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Abstract
In this paper, we carry out the analysis of the semismooth Newton method for control-
constrained bilinear control problems of semilinear elliptic PDEs.We prove existence,
uniqueness and regularity for the solution of the state equation, as well as differentia-
bility properties of the control to statemapping. Then, first and second order optimality
conditions are obtained. Finally, we prove the superlinear convergence of the semis-
mooth Newton method to local solutions satisfying no-gap second order sufficient
optimality conditions as well as a strict complementarity condition.
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144 E. Casas et al.

1 Introduction

In this paper, we propose a semismooth Newtonmethod to solve the following bilinear
optimal control problem:

(P) min
u∈Uad

J (u) :=
∫

�

L(x, yu(x)) dx + ν

2

∫
�

u2(x) dx,

where yu is the state associated with the control u solution of

{
Ay + a(x, y) + uy = 0 in �,

∂nA y = g on �.
(1.1)

Here � ⊂ R
d , d = 2 or 3, is a bounded open connected set with a Lipschitz boundary

�. The precise assumptions on the data will be given in Sects. 2 and 3. For the moment,
we underline that the parameter ν > 0 and the admissible set of controls is defined as

Uad = {u ∈ L2(�) : α ≤ u(x) ≤ β a.e. in �}.

Our main goal is to prove convergence of a semi-smooth Newton method for the
bilinear control problem (P).Bilinear controls have numerous applications in biology,
ecology, socio-economy and engineering; see [3, 10, 15]. The key structural feature
of such problems is the "bilinear" structure of the control; that is the nonlinear mul-
tiplicative coupling uy of the control variable u to its state variable y, in contrast to
the classical optimal control setting (see for instance [21]) where the control typically
appears in an additive way at the right hand side of the equation.

Semi-smooth Newton type methods are well known for their computational effec-
tivity and their robust performance in a variety of optimization problems; see [11,
23] and references within. For various results related to the use of semi-smooth type
methods within the context of PDE-constrained optimization we refer the reader to
the books of [12, 13, 23] and references within.

Despite its wide applicability, results regarding convergence properties of semi-
smooth methods associated to nonlinear PDE constrained optimization problems are
very limited; see [2, 14, 18, 19, 22] for problems involving additive controls and [9]
for problems involving bilinear controls. In these works strong second order assump-
tions are imposed, which frequently imply local convexity of the control problem
around a local solution. In the recent paper [6], the superlinear convergence is proved
for an additive control under no-gap second order optimality conditions and a strict
complementarity assumption.

The case of bilinear controls posses additional challenges. For instance, the control
enters to the PDE in a multiplicative way, and the sign of the bilinear term uy is not
necessarily strictly positive. As a consequence, the derivation of suitable second order
conditions substantially differs from the classical case, since various results regarding
the well-posedness and differentiability properties of the control to state and adjoint-
state mappings are non standard.
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Bilinear control of semilinear elliptic PDEs 145

Our paper fills this gap in the case of bilinear controls for optimal control problems
related to semi-linear elliptic PDEs. In particular,weprove the superlinear convergence
of the semi-smooth Newton method, under the standard assumptions of the no-gap
second order optimality conditions and a strict complementarity conditions (similar to
the assumptions of [6] and to the finite dimensional case [17]). The key ingredient of
the proof is the development of a suitable second order condition on an extended cone.
For the later, we prove various local well posedness and differentiability results for
the associated control to state and adjoint state mappings. The second order condition
allows to prove the uniform boundedness of certain generalized derivatives of the
solution operator equation associated to the semi-smooth Newton method, which is a
necessary result in order to exploit the abstract convergence framework of [23].

The paper is organized as follows. In Sect. 2, we present the analysis of the state
equation and, in particular, well-posedness results related to the control to state map-
ping. In Sect. 3, we study the optimal control problem, and in particular we prove first
and second order conditions for a local minimizer. In Sect. 4, we employ the functional
framework of [23] to study the convergence of the semi-smooth Newton method while
in Sect. 5 we present a numerical example that verifies our theoretical findings.

2 Analysis of the state equation

In this section we prove existence and uniqueness of solution of (1.1) as well as
differentiability properties of the relation control to state. To this end, we make the
following assumptions.

Assumption 2.1 The operator A is defined in � by the expression

Ay = −
d∑

i, j=1

∂x j [ai j (x)∂xi y]

with ai j ∈ L∞(�) for 1 ≤ i, j ≤ d satisfying for some MA,�A > 0

MA|ξ |2 ≥
d∑

i, j=1

ai j (x)ξiξ j ≥ �A|ξ |2 for a.a. x ∈ � and ∀ξ ∈ R
d .

Assumption 2.2 We assume that a : � × R −→ R is a Carathéodory function of
classC2 with respect to the second variable satisfying the following properties for a.a.
x ∈ �:

• a(·, 0) ∈ L p(�) for some p >
d

2
,

• ∃a0 ∈ L∞(�) such that
∂a

∂ y
(x, y) ≥ a0(x) ∀y ∈ R,
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146 E. Casas et al.

• ∀M > 0 ∃Ca,M such that
2∑
j=1

∣∣∣∂
j a

∂ y j
(x, y)

∣∣∣ ≤ Ca,M ∀|y| ≤ M,

• ∀ε > 0 and ∀M > 0 ∃ρ > 0 such that
∣∣∣∂

2a

∂ y2
(x, y1) − ∂2a

∂ y2
(x, y2)

∣∣∣ ≤ ε

for all |y1|, |y2| ≤ M with |y1 − y2| ≤ ρ.

Assumption 2.3 For the boundary data we assume that g ∈ Lq(�) with q > d − 1.

