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Abstract— Oscillators based on coupled transmission lines
with an exceptional point of degeneracy (EPD) have shown
great potential as highly sensitive microwave sensors. However,
research into their behavior has thus far been limited to the small-
signal regime. In this work, we will perform an in-depth nonlinear
analysis using the describing function and harmonic balance (HB)
methods. We will begin by deriving a simple EPD condition in
terms of the input admittance of the coupled transmission lines.
This EPD condition can easily be evaluated using a new graphical
method based on representing the zero-value contours of the real
and imaginary parts of the oscillator’s total admittance, including
the active contribution. Moving forward, we will perform an
exhaustive calculation of all the periodic and quasi-periodic
oscillation modes in the frequency domain and analyze their
evolution versus the load resistance. We will demonstrate that
there are two different types of quasi-periodic modes, although
only one is of interest for the sensing application. A detailed
bifurcation analysis will provide valuable insight into the impact
of the most relevant parameters on the oscillator’s behavior.
The circuit has been implemented with two cross-coupled
transistors and a Marchand balun, obtaining good experimental
results.

Index Terms— Bifurcation, coupled transmission lines,
exceptional point of degeneracy (EPD), oscillator, sensor.

I. INTRODUCTION

RECENT works [1], [2], [3], [4], [5], [6], [7], [8], [9],
[10], [11], [12] have demonstrated the interest of systems

with exceptional points of degeneracy (EPD) for the design of
high-sensitivity sensors and efficient radiating array oscillators,
among other applications. An EPD occurs [2], [3], [4] when
two of more eigenvalues and eigenvectors coalesce at a point
of the parameter space. The order of degeneracy agrees with
the number of coalescing eigenvalues and eigenvectors [2],
[3], [4]. EPDs have been observed in uniform and periodic
coupled transmission lines [2], [3], [4], [6], under lossless and
gain-to-balance conditions, and coupled resonators [10], under
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gain-to-loss balance. In those systems, eigenvalue degeneracies
lead to eigenvector degeneracies, as demonstrated in [5], [7],
and [10]. The EPD is characterized by a high sensitivity to
perturbations [5], [7]. In the most usual second-order EPD, the
eigenvalues are proportional to the square root of the parameter
perturbation [5]. Though nonidealities, such as parasitics and
fabrication tolerances, affect the ideal EPD condition, the main
properties that characterize this condition are preserved [6],
[9], [11].

Gain-to-loss balance implementations have served as a
starting point for the design of oscillator circuits [7], [8],
[9], [10], [11]. However, for the oscillation to start-up, the
small-signal gain must be increased over loss [13]. Despite
this unbalance, the square-root sensitivity associated with the
second-order EPD is preserved [11], [12]. Different oscillator
configurations have been proposed [7], [8], [9], [10], [11],
[12]. In single-ladder leaky wave antenna oscillators [8],
[9], the gain at the oscillation threshold decreases with the
number of cells. In structures based on two coupled LC
resonators [10], one with gain and the other with loss, the
oscillation frequency is very sensitive to the capacitance of
each resonator. Among the most sensitive configurations is
the one proposed in [11] and [12], based on finite-length
coupled transmission lines terminated with balanced gain
and loss. The circuit oscillates at two frequencies, whose
difference varies with the load resistance and other parameters.
In [11], time-domain integration is used to obtain the oscillator
waveforms and spectra. However, the analytical investigation
is limited to the small-signal stability analysis. In this work,
we will address the circuit’s nonlinear dynamics. We will
analyze its periodic and quasi-periodic modes, as well as the
bifurcation phenomena [14] that lead to the desired quasi-
periodic solution. This should provide insightful understanding
of the oscillator behavior and enable an efficient design.
We will depart from the results obtained in [11], which are
summarized in the following.

We will consider the oscillator in Fig. 1(a), which was
proposed in [11] and [12]. One port in each of the two coupled
lines is terminated in a short circuit. The other two ports are
terminated in the active-device resistance (RN < 0) and the
output load (RL). The small-signal stability analysis is carried
out under the gain-to-loss balance condition |RN | = RL .
It is based on the calculation of the roots of the system
characteristic determinant or system poles. Their evolution is
analyzed versus |RN | = RL , i.e., when simultaneously varying
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Fig. 1. EPD. (a) Oscillator proposed in [11]. (b) Sketch of the pole variation.
Asterisks indicate unstable poles.

the two resistances. For |RN | = RL smaller than a certain value
Ro, there are pairs of complex-conjugate poles symmetrically
located with respect to the imaginary axis [Fig. 1(b)], i.e., with
the form σ ± jωo and −σ ± jωo. There are also pairs of
poles about (2k + 1)ωo, where k is an integer, having the same
symmetry but different σ values. As |RN | = RL increases, the
pairs of poles approach (σ decreases) at constant frequency
[Fig. 1(b)] until they merge at the imaginary axis (σ = 0). This
merging occurs at |RN | = RL = Ro, where two eigenvalues
(or poles) and two eigenvectors of the homogeneous system
coalesce, which corresponds to the EPD condition. From the
EPD, the poles split, and for |RN | = RL > Ro, they move
along the imaginary axis, with the form 0 ± j (ωo ± 1ω).
Just after the EPD, the frequency of the poles exhibits a strong
variation versus |RN | = RL [11], [12], of interest for sensing
applications.

Despite the analytical insight provided by the analysis
versus |RN | = RL , the poles on the imaginary axis obtained
for |RN | = RL > Ro correspond to an unphysical situation.
In fact, the (approximate) oscillation start-up condition [13]
requires an excess of negative conductance at the resonance
frequency. The device must also be nonlinear to achieve
steady-state oscillation, so a cubic nonlinearity with the
small-signal negative resistance RN is considered in [11].
The resulting oscillator operates in a quasi-periodic regime,
with two incommensurate fundamental frequencies: ω1 and
ω2, and the frequency difference 1ω21 = | ω2 − ω1 |

exhibits a strong variation versus RL . In this work, we will

perform an in-depth investigation of the phenomenon that
gives rise to this quasi-periodic oscillation, along with
a global study of the circuit’s oscillation modes and
bifurcations [14].

We will initially derive a simple EPD condition in terms
of the input admittance of the coupled transmission lines.
As demonstrated for the first time to our knowledge, the
EPD condition can easily be evaluated through resonance
diagrams, in terms of the input admittance. The oscillator
solutions will be obtained analytically, with the describing-
function approach, and through novel exhaustive methods,
based on harmonic balance (HB) [15]. As will be shown,
there are two different kinds of periodic and quasi-periodic
modes, which are associated with the input susceptance of the
coupled structure and its dependence on RL . We will calculate
the bifurcation loci [15], [16], [17] in the space defined by
the active resistance RN and the passive one RL . This will
provide insight into the behavior when deviating from the
EPD. The oscillator has been implemented with two cross-
coupled transistors and a Marchand balun [18] with very good
experimental results.

This article is organized as follows. Section II presents the
analytical derivation that leads to a simple EPD condition.
Sections III and IV present an exhaustive calculation of the
periodic and quasi-periodic oscillation modes, respectively.
Section V describes the implementation of a transistor-based
oscillator, based on the EPD concept.

