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1. Introduction

Cast irons represent a significant classification among ferrous
alloys, characterized by carbon contents exceeding 2.14 wt%.
However, practical observations reveal that these alloys com-
monly contain carbon percentages between 3.0 and 4.5 wt%,
along with other alloying elements. The study of the iron–iron

carbide phase diagram shows that alloys
within this range become completely liquid
at temperatures approximately between
1150 and 1300 °C. These values are signifi-
cantly lower than those observed for steels,
thereby simplifying the melting process
and favoring casting. Notably, certain types
of cast irons exhibit pronounced brittle-
ness, which, in turn, positions casting as
an optimal fabrication technique for these
materials.[1,2] The thermomechanical prop-
erties of cast iron are directly influenced by
the morphology of its graphite particles.
Factors such as fracture toughness and duc-
tility are strongly linked to the shape of these
graphite particles. Particles exhibiting a nod-
ular shape enhance these properties, while
particles that are more elongated or have
irregular contours can negatively impact
the material due to points of stress concen-
tration. Consequently, the classification of
cast iron is primarily determined by the
morphologies of its graphite particles.[3]

Iron cast alloys can exhibit various
microstructures depending on their com-

position and the specific conditions under which they are proc-
essed. The main types of microstructures found in these alloys
are ferrite, pearlite, martensite, austenite, and graphite in various
forms (such as flake, nodular, and compacted). Ferrite is a form
of iron with a body-centered-cubic crystal structure. It is soft, duc-
tile, and has low strength and hardness. The presence of ferrite
can be increased in cast iron by annealing or normalizing the
alloy.[1,2] Pearlite is a two-phased, lamellar (layered) structure
composed of alternating layers of ferrite and cementite (Fe3C).
The lamellar structure gives pearlite its characteristic appearance
under the microscope. Its properties are intermediate between
ferrite and cementite.[2,4] Martensite is a hard, brittle structure
that is formed when austenite is rapidly cooled (quenched).
The rapid cooling traps carbon atoms within the iron lattice, lead-
ing to a distorted, body-centered-tetragonal structure.[2,5]

Austenite is a form of iron with a face-centered-cubic crystal
structure. It is stable at high temperatures but can transform
to other microstructures such as ferrite, pearlite, or martensite
under different cooling rates.[2,6] The structure of graphite in cast
irons can take different forms. Flake graphite iron has thin, flat
flakes of graphite. Nodular or ductile iron has small, spherical
nodules of graphite. Compacted graphite iron (CGI) has interme-
diate shapes between flake and nodular graphite. The morphol-
ogy of the graphite greatly affects the mechanical properties of
the alloy.[2,7]
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Classification of cast iron alloys based on graphite morphology plays a crucial role
in materials science and engineering. Traditionally, this classification has relied
on visual analysis, a method that is not only time-consuming but also suffers
from subjectivity, leading to inconsistencies. This study introduces a novel
approach utilizing convolutional neural networks—MobileNet for image classi-
fication and U-Net for semantic segmentation—to automate the classification
process of cast iron alloys. A significant challenge in this domain is the limited
availability of diverse and comprehensive datasets necessary for training effective
machine learning models. This is addressed by generating a synthetic dataset,
creating a rich collection of 2400 pure and 1500 mixed images based on the ISO
945-1:2019 standard. This ensures a robust training process, enhancing the
model’s ability to generalize across various morphologies of graphite particles.
The findings showcase a remarkable accuracy in classifying cast iron alloys
(achieving an overall accuracy of 98.9� 0.4%—and exceeding 97% for all six
classes—for classification of pure images and ranging between 84% and 93% for
semantic segmentation of mixed images) and also demonstrate the model’s
ability to consistently identify and graphite morphology with a level of precision
and speed unattainable through manual methods.
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Iron cast alloys are differentiated based on their composition
and the presence of certain microstructures, especially the mor-
phology of graphite. The primary types are described hereafter.
Gray iron is the most common type of cast iron and is so named
due to the gray color of the fracture surface. This is because the
carbon is present in the form of flake graphite or lamellae. The
presence of the flake graphite makes the iron relatively soft and
brittle but with good damping capacity and high thermal conduc-
tivity.[1,2,7] In white iron the carbon is combined chemically as
iron carbide or cementite, which is hard and brittle. As a result,
white cast iron is also hard and brittle, but it is highly resistant to
wear. It gets its name from the white, crystalline appearance of
the fracture surface.[1,2] Nodular iron, also known as ductile iron
or spheroidal graphite iron, has the carbon present in the form of
small spheres or nodules. This gives nodular iron high ductility
and impact strength, and it can be heat treated to further improve
wthese properties.[1,2,8] Malleable iron is initially cast as white iron
and then heat treated (annealed) over several days to convert the
brittle cementite into more ductile iron and graphite clusters.
This process gives malleable iron good ductility and toughness.
[1,2,9] CGI has graphite present in a compacted, vermicular (worm-
like) form. The properties of CGI are intermediate between those
of gray iron and nodular iron; it has higher strength and thermal
conductivity than nodular iron, but lower ductility.[1,2,10]

The standard ISO 945-1:2019 (Microstructure of cast irons—Part
1: Graphite classification by visual analysis)[11] specifies a method of
classifying the microstructure of graphite in cast irons bymeans of a
comparative visual analysis. The reference images given in the stan-
dard provide a basis for visually classifying graphite forms. As of
today, classification of microstructures and identification of their
constituents has primarily relied on the expertise of human analysts,
due to the observed diversity in morphological patterns within
microstructure imagery. Consequently, the inherent subjectivity
of this method poses significant limitations to the repeatability
and precision of the process. The implementation of stereological
principles in microscopic image analysis has driven the evolution
of quantitative metallography. Fundamental parameters such as
the shape and spatial distribution of microstructure elements have
proven important in predicting certain macroscopic properties.[12–14]

Recent advancements in object morphology characterization,
based on automated methodologies and artificial intelligence
(AI), have significantly propelled the progress in recognition
and classification of microstructure images. Recent[15–18] pro-
vides examples of the application of deep learning (DL) and
machine learning (ML) techniques in local feature extraction
and classification. In a recent publication, Iacoviello et al.[19]

introduced a hybrid methodology that integrates the conven-
tional method for microstructural classification of ductile cast
irons with ML algorithms. Initially, image segmentation
analysis was employed to identify individual nodules, followed
by the measurement of numerous morphological properties.
Subsequently, a support vector machine (SVM) classifier
was trained in the second phase to categorize each specimen
according to the standard ASTM A247-16a (Standard Test
Method for Evaluating the Microstructure of Graphite in
Iron Castings).[20] The objective of this study is to establish
a distinct signature for each type of specimen, facilitating auto-
matic and objective data classification.