We observe that the normal derivative ∂nA y is formally defined by

∂nA y =
d∑

i, j=1

ai j∂xi y(x)nj (x),

where n(x) denotes the outward unit normal vector to � at the point x . Due to the
Lipschitz regularity of � such a vector n(x) exists for almost all x ∈ �. For a rigorous
definition of the normal derivative in a trace sense the reader is referred, for instance,
to [5].

Throughout this paper the following notation will be used:

mu := ess infx∈�u(x),A0 := {u ∈ L2(�) : a0(x) + mu ≥ 0 a.e. in � and a0 + u 
≡ 0}.

From Assumption 2.1, for every u ∈ A0 we infer the existence of a constant 0 <

�u ≤ �A such that

∫
�

( d∑
i, j=1

ai, j ∂xi y∂x j y + [a0 + u]y2
)
dx ≥ �u‖y‖2H1(�)

∀y ∈ H1(�). (2.1)

It is well known that H1(�) ⊂ Lr (�) for every r ≤ 2d
d−2 , with r < ∞ if d = 2.

Hence, we have

∃Cr ,� > 0 such that ‖y‖Lr (�) ≤ Cr ,�‖y‖H1(�) ∀y ∈ H1(�). (2.2)

Analogously, since H1/2(�) is continuously embedded in Lq ′
(�) for q > d−1, where

q ′ = q
q−1 denotes the conjugate of q, we also have

∃Cq ′,� > 0 such that ‖y‖Lq′
(�)

≤ Cq ′,�‖y‖H1(�) ∀y ∈ H1(�). (2.3)
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Bilinear control of semilinear elliptic PDEs 147

Theorem 2.4 There exists μ ∈ (0, 1] such that for every u ∈ A0 there exists a unique
solution yu ∈ H1(�) ∩C0,μ(�̄) of (1.1). Furthermore, the following estimates hold:

‖yu‖H1(�) ≤ 1

�u

(
Cp′,�‖a(·, 0)‖L p(�) + Cq ′,�‖g‖Lq (�)

)
, (2.4)

‖yu‖L∞(�) ≤ 1

�u
Cp,q , (2.5)

‖yu‖C0,μ(�̄) ≤ Cμ,∞
(‖a(·, 0)‖L p(�) + ‖u‖L2(�) + ‖g‖Lq (�)

)
, (2.6)

where Cp,q depends on ‖a(·, 0)‖L p(�) and ‖g‖Lq (�), and Cμ,∞ depends as well on
a(·, 0) and g and on a monotone nondecreasing way on ‖yu‖L∞(�).

Proof We define the mapping

b : � × R −→ R, b(x, y) := a(x, y) − a(x, 0) − a0(x)y. (2.7)

Then, b satisfies b(y, 0) = 0 and ∂b
∂ y (x, y) ≥ 0 due to Assumption 2.2. Furthermore,

(1.1) can be written in the form

{
Ay + (a0 + u)y + b(x, y) = −a(x, 0) in �,

∂nA y = g on �.
(2.8)

From Assumption 2.1 and (2.1) and (2.2) we get that A + (a0 + u)I : H1(�) −→
H1(�)∗ is a linear operator satisfying the following properties

〈(A + (a0 + u))y, y〉 ≥ �u‖y‖2H1(�)
and 〈(A + (a0 + u))y, φ〉 ≤ Mu‖y‖H1(�)‖φ‖H1(�),

where Mu := MA + a0 + C2
4,�‖u‖L2(�). Therefore, there exists a unique solution

of (2.8) in H1(�) ∩ L∞(�) (see e.g. [4]). Inequality (2.4) follows easily by testing
(2.8) with y and using the established coercivity of the operator A + (a0 + u)I and
the fact that b(x, y)y ≥ 0 together with (2.2) and (2.3). To prove (2.5) we proceed
similarly to [1] by introducing the function yk(x) := y(x)−Proj[−k,k](y(x)) for every
integer k ≥ 1. Testing (2.8) with yk , using that ∂xi y∂x j yk = ∂xi yk∂x j yk , the inequality
(a0 + u)yyk ≥ (a0 + u)y2k , and b(x, y)yk ≥ 0 we infer

‖yk‖2H1(�)
≤ 1

�u

(∫
�

|a(·, 0)||yk(x)| dx +
∫

�

|g(x)||yk(x)| dx
)

.

Following the techniques of [20] and [1] we deduce the estimate. To prove (2.6), we
write (1.1) in the form

{
Ay + y = (1 − u)y − a(x, y) in �,

∂nA y = g on �.
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148 E. Casas et al.

SettingM := ‖y‖L∞(�), with Assumption 2.2 and themean value theoremwe deduce

|a(x, y)| ≤ |a(x, 0)| + Ca,MM .

In addition, we have ‖(1 − u)y‖L2(�) ≤ (‖u‖L2(�) + √|�|)M . Combining these
estimates with the results of [16] we infer the existence of μ ∈ (0, 1] such that
y ∈ C0,μ(�̄) and inequality (2.6) holds. ��
Next we consider the diffentiability of the mapping u → yu .

Theorem 2.5 There exists an open set A in L2(�) such that A0 ⊂ A and ∀u ∈ A
the equation (1.1) has a unique solution yu ∈ H1(�) ∩ C0,μ(�̄), where μ ∈ (0, 1]
was introduced in Theorem 2.4. Further, the mapping G : A −→ H1(�) ∩ C0,μ(�̄)

defined by G(u) := yu is of class C2 and∀u ∈ A and∀v, v1, v2 ∈ L2(�) the functions
z = G ′(u)v and w = G ′′(u)(v1, v2) are the unique solutions of the equations:

⎧⎨
⎩

Az + ∂a

∂ y
(x, yu)z + uz = −vyu in �,

∂nA z = 0 on �,

(2.9)

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

Aw + ∂a

∂ y
(x, yu)w + uw

= −∂2a

∂ y2
(x, yu)zu,v1 zu,v2 − v1zu,v2 − v2zu,v1 in �,

∂nAw = 0 on �,

(2.10)

where zu,vi = G ′(u)vi , i = 1, 2.