II. SMALL-SIGNAL ANALYSIS OF THE EPD OSCILLATOR

The analytical study will be based on the circuit in Fig. 2(a).
Our initial goal will be the derivation of a simple analytical
condition for the occurrence of the EPD, in terms of the
input admittance seen from Port 1. Then, we will provide
a graphical method for its efficient evaluation through a
resonance analysis. We will initially assume that |RN | =

RL . Then, we will consider a fixed value RN = −Ro and
a continuous variation of RL .

A. Analytical Derivation of the EPD Condition

To obtain the characteristic equation of the circuit in
Fig. 1(a), we will apply Kirchoff’s laws at Node 1. This
implies adding the active admittance G N = R−1

N and the input
admittance Yin of the coupled transmission lines

YT (GL , s) = G N + Yin(GL , s) = 0 (1)

where GL = R−1
L , s is the complex frequency, and Yin(GL , s)

is the input admittance when the coupled transmission lines
are terminated in RL = G−1

L [Fig. 2(a)].
Note that because the analysis is carried out in terms of

admittances, the equations will be expressed in terms of G N

and GL , instead of RN and RL . However, in the text, we will
refer to both conductance and resistance. From [11] and [12],
under |RN | = RL > Ro (where Ro corresponds to the EPD),
there should be several pairs of complex-conjugate poles on
the imaginary axis [Fig. 1(b)]. These poles will have the form
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Fig. 2. Oscillator loaded with a pair of coupled transmission lines.
(a) Calculation of the input admittance of the coupled transmission lines under
loaded conditions. (b) Schematic for the small-signal analysis. (c) Schematic
for the nonlinear oscillator analysis. It includes the AG used for the calculation
of the periodic solutions.

s = ± jω, so replacing s = jω in (1) and splitting into real
and imaginary parts, we obtain

GT (GL , ω) = G N + Y r
in(GL , ω)

= −GL + Y r
in(GL , ω) = 0, (2a)

BT (GL , ω) = Y i
in(GL , ω) = 0 (2b)

where superscripts r and i indicate the real and imaginary
parts, respectively. This has also been made of |RN | = RL or,
equivalently, |G N | = GL . From simple inspection, to fulfill (2),
Y r

in must agree with the load conductance GL when Y i
in = 0.

To calculate Yin, we will excite the coupled transmission
lines with the auxiliary voltage source Vg [Fig. 2(a)] at
the frequency ω. As in [11] and [12], in our analytical
study, the coupled transmission lines will be assumed lossless
and dispersion-less. This will be fundamental for achieving
analytical insight. Making use of the transmission matrix of
the coupled transmission lines, we can express [11]

Vg

0
I1(0)

I2(0)

 = exp
(

jω
[
Mpar

]
d
)

0
RL I2(d)

I1(d)

I2(d)

 (3)

where d is the total line length and the matrix [Mpar] describes
coupled transmission lines in terms of their inductances and

capacitances per unit length. It is given by

Mpar =

[
0 [Lmat]

[Cmat] 0

]
, Lmat =

[
L0 Lm

Lm L0

]
Cmat =

[
C0 + Cm −Cm

−Cm C0 + Cm

]
. (4)

To obtain the elements of the transmission matrix
exp( jω[Mpar]d), we will first express it as

exp
(

jω
[
Mpar

]
d
)

= 3
[
diag

(
e jω(λMpar)d

)]
3−1 (5)

where λMpar is the set of eigenvalues of [Mpar] and 3 is the
matrix composed of its eigenvectors. The eigenvalues are

λMpar = eig
(
Mpar

)
=

[
β α −β −α

]T (6)

where

α =

√
C0(L0 + Lm); β =

√
(C0 + 2Cm)(L0 − Lm). (7)

The matrix 3 with the eigenvectors of [Mpar] in its columns
is

3 =


−α

C0

−β

(C0 + 2Cm)

β

(C0 + 2Cm)

α

C0
−α

C0

β

(C0 + 2Cm)

−β

(C0 + 2Cm)

α

C0
1 −1 −1 1
1 1 1 1

. (8)

Now, the input admittance Yin can be calculated from (3) as

Yin(GL , ω) =
I1(0)

Vg
(9)

which can be expressed as a single quotient

Yin(GL , ω)

=

[
RL

((
2PCα + 2PCβ

)2
− 4

(
H Sβ − N Sα

)(
QSα − T Sβ

))
+8P j

(
HCα Sβ + NCβ Sα

) ]
RL

(
8P j

(
HCα Sβ + NCβ Sα

))
− 16H N Sα Sβ

(10)

where we have introduced the terms

P =
1
4
, Q =

1
4

C0

α
, N =

1
4

α

C0
,

T =
1
4

(C0 + 2Cm)

β
, H =

1
4

β

(C0 + 2Cm)
. (11)

On the other hand, Cα, Sα, Cβ , and Sβ are compact
expressions of the following trigonometric functions:

Cα = cos(dαω), Sα = sin(dαω)

Cβ = cos(dβω), Sβ = sin(dβω). (12)

For an insightful analysis, we will distinguish the terms of
Yin that are dependent and independent of the load resistance
RL . This distinction will be key for the insightful calculation
of the oscillator solutions.

When splitting Yin into real and imaginary parts, we obtain

Yin(GL , ω) = Y r
in + jY i

in

=
(−64Tr1Tr2)RL + j(−8Ti1Ti2(RL))

(4Ts1)R2
L + Ts2

(13)
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where

Tr1 = H Sβ − N Sα

Tr2 = H
(
N T Sα S2

β − N QS2
α Sβ − P2C2

α Sβ

)
+ N P2C2

β Sα

Ti1 = HCα Sβ + NCβ Sα

Ti2 =

[
P2(Cα + Cβ

)2
−

(
H Sβ − N Sα

)(
QSα − T Sβ

)]
R2

L

+ 4H N Sα Sβ

Ts1 =
(
HCα Sβ + NCβ Sα

)2

Ts2 = 256H 2 N 2S2
α S2

β . (14)

We emphasize that (13) and (14) are only valid under
the assumption of lossless and nondispersive coupled lines.
The only term in (14) depending on RL is Ti2. To solve
system (2), we will first pay attention to BT (GL , ω) = Y i

in = 0.
The numerator of Y i

in in (13) is the product of two factors:
Ti1, which only depends on ω, and Ti2, which depends on
both ω and RL . Because Ti1 does not depend on RL , this
term cannot be responsible for the occurrence of the EPD,
obtained at a particular RL . Thus, we should pay attention to
Ti2(ω, RL) = 0. It is explicitly written as

Ti2(ω, RL) = Ti.21(ω)R2
L + Ti.22(ω) = 0 (15)

where

Ti.21 = P2(Cα + Cβ

)2
−

(
H Sβ − N Sα

)(
QSα − T Sβ

)
Ti.22 = 4H N Sα Sβ

Solving for RL , one obtains

R2
L = −

Ti22(ω)

Ti21(ω)
. (16)

The above function provides a continuous set of values
(ω, RL) that fulfill Y i

in = 0. The poles will be on the imaginary
axis if the pair (ω, RL) also satisfies (2a). This implies that
Y r

in = GL = R−1
L or equivalently

Y r
in(GL , ω) − GL = 0. (17)

Replacing the expression of Y r
in(GL , ω) [see (13)]

(−64Tr1Tr2)RL

(4Ts1)R2
L + Ts2

−
1

RL
= 0. (18)

Next, we will introduce in (18) RL that fulfills both
BT (GL , ω) = Y i

in = 0 and Ti2(ω, RL) = 0, given
by (16). Making use of the full expressions of the functions
(P , Q, N, H, and T) and (Cα , Cβ , Sα , and Sβ), the two
terms on the left-hand side (LHS) of (18) cancel each
other out. The resulting zero value is independent on the
frequency ω at which (16) is fulfilled. Thus, provided that (16)
[or equivalently (2b) under Ti2(ω, RL) = 0] is satisfied, (18)
[or equivalently (2a)] is satisfied too. There is a limit ω value
for the fulfillment of (16), i.e., for the presence of the pairs of
poles s = ± jω on the imaginary axis. This corresponds to a
minimum of the function R2

L(ω), given by

∂ R2
L

∂ω
=

−
∂Ti22(ω)

∂ω
Ti21(ω) + Ti22(ω)

∂Ti21(ω)

∂ω

T 2
i21(ω)

= 0 (19)

which agrees with the EPD condition. Solving for ω from (19)
and replacing it in (18), one obtains the EPD, given by
(ωo, Ro).