Recent findings[21,22] confirm that convolutional neural net-
works (CNNs) demonstrate substantial benefits over traditional
ML algorithms, like SVMs or ensembles of trees, in image clas-
sification tasks. The adoption of CNNs in this study is motivated
by their superior ability to analyze and classify image data,
especially within the complex, high-dimensional domain of
optical microscopy images of cast iron alloys. CNNs distinguish
themselves as the leading methodology in image processing
through several mechanisms: their capacity for autonomous fea-
ture learning allows for the extraction of intricate patterns and
structures directly from raw pixel data, circumventing the
need for manually defined features. This is crucial for identifying
complex morphological characteristics in materials science.
Additionally, their architectural design promotes the develop-
ment of hierarchical spatial representations, facilitating an
understanding of both local and global spatial relationships
within images, essential for tasks such as identifying various
graphite spot morphologies. Finally, their use of parameter shar-
ing and local connectivity grants them translation invariance,
ensuring consistent feature detection across varying positions
and orientations within samples, thus bolstering their robustness
and generalization in analyzing microscopy imagery.[21,22] The
paper by Che et al.[23] serves as a valuable reference for the
use of CNNs in microstructure analysis of alloy materials. It
highlights the significance of deep learning techniques in
accurately classifying microstructures and performing image
segmentation tasks, which align with our utilization of CNNs
for categorizing graphite spots in cast iron alloys. Additionally,
it addresses the broader implications and challenges of deep
learning in alloy material applications, providing essential
context for our research. In addition, the study conducted by
Szatkowski et al.[24] explores the efficacy of ML techniques for
classifying cast iron microstructures through optical microscopy.
Addressing the challenge of classifying microstructures with
varying shapes, sizes, and orientations, the research compares
the performance of traditional classifiers like SVMs and random
forests with advanced CNNs, specifically Faster R-CNN andMask
R-CNN. The study’s findings underscore the superiority of CNNs
in handling the complexity and high dimensionality inherent in
microstructure images, demonstrating their ability to learn
and classify features more accurately than traditional methods.
However, despite these advantages, maximizing CNN potential
necessitates large labeled training datasets, a requirement often
challenging to meet in the context of cast alloys’microstructures.
Data augmentation methods have been successfully imple-
mented by Sarrionandia et al.[25] who proposed a framework that
combines classical machine vision for feature extraction with
deep learning for the objective classification of microstructural
images of nodular cast iron. Their study introduces data augmen-
tation techniques to enhance the training of deep learning mod-
els, thereby addressing the challenge of limited and imbalanced
datasets commonly encountered in metallography. The classifi-
cation carried out by these authors was conducted through two
pretrained VGG16 and VGG19 models (trained on the ImageNet
dataset) and a third one with a custom architecture based on a net
used to classify letters and numbers.

To the authors’ understanding, no prior research has focused
on creating a CNN-based classifier for graphite microstructures
in cast irons. This study tackles the challenge of insufficient
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labeled datasets by generating a substantial volume of synthetic
samples. This is achieved through the segmentation and data
augmentation of reference micrographs provided by the standard
ISO 945-1:2019.[11]

The remainder of this article is organized as follows. Section 2:
Methodology outlines the procedural framework of our research.
It begins with a detailed explanation of the ISO 945-1:2019[11]

standard for graphite classification in cast irons, followed by
an overview of the key features of artificial neural networks
(ANNs) used for image classification, with a particular focus
on CNNs. We then delve into the specific analytical tasks per-
formed during the study, including data preprocessing, augmen-
tation, and the development and training of the CNN models. In
Section 3: Results, we present the outcomes of our analysis. We
first describe the results of using the pretrained MobileNet CNN
for the classification of pure images. Next, we discuss the find-
ings from the semantic segmentation approach using the U-Net
model, which classifies each pixel within the images. Detailed
accuracy metrics and performance evaluations are provided
for both models. Section 4: Discussion interprets the results,
comparing them with existing literature and highlighting the sig-
nificance of our findings in the context of cast iron classification.
We discuss the implications of using deep learning models for
this task, the advantages over traditional methods, and potential
limitations and future research directions. The article concludes
with a summary of the main achievements and contributions of
our research in Section 5: Conclusion. We reiterate the effective-
ness of the CNN models developed, their accuracy, and their
potential impact on the field of materials science and engineer-
ing. By following this structured approach, we aim to provide a
comprehensive and coherent narrative of our research, from the
foundational methods to the significant findings and their
broader implications.

2. Experimental Section

This section presents an outline of the methodologies adopted in
this research, with an emphasis on the reproducibility of
its results. It comprises a depiction of the ISO 945-1:2019[11]

standard for graphite classification in cast irons (Section 2.1),
an overview of the principal variants and attributes of ANNs
for image classification, with a focus on the superiority of
CNNs (Section 2.2), and a detailed description of the analytical
tasks performed in the course of the study (Section 2.3).

2.1. The Procedure of Standard ISO 945-1:2019

Graphite classification via visual analysis is a well-regarded
approach employed by the foundry industry for the rapid
determination of the microstructure in cast iron castings.
This procedure involves the examination of a representative
area of polished samples under a microscope. The graphite’s
form is determined through a comparative analysis with the
reference images provided in ISO 945-1:2019.[11] The advised
magnification for this evaluation was x100, primarily to assess
the form and distribution of graphite. However, this magnifi-
cation can be modulated as per necessity to closely align with
the corresponding images before initiating the classification of

the graphite form and distribution. The graphite was categorized
by its form, utilizing Roman numerals from I to VI for designa-
tion. As mandated by the standard, the evaluation of the results
procured from this analysis should be performed by an operator
proficient in this specific metallographic technique.