Proof We define the space

YA := {y ∈ H1(�) ∩ C0,μ(�̄) : Ay ∈ L p(�), ∂nA y ∈ Lq(�)}

which is a Banach space when endowed with the graph norm. We also define the
mapping

F : L2(�) × YA −→ L p(�) × Lq (�), F(u, y) := (Ay + a(x, y) + uy, ∂nA y − g).

From Assumption 2.2 we deduce that F is of class C2. For every (ū, ȳ) ∈ A0 × YA

the derivative ∂F
∂ y (ū, ȳ) : YA −→ L p(�) × Lq(�), given by

∂F
∂ y

(ū, ȳ)z =
(
Az + ∂a

∂ y
(x, ȳ)z + ūz, ∂nA z

)
∀z ∈ YA,

is linear and continuous. Using Theorem 2.4, we deduce that the equation

⎧⎨
⎩

Az + ∂a

∂ y
(x, ȳ)z + ūz = f in �,

∂nA z = h on �,

(2.11)
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Bilinear control of semilinear elliptic PDEs 149

has unique solution z ∈ YA for all ( f , h) ∈ L p(�) × Lq(�). The open mapping
theorem implies that ∂F

∂ y (ū, ȳ) is an isomorphism and there exists εū > 0 and εȳ > 0,

such that ∀u ∈ Bεū (ū) ⊂ L2(�) the equation F(u, y) = 0 has a unique solution yu
in the ball Bεȳ (ȳ) ⊂ Y . Moreover the mapping u ∈ Bεū (ū) → yu ∈ Bεȳ (ȳ) is of

class C2. Without loss of generality, we assume εū <
�ū
C2
4,�

, where �ū is defined in

(2.1) and C4,� is introduced in (2.2) for r = 4. We prove that for every u ∈ Bεū the
equationF(u, y) = 0 has unique solution y ∈ YA. Indeed, suppose that y1, y2 are two
solutions of F(u, y) = 0. We set y = y1 − y2, subtract the corresponding equations,
and apply the mean value theorem to deduce that y satisfies

⎧⎨
⎩

Ay + ∂a

∂ y
(x, y1 + θx y)y + uy = 0 in �,

∂nA y = 0 on �,

(2.12)

where θx : � → [0, 1] is a measurable function. The equation (2.12) can be written
as

⎧⎨
⎩

Ay +
[

∂a

∂ y
(x, y1 + θx y) + ū

]
y + (u − ū)y = 0 in �,

∂nA y = 0 on �.

(2.13)

Testing (2.13) with y we get

(
�ū − C2

4,�εū

)
‖y‖2H1(�)

≤ �ū‖y‖2H1(�)
− C2

4,�‖u − ū‖L2(�)‖y‖2H1(�)
≤ 0.

Hence, y = 0 holds. Finally, defining in L2(�) the open set A = ∪ū∈A0Bεū (ū) and
the mapping G : A −→ Y such that G(u) = yu, we have that G is of class of C2.
Moreover, the equations (2.9) and (2.10) are obtained differentiating with respect to
u the identity F(u,G(u)) = 0. ��

3 Analysis of the optimal control problem

In this Section we are going to prove existence of solutions of problem (P) and we
analyze the first and second order optimality conditions for a local minimizer. Along
this paper a local minimizer is understood in L2(�) sense. To this end we make the
following hypothesis.

Assumption 3.1 We assume that the conditions ν > 0, a0(x) + α ≥ 0 for a.a. x ∈ �,
a0 + α 
≡ 0, and α < β ≤ ∞ hold.

Assumption 3.2 The function L : � × R −→ R is Carathéodory and of class of C2

with respect to the second variable. Further the following properties hold for almost
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150 E. Casas et al.

all x ∈ �:

• L(·, 0) ∈ L1(�),

• ∀M > 0, ∃LM ∈ L p(�) such that
∣∣∣∂L
∂ y

(x, y)
∣∣∣ ≤ LM (x) ∀|y| ≤ M,

• ∀M > 0, ∃CL,M ∈ R such that
∣∣∣∂

2L

∂ y2
(x, y)

∣∣∣ ≤ CL,M ∀|y| ≤ M,

• ∀ε > 0 and ∀M > 0 ∃ρ > 0 such that
∣∣∣∂

2L

∂ y2
(x, y1) − ∂2L

∂ y2
(x, y2)

∣∣∣ ≤ ε ∀|y1|, |y2| ≤ M with |y1 − y2| ≤ ρ.

Remark 3.3 1. From Assumption 3.1, the fact that a0(x)+mu ≥ a0(x)+α ∀u ∈ Uad,
and (2.1) we infer that Uad ⊂ A0 ⊂ A.

2. Using again Assumption 3.1 we deduce the existence of a constant � > 0
such that the inequality (2.1) holds for every u ∈ Uad with �u replaced by �. Since
a0(x) + mu ≥ a0(x) + α ∀u ∈ Uad, without loss of generality we can assume that
�u ≥ � ∀u ∈ Uad. Consequently, (2.4) and (2.5) hold with � instead of �u , and
Cμ,∞ in (2.6) can be chosen independently of u ∈ Uad.

As a consequence of Theorem 2.5 and Assumption 3.2 we deduce the differentiability
of functional J .