Fig. 3. Resonance analysis (under small-signal conditions) versus RL ,
carried out by tracing the two zero-value contours GT (GL , ω) = 0 and
BT (GL , ω) = 0 in the plane (ω, RL ). The sections with negative conductance
(GT < 0) are shadowed and the sign of ∂ BT /∂ω is indicated with + or −.

B. Graphical Determination of the EPD

Using the results of Section II-A, it will be possible to carry
out a simple graphical calculation of the EPD by tracing the
zero-value contours GT (GL , ω) = 0 and BT (GL , ω) = 0 in
the plane defined by ω and RL . To illustrate this, we will
consider the following inductances and capacitances per unit
length [11]: L0 = 480 nH/m, Lm = 367.4 nH/m, C0 =

57.9 pF/m, and Cm = 102.7 pF/m. Fig. 3 shows the resulting
contours GT (GL , ω) = 0 and BT (GL , ω) = 0. Note that
there are two sets of contours: about 1 and 3 GHz. We will
initially focus on the behavior about fo = 1 GHz. The contour
BT = Im[Yin(GL , ω)] = 0 is composed of a bell-shaped curve,
corresponding to Ti2(ω, RL) = 0, and a vertical straight line,
corresponding to Ti1(ω) = 0, since Ti1 does not depend on
RL . The contour GT = 0 is also given by a bell-shaped
curve and a vertical straight line. The bell-shaped curves
providing GT = 0 and BT = Ti2(ω, RL) = 0 overlap. This
is because, as shown in Section II-A, Ti2(ω, RL) = 0 implies
that GT (GL , ω) = 0. In contrast, the straight lines providing
GT = 0 and BT = Ti1(ω) = 0 are different. The behavior is
analogous about 3 GHz and other odd harmonic frequencies.
The EPD is obtained at the minimum of the bell-shaped curve,
which fulfills the condition ∂ RL/∂ω = 0.

The contours in Fig. 3 (both the bell-shaped curves
and the straight lines) delimit the regions of the plane
(ω, RL) providing negative/positive total conductance (GT )

and susceptance (BT ). Regions with GT < 0 are shadowed.
The sign of the frequency derivative ∂ BT /∂ω is indicated
through BT = 0. Note that there is an intersection point (IP)
between the straight line and the bell-shaped curve. Through
the vertical line, the sign of ∂ BT /∂ω is positive below IP and
negative above IP. Through the bell-shaped curve, the sign
of ∂ BT /∂ω is positive (negative) on the left side (right side)
between the EPD and the IP. Above IP, the sign of ∂ BT /∂ω

is positive on both sides.
We conclude that for any pair of coupled transmission lines,

with arbitrary parameters, we can obtain the EPD (ωo, Ro)

simply by tracing the zero-value contours GT (GL , ω) = 0 and
BT (GL , ω) = 0 in the plane (ω, RL). The EPD corresponds
to the minimum of the bell-shaped curve, ∂ RL/∂ω = 0.

The resonance diagram will be compared with the results of
a rigorous stability analysis of the dc solution. It will be carried
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Fig. 4. Simultaneous variation of RN and RL , with |RN | = RL . Stability
analysis of the dc solution through the application of pole-zero identification
to an impedance-type transfer function. This is calculated at Node 1, using
the small-signal current source shown in Fig. 2(b). Asterisks indicate unstable
poles.

out by applying pole-zero identification to an impedance-type
transfer function [19], [20]. This is obtained by connecting
a small-signal current source Ig in parallel at the analysis
node [Node 1 in Fig. 2(b)] and calculating the ratio between
the node voltage and the current introduced [19], [20]. The
results are shown in Fig. 4. For RL < Ro, there are several
pairs of complex-conjugate poles on both the right-hand side
of the complex plane (RHS) and the LHS, at 1 and 3 GHz.
The poles in the RHS are consistent with the resonances
associated with Ti1(ω) = 0 in Fig. 3, which fulfill GT < 0 and
∂ BT /∂ω > 0, corresponding to the approximate oscillation
start-up conditions [13]. Note that, for each pair of complex-
conjugate poles at σ ± jω, there is another pair −σ ± jω.
When RL increases, they approach the imaginary axis at a
constant frequency until they merge on the imaginary axis
(σ = 0) for RL = Ro, which corresponds to the EPD. After
the EPD, they split into two pairs of complex-conjugate poles
with zero real part ± jω (located on the imaginary axis). For
RL > Ro, they move along the imaginary axis. This
is consistent with the overlap of the bell-shaped curves
GT (GL , ω) = 0 and BT (GL , ω) = 0 in Fig. 3. Remember that,
when evaluated in terms of s, the total admittance function
YT (GL , s) = 0 agrees with the characteristic equation [see (1)].
Thus, the conditions GT (GL , ω) = 0 and BT (GL , ω) =

0 imply the fulfillment of the characteristic equation for s =

± jω. For each RL above the minimum of the bell-shaped
curve, the characteristic equation is fulfilled for s = ± jω1 and
s = ± jω2. This implies that there are two pairs of poles on
the imaginary axis. When reducing RL toward the minimum
of the bell-shaped curve, obtained for Ro, the two pairs of
poles approach each other and finally merge at Ro. At that
point, the two pairs of poles (± jω1 and ± jω2) merge into
two pairs of repeated poles ± jωo, which corresponds to the
EPD condition.

C. Variation of GL at Constant GN

For the oscillation to start-up, the absolute value of the
negative conductance of the active device must exceed that of
the passive load under small signal [13] at the analysis node.
Moreover, the element that provides G N must be implemented
with a diode or transistor(s), so a simultaneous variation

of |G N | = GL (or, equivalently, |RN | = RL) will not be
possible in practice. In the following analysis, we will set
G N to the EPD value (G N = −1/Ro). This can only be
done approximately since an (ideal) infinite number of decimal
figures would be needed. The EPD value considered is Ro =

49.88 � [11], [12], which agrees with the one obtained
from Fig. 3. The resulting bell-shaped curves GT (GL , ω) =

0 and Ti2(ω, RL) = 0 [Fig. 5(a)] are no longer overlapping.
However, they are ideally tangential at (ωo, Ro) and about
[(2k + 1)ωo, Ro]. The regions where GT (GL , ω) < 0 are
shadowed in Fig. 5(a) and the sign of ∂ BT /∂ω is indicated.