As previously noted, a set of reference images demonstrating
graphite microstructures were utilized in the classification pro-
cess of graphite form in cast iron. For the purposes of clarity
and to support subsequent analysis, these images are repro-
duced in Figure 1. The classification system consists of six dis-
tinct classes, described as follows.[3] 1) Class I particles are
indicative of gray cast iron. 2) Class II particles, known as crab
or spiky due to their morphology, are not attributed to a partic-
ular type of cast iron. These particles originate from the
degradation of Class VI particles under conditions of impurity
presence, excess nodulizing constituents during manufactur-
ing, or rapid cooling of hypereutectic gray irons. 3) Class III,
encompassing CGI, represents graphite particles exhibiting a
form intermediate to Classes I and VI or equivalently, between
gray and nodular cast iron. 4) Class IV, V, and VI particles are
called, respectively, irregular nodular, indistinct nodular, and
regular nodular or spheroidal. While Classes IV and V are asso-
ciated with malleable cast iron, Classes V and VI typify nodular
cast iron.

Figure 1. Reference images for the principal graphite forms in cast-iron
materials as established by the standard ISO 945-1:2019.[1] The recom-
mended magnification of these pictures is x100.
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2.2. Artificial Neural Networks for Image Classification

ANNs are a subset of ML algorithms inspired by the human
brain. They aim to replicate the brain’s ability to learn from
and interpret sensory data through a process of ML and pattern
recognition. ANNs are structured in layers made up of intercon-
nected nodes, or artificial neurons, which are inspired by biolog-
ical neurons. Each connection between nodes can transmit
a signal from one neuron to another, and the receiving neuron
processes the signal and signals to downstream neurons. There
are several types of ANNs, each with their unique architectures
and use-cases. The most prominent types are summarized.[21]

1) Multilayer perceptron (MLPs) is the most basic type of neural
network. In this architecture, information moves in only one
direction—forward—from the input layer, through the hidden
layers, to the output layer. 2) CNN is a class of deep, feed-forward
ANNs specifically designed for processing grid-structured data,
such as images, where spatial relationships between the data
points matter. CNNs have proven very effective in image recog-
nition and classification tasks. 3) Recurrent neural networks
(RNNs) have connections that form directed cycles. This creates
a form of internal memory which allows them to be very effective
when dealing with sequential data like time series, speech, or
text. Long short-term memory networks are a subtype of
RNN that have a special mechanism that helps them learn
long-term dependencies, making them particularly well-suited
for tasks involving sequences of data with important
long-range temporal context, such as language translation
or handwriting recognition. 4) Generative adversarial net-
works (GANs) consist of two neural networks: the generator,
which generates new data instances, and the discriminator,
which evaluates them for authenticity. GANs can learn to cre-
ate new data that is similar to the input data.

As mentioned above, CNNs are primarily used for analyzing
visual imagery. The architecture of a CNN is designed to take
advantage of the 2D structure of an input image. This is achieved
with the use of a special kind of layer that performs a convolu-
tion. In summary, a convolution is a mathematical operation that
slides a filter or kernel over the input data and performs element-
wise multiplication and summing to produce a different
representation of the input, often reducing dimensionality and
capturing local dependencies in the data.

CNNs exhibit several advantages[21,22] over conventional ML
algorithms (such as SVMs or ensembles of trees) in image
classification tasks. 1) Hierarchical feature learning: CNNs
automatically learn hierarchical representations. Lower layers
of the network learn to detect simple features such as edges,
while higher layers compose these lower-level features into
more complex representations. Conventional methods, on
the other hand, often require manual feature extraction or
engineering. 2) Translation invariance: Due to their architec-
ture, CNNs have a degree of translational invariance, meaning
they can recognize a feature regardless of its location in the
image. Traditional ML methods often treat input features
independently and may fail to recognize a feature if its location
in the image changes. 3) Performance: CNNs generally outper-
form conventional algorithms on complex image classification
tasks, especially when large labeled datasets are available for

training. 4) End-to-end learning: With CNNs, an end-to-end
learning is possible. They can take raw pixel data as input and out-
put class labels, eliminating the need for preprocessing or feature
extraction steps that are often required with conventional algo-
rithms. 5) Robustness to overfitting: With the use of techniques
like dropout, data augmentation, and early stopping, CNNs
can be more robust to overfitting compared to conventional
algorithms, particularly on high-dimensional image data.

However, it’s also important to note that CNNs require more
computational resources and data to train compared to tradi-
tional ML methods. They can also be less interpretable than
simpler models, which can be a disadvantage in applications
where understanding the model’s decision-making process is
important.

CNNs often contain three types of layers: convolutional layers,
pooling (downsampling) layers, and fully connected layers.[22]

1) Convolutional layers apply a specified number of convolution
learnable filters (matrices of weights) to the image. For each
subregion, the layer performs a set of mathematical operations
to produce a single value in the output feature map.
Convolutional layers then typically apply a rectified linear unit
(ReLU) activation function to the output to introduce nonlinear-
ities into the model. 2) Pooling layers downsample the image
data extracted by the convolutional layers to reduce the
dimensionality of the feature map in order to decrease process-
ing time. A commonly used pooling algorithm is max pooling,
which extracts subregions of the feature map (e.g., 2� 2-pixel
tiles), keeps their maximum value, and discards all other values.
3) Fully connected layers connect every neuron in one layer to
every neuron in another layer. It is in principle the same as
the traditional MLP neural network.

Spatial feature loss is the great drawback of MLPs as compared
to CNNs for image recognition. Before feeding an image to the
hidden layers of an MLP, the image matrix must be flattened to a
1D vector throwing away all the 2D information contained in the
image. CNNs do not require a flattened image; rather, a raw
image matrix of pixels is fed to a CNN network, and the CNN
will understand that pixels that are close to each other are more
heavily related than pixels that are far apart.

2.2.1. Activation Function

An activation function in a neural network defines the output of a
neuron given a set of inputs. Biologically inspired by activity in
human brains, where different neurons are activated by different
stimuli, these functions are used to add complexity to the learn-
ing models of an ANN. By applying a nonlinear transformation,
activation functions allow neural networks to learn from complex
patterns. There are several types of activation functions used in
neural networks, each with its own use case and properties.
These include step functions, sigmoid functions, hyperbolic
tangent (tanh), ReLU, and softmax functions, among others.
The activation functions of the CNNs developed in this study
are ReLU for the internal layers while the last one uses softmax,
recommended for multilabel classification, that turns numbers
into probabilities that sum to one. The class corresponding
to the maximum probability is identified with the prediction
(“winner takes all”).
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2.2.2. Loss Function

A loss function is used to compute the discrepancy between the
predicted outcome of a ML model and the actual, true outcome.
The goal of training a model is to find parameters that minimize
this loss function. There are various types of loss functions used
in ML, including, among others, mean squared error for regres-
sion problems, binary cross-entropy for binary classification
problems, and categorical cross-entropy for multiclass classifica-
tion problems, as in this study. Given a prediction probability
distribution and the true distribution, the categorical cross-
entropy loss calculates the average number of bits needed to
identify an event (a class label) from a set of possibilities, if a
coding scheme is used based on the prediction probabilities
as opposed to the true distribution.