Theorem 3.4 The functional J : A −→ R is of class C2 and its derivatives are given
by the expressions:

J ′(u)v =
∫

�

(νu − yuϕu)v dx ∀u ∈ A, ∀v ∈ L2(�), (3.1)

J ′′(u)(v1, v2) =
∫

�

[∂2L

∂ y2
(x, yu) − ϕu

∂2a

∂ y2
(x, yu)

]
zu,v1 zu,v2 dx

−
∫

�

[
v1zu,v2 + v2zu,v1

]
ϕu dx + ν

∫
�

v1v2 dx, ∀u ∈ A, ∀v1, v2 ∈ L2(�),

(3.2)

where zu,vi = G ′(u)vi , i = 1, 2 and ϕu ∈ H1(�) ∩ C0,μ(�̄) is the adjoint state, the
unique solution of the equation

⎧⎨
⎩

A∗ϕ + ∂a

∂ y
(x, yu)ϕ + uϕ = ∂L

∂ y
(x, yu) in �,

∂nA∗ ϕ = 0 on �.

(3.3)

Proof First let us analyze (3.3). To prove existence, uniqueness and regularity of
solution (3.3) we first observe that there exists ū ∈ A0 such that u ∈ Bεū (ū), where
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Bilinear control of semilinear elliptic PDEs 151

εū is defined in the proof of Theorem 2.5. Then, (3.3) can be written as

⎧⎨
⎩

A∗ϕ +
[∂a

∂ y
(x, yu) + ū

]
ϕ + (u − ū)ϕ = ∂L

∂ y
(x, yu) in �,

∂nA∗ ϕ = 0 on �.

Setting M = ‖yu‖L∞(�), from Assumption 3.2 we obtain
∣∣∣ ∂L
∂ y (x, yu)

∣∣∣ ≤ LM (x)

with LM ∈ L p(�). Then, arguing as for (2.13) we obtain the coercivity of the linear
equation. The existence and uniqueness of a solution in H1(�) follows from Lax-
Milgram theorem. Finally, using again [16] we deduce the C0,μ(�̄) regularity.

The fact that J is of class C2 is an immediate consequence of the chain rule,
Theorem 2.5, and Assumption 3.2. Moreover, we have

J ′(u)v =
∫

�

[∂L

∂ y
(x, yu)zu,v + νuv

]
dx,

J ′′(u)(v1, v2) =
∫

�

[∂L

∂ y
(x, yu)w + ∂2L

∂ y2
(x, yu)zu,v1 zu,v2 + νv1v2

]
dx,

where zu,v = G ′(u)v, zu,vi = G ′(u)vi , i = 1, 2, and w = G ′′(u)(v1, v2). Combining
these expressions with (2.9), (2.10), and (3.3) the formulas (3.1) and (3.2) follow. ��
In the above theorem we have proved that the mapping � : A −→ H1(�)∩C0,μ(�̄)

given by �(u) := ϕu is well defined. In the next theorem its differentiability is
established.

Theorem 3.5 The mapping � is of class C1 and for all u ∈ A and v ∈ L2(�) the
function ηu,v = �′(u)v is the unique solution of

⎧⎨
⎩

A∗η + ∂a

∂ y
(x, yu)η + uη =

[∂2L

∂ y2
(x, yu) − ϕu

∂2a

∂ y2
(x, yu)

]
zu,v − vϕu in �,

∂nA∗ η = 0 on �,

(3.4)

where zu,v = G ′(u)v.

Proof According toAssumption 3.2 and the fact that yu, ϕu, zu,v ∈ L∞(�)we deduce
that the right hand side of (3.4) belongs to L2(�). As for (3.3) the existence, unique-
ness, and regularity of ηu,v follows. To prove the differentiability of � we define

YA∗ = {ϕ ∈ H1(�) ∩ C0,μ(�̄) : A∗ϕ ∈ L p(�) and ∂nA∗ ϕ = 0}

and G : A × YA∗ −→ L p(�) by

G(u, ϕ) := A∗ϕ + ∂a

∂ y
(x, yu)ϕ + uϕ − ∂L

∂ y
(x, yu).
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From Assumptions 2.2 and 3.2 we deduce that G is a C1 mapping. We have that

∂G
∂ϕ

(u, ϕ)η = A∗η + ∂a

∂ y
(x, yu)η + uη

and ∂G
∂ϕ

(u, ϕ) : YA∗ −→ L p(�) is an isomorphism. Then, applying the implicit
function theorem and differentiating the identity G(u,�(u)) = 0 the result follows. ��

The following corollary is a straightforward application of formula (3.2) and equa-
tion (3.4).

Corollary 3.6 For every v1, v2 ∈ L2(�) and all u ∈ A, the following identities hold

J ′′(u)(v1, v2) =
∫

�

[
νv1 − (ϕuzu,v1 + yuηu,v1)

]
v2 dx

=
∫

�

[
νv2 − (ϕuzu,v2 + yuηu,v2)

]
v1 dx .

Theorem 3.7 Problem (P) has at least one solution. Moreover, if ū ∈ Uad is a local
minimizer of (P) then there exist ȳ, ϕ̄ ∈ H1(�) ∩ C0,μ(�̄) such that

{
Aȳ + a(x, ȳ) + ū ȳ = 0 in �,

∂nA ȳ = g on �,
(3.5)

⎧⎨
⎩

A∗ϕ̄ + ∂a

∂ y
(x, ȳ)ϕ̄ + ūϕ̄ = ∂L

∂ y
(x, ȳ) in �,

∂nA∗ ϕ̄ = 0 on �,

(3.6)

ū(x) = Proj[α,β]
(
1

ν
ȳ(x)ϕ̄(x)

)
. (3.7)

The existence of a solution follows by usual arguments, taking aminimizing sequence,
and observing that if uk⇀ū in L2(�) then yuk → ȳ = yū strongly in H1(�)∩C(�̄).
This statement is an immediate consequence of estimates (2.4), (2.5) and (2.6) and
Remark 3.3. The optimality system follows from (3.1), (3.3), and the fact that Uad is
convex.