Fig. 5(b) shows the pole locus when increasing RL

from 20 to 80 � and Fig. 5(c) shows an expanded view
about fo = 1 GHz. The form of variation of the poles has
changed with respect to Fig. 4. For RL < Ro, there are still
two pairs of complex-conjugate poles with the same imaginary
part ω = ±ωo on the LHS and the RHS. However, now, they
are not symmetrical about the imaginary axis. As RL increases,
they approach each other, and at RL = Ro, they ideally meet
on the imaginary axis. This meeting point cannot be obtained
in the numerical analysis since G N = −1/Ro cannot be set
to the exact EPD value. When further increasing RL , one of
the pairs shifts leftward and then crosses the imaginary axis
to the RHS in a direct Hopf bifurcation (HI,1) [14], [21].
The other pair shifts rightward onto the RHS. Unlike the
case of Fig. 4, for RL > Ro, the poles do not remain on
the imaginary axis. However, there is still a strong variation
of their imaginary part (frequency ω) versus RL . To further
illustrate the interest of the resonance analysis, we have
considered a more accurate model of the coupled transmission
lines, including losses and dispersion [22]. Under these two
effects, the EPD is no longer observed. To recover the EPD,
we have introduced an inductor L in parallel at the analysis
node. We have tuned L and RN until obtaining a tangency
of the two contours GT (GL , ω) = 0 and Ti2(ω, RL) = 0 at
the minimum of the bell-shaped curve, which is achieved for
L = 0.29 µH and RN = 48.5 � [Fig. 5(d)]. The high L
value is because we only require a relatively small correction
in susceptance −1/(Lω). As in the ideal case of Fig. 5(a), the
loci of GT (GL , ω) = 0 and BT (ω, RL) = 0 are tangent at the
minimum of the two curves, which has the same geometrical
implications. Thus, it necessarily gives rise to the same
degeneracy.

III. CALCULATION OF THE PERIODIC
OSCILLATION MODES

We will perform, for the first time to our knowledge,
an exhaustive calculation of the periodic oscillation modes
of the EPD oscillator versus the load resistor RL . Though
the circuit is expected to operate in quasi-periodic regime,
a previous determination of these modes will facilitate the
understanding of the solution-curve pattern. The modes will
initially be calculated in an analytical manner using the
describing function [23]. The results will be compared with
those obtained with commercial HB (Keysight ADS [24])
and a contour-intersection method, based on HB [15], which
exhaustively provides all the coexisting periodic modes.
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Fig. 5. Stability analysis when considering a constant active-device
conductance G N = −1/Ro and varying the load resistance RL . (a) Zero-value
contours GT (GL , ω) = 0 and BT (GL , ω) = 0 in the plane defined by ω and
RL . The sections with negative conductance are shadowed and the sign of
∂ BT /∂ω is indicated with + or −. (b) Pole locus. Asterisks indicate unstable
poles. (c) Expanded view about 1 GHz. (d) Resonance curves in the presence
of losses and dispersion. We have tuned an inductor L , in parallel at the
analysis node, and RN to recover the EPD.

A. Analytical Calculation of the Solution Curves

As in [11], the active device is modeled with a cubic
nonlinearity i = G N v + bv3. Its one-tone describing
function [21] is the ratio between the fundamental component
of the current i(t) and the excitation voltage amplitude V . This
provides G(V ) = G N + 3bV 2/4. To formulate the oscillator

at the fundamental frequency ω, we apply Kirchoff’s laws at
Node 1 [Fig. 2(c)]. The resulting complex equation, derived
from the total admittance function, is

YT = G(V ) + Yin(RL , d, ω)

= G N +
3
4

bV 2
+

(−64Tr1Tr2)RL + j(−8Ti1Ti2)

(4Ts1)R2
L + Ts2

= 0.

(20)

Next, we split (20) into the real and imaginary parts

GT = G N +
3
4

bV 2
+

(−64Tr1Tr2)RL

(4Ts1)R2
L + Ts2

= 0 (21a)

BT = Ti1(ω)Ti2(ω, RL) = 0. (21b)

The solutions of (21) provide the amplitude and frequency
of the steady-state periodic oscillations. In terms of frequency,
we can have two types of solutions: Type-I solutions,
when Ti1(ω) = 0 in (21b), and Type-II solutions, when
Ti2(ω, RL) = 0 in (21b).

The Type-I solution curve(s) will exhibit a constant
oscillation frequency versus RL , obtained from Ti1(ω) = 0
(the straight line of Fig. 3) in this approximate analysis.
From (21a), the steady-state amplitude V will vary versus RL

as

V = 2

√√√√(
−G N +

(64Tr1Tr2)RL

(4Ts1)R2
L+Ts2

)
3b

. (22)

The functions Tr1, Tr2, Ts1, and Ts2 depend on ω but do not
depend on RL [see (14)]. In (22), they should be evaluated at
the frequency fulfilling Ti1(ω) = 0. Thus, they take constant
values. The amplitude V will decrease with RL until reaching
V = 0.

The Type-II solutions exhibit both frequency and ampli-
tude dependence on RL . The oscillation frequency fulfills
Ti2(ω, RL) = 0, Thus, in this approximate analysis, its
value will lie on the already calculated bell-shaped curve.
As demonstrated in Section II-A, when the condition
Ti2(ω, RL) = 0 is fulfilled, we have Re[Yin(RL , d, ω)] = GL .
Thus, the steady-state amplitude V of Type-II solutions will
vary versus RL as

V = 2

√
−G N − 1/RL

3b
. (23)

This amplitude, which does not depend on the oscillation
frequency, will increase with RL and saturate.

Fig. 6 shows the frequency and amplitude of the two
types of solutions, traced versus RL when considering
RN = −49.88 �. The Type-I solution curve exhibits a
constant frequency fo = 1 GHz. It departs from the amplitude
V = 0.95 V at RL = 40 �, which decays to zero (V = 0 V)
at the inverse Hopf bifurcation HI,1, already detected in the
stability analysis of Fig. 5(c). Thus, the two independent
analyses are consistent.

We will now consider the solution curves of Type II. As seen
in Fig. 6(a), their oscillation frequencies (ω1 and ω2) agree
with those on the left and right sides of the bell-shaped curve
Ti2(ω, RL) = 0. The amplitude V is the same for the two
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Fig. 6. Periodic oscillation modes versus RL obtained with the analytical
system (22). The results are validated with an oscillator analysis in commercial
HB, denoted as “Default HB.” (a) Frequency. (b) Amplitude.

Fig. 7. Solution curves for the two different cases |RN | > Ro and
|RN | < Ro. (a) and (b) Frequency and amplitude for RN = −51 �, fulfilling
|RN | > Ro. (c) and (d) Frequency and amplitude for RN = −49.7 �, fulfilling
|RN | < Ro.

oscillations (at ω1 and ω2), as shown in Fig. 6(b). For a better
understanding, we will slightly vary the negative resistance RN

(as an additional parameter) about the EPD value Ro. We will
consider two cases: |RN | > Ro and |RN | < Ro.

For |RN | > Ro, we obtain two curves with different
frequencies and overlapping amplitudes. See Fig. 7(a) and (b),
where we have considered RN = −51 �. The two curves start
from V = 0, in a double-Hopf bifurcation. At this bifurcation,

the two frequencies, ω1 and ω2, are different and agree with
the two roots of Ti2(ω, RL) = 0 at RL = −RN .