2.2.3. Optimizer

During the optimization process, a neural network iteratively
processes the dataset over multiple epochs. Neuron weights, ini-
tially set at random, are updated following each epoch to reduce
the error. This procedure ceases once the loss function is mini-
mized or upon reaching a predetermined number of epochs.
Weight updates are typically managed by gradient descent-based
optimizers. The learning rate, which governs the magnitude of
each update, is balanced to optimize computational cost and con-
vergence. Efficiency is further improved through the use of mini-
batch gradient descent, where gradients are computed on dataset
subsets specified by the batch size. This batch size is generally
determined by memory limitations.

In the current study, we employed two optimization
algorithms commonly used in neural network models, namely
RMSProp and Adam. RMSProp, or root mean squared propaga-
tion, is a gradient descent-based algorithm intended to expedite
the optimization process by applying distinct learning rates for
each parameter. Conversely, the Adam algorithm combines fea-
tures of stochastic gradient descent and RMSProp. It borrows the
weight updating mechanism based on the training batch size
from the former while adopting the variable learning rate per
parameter from RMSProp. This combination results in an
enhancement in model performance, making Adam the prevail-
ing choice for optimization in neural network models due to its
rapid convergence rate.

2.2.4. Transfer Learning

Transfer learning is a ML technique where a pretrained model,
typically developed for a large-scale task such as image classifi-
cation on a dataset like ImageNet, is utilized as a starting point
for a similar but typically smaller and more specific task. The
pretrained model is often fine-tuned on the new task, adjusting
the pretrained weights slightly to adapt them to the specific fea-
tures of the new task. This concept is based on the notion that
knowledge gained while solving one problem can be applied to a
different but related problem. Transfer learning has several
advantages compared to conventional learning. 1) Efficiency:
Transfer learning can significantly reduce the computational
resources and time required to train models, as the initial layers

of the model have already been trained on a large dataset and do
not require additional training from scratch. 2) Lower data
requirement: Since the pretrained model has already learned
useful features from a large dataset, transfer learning can be par-
ticularly useful when the new task has limited training data.
3) Improved performance: Transfer learning often leads to better
performance in tasks with limited data, as the model benefits
from features learnt from a large-scale task.

Several pretrained models using CNNs are popular for
tasks such as image classification, object detection, and
segmentation. Among others, a few widely used are VGG
(developed at the University of Oxford), ResNet (Microsoft
Research), InceptionV3, Inception-ResNet, MobileNet,
EfficientNet, and Xception (Google). These models were pre-
trained on the ImageNet dataset, a large-scale, diversified data-
base of images with 1000 classes, and are often used as a
starting point in transfer learning for new tasks.

In the context of transfer learning, “frozen layers” refer to the
layers of a pretrained model that are not updated, or trained, dur-
ing the training process on a new task. The rationale behind
freezing the initial layers of the model is based on the hierarchi-
cal feature learning nature of deep neural networks. In tasks such
as image classification, the earlier layers often learn low-level fea-
tures such as edges and color blobs, which are generally useful
across different tasks. The later layers of the network, on the
other hand, learn high-level features that are more task-specific.
When adapting a pretrained model for a new task, the high-level,
task-specific features of the original task might not be applicable
to the new task. Thus, these layers are often replaced or reinitial-
ized and then trained on the new task. The lower layers, which
learnt general features, are often left as is, or “frozen”, to take
advantage of the features they have already learnt. This technique
is particularly recommended for situations where the dataset is
small and the images are very different from the original set on
which the base model was trained, as in the article.

2.2.5. Semantic Segmentation

Semantic segmentation refers to the process of partitioning an
image into multiple segments where each segment corresponds
to a specific class or label. Unlike simple image classification,
where the entire image is assigned a single label, semantic seg-
mentation assigns a label to each pixel in the image, resulting in a
detailed, pixel-level classification. In this context, a “mask” refers
to an array or an image where each pixel is assigned a label indi-
cating the class to which that pixel belongs. Each unique label
represents a different class, so all pixels in the image that belong
to a certain class have the same label in the mask. Masks are the
output of semantic segmentation tasks. They provide a visual way
to represent the result of the segmentation, where each class can
be assigned a different color for visualization. When overlaid
with the original image, these masks show precisely where each
object (class) is located within the image. The masks are in turn
transformed into semantic labels, in which each pixel is assigned
a label according to the class to which it belongs, and each class is
represented by an integer number. Figure 2 shows the difference
between a mask and a semantic label for one of the images used
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in this study (for simplicity, the semantic label represents a
smaller number of pixels than the original image).

Semantic segmentation allows for a more detailed and
nuanced analysis than image classification or object detection
because it identifies the class and location of every single pixel
in an image. It has many practical applications, including auton-
omous driving (for identifying road, vehicles, pedestrians, etc.),
medical imaging (for identifying different tissues, anomalies,
etc.), and image editing. Prominent techniques and architectures
for semantic segmentation include fully convolutional networks
(FCNs), SegNet, U-Net, DeepLab, and Mask R-CNN, among
others. These networks typically use a series of convolutional
layers to extract features from images, followed by upscaling
layers to generate a full-size output image where each pixel is
assigned a class label.

2.3. Analytical Scope

This section delineates the analytical scope of the study, provid-
ing a detailed overview of the methods employed, the data uti-
lized, the specific steps taken, and the technical tools
employed to develop the CNNs for classification of cast irons.

2.3.1. Schematic Description

In this research, two parallel CNNs were developed for categoriz-
ing primary carbon morphologies in cast iron specimens,
grounded on the six reference micrographs provided by ISO
945-1:2019[11] and displayed in Figure 1. Figure 3 outlines the

flowchart followed in this study. A central challenge ML is
the conflict between optimization and generalization.
Optimization concerns the procedure of refining a model to
achieve the maximum feasible performance on the training

Figure 2. a) The black and white input image, b) its mask, and c) the corresponding semantic label. Note that the image has three classes, the blue
background (class 0) and two classes of spots (class I and 2, respectively).