From now on (ū, ȳ, ϕ̄) ∈ Uad × [H1(�) ∩ C0,μ(�̄)]2 will denote a triplet that
satisfies (3.5), (3.6) and (3.7). Associated with this triplet we define the cone of critical
directions

Cū = {v ∈ L2(�) : v(x)=0 if νū(x) − ȳ(x)ϕ̄(x) 
=0 a.e. in � and (3.9) holds},
(3.8)

v(x)

{≥ 0 if ū(x) = α,

≤ 0 if ū(x) = β.
(3.9)

Regarding the second order optimality conditions we have the following result.
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Theorem 3.8 If ū is a local minimizer of (P), then J ′′(ū)v2 ≥ 0 ∀v ∈ Cū holds.
Conversely, if ū ∈ Uad satisfies the first order optimality conditions (3.5), (3.6) and
(3.7) and J ′′(ū)v2 > 0 ∀v ∈ Cū \ {0}, then there exist ε > 0 and δ > 0 such that

J (ū) + δ

2
‖u − ū‖2L2(�)

≤ J (u) ∀u ∈ Uad with ‖u − ū‖L2(�) ≤ ε. (3.10)

The proof of this theorem is standard. The reader is referred, for instance, to [7].
For the subsequent analysis the strict complementarity condition will be needed.

Definition 3.9 Let us define

�ū = {x ∈ � : ū(x) ∈ {α, β} and νū(x) − ȳ(x)ϕ̄(x) = 0}.

We say that the strict complementarity condition is satisfied at ū if |�ū | = 0, where
| · | stands for the Lebesgue measure.

This notion is an extension to the case of infinite constraints of the usual strict com-
plementarity condition in finite dimensional nonlinear programming.

For every τ ≥ 0, we define the subspace

T τ
ū = {v ∈ L2(�) : v(x) = 0 if |νū(x) − ȳ(x)ϕ̄(x)| > τ a.e. in �}. (3.11)

If τ = 0 we simply denote Tū = T 0
ū .

Theorem 3.10 Assume that ū satisfies the strict complementarity condition. Then, the
following properties hold:

1- Tū = Cū,
2- If ū satisfies the second order optimality condition J ′′(ū)v2 > 0 ∀v ∈ Cū \ {0},

then

∃τ > 0 and κ > 0 such that J ′′(ū)v2 ≥ κ‖v‖2L2(�)
∀v ∈ T τ

ū . (3.12)

Proof 1- It is obvious that Cū ⊂ Tū . Let us prove the converse inclusion. If v ∈ Tū we
have to prove that v satisfies the sign conditions (3.9). If ū(x) = α, then from (3.7)
we deduce νū(x) − ȳ(x)ϕ̄(x) ≥ 0. Hence, with the strict complementarity condition
we get that νū(x) − ȳ(x)ϕ̄(x) > 0 for almost all x such that ū(x) = α. Since v ∈ Tū
we conclude v(x) = 0 for almost all x such that ū(x) = α. In a similar way we argue
when ū(x) = β.

2- We argue by contradiction. If the statement is false, then ∀k ≥ 1 ∃vk ∈ T 1/k
ū

such that J ′′(ū)v2k < 1
k ‖vk‖2L2(�)

. Dividing vk by ‖vk‖L2(�) and denoting the result
again by vk , we obtain

vk ∈ T 1/k
ū , ‖vk‖L2(�) = 1, and J ′′(ū)v2k <

1

k
. (3.13)

Taking a subsequence that we denote again by vk we have that vk⇀v in L2(�). The
rest of the proof is divided in three steps.
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Step 1- v ∈ Cū . According to statement 1 of the theorem we only need to prove
that v(x) = 0 if νū(x) − ȳ(x)ϕ̄(x) 
= 0. Given ε > 0 we define �ε = {x ∈ � :
|νū(x) − ȳ(x)ϕ̄(x)| > ε}. By definition of T 1/k

ū , we have that vk(x) = 0 a.e. in �ε

∀k > 1
ε
. Therefore, v(x) = 0 a.e in �ε holds. Since ε > 0 can be selected arbitrarily

small we conclude that v(x) = 0 for almost all x in� such that νū(x)− ȳ(x)ϕ̄(x) 
= 0,
hence v ∈ Tū = Cū .

Step2- J ′′(ū)v2≤0.Sincevk⇀v in L2(�)weget that zū,vk =G ′(ū)vk⇀G ′(ū)v= zū,v

in H1(�) ∩ C0,μ(�̄). Therefore, the convergence zū,vk → zū,v is strong in
C(�̄). Then, we easily pass to the limit in (3.2) to deduce with (3.13) that
J ′′(ū)v2 ≤ lim infk→∞ J ′′(ū)v2k ≤ 0.

Step 3- Final Contradiction. From Steps 1 and 2, and the fact that ū satisfies the
second order sufficient optimality condition, we deduce that v = 0 and consequently,
zū,vk → 0 in C(�̄).Using the fact that ‖vk‖L2(�) = 1,we have that J ′′(ū)v2k = ν+εk

with εk → 0. Therefore, ν = limk→∞ J ′′(ū)v2k ≤ 0 which contradicts the strict
positivity of ν. ��

4 Convergence of the semismooth Newtonmethod

Following [23, Chapter 3] we are going to describe the abstract framework where our
numerical algorithm fits.

Definition 4.1 Given twoBanach spacesU and X , an open subsetA ofU , a continuous
function F : A −→ X , and a set-valued mapping ∂F : A −→ L(U , X) such that
∂F(u) 
= ∅ ∀u ∈ A, we say that F is ∂F-semismooth at ū ∈ A if

lim
v→0

sup
M∈∂F(ū+v)

‖F(ū + v) − F(ū) − Mv||X
‖v‖U = 0.

F is said ∂F-semismooth at A if it is ∂F-semismooth at every u ∈ A.

The abstract semismooth Newton method is given in Algorithm 1.