For |RN | < Ro, we obtain a single oscillation curve with a
turning point (TP), occurring at V ̸= 0, for RL = Ro and
ω1 = ω2 = ωo (minimum of the bell-shaped curve). See
Fig. 7(c) and (d), where we have considered RN = −49.9 �.
As RL increases from the TP, the frequencies ω1 and ω2
gradually separate, following the bell-shaped curve, whereas
the amplitudes of the two sections remain overlapping. Note
that setting the precise value RN = Ro is impossible in
practice. If this ideal value were reached, we would have a
single oscillation curve with two sections starting from V = 0
at ω1 = ω2 = ωo in a degenerate double-Hopf bifurcation.

The behavior about 3 GHz is analogous (Fig. 6). However,
the solutions of Type I have a different amplitude from those
at 1 GHz since Tr1, Tr2, Ts1, and Ts2 in (22) are frequency
dependent. On the other hand, the amplitude of the solutions
of Type II overlaps that obtained at 1 GHz since this amplitude
does not depend on ω, as seen in (23).

The results obtained with the analytical formulation have
been validated with an oscillator analysis in commercial
HB [24], referred to here as “Default HB.” For the comparison,
we have considered only the fundamental frequency (number
of harmonic terms (NH) = 1). The corresponding solution
points, represented with red circles in Fig. 6, overlap the
analytical predictions. However, commercial HB is unable
to predict the coexisting solution curves. When sweeping a
parameter (such as RL in Fig. 6), it tries to find a solution at
each new parameter value, regardless of the possible folding of
the solution curve. Convergence problems often arise near the
folding point. However, there can also be a jump to a distinct
solution curve if it is close enough for the error-minimization
algorithm to converge to it. At RL = 49.8 �, it jumps from the
solution curve of Type I to the solution curve of Type II. This
jump prevents the correct interpretation of the curve pattern.

B. Bifurcation Analysis

At Hopf bifurcations, the amplitude of the periodic
oscillations tends to zero [21], [25]. Solutions of Type I
and Type II have different amplitude expressions, given
by (22) and (23), respectively. Thus, we can expect two
different Hopf-bifurcation loci. The first Hopf locus (Hopf-I)
is associated with periodic solutions of Type I. To obtain this
locus, we set V = 0 in (22) and also use the resonance
condition Ti1(ω) = 0

V = 0 = 2

√√√√(
−1/RN +

(64Tr1Tr2)RL

(4Ts1)R2
L+Ts2

)
3b

(24a)

Ti1(ω) = 0. (24b)

The above system of two real equations in the three variables
RN , RL , and ω provides the locus Hopf-I. The equation
Ti1(ω) = 0 only has one solution in ω. Replacing it in (24a),
we obtain

RN =
(4Ts1)R2

L + Ts2

(64Tr1Tr2)RL
. (25)
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Fig. 8. Bifurcation loci. There are two types of Hopf loci (Hopf-I and
Hopf-II) and two types of D-bifurcation loci (Di and Dii). (a) Representation
in the plane (RL , |RN |). (b) Representation in the plane (|RN |, ω).

In the plane (RL , |RN |), (25) provides the locus Hopf-I,
traced in Fig. 8(a). Its constant frequency is represented
versus |RN | in Fig. 8(b). When crossing Hopf-I, a single
pair of complex-conjugate poles of the dc solution crosses the
imaginary axis at the frequency root of Ti1(ω) = 0 [Fig. 8(b)].

To obtain the second Hopf locus (Hopf-II), associated with
periodic solutions of Type II, we set V = 0 in (23). We also
impose the resonance condition Ti2(ω, RL) = 0

RN = −RL (26a)
Ti2(ω, RL) = 0. (26b)

As (26b) does not depend on RN , the locus Hopf-II
will provide the straight line (26a) in the plane defined by
RL and |RN |. The frequency ω varies through the locus
following (26b), i.e., the bell-shaped curve. Thus, the locus
Hopf-II is composed of very particular bifurcations, at which
two pairs of complex-conjugate poles cross the imaginary axis
simultaneously in either the same sense or opposite senses.

The two Hopf loci represented in Fig. 8 divide the plane
(RL , RN ) into three regions: with one pair of poles on the
RHS, with zero poles on the RHS, and with two pairs of poles
on the RHS. The EPD is the limit point of Hopf-II. Between
the EPD and the intersection between the two Hopf loci, there
is a pair of poles crossing to the LHS and another pair of poles
crossing to the RHS simultaneously. This does not affect the
pole count.

A D-type bifurcation [17], [21] is obtained when the
Jacobian matrix of the steady-state equations becomes
singular. In our case, the D-type bifurcations are defined by

the singularity of the Jacobian matrix of system (21)

det(V, ω) =

∣∣∣∣ ∂GT
∂V

∂GT
∂ω

∂ BT
∂V

∂ BT
∂ω

∣∣∣∣ =

∣∣∣∣∣∣∣
3
2 bV

∂

(
(−64Tr1Tr2)RL
(4Ts1)R2

L +Ts2

)
∂ω

0 ∂(Ti1Ti2)

∂ω

∣∣∣∣∣∣∣ = 0 (27)

where “det” means determinant. Assuming that V ̸= 0, the
D-type bifurcation condition is

∂[Ti1(ω)Ti2(RL , ω)]
∂ω

= 0 (28)

which must be fulfilled together with the steady-state
equations (21). This can occur under two different situations:
1) when both Ti1(ω) = 0 and Ti2(RL , ω) = 0 and 2) when
Ti2(RL , ω) = 0 and ∂Ti2(RL , ω)/∂ω = 0. We will have
1) at the intersection between the Type-I and Type-II periodic
curves of Fig. 6. The corresponding locus, denoted as Di,
has been represented in Fig. 8 in the two planes (RL , |RN |)

and (|RN |, ω). We will have 2) at the TP of the solution
curves of Type II (Fig. 7). This is obtained for |RN | ≤ Ro

and the frequency at TP agrees with the minimum of the
bell-shaped curve. The corresponding locus, denoted as Dii,
is also represented in Fig. 8. The EPD corresponds to the co-
dimension two bifurcations at which Hopf-II and Dii meet.
It provides two degenerate periodic solutions with amplitude
V = 0 and the same fundamental frequency ωo. This result
is consistent with the independent stability analysis of the dc
solution [Fig. 5(c)].