Figure 3. Schematic workflow showing the main steps for the develop-
ment of the CNNs for classifying the graphite microstructure in cast irons.
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data, and failure to accomplish this results in underfitting,
where the model inadequately fits the training data due to
its simplicity against the complexity of the data. Conversely,
generalization refers to the performance of the trained model
on previously unseen data. Overfitting arises when the model
ideally fits the training dataset but is inept at generalizing to
new, unseen data samples. This situation may arise in this
study considering that, in principle, the dataset only contains
the six images reproduced in Figure 1. In comparison to
human learners who can identify and recognize objects after
a few exposures, machines require comprehensive training
data, varying from hundreds to millions of samples, particu-
larly for more complex objects.[22] To bridge this gap, in this
study a considerable dataset of synthetic samples, extracted
from the reference images reproduced in Figure 1, was
constructed. As illustrated in Figure 3 and detailed in
Section 2.3.2, this process entails three phases: first, isolating
individual spots from each of the reference images provided by
ISO 945-1:2019[11]; second, manipulating each spot via a range
of geometric transformations for data augmentation to create
synthetic spots; and final, randomly assembling these syn-
thetic spots to generate a sufficient quantity of synthetic sam-
ples. Two distinct datasets were built: one consisting of “pure
images,” or pictures composed of synthetic spots from the
same category of ISO 945-1:2019[11] and another combining
variable proportions of synthetic spots from two sequential
categories, referred to as “mixed images.” Each of these data-
sets was modeled using a specific CNN. The first model was
trained to classify pure images using a pretrained CNN,
whereas the second CNN was trained on the dataset of “mixed
images” with the objective of classifying each pixel within the
image through a semantic segmentation approach.

2.3.2. Preprocessing of the Reference Micrographs Provided in the
Standard ISO 945-1:2019

CNNs demand that input images possess uniform dimensions,
requiring prior preprocessing and scaling to identical widths and
heights. In this study, the input pure images were all 224� 224
pixels while mixed images were 128� 128. As illustrated in
Figure 1, each of the reference images comprised numerous
individual spots. The initial phase of generating the synthetic
sample dataset involved identifying and segregating each spot
corresponding to a particular category. The extraction of each
of the individual spots was performed in a Python script with
the OpenCV library. This script took each of the images in
the standard and identified the contour of the spots, which were
essentially sets of dark pixels. Afterward, each of the spots was
saved in a new image. Spots in contact with edges of the images
were removed from the dataset to avoid introducing spurious
information. The spots surrounded by blue boxes in Figure 4
are examples of spots removed for this reason.

Subsequently, data augmentation—a preprocessing
technique—was employed, which entailed the creation of
synthetic spots which were varied versions of the original
individual after being subjected to reliable geometric transforma-
tions. This not only expanded the dataset but also introduced the
neural network to a multitude of image variations,[22] thereby
enhancing the CNN’s classification proficiency and mitigating
the likelihood of overfitting. Table 1 describes the six types of
augmentation methods applied and their respective ranges while
Figure 4 shows an example of the transformations to which a
specific spot was subjected.

Upon transformation, the individual synthetic spots were ran-
domly consolidated into two sets of synthetic samples, forming

Figure 4. Schematic example showing the geometric transformation experienced by one specific spot (surrounded by a red box in a)) belonging to the
reference micrograph corresponding to category IV according to the standard ISO 945-1:2019.[11] b–f ) Examples of the transformed spot. The spots
surrounded by a blue box are those that have been removed since they intersect the edges of the image.

www.advancedsciencenews.com
l

www.steel-research.de

steel research int. 2024, 95, 2400120 2400120 (7 of 14) © 2024 The Author(s). Steel Research International published by Wiley-VCH GmbH

 1869344x, 2024, 12, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/srin.202400120 by U

niversidad D
e C

antabria U
niversity L

ibrary, W
iley O

nline L
ibrary on [07/02/2025]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

http://www.advancedsciencenews.com
http://www.steel-research.de


the dataset for training the CNNs. The first dataset, consisting of
2400 pure 224� 224 synthetic images, was used to develop a pre-
trained CNN to classify the graphite microstructures according
the categories of the standard ISO 945-1:2019.[11] The second
dataset comprised 1500 128� 128 mixed images, each of them
including synthetic spots coming from two consecutive reference
categories (I and II, II and III, etc.), the fraction of spots from
each category in the image being randomly selected. This dataset
will feed the CNN developed for the semantic segmentation-
based analysis that was trained to produce a pixel-level classifica-
tion, that is, to assign a label to each of the pixel in the image.

2.3.3. Description of CNNs and Datasets

This section details the development and implementation of the
two CNNs designed for classifying graphite microstructures in
cast iron based on the ISO 945-1:2019[11] standard. The reference
images provided by ISO 945-1:2019[11] were preprocessed to
extract individual spots corresponding to different categories
of graphite morphology. Using a Python script with the
OpenCV library, the contours of these spots were identified
and segmented. Spots touching the image edges were excluded
to avoid introducing noise. Two distinct datasets were created.
1) Pure-image dataset: This dataset contained 2400 synthetic
images, each with spots from a single category, with each of
the six classes contributing 400 images. 1800 out of these were
used for training, 300 for validation, and the remaining 300 for
testing. This dataset was used to train the first CNN for classify-
ing pure images. To ensure uniform input dimensions required
by CNNs, all images were resized to 224� 224 pixels. 2) Mixed-
image dataset: This dataset included 1500 synthetic images, each
combining spots from two consecutive categories. It was used to
train the second CNN for semantic segmentation. Image labeling
was conducted by assigning a color to each pixel based on its
association with one of the six categories established by the
ISO 945-1:2019[11] standard. Background pixels (white) were
assigned a value of 0; red pixels (first category in a combination,
for instance, Class I in the Iþ II combination) were labeled 1,
and blue pixels (second category) were labeled 2. This categori-
zation implies that the semantic segmentation comprised
five image groups (corresponding to adjacent classes Iþ II,
IIþ III, IIIþ IV, IVþ V, and Vþ VI, respectively), including
seven categories: six categories corresponded to the six distinct

types of spots (refer to Figure 1), plus the background pixels (cor-
responding to Class 0). A total of 1500 mixed images of resolu-
tion 128� 128 pixels were produced, with each of the five
categories contributing 300 images. The images were allocated
as follows: 1000 for training, 250 for validation, and the remain-
ing 250 for testing purposes. When a new image is input into
the trained model, it generates a colored mask, matching the
resolution of the original image (128� 128), that reflects the
predicted assignment for each pixel (an example can be seen
in Figure 2).