Algorithm 1: Semismooth Newton method.
1 Initialize. Choose u0 ∈ A. Set j = 0.
2 for j ≥ 0 do
3 Choose Mj ∈ ∂F(u j ) and solve Mj v j = −F(u j ).
4 Set u j+1 = u j + v j and j = j + 1.
5 end

Theorem 4.2 Suppose that F : A −→ X is ∂F-semismooth at ū ∈ A solution of
F(u) = 0 locally unique. Assume, furthermore, that for all j the operator M j ∈
∂F(u j ) is an isomorphism and there exists CF > 0 such that
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‖M−1
j ‖L(X ,U ) ≤ CF ∀ j ≥ 0. (4.1)

Then, there exists δ > 0 such that for all u0 ∈ A with ‖u0 − ū‖U ≤ δ the sequence
{u j } j≥0 generated by the semismooth Newton method (Algorithm 1) converges super-
linearly to ū.

The proof is this theorem can be found in [23, Theorem 3.13]; see also [11]. Let us
put our problem into this particular framework. Let X = U = L2(�) and A be the
open set introduced in Theorem 2.5. We define by F : A −→ L2(�) by

F(u) = u − Proj[α,β]
(
1

ν
yuϕu

)
.

Due to Theorem 3.7 any local minimizer of (P) is a solution of F(u) = 0. In order to
define ∂F(u) ∀u ∈ A we introduce some additional functions.

S : A −→ L2(�), S(u) = 1

ν
G(u)�(u),

ψ : R −→ R, ψ(t) = Proj[α,β](t),
� : A −→ L2(�), �(u)(x) = ψ(S(u)(x)).

For every u ∈ A we define

∂�(u) = {
N ∈ L(L2(�), L2(�)) : Nv = hS′(u)v ∀v ∈ L2(�) for some

measurable function h : � −→ R such that h(x) ∈ ∂ψ(S(u)(x))
}
.

We observe that ψ is a Lipschitz function and by ∂ψ(t) we denote the subdifferential
in Clarke’s sense; see [8, Chapter 2]. Note that

∂ψ(t) =
⎧⎨
⎩

{1} if t ∈ (α, β),

{0} if t /∈ [α, β],
[0, 1] if t ∈ {α, β}.

According to [23, Proposition 2.26], ψ is 1-order ∂ψ-semismooth.

Theorem 4.3 � is ∂�-semismooth in A.

Proof Since � is a superposition operator of ψ and S, we will apply [23, Theorem
3.49] to deduce that ∂�-semismooth in A. To this end it is enough to prove that
S : A −→ L2(�) is C1 and that S : A −→ L6(�) is locally Lipschitz. Indeed,
noting that

S′(u)v = 1

ν
[G ′(u)v�(u) + G(u)�′(u)v] = 1

ν
[zu,vϕu + yuηu,v],

using Theorems 2.5 and 3.5 and taking into account that the product of two functions
of H1(�) ∩ C0,μ(�̄) is in the same space, we deduce that the mapping S : A −→
H1(�) ∩ C0,μ(�̄) is C1.
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The local Lipschitz property is obtained as follows: Since S is C1, the mapping
DS : A −→ L(L2(�), H1(�) ∩ C0,μ(�̄)) is continuous. Therefore, given u ∈ A
there exists δu > 0 and LS,u ≥ 0 such that Bδu (u) ⊂ A and

‖DS(û)‖L(L2(�),H1(�)∩C0,μ(�̄)) ≤ LS,u ∀û ∈ Bδu (u). (4.2)

The Lipschitz property in this ball is now a consequence of the generalized mean value
theorem. ��
Corollary 4.4 The function F : A −→ L2(�) is ∂F-semismooth in A, where

∂F(u) = {M = I − N : N ∈ ∂�(u)}.

This is a straightforward consequence of Theorem 4.3.
To implement Algorithm 1, we select the operators Mu : L2(�) −→ L2(�) for

every u ∈ A as follows. First, we define the function λ : R −→ R by

λ(t) =
{ 1 if t ∈ (α, β),

0 otherwise.

It is obvious that λ(t) ∈ ∂ψ(t) for every t ∈ R. We define Mu : L2(�) −→ L2(�)

by Muv = v − hu · S′(u)v, where hu(x) = λ(S(u)(x)) = λ
( 1

ν
yu(x)ϕu(x)

)
. It is

immediate that Mu ∈ ∂F(u). For this selection we have the following result.

Theorem 4.5 Let (ū, ȳ, ϕ̄) ∈ Uad×[H1(�)∩C0,μ(�̄)]2 satisfy the first order optimal-
ity conditions (3.5), (3.6) and (3.7), the strict complementarity condition |�ū | = 0, and
the second order sufficient optimality condition J ′′(ū)v2 > 0 for every v ∈ Cū \ {0}.
Then, there exist δ > 0 and C > 0 such that for every u ∈ Bδ(ū) ⊂ A the linear
operator Mu : L2(�) −→ L2(�) is an isomorphism and ‖M−1

u ‖ ≤ C holds.

Proof Given u ∈ A we define the active and inactive sets for u as follows

Au =
{
x ∈ � : 1

ν
yu(x)ϕu(x) /∈ (α, β)

}
,

Iu =
{
x ∈ � : 1

ν
yu(x)ϕu(x) ∈ (α, β)

}
.