C. Exhaustive HB Analysis of Periodic Solutions

In this section, we will compare the results of the
describing-function analysis with those obtained with HB,
under NH = 7 harmonic terms. To exhaustively calculate
all the oscillation modes, we will make use of the contour
intersection method proposed in [15]. This is based on the
introduction into the circuit of a voltage auxiliary generator
(AG) at the frequency ω, with the voltage amplitude VAG
[Fig. 2(c)]. It is connected in parallel at the analysis node, with
an ideal bandpass filter at ω.Without the bandpass filter, the
voltage AG would short-circuit frequencies different from the
fundamental one. The conditional sentence is [24]: “RAG = if
abs(freq − fAG) < 100 Hz, then 1e-18 else 1e18 endif.” The
aim of the AG is to obtain a nonlinear admittance function,
defined as the ratio between the AG current IAG and voltage:
YAG(VAG, ω) = 0. To extract this function, we perform a
double sweep in ω and VAG and carry out an HB simulation
with NH = 7 (or any other suitable number) at each sweep
step. Then, all the coexisting solutions are given by the
intersections of the two following zero-value contours:

Re[YAG(VAG, ω)] = 0
Im[YAG(VAG, ω)] = 0. (29)

When applying the above procedure to the circuit in
Fig. 2(c), we obtain the periodic solution curves in Fig. 9,
where they are compared with those resulting from the
analytical calculation. As expected, discrepancies are more
significant for the higher amplitudes, due to a greater influence
of the harmonic terms. When the oscillation amplitude
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Fig. 9. Comparison of the periodic solution curves obtained with the
describing function and with HB, under NH = 7 harmonic terms. Two
different kinds of HB analysis are considered: the one based on (29)
and oscillator analysis in commercial HB: “Default HB.” (a) Frequency.
(b) Amplitude.

decreases, the curves obtained with NH = 7 overlap with
the analytical calculation. We also present the results of
commercial HB, which are superimposed in Fig. 9. The
calculated solution points agree with those provided (29),
which confirms the accuracy. However, commercial HB jumps
between different curve sections, which prevents a correct
interpretation of the solution pattern.

We also performed a detailed stability analysis of the
periodic curves obtained through HB with NH = 7 harmonic
terms (Fig. 9). This analysis is based on pole-zero identi-
fication applied to a transfer function calculated with the
conversion-matrix approach [19], [20]. In Type-II solutions,
this stability analysis detects unstable poles about ωo and its
odd harmonics. In the practical implementation, the higher
frequency poles will be removed by the device packaging and
other filtering effects. Limiting the identification to a band
about ωo, solutions of Type II at a frequency in the lower
(upper) branch exhibit a pair of complex-conjugate poles about
the frequency of the upper (lower) branch. Intuitively, the
instability of the periodic solutions can be understood from
the fact that they do not “make use” of the two pairs of RHS
poles of the dc solution.

IV. QUASI-PERIODIC OSCILLATIONS

We will initially perform an analytical calculation of the
quasi-periodic oscillations using a double-input describing
function. Then, we will carry out an approximate stability
analysis. Finally, we will accurately obtain the quasi-periodic
oscillations using envelope transient [26] with NH = 7.

A. Analytical Calculation of the Steady-State Solutions

To obtain the quasi-periodic solutions, we will express the
voltage across the nonlinear element i(v) in Fig. 2 as v(t) =

Vq1 cos(ω1t) + Vq2 cos(ω2t), where the two frequencies
ω1 and ω2 are incommensurate. Thus, the phase of the two
sinusoidal terms can be arbitrarily set to zero. Next, we will
introduce v(t) in the cubic nonlinearity i(v) = G N v +

bv3. Disregarding the intermodulation terms, we obtain the
following two nonlinear admittance functions at the respective
frequencies ω1 and ω2:

Y1
(
Vq1, Vq2

)
= G N +

3
4

bV 2
q1 +

3
2

bV 2
q2

Y2
(
Vq1, Vq2

)
= G N +

3
2

bV 2
q1 +

3
4

bV 2
q2. (30)

Applying Kirchoff’s laws to Node 1 at ω1 and ω2, the quasi-
periodic oscillations must fulfill

YT,1 = Y1
(
Vq1, Vq2

)
+ Yin( jω1) = 0

YT,2 = Y2
(
Vq1, Vq2

)
+ Yin( jω2) = 0. (31)

The equations above should be sufficient to predict sections
of the quasi-periodic curves with low amplitude. Splitting (31)
into real and imaginary parts, we obtain

GT,1 = G N +
3
4

bV 2
q1 +

3
2

bV 2
q2 + Y r

in( jω1) = 0

BT,1 = Y i
in( jω1) = 0

GT,2 = G N +
3
4

bV 2
q2 +

3
2

bV 2
q1 + Y r

in( jω2) = 0

BT,2 = Y i
in( jω2) = 0. (32)

From the inspection of (32), the fundamental frequencies
of the quasi-periodic solutions are given by the roots of
Y i

in( jωm) = 0, where m = 1, 2. The corresponding amplitudes
are calculated by replacing these roots in Y r

in( jωm) = 0.
We should solve the two remaining equations GT,1 = 0 and
GT,2 = 0 in terms of Vq1 and Vq2. Equation Y i

in( jωm) = 0 is
identical to the one used to calculate the periodic solutions:
Ti1(ω)Ti2(RL , ω) = 0. Thus, there will also be two kinds of
quasi-periodic solutions.

In quasi-periodic solutions of Type I, the frequency ω1 is
a root of Ti1(ω) = 0 and ω2 is a root of Ti2(RL , ω) or
vice versa. Replacing these frequency values in the subsystem
of (32) composed of GT,1 = 0 and GT,2 = 0, the
respective amplitudes Vq1 and Vq2 will be different since
Y r

in( jω1) ̸= Y r
in( jω2).

In quasi-periodic solutions of Type II, both ω1 and ω2
are roots of Ti2(RL , ω). As already seen at all the roots of
Ti2(RL , ω), we have Re[Yin( jωm)] = GL , so the amplitudes
Vq1 and Vq2 will be identical. Particularizing (32) to this case

Y r
T 1 =

3
4

bV 2
q1 +

3
2

bV 2
q2 + G N + GL = 0

Ti2(RL , ω1) = 0

Y r
T 2 =

3
4

bV 2
q2 +

3
2

bV 2
q1 + G N + GL = 0

Ti2(RL , ω2) = 0. (33)
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Fig. 10. Evolution versus RL of the quasi-periodic solutions obtained
from (33), in solid line, and the periodic ones obtained from (21), in dashed
line. (a) Amplitude variation. (b) Frequency variation.

Solving the above system, the steady-state amplitudes Vq1
and Vq2 are equal and given by

Vq1 = Vq2 =
2
3

√
−(G N + GL)

b
. (34)

The above amplitude can be related to that of the periodic
solutions of Type II, given by (23): Vq1 = Vq2 = V/

√
3 .

Thus, the quasi-periodic curves have a lower amplitude.
Fig. 10(a) and (b) shows the evolution of the two types of

quasi-periodic solutions versus RL . For better clarity, we only
display the solutions obtained about 1 GHz. The quasi-periodic
solutions of Type I are easily distinguished by their different
amplitude at ω1 and ω2. In fact, they are composed of two
distinct subcurves, one at each fundamental frequency (ω1
and ω2). They are generated from the periodic curves through
secondary Hopf bifurcations (Hs) [16], [21], at which the new
spectral linearizes from zero amplitude. The secondary Hopf
bifurcation from the periodic solution at ω1 is obtained by
setting Vq2 = 0 in (32) and solving for Vq1. The secondary
Hopf bifurcation from the periodic solution at ω2 is obtained
by setting Vq1 = 0 in (32) and solving for Vq2.

The quasi-periodic solutions of Type II are generated
through two different mechanisms, depending on the value
of |RN |. For |RN | > Ro, they are generated at the
already detected double-Hopf bifurcation, with ω1 ̸= ω2. For
|RN | < Ro, they are generated at the TP of the Type-II periodic
curve. In the latter case, the two fundamental frequencies
initially have the difference 1ω21 = |ω2 − ω1| = 0, which
grows continuously when increasing RL from the TP. When
doing so, the frequencies ω1 and ω2 follow the upper and
lower sections of the bell-shaped curve, respectively. Due to

the fast growth of 1ω21 near Ro, quasi-periodic solutions of
Type II are the ones with interest for the sensing application
proposed in [11].