The two CNN models developed for this study were designed
for different tasks, namely, pure image classification and seman-
tic segmentation.

MobileNet for Pure Image Classification: This CNN was based
on the pretrained deep neural network MobileNet,[26] an open-
source computer vision model from Google, typically utilized
for training classifiers. MobileNet uses depthwise convolutions
to substantially decrease the parameter count compared to alter-
native networks, thereby forming a compact deep neural network
with decreased computation time. The training of MobileNet
involved the utilization of the COCO dataset,[27] encompassing
a total of 2.5 million labeled instances across 328 k images.
These images capture complex everyday scenes, consisting of
91 common object types within their natural context. All the
layers of this model were frozen to prevent the weights from
updating during training. Two additional trainable layers were
added, namely, a max pooling layer and a fully connected layer
with six neurons and softmax activation to function as a classifier.
This way, only ≈6 k out of ≈3 M parameters were trainable. The
number of epochs was set to 7 and the optimizer was Adam with
a learning rate set to 4. All layers of MobileNet were frozen, and
additional layers were added, including a max-pooling layer and a
fully connected layer with six neurons and softmax activation for
classification. The network was trained on 1800 images, validated
on 300, and tested on 1200 images. The Adam optimizer with a
learning rate of 0.0001 was used, and training was conducted
over seven epochs.

U-Net for Semantic Segmentation: Pretraining was also applied
in the context of semantic segmentation. U-Net,[28] a form of
CNN initially devised for biomedical image segmentation at
the University of Freiburg’s, has demonstrated significant suc-
cess in image segmentation tasks across various image types.
U-Net was engineered to operate with a smaller number of train-
ing samples while delivering more accurate segmentations. The
U-Net weights were pretrained using the ImageNet dataset,[29]

comprising over 14 million hand-annotated images spanning
over 20 000 categories, each indicating the objects depicted
within. The final model utilized the pretrained U-Net CNN tai-
lored for RGB image classification with a resolution of 128� 128
and seven categories, including background pixels and the six
spot classes. All layers employed ReLU as the activation function,
with the exception of the final layer, which employed softmax.
The output vector from softmax returns seven probabilities,
and the class with the highest probability was designated as
the classification, following a “winner-takes-all” approach. The
training was conducted over 100 epochs with a batch size of
eight. Adam was selected as the optimizer, operating at a learn-
ing rate of 0.0001, and a fivefold crossvalidation was enforced.

Table 1. Data augmentation transformations applied to the individual
spots for the generation of synthetic images. Each transformation is
applied using a coefficient that takes a random value within the range
specified in each case.

Transformation Range

Image width [0.5, 1.5]

Image height [0.5, 1.5]

Horizontal axis inversion True/False

Vertical axis inversion True/False

Rotation (0, 2π]

Shear range [0, 0.4]
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Semantic segmentation might potentially be impacted by class
imbalance in this analysis. This scenario occurs when there’s an
unequal distribution of classes within the training dataset, poten-
tially causing the trained model to exhibit bias toward the class
with higher representation. This well-known artifact could be
particularly relevant for the synthetically generated images in this
research, as more than 90% of the pixels are associated with the
background. In such cases, a model may reach high accuracy
merely by predicting the majority class (in this instance, predict-
ing all pixels as background). However, such an approach
completely fails to capture the minority class, which is often
the key purpose of developing the model. Although background
pixels are irrelevant, semantic segmentation demands all the pic-
tures in the images to be properly labeled. For illustration,
Table 2 presents the percentage distribution of pixel types within
the test set (consisting of 250 images), along with the per-class
accuracy and F-value scores for one of the initial models tested
using categorical cross-entropy as the loss function. As antici-
pated, Class 0 pixels displayed a notably high accuracy of 99%,
whereas the accuracy for Classes II–V was equal to or below
70%, dropping further to 47% and 48% for Classes III and
IV, respectively. Class VI exhibited an exceptional accuracy of
87%. The F-value distribution followed a similar trend, with
an exceptionally low value for Class V where F= 0.16. To address
this issue, Shruti[30] recommends employing a focal loss function
instead of the standard categorical cross-entropy. Focal loss inte-
grates a modulating term into the cross-entropy loss to focus
learning on instances that are difficult to classify. It essentially
provides a dynamic scaling of the cross-entropy loss, wherein
the scaling factor decreases to zero as the confidence in the
correct class intensifies. Conceptually, this scaling factor can
automatically lessen the contribution of easily classified
examples during training and quickly focus the model on hard
examples.[31] The significant impact of this technique on both
accuracy and the F-score is demonstrated in Table 2.
Categories II–V display a considerable increase in both accuracy
and F-score, with the improvement being particularly notable for
Class V, where the F-score rose from 0.16 to 0.86.

The implementation of these two CNN models—MobileNet
for pure image classification and U-Net for semantic
segmentation—demonstrates a robust approach to classifying
graphite morphologies in cast iron. By leveraging data aug-
mentation, pretraining, and advanced loss functions, the
models achieved high accuracy and generalization capabili-
ties, providing a reliable automated method for graphite
classification according to ISO 945-1:2019.[11]

3. Results

In Results, we explore the findings derived from our study
to classify graphite microstructures in cast alloys through
CNNs. The first part, Section 3.1, presents the results obtained
through a pretrained CNN for the task of classifying pure
images identifying distinct graphite microstructures in a set
of cast alloy synthetic images. The second part, Section 3.2,
summarizes the results achieved by means of the method
of semantic segmentation applied to a synthetically generated
dataset of cast iron mixed images. This segmentation process
is instrumental in labeling individual pixels within each
image, thereby affording a deeper understanding of the micro-
structural composition.

3.1. Classification of Pure Images through a Pretrained CNN

Figure 5 provides a graphical representation of the progression of
the accuracy and loss function across the five validation set folds.
Notably, the scores for both metrics are substantial from the
initial epochs, which is attributable to the employment of a
pretrained CNN that is well-equipped for feature extraction
and pattern recognition within the images. From the fourth
epoch onward, the accuracy demonstrates a stagnation, with
no substantial enhancements observed, and the rate of loss func-
tion reduction becomes significantly slower.

Figure 6 displays the comparative progress of the average
accuracy between the training and test sets. During the initial
epochs, the training set exhibits marginally superior accuracy
as compared to the test set; however, this disparity diminishes
substantially from the third epoch onward. This pattern proves
the lack of overfitting within the model.