We denote by χAu and χIu the characteristic functions of Au and Iu , respectively.
According to the definition of Mu we have Muv = v − 1

ν
[zu,vϕu + yuηu,v]χIu

. It is
obvious that Mu is a continuous operator. Let us prove that for every w ∈ L2(�) there
exists a unique v ∈ L2(�) such that Muv = w. This equation can be written in the
form

{
v(x) = w(x) if x ∈ Au,

v(x) − 1
ν
[zu,v(x)ϕu(x) + yu(x)ηu,v(x)] = w(x) if x ∈ Iu .
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Taking into account that v coincides with w in Au and, hence, v = χ
Iu

v + χ
Au

w, the
second equation can be written

χ
Iu
v − 1

ν
[zu,χ

Iu
vϕu + yuηu,χ

Iu
v] = w + 1

ν
[zu,χ

Au
wϕu + yuηu,χ

Au
w]. (4.3)

In order to prove the existence and uniqueness of a solution of (4.3) we introduce the
quadratic functional J : L2(Iu) −→ R defined by

J(v) = 1

2ν
J ′′(u)(χ

Iu
v)2 −

∫
Iu

(
w + 1

ν
[zu,χ

Au
wϕu + yuηu,χ

Au
w])v dx

= 1

2

∫
Iu

[
v2 − 1

ν
(ϕuzuχ

Iu
v + yuηu,χ

Iu
v)v

]
dx

−
∫
Iu

(
w + 1

ν
[zu,χ

Au
wϕu + yuηu,χ

Au
w])v dx,

where we have used the expression of J ′′(u) given in Corollary 3.6. We observe that
J
′(v) = 0 if and only if v satisfies (4.3). Therefore, if we prove that J has a unique
stationary point, then the existence and uniqueness of a solution of (4.3) follows.
From Theorem 3.10 we get that (3.12) holds for some τ > 0 and κ > 0. Since
J ′′ is a continuous functional in A, we deduce the existence of δ0 > 0 such that
|[J ′′(u) − J ′′(ū)]v2| ≤ κ

2‖v‖2
L2(�)

for all v ∈ L2(�) if ‖u − ū‖L2(�) ≤ δ0. This
inequality and (3.12) imply that

J ′′(u)v2 ≥ κ

2
‖v‖2L2(�)

∀v ∈ T τ
ū and ∀u ∈ Bδ0(ū). (4.4)

Now, we prove that χ
Iu
v ∈ T τ

ū for all v ∈ L2(Iu) if u is sufficiently close to ū.
As a consequence we infer that the quadratic form J is strictly convex and coer-
cive, which proves the existence of a unique stationary point, the unique minimizer.
To prove that χ

Iu
v ∈ T τ

ū we select δ = min{δ0, δū, εū, τ
νLS,ū

}, where δū and LS,ū

were given in (4.2). Hence, we have that ‖S(u) − S(ū)‖C(�̄) ≤ LSδ ≤ τ
ν
for every

u ∈ Bδ(ū). If νū(x)− ȳ(x)ϕ̄(x) > τ , then (3.7) implies that ū(x) = α and, hence,
1
ν
ȳ(x)ϕ̄(x) < α− τ

ν
. This yields 1

ν
yu(x)ϕu(x) < α, therefore we have x ∈ Au and

(χ
Iu
v)(x) = 0. Analogously we proceed if νū(x) − ȳ(x)ϕ̄(x) < −τ .
It remains to deduce the existence of a constant C such that ‖M−1

u ‖ ≤ C for every
u ∈ Bδ(ū). From (4.4), Corollary 3.6, and (4.3) we infer

κ

2
‖χ

Iu
v‖2L2(�)

≤ J ′′(u)(χ
Iu
v)2 =

∫
�

(νχ
Iu
v − [ϕuzu,χ

Iu
v + yuηu,χ

Iu
v])χIu

v dx

=
∫

�

(νw + [ϕuzu,χ
Au

w + yuηu,χ
Au

w])χ
Iu
v dx .
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Since χ
Au

w = χ
Au

v we have

ν‖χ
Au

v‖2L2(�)
= ν

∫
�

wχ
Au

v dx .

From the last two relations, the uniform estimates for yu and ϕu in the ball Bεu (ū)

established in the proof of Theorem 4.3, and equations (2.9) and (3.4) we get the
existence of a constant C ′ such that

min
{
ν,

κ

2

}‖v‖2L2(�)
≤ ν

∫
�

wv dx +
∫

�

[ϕuzu,χ
Au

w + yuηu,χ
Au

w]χ
Iu
v dx

≤ C ′‖w‖L2(�)‖v‖L2(�),

which proves that ‖M−1
u ‖ ≤ C

min{ν, κ
2 } .

Algorithm 2 implements the semismooth Newton method to solve (P). The follow-
ing corollary establishes its convergence.

Corollary 4.6 Let (ū, ȳ, ϕ̄) ∈ Uad×[H1(�)∩C0,μ(�̄)]2 satisfy the first order optimal-
ity conditions (3.5), (3.6) and (3.7), the strict complementarity condition |�ū | = 0, and
the second order sufficient optimality condition J ′′(ū)v2 > 0 for every v ∈ Cū \ {0}.
Then, there exists δ > 0 such that for all u0 ∈ Bδ(ū) the sequence {u j } generated by
Algorithm 2 is contained in the ball Bδ(ū) and converges superlinearly to ū.

Proof Since any local solution of (P) satisfying the second order sufficient condition
is locally the unique stationary point of (P), see [7], this result is a straightforward
consequence of Theorem 4.2, Corollary 4.4, and Theorem 4.5. ��
Remark 4.7 To solve the quadratic problem (Q j ) that appears in line 8 of Algo-
rithm 2 we can use, e.g., the conjugate gradient method. Notice that we can write
J j (v) = 1

2 (v, A jv)L2(I j )
− (b j , v)L2(I j )

, where b j = χ
I j

(w j + 1
ν
[z jϕ j + y jη j ]) and

we can compute A jv using Algorithm 3. Therefore (Q j ) can be solved without need
of the explicit computation of the Hessian J ′′(u j ).

5 A numerical example

Wehave usedAlgorithm2 to solve the problemwith the following data:� = (0, 1)2 ⊂
R
2, A = −�, g(x) = 0,

f (x, y) = y3|y| + 2y − 100 sin(2πx1) sin(πx2),

ν = 0.05, α = −1, β = 1, L(x, y) = 0.5(y − yd(x))2, where

yd(x) = −64x1(1 − x1)x2(1 − x2).
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Algorithm 2: Semismooth Newton method to solve (P).