The intermodulation terms have been neglected in the
analytical study. However, in the low amplitude sections, these
terms will have a negligible impact. The situation should
be like that of Fig. 9, where the curves obtained with the
describing function (NH = 1) and HB with NH = 7 overlap
in the lower amplitude sections. Thus, near the EPD, the
predicted quasi-periodic solution should have a reasonable
accuracy.

B. Stability Analysis

For the stability analysis of the quasi-periodic solutions,
we will make use of derivations in [27]. This approximate
analysis relies on the double-input describing function and
considers small amplitude and frequency perturbations about
the quasi-periodic steady state. Because we have a system
of two complex equations, the linearization provides four
eigenvalues. As in any quasi-periodic solution with two
autonomous oscillations [28], [29], [30], two of these four
eigenvalues are equal to zero (each associated with one of the
two oscillations). Then, the stability properties are determined
by the two remaining eigenvalues, given by [27]

λ1,2 =
a11 + a22

2
±

√
(a11 + a22)

2
− 4D

2
D = a11a22 − a12a21 (35)

where the coefficients ai j are

a11 = −

(
∂GT,1

∂V1

∂ BT,1

∂ω1

)
/

∣∣∣∣∂YT,1

∂ω1

∣∣∣∣2

= −α B̄ω1

a12 = −

(
∂GT,1

∂V2

∂ BT,1

∂ω1

)
/

∣∣∣∣∂YT,1

∂ω1

∣∣∣∣2

= −2α B̄ω1

a21 = −

(
∂GT,2

∂V1

∂ BT,2

∂ω2

)
/

∣∣∣∣∂YT,2

∂ω2

∣∣∣∣2

= −2α B̄ω2

a22 = −

(
∂GT,2

∂V2

∂ BT,2

∂ω2

)
/

∣∣∣∣∂YT,2

∂ω2

∣∣∣∣2

= −α B̄ω2. (36)

Note that we have particularized the above coefficients to
our quasi-periodic solutions of Type II, which fulfill

Vq1 = Vq2

∂GT,1
(
Vq1, Vq2

)
∂V1

=
∂GT,2

(
Vq1, Vq2

)
∂V2

= α

∂GT,1
(
Vq1, Vq2

)
∂V2

=
∂GT,2

(
Vq1, Vq2

)
∂V1

= 2α. (37)

In (36), we have also introduced two normalizations

B̄ω1 =

∂ BT,1
∂ω1∣∣∣ ∂YT,1
∂ω1

∣∣∣2 , B̄ω2 =

∂ BT,2
∂ω1∣∣∣ ∂YT,2
∂ω2

∣∣∣2 . (38)

Replacing (37) and (38) in (35), a Type-II quasi-periodic
solution will be stable if it fulfills the following two conditions:

B̄ω1 B̄ω2 < 0

B̄ω1 + B̄ω2 > 0. (39)
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As observed from Fig. 5(a), near Ro (minimum of the
bell-shaped curve), the frequency derivative ∂ BT,1/∂ω1 is
positive, whereas ∂ BT,2/∂ω2 is negative and smaller in
absolute value. Thus, the two conditions in (39) are fulfilled.
This demonstrates the stability of quasi-periodic solutions
of Type II near their generation point. As already stated,
this is the targeted solution for the sensing application
due to the high sensitivity of 1ω21 with respect to RL

near Ro. As RL increases, the analysis based on the
double-input describing function, under the assumption of a
small frequency perturbation, progressively becomes invalid.
In fact, the steady-state quasi-periodic solution will have
intermodulation products disregarded in (32). Instead, the
envelope-transient analysis [26] of Section IV-C will consider
all the intermodulation terms.

C. Sensitivity to the Load Resistance RL

At the EPD, we ideally obtain a quasi-periodic solution of
Type II, which should fulfill (33) for Vq1 = Vq2 = 0 and
ω1 = ω2 = ωo. When slightly increasing RL from the
EPD, the two equal amplitudes will continuously grow from
zero. The difference between the two fundamental frequencies
1ω21 = |ω2 − ω1| will also grow from zero with
a high sensitivity. Assuming a small resistor increment
1RL , the difference 1ω21 can be predicted by expanding
Ti2(ω, RL) in a Taylor series about ωo. As Ti2(ωo) =

∂Ti2(Ro, ωo)/∂ω = 0, we must consider a second-order
derivative ∂2Ti2(Ro, ωo)/∂ω2. This provides

1
2

∂2Ti2(ωo, Ro)

∂ω2 (1ω)2
= −

∂Ti2(ωo, Ro)

∂ RL
1RL . (40)

The frequency variation is proportional to the square root
of the parameter perturbation, as expected in a second-order
EPD [5]. For validation, the results provided by (40) have
been compared with the roots of Ti2(ω), calculated versus RL

(Fig. 11). We conclude that the two fundamental frequencies
can be predicted with reasonable accuracy from (40),
by expressing ω1 = ωo − 1ω and ω2 = ωo + 1ω. In general
terms, the sensitivity increases for a larger Lm and Cm ,
in comparison with L0 and C0. However, an additional fitting
is required to set the EPD at the desired value, which will
give rise to different sets of parameter values. To illustrate
this, we have considered four different sets, fit to provide the
same EPD (ωo, Ro). The results are shown in Fig. 11(b).

D. Numerical Calculation of the Quasi-Periodic Solution

For an accurate numerical calculation of the quasi-
periodic solution, we will make use of the envelope-transient
method [25]. This analysis is carried out at the circuit level
in commercial software (Keysight ADS [24]), which uses a
nodal formulation [21]. For a conceptual explanation, we will
consider a vector x̄(t), including all the circuit state variables.
This is expressed in a Fourier series with time-varying
harmonic terms. For the analysis of the EPD oscillator, we will
make use of a single fundamental frequency, corresponding to
one of the two fundamentals, f1,2 = 1 GHz ± 1 f , of the

Fig. 11. Sensitivity versus RL of the two fundamental frequencies of the
quasi-periodic solution of Type II. (a) Comparison of the approach (40) with
a direct calculation of the roots of Ti2(RL , ω) = 0. (b) Dependence on
the parameters, Lm , Cm , and d of the coupled transmission lines. Case A
(96.67 nH/m, 452.7 pF/m, and 20 mm), Case B (274.3 nH/m, 216.73 pF/m,
and 30 mm), Case C (367.4 nH/m, 102.7 pF/m, and 40.15 mm), and Case D
(422.47 nH/m, 37.67 pF/m, and 50 mm), fit to provide the same EPD.

quasi-periodic solution. Taking the positive sign ( f1), x̄(t) is
expressed as

x̄(t) =

NH∑
k=−NH

X̄ k(t)e j kω1 t
. (41)

To maintain consistency with the previous analyses, we will set
NH = 7. The oscillations are initialized by introducing a small-
amplitude current source I (t) at the frequency ω1. The source
is active only during the initial time steps. This is implemented
using a conditional statement that sets it to zero after a certain
time value: I (t) = 0 for t > t0. The integration time step of the
envelope analysis [providing the harmonic terms X̄ k(t)] must
be short enough to accurately predict the additional oscillation
at ω2. It should be able to capture the frequency difference
1ω21, as well as the intermodulation terms between ω1 and ω2.

