs, mean Tm and mean θm.

Significant uncertainties may have severe implic-
ations where the wave climate is a key process driver,
as in the coastal zone, where waves play a key role in
coastal processes such as flooding or erosion [31, 70].
Figure 6 depicts qualitatively the degree of wavemod-
eling uncertainty along the global coastlines. To that
end, the number of wave climate variables in which
the uncertainty is found to be significant is computed
for both inter-model and intra-model uncertainties.
Three variables have been deemed in accordance
with the analysis presented in figure 4: wave height
(through meanHs), wave period (through mean Tm)
andwave direction (throughmean θm). Results indic-
ate that more than 35% of the global coastlines show
significant uncertainties in at least two out of the
three metrics analyzed for the inter-model and/or
intra-model uncertainties (orange, purple and red
in figure 6). On the other hand, 27% of the global
coastlines does not show significant wave modeling
uncertainties (green in figure 6). The coasts of Oman,
Iran, Pakistan and India, the coasts of the Maritime
Continent, the western coasts of North America and
the eastern coasts of Russia and Japan show the most
significant wave modeling epistemic uncertainty.

4. Conclusions and discussion

Over the past two decades, significant progress has
been made in examining the effect of climate change
on wind waves, largely due to the concerted efforts
of the Coordinated Ocean Wave Climate Project
(COWCLIP) [23, 71, 72]. Despite its inevitable role
as a primary source of uncertainty in such stud-
ies, the epistemic uncertainty associated with wave
modeling has been addressed in only a limited num-
ber of researches [21, 22]. This study has specific-
ally analyzed this source of uncertainty in wave cli-
mate projected changes (figure 1) by isolating it from

other sources also present in assessments of this
kind (e.g. GCM-related uncertainty, scenario-related
uncertainty). The analysis has been conducted based
on a seven-member, single-scenario, single-forcing
wave climate projection ensemble. Three numer-
ical wave models have been selected to develop the
ensemble members (WW3, WAM and SWAN). Two
primary sources of uncertainty within the wave mod-
eling uncertainty have been independently analyzed:
the inter-model uncertainty, which considers the dif-
ferences between models; and the intra-model uncer-
tainty, which considers the differences betweenmodel
parameterizations. Furthermore, all members share
a consistent numerical domain with the ultimate
objective of reducing to the minimum the differ-
ences between members attributable to this factor.
Although the findings presented in this research are
intrinsically influenced by the number of members
utilized and their distribution between propagation
models, the ensemble framework encompasses a sub-
stantial number of members, developed with the
most prevalent wave models in wave climate pro-
jections and their most common parameterizations.
Collectively, this offers comprehensive coverage of the
most probable scenarios encountered in investiga-
tions of this nature.

Results have demonstrated that both the selec-
tion of the wave model and the internal parameter-
ization of the model affect the value of the estimated
wave climate projected changes. In general, the dif-
ferences between wave models exhibit higher uncer-
tainty with respect to the internal parameterization
of the model. In fact, over 60% of the ocean regions
analyzed (figure 3) have shown a larger contribu-
tion from inter-model uncertainty compared to intra-
model uncertainty for all metrics analyzed, although
the latter is always present too. This conclusion is even
more robust when considering that the intra-model
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uncertainty is estimated from four WW3 models
runs, of which two are outdated (i.e. ST2 and ST3)
with respect to the remaining two (i.e. ST4 and ST6).
However, while the dominance of the inter-model
uncertainty with respect to the intra-model uncer-
tainty is clear in the extra-tropical region, it is not
as clear in tropical latitudes. Uncertainty has also
been quantified by assessing the divergences between
members (figure 4). The inter-model uncertainty has
shownmean values exceeding 50% in 31%, 23%, 54%
and 38% of the ocean regions for mean Hs, Hs99,
mean Tm and mean θm, respectively. In contrast, val-
ues for intra-model uncertainties are 8%, 23%, 15%
and 23%. It is important to note that, on average, for
both cases, the projected changes in mean Tm exhibit
the greatest uncertainty, particularly in the Pacific
Ocean.

A more detailed analysis has determined in which
ocean areas the wave modeling epistemic uncertainty
is significant (figure 5). To that end, the uncertainty
values have been analyzed together with the mag-
nitude of the projected changes and the deviations
between members. The period of the waves has been
found to be the wave climate variable showing the
greatest uncertainties across the ocean (53% and 23%
of the ocean surface for inter- and intra-model uncer-
tainties, respectively). After the wave period, the dir-
ection is the wave characteristic showing signific-
ant uncertainties in a larger ocean area (42% and
20%) and, finally, the wave height, which shows the
lowest proportion (29% and 8%). Particularly, the
Pacific Ocean stands out as the basin where signi-
ficant uncertainties have been found in larger areas.
On the contrary, the Tropical South Indian Ocean
and extra-tropical southern regions of the Atlantic
and Indian Oceans exhibit the least significant uncer-
tainties. Additionally, figure 6 shows that a high pro-
portion of the global coastlines is affected by sig-
nificant wave modeling uncertainties. In fact, 80%
of them show significant inter-model and/or intra-
model uncertainties in at least one out of the three
wave climate variables analyzed, and over 30% in at
least two of them. Thus, using one model or another
leads to results with differences that cannot be neg-
lected for processeswhere these variables are involved.

This study has demonstrated that the assessment
of projected changes in wave climate based on a
single wave model with a unique configuration—
which is also the most common approach—may be
affected by relevant wavemodeling uncertainties, and
eventually bias the results. These uncertainties cas-
cade and become critical to study changes in pro-
cesses that use the wave climate as a driver, such
as coastal erosion [32, 73] and flooding [31, 74,
75]. Using multiple models with different configur-
ations may be a suitable approach to address the epi-
stemic uncertainty in wave climate projection assess-
ments. However, developing wave climate projec-
tion ensembles requires extensive computational time

and resources, so including multiple wave models
and/or parameterization may imply a considerable
increase in the demands. Hence, until computational
resources allow for such an approach, it is strongly
recommended to perform extensive calibration and
validation of the simulations to select themost appro-
priatemodel and parameterization, andminimize the
discrepancies with the real ocean surface.

Results presented here serve as a basis to under-
stand the scope of the wave modeling uncertainty in
wave climate projections. They underscore the need
for additional investigation into the origin of the
observed uncertainties. The parameterization of pro-
cesses such as the energy transfer from the wind to the
ocean and thewave energy dissipation are examples of
likely causes for the differences found among the pro-
jected changes of ensemble members. Specific studies
that isolate these processes are required to elucidate
the distinct contribution of such processes to wave
modeling uncertainty. Such insights will ultimately
help to provide a more rigorous description of the
projected changes and their robustness.
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