1 Initialize. Choose u0 ∈ L2(�). Set j = 0.
2 for j ≥ 0 do
3 Compute y j = G(u j ) solving the nonlinear equation

Ay + a(x, y) + u j y = 0 in �, ∂νA y = g in �.

4 Compute ϕ j = �(u j ) solving the linear equation

A∗ϕ + ∂a

∂ y
(x, y j )ϕ + u jϕ = ∂L

∂ y
(x, y j ) in �, ∂nA∗ ϕ = 0 on �.

5 Set A j = A
β
j ∪ A

α
j and I j = � \ A j , where

A
β
j = {x ∈ � : y j (x)ϕ j (x) ≥ νβ},

A
α
j = {x ∈ � : y j (x)ϕ j (x) ≤ να}.

6 Set

w j (x) = −F(u j )(x) =

⎧⎪⎨
⎪⎩

−u j (x) + β if x ∈ A
β
j

−u j (x) + 1
ν ϕ j (x)y j (x) if x ∈ I j

−u j (x) + α if x ∈ A
α
j

7 Compute z j = zu j ,χA j
w j and η j = ηu j ,χA j

w j solving the linear equations

Az j + ∂a

∂ y
(x, y j )z j + u j z j = − y jχA j

w j in �, ∂νA z j = 0 on �

A∗η j + ∂a

∂ y
(x, y j )η j + u jη j =

(
∂2L

∂ y2
(x, y j ) − ϕ j

∂2 f

∂ y2
(x, y j )

)
z j

− ϕ jχA j
w j in �, ∂nA∗ η j = 0 on �

8 Solve the quadratic problem

(Q j ) min
v∈L2(I j )

J j (v) := 1

2ν
J ′′(u j )(χI j

v)2 −
∫
I j

(w j + 1

ν
[z jϕ j + y jη j ])vdx

Name vI j its solution.

9 Set v j = χ
A j

w j + χ
I j

vI j .

10 Set u j+1 = u j + v j and j = j + 1.
11 end

We solve a finite element discretization of (P). Continuous piecewise linear functions
are used for the state, the adjoint state, and the control. The Tichonov regularization
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Algorithm 3: Computation of the product Hessian-vector
1 Solve

Az + ∂a

∂ y
(x, y j )z + u j z = − y jχI j

v in �, ∂νA z = 0 on �

2 Solve

A∗η + ∂a

∂ y
(x, y j )η + u jη =

(
∂2L

∂ y2
(x, y j ) − ϕ j

∂2 f

∂ y2
(x, y j )

)
z

− ϕ jχI j
v in �, ∂nA∗ η = 0 on �

3 Set A j v = χ
I j

(v − 1
ν [zϕ j + ηy j ])

term is discretized using the lumpmass matrix. In this way, the optimization algorithm
for the discrete problem is exactly the discrete version of Algorithm 2.

The chosen initial point is u0 = 0. The algorithm stops when

δ j = ‖v j‖L2(�)

max{1, ‖u j+1‖L2(�)}
< 5 × 10−14

or when J (u j ) and J (u j+1) are equal up to machine precision. At each iteration, the
solution of the quadratic subproblem (Q j ) is obtained using the conjugate gradient
method implemented in Matlab built-in command pcg and the nonlinear equation in
line 3 of Algorithm 2 is solved using Newton’s method. The tolerance 5 × 10−14 is
used for both subproblems.

We show the convergence results for different mesh sizes in Tables 1, 2 and 3. Not
only the predicted superlinear convergence can be observed in all of them, but also
the mesh-independence of the convergence history, which is explained thanks to the
convergence result for the algorithm in the infinite-dimensional setting.

�Newton is the number of Newton iterations to solve the nonlinear PDE in line 3
of Algorithm 2 and �CG is the number of iterations of the conjugate gradient method
used to solve (Q j ) in Algorithm 2. In terms of computational cost, the hard work is

Table 1 Convergence history of the problem in the example for h = 2−7

j J (u j ) δ j �Newton �CG

0 3.9142466314434916e+00 8.8e−01 8 13

1 3.8210815158943565e+00 8.8e−03 5 12

2 3.8210805974920747e+00 3.5e−09 3 13

3 3.8210805974920712e+00 5.9e−15 2 14

4 3.8210805974920659e+00 1
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Table 2 Convergence history of the problem in the example for h = 2−8

j J (u j ) δ j �Newton �CG

0 3.9149225191422081e+00 8.8e−01 8 12

1 3.8217486072447922e+00 9.4e−03 5 12

2 3.8217477897599132e+00 4.4e−07 3 12

3 3.8217477897599528e+00 3.7e−14 2 12

4 3.8217477897599559e+00 1

Table 3 Convergence history of the problem in the example for h = 2−9

j J (u j ) δ j �Newton �CG

0 3.9150915018042891e+00 8.8e−01 8 12

1 3.8219154943064222e+00 9.6e−03 5 12

2 3.8219145854336314e+00 4.1e−07 3 12

3 3.8219145854337437e+00 3.6e−14 2 13

4 3.8219145854337260e+00 1

Fig. 1 Optimal control for the example

done to solve the nonlinear PDE: at each of the �Newton iterations we have to factorize
a (sparse) matrix. The last factorization obtained at this step can be used to solve the
rest of the linear PDEs that appear in Algorithm 2 and also the ones involved in the
conjugate gradient method, so a good measure of the computational cost is given by
the total amount of �Newton iterations.

A picture of the optimal control can be seen in Fig. 1. For the finest mesh, we
find that |{x ∈ � : ū(x) = β}| = 0.459, |{x ∈ � : ū(x) = α}| = 0.233,
|{x ∈ � : α < ū(x) < β}| = 0.308 and |�ū | = 0.
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