For the first analysis, we have taken −RN = 49.88 �.
The resulting spectrum, centered about (ω1 + ω2)/2, is shown
in Fig. 12(a). There are two fundamental frequencies, with
approximately the same amplitude, in agreement with [11]
and [12] and the analyses of Section III-A. As RL increases,
the difference 1ω21 between the two fundamental frequencies
increases too. The frequencies obtained with this independent
envelope-transient simulation, superimposed in Fig. 11, exhibit
an excellent agreement with the analytical predictions.

For the second analysis, we have taken RN = −51 �

[Fig. 12(b)]. It fulfills |RN | > Ro, so the quasi-periodic
solution should start with a frequency difference 1ω21 = |ω2
− ω1| ̸= 0 [like in Fig. 7(a)], at a double-Hopf bifurcation.
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Fig. 12. Envelope-transient analysis of the quasi-periodic solutions. (a) For
RN = −49.88 � and several RL values. (b) For RN = −51 � and several
RL values.

Because it arises at a certain RL distance from the minimum of
Ti2(RL , ω) = 0, the difference 1ω21 grows more slowly than
in the case of RN = −49.88 � [Fig. 12(a)]. This quasi-periodic
solution is generated at a double-Hopf bifurcation, so the
amplitudes of its two fundamental spectral lines start from zero
[Fig. 7(b)]. This explains the smaller amplitudes obtained for
RN = −51 � [Fig. 12(b)] in comparison with RN = −49.88 �

[Fig. 12(a)].
In conclusion, the EPD is a degenerate double-Hopf

bifurcation at which a quasi-periodic solution arises at the two
fundamental frequencies ω1 = ω2 = ωo. In practice, we must
ensure |RN | < Ro, with |RN | ∼= Ro. This will provide a
quasi-periodic solution, arising with zero difference between
the two fundamental frequencies 1ω21 = |ω2 − ω1| = 0.
The two frequencies, ω1 and ω2, split with a high sensitivity
to the parameter, acting as the measurand, as desired for the
sensing application. In the second stage, the designer should
carry out an envelope-domain analysis to obtain this quasi-
periodic solution and evaluate its sensitivity in fully nonlinear
conditions.

V. PRACTICAL IMPLEMENTATION AND
MEASUREMENT RESULTS

As demonstrated in numerous previous works [31], [32],
[33], [34], [35], [36], the cubic nonlinearity i = G N v + bv3

can be implemented with a pair of cross-coupled transistors.
However, this configuration is balanced. For the transition to
a single-ended one, here we have made use of a Marchand
balun [16], which enables a planar implementation (Fig. 13).
The transistors are ATF34143. The biasing and terminations
are chosen to best fit the cubic nonlinearity considered in the

Fig. 13. Implemented oscillator. (a) Schematic. (b) Photograph.

Fig. 14. Oscillator based on cross-coupled transistors. (a) Real part of the
input admittance. (b) Pole variation after compensating for dispersion and
parasitics.

analytical study. The variation of the small-signal conductance,
fit to G N = −1/49.88 S in a broad frequency band
about 1 GHz, is shown in Fig. 14(a). The positive conductance
of about 3 GHz suppresses the additional oscillations about the
odd harmonics. We have used the graphical method based on
plotting GT (GL , ω) = 0 and Ti2(ω, RL) = 0 to compensate
for dispersion and parasitic effects, which has been achieved
through the tuning of the bias voltage and bias network.
The resulting pole locus [Fig. 14(b)] exhibits the expected
structure.
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Fig. 15. Experimental characterization setup, composed of an oscilloscope
paired with an active probe and a spectrum analyzer equipped with a monopole
antenna.

The setup for the experimental characterization is shown in
Fig. 15. It comprises an Infiniium Digital Storage Oscilloscope
(DSO90404A) paired with a 1134A InfiniiMax 7 GHz high-
impedance active probe. The scope enables a fast, dynamic,
and efficient evaluation of the waveforms at different nodes.
The high-frequency resistors that act as the measurand
are connected to the resistive termination of the coupled
transmission lines. The circuit operation was validated with
the noncontact RF probe before using the active probe.
The position of the probe, as well as its orientation and
distance to the board, has been set to minimize any
possible influence on the desired operation mode. Because
the resistive termination is employed for that purpose, the
spectrum is measured with the aid of a monopole antenna
constructed using RG316 coaxial cable, which is connected
to the spectrum analyzer. The monopole antenna serves
as a contactless passive probe for capturing the oscillator
spectrum without disturbing the circuit symmetries. The
sensing is based on the variation of the frequency difference
between the two fundamentals of the quasi-periodic solution,
so this procedure enables a reliable characterization. To ensure
precise positioning, 3-D probe positioners are utilized for
both the active probe and the monopole antenna. In this
way, we have obtained the oscillator spectrum when loading
the coupled lines with several surface-mount device (SMD)
thick-film resistors (0603 and 0805) usable at high fre-
quency. We have considered the available commercial values
RL = 47, 51, 56, and 62 �. Fig. 16(a) shows the experimental
spectra obtained for RL = 47 and 62 �. As can be
seen, the qualitative behavior is very similar to the one
obtained in the simulations in Fig. 12. The response in terms
of the frequency difference 1ω21 exhibits good agreement
with the analysis results. It is measured as the difference
between the frequencies of the two central spectral lines
(having the highest output power), indicated with arrows. This
can be seen in Fig. 16(b), where 1 f21 has been represented

Fig. 16. Experimental results for the available commercial resistors.
(a) Spectra obtained for RL = 47 and 62 �. (b) Difference between the two
fundamental frequencies, |1 f21|, versus the load resistor RL , compared with
the analysis results. (c) Comparison between the simulated and experimental
waveforms.

versus the resistor RL . Fig. 16(c) compares the simulated and
experimental quasi-periodic waveforms. The amplitude limits
are approximately the same in measurement and simulation.
Due to the existence of two Lyapunov exponents equal to zero,
the solution has a double autonomy. We must keep in mind
that the simulation was carried out using a cubic-nonlinearity
model for the active device, whereas the manufactured circuit
is based on two cross-coupled transistors.

VI. CONCLUSION

An in-depth investigation of an oscillator based on finite-
length coupled transmission lines with nearly balanced gain
and loss has been presented. We have proposed a new method
for the graphical detection of the EPD. This is based on
the representation of the zero-value contours of the real and
imaginary parts of total admittance at the analysis node. The
oscillatory solutions have been analytically obtained using
the described function. There are two different kinds of
periodic and quasi-periodic solutions. The one used for the
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sensing application is quasi-periodic and ideally generated
at the EPD. This corresponds to a degenerate double-Hopf
bifurcation with zero difference between the fundamental
frequencies. In practice, the quasi-periodic solution can be
generated either from zero amplitude and nonzero frequency
difference or the opposite: from nonzero amplitude and zero
frequency difference. In the latter case, the frequencies will
split with high sensitivity to the parameters, as desired for
the sensing application. Dispersion and losses in the coupled
transmission line do not prevent the occurrence of the EPD;
however, it is necessary to counteract these effects. This can
be achieved with a new method based on the representation
of the zero-value contours of the total admittance. All
the results were validated using HB and envelope-transient
analyses. We have implemented the oscillator using two
cross-coupled transistors loaded with the coupled transmission
lines. We observed good agreement between simulated and
experimental results.
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