The overall accuracy of the test set, which comprises 300 pure
synthetic images (50 per category) unseen by the algorithm dur-
ing training, is a remarkable 98.9� 0.4%. The first row of Table 3
displays the accuracy achieved by the algorithms for each of the
six classes within the test dataset. The k-fold approach produces
five partial results, since the model has been trained five times,
using a different validation fold in each iteration. The final result
is derived by computing the arithmetic mean of these five results,
and the uncertainty is the standard deviation of the set. This
approach provides an improved assessment of the average per-
formance and stability of the model.

The results across all classes are excellent, with the accuracy
consistently exceeding 97%. Although the accuracy for classes IV
and V, corresponding to irregular nodular and indistinct nodular

Table 2. The table shows the percentage of pixels belonging to each class (including background pixels) in the images belonging to the test dataset and a
comparison of the accuracy and F-score obtained using the cross-entropy categorical loss function and the focal function, respectively.

Class 0 I II III IV V VI

% Pixels 93.1% 0.3% 1.7% 0.9% 1.5% 1.6% 0.8%

Categorical Cross-entropy Accuracy 99% 70% 66% 47% 48% 63% 87%

F-Score 0.99 0.76 0.81 0.81 0.81 0.16 0.88

Focal Loss Accuracy 100% 84% 93% 89% 91% 86% 90%

F-Value 1.00 0.84 0.93 0.89 0.90 0.86 0.90
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graphite spots respectively, is slightly less than the others, this
performance is considered as more than satisfactory. The second
row of Table 3 presents the average probabilities assigned by the
classifier to the 50 instances of each class (remember that the last
layer of the CNN consists of a fully connected layer with six neu-
rons and softmax activation providing the probability attributed
by the model to each of the six classes) This measure reflects the
algorithm’s confidence in classifying each category. Classes I and
VI are identified with the highest confidence, whereas the algo-
rithm is slightly less certain when classifying classes IV and V.
This aligns well with the marginally lower accuracy recorded for
these classes.

Table 4 complements 3 by providing a confusion matrix from
the test set, which helps elucidate the sources of misclassifica-
tions. Classes IV and V demonstrate the lowest accuracy, which
can be attributed to the geometric similarity between the shapes
of these categories’ spots, as depicted in Figure 1. Therefore,
1.2% of Class IV spots are mistakenly identified as Class V by
the model, and reciprocally, 1.9% of Class V spots are misclas-
sified as Class IV. Despite these inaccuracies, such a degree of
misclassification is still considered entirely acceptable for practi-
cal applications.

3.2. Classification of Mixed Images through Semantic
Segmentation

Figure 7 describes the progression of the mean accuracy (left)
and mean focal loss function (right), averaged across the five
folds during validation, over the span of the training epochs
for both the training and validation datasets. Certain patterns
of significance can be discerned from these figures. First, the
close alignment in the development of these metrics for the train-
ing and validation sets underscores the robustness of the model,
indicating no need for implementing additional regularization
methods. Furthermore, the high accuracy values achieved from
the early epochs can be attributed to the application of a pre-
trained deep neural network, already equipped with the ability
of extracting features from the images; this is also aided by
the large presence of background pixels in the dataset which
the CNN quickly recognizes. The accuracy exhibits an upward
trend, and correspondingly, the focal loss function diminishes
until around epoch 15; following this, it seemingly plateaus
and maintains a stable state. Yet, despite the graphic’s limited

Figure 6. Evolution of mean accuracy across the five folds with respect to
the number of epochs for the training and validation sets.

Figure 5. a) Evolution of the accuracy and b) loss function with respect to the number of epochs when evaluating the model on the validation set for each
of the five folds.

Table 3. Accuracy and average probability obtained using the final model to predict the type for 50 images of each category. We show the results obtained
for five folds and the error (standard deviation). The second row indicates the average probability with which the algorithm predicts each class. Each
average accuracy and probability is accompanied by the standard deviation across the five folds.

Class I II III IV V VI

Accuracy 100� 0 99.0� 0.4 99.4� 0.4 97.9� 0.4 97.0� 1.0 99.7� 0.2

Average Probability 92.8� 0.7 87.6� 0.9 83.6� 0.7 76.0� 2.0 79.0� 2.0 95.0� 0.6
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resolution, the accuracy continues to marginally ascend up until
epoch 100, paired with a minor decrease in the focal loss func-
tion. While the late-stage accuracy increase might initially seem
irrelevant, this additional training phase is instrumental in

enabling the model to identify finer details and thus accurately
distinguish between spots of varying categories.

Table 5 presents the confusion matrix derived from the 250
mixed images in the test set (50 images in each category).

Table 4. Confusion matrix of the six-category classification of pure images. Each cell within the matrix represents the percentage of images from a given
category (rows) that have been classified under another category (columns). The data summarized in this matrix are derived from the testing set, which
includes 50 synthetic pure images from each category. The errors in this data are indicated by standard deviations. Gray colour highlights the percentages
different from zero. Blue colour indicates the highest value per column.

True values Predicted values

Class I II III IV V VI

I 100� 0 0.0� 0.0 0.0� 0.0 0.0� 0.0 0.0� 0.0 0.0� 0.0

II 0.0� 0.0 99.0� 0.4 0.7� 0.2 0.3� 0.4 0.0� 0.0 0.0� 0.0

III 0.0� 0.0 0.1� 0.3 99.4� 0.4 0.5� 0.4 0.0� 0.0 0.0� 0.0

IV 0.0� 0.0 0.6� 0.4 0.3� 0.4 97.9� 0.4 1.2� 0.2 0.0� 0.0

V 0.0� 0.0 0.0� 0.0 0.1� 0.2 1.9� 0.9 97.0� 1.0 0.7� 0.2

VI 0.0� 0.0 0.0� 0.0 0.0� 0.0 0.0� 0.0 0.3� 0.2 99.7� 0.2

Figure 7. a) Progression of the accuracy and b) the focal loss function relative to the number of training epochs for the training and validation datasets. In
each case, the depicted values represent the average across the five folds for each epoch.

Table 5. Confusion matrix of the seven-category classification of mixed images (background pixels are included). Each cell within the matrix represents
the percentage of images from a given category (rows) that have been classified under another category (columns). The data summarized in this matrix
are derived from the testing set, which includes 50 synthetic mixed images from each category. The errors in this data are indicated by standard deviations.
Gray colour highlights the percentages different from zero. Blue colour indicates the highest value per column.

True values Predicted values

Class 0 I II III IV V VI

0 99.8� 0.4 0.0� 0.0 0.0� 0.0 0.0� 0.0 0.0� 0.0 0.0� 0.0 0.0� 0.0

I 4.2� 0.8 84.0� 2.0 11.0� 2.0 0.5� 0.4 0.0� 0.0 0.0� 0.0 0.0� 0.0

II 3.4� 0.8 0.8� 0.4 93.0� 2.0 2.3� 0.5 0.1� 0.1 0.0� 0.0 0.0� 0.0

III 4.0� 1.0 0.0� 0.0 4.0� 1.0 89.0� 2.0 2.6� 0.5 0.0� 0.0 0.0� 0.0

IV 2.6� 0.6 0.0� 0.0 0.1� 0.1 1.0� 0.2 91.0� 2.0 6.0� 2.0 0.0� 0.0

V 3.0� 0.7 0.0� 0.0 0.0� 0.5 0.0� 0.0 9.0� 2.0 86.0� 2.0 1.7� 0.2

VI 2.0� 1.0 0.0� 0.0 0.0� 0.0 0.0� 0.0 0.5� 0.3 7.0� 5.0 90.0� 2.0
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The final accuracy, including all pixels, reaches a significant
99.2� 0.1%. When the background pixels are excluded, the accu-
racy still stands at 91.0%� 1.0%. Excluding background pixels,
see Table 5, the individual class accuracy fluctuates between
84.0� 2.0% and 93.0� 2.0%, demonstrating remarkable results.
The classes I and V report the least favorable results. Around 4%
of the class I pixels are misclassified as background pixels and
≈11% as class II pixels. For class V, the primary sources of mis-
classifications are the background (3%), class IV (9%), and class
VI (2%), respectively. It’s also worth noting that for all categories,
a minor percentage of pixels are erroneously classified as class 0
(background). This likely originates from a boundary effect,
where the algorithm struggles to accurately identify pixels on
the edge that separates the spot from the background.
However, given the overall accuracy of the CNN in accurately
classifying the majority of pixels, this error is relatively insignifi-
cant in practical terms.

Finally, images with spots belonging to consecutive categories
(I and II, II and III, III and IV, IV and V, V and VI) have been
generated, with the percentages of spots defined as follows:
20–80%, 40–60%, 60–40%, 80–20%. These percentages apply
to the number of spots of each type, not to the number of pixels
in the image. This analysis has been conducted to understand
how the prediction capacity of the model varies depending on
the percentage of spots for certain categories. As shown in
Table 6, all categories yield good results in general, with the
IV–V and V–VI categories slightly below the average.

4. Summary and Discussion

The classification of cast iron is determined by the shapes of its
graphite particles since they have a direct influence on the final
properties of the material. Specifically, the graphite particles’
shape significantly impacts properties like fracture toughness
and ductility. The shape of graphite is identified by comparing
it to the reference images given in ISO 945-1:2019.[11] This stan-
dard classifies cast irons into six categories, labeled with Roman
numerals from I to VI. Although this assessment must be con-
ducted by an expert in this specialized metallographic technique,
the method’s intrinsic subjectivity presents substantial chal-
lenges to the repeatability and accuracy of the process. Hence,
there is a significant need for a reliable, automated method
for classifying the various graphite shapes. This study is focused

on developing and validating the use of CNNs for the morpho-
logical categorization of graphite spots in cast irons, adhering to
the guidelines of the ISO 945-1:2019[11] standard.

The first limitation of this study arises from the restricted
amount of information available for training, validating, and test-
ing the CNNs. The standard ISO 945-1:2019[11] only includes six
reference images, each one of them corresponding to a distinct
category in the classification and including a variable number of
spots. Consequently, the initial challenge was to generate a suf-
ficient number of reliable synthetic samples. The first step in this
process involved isolating individual spots from each reference
image of the standard. To prevent dataset redundancies and
minimize the risk of overfitting, these isolated spots were sub-
jected to data augmentation via various geometric manipulations,
avoiding any unnatural distortions that could modify the physical
geometric characteristics of the spots. This approach yielded a
broad array of individual synthetic spots, which were later
randomly combined to create synthetic reference images to be
fed into the CNNs. By means of this methodology, two distinct
datasets were generated. The first one contained 2400 “pure
images” (224� 224 pixels), meaning images composed each of
them of synthetic spots extracted from the same category accord-
ing to ISO 945-1:2019.[11] The second dataset consisted of 1500
“mixed images” (128� 128 pixels) where each of them incorpo-
rates synthetic spots derived from two adjacent categories (I and
II, II and III, III and IV, V and V, and V and VI, respectively).

Each of these datasets was subsequently utilized to feed a pre-
trained CNN. Specifically, the pure images dataset was provided
to the pretrained deep neural network MobileNet. All layers of
this network were frozen, and a max pooling layer along with
a fully connected layer consisting of six neurons and softmax acti-
vation for six categories was added. This approach significantly
reduced the number of trainable parameters. The train, valida-
tion, and test sets comprised 1800, 300, and 300 samples, respec-
tively. The mixed images dataset was supplied to the pretrained
U-Net CNN for a semantic segmentation analysis, with pixels
falling into seven categories (the six types of spots as per ISO
945-1:2019,[11] along with the white background pixels in the
images). Therefore, the final layer utilizes the softmax activation
function for seven classes. The train, validation, and test sets in
this case consisted of 1000, 250, and 250 samples, respectively.

The results derived using the deep learning models demon-
strate the efficacy of the proposed methodology. In particular,
the CNN trained with pure images yields an overall test set accu-
racy of 98.9� 0.4%, surpassing a 97% benchmark across all six
classes. Classes IV and V, representing two forms of nodular cast
irons (irregular and indistinct, respectively), achieve slightly
lower accuracy values. It is worth noting that, in practical
scenarios, even experienced operators can encounter challenges
distinguishing between these two categories. Moreover, the CNN
assigns an average probability, which is indicative of its confi-
dence level, exceeding 76% for all classes and surpassing 90%
for classes I and VI. Similarly, the results obtained from the
semantic segmentation analysis are equally creditable. The task
here involved designing a deep learning classifier capable of iso-
lating spots of adjacent classes within the same image—a more
challenging goal. The potential for class imbalance was signifi-
cant in this problem given that over 90% of the pixels belong
to the background. In order to counteract this potential issue,

Table 6. Accuracy obtained for each set of consecutive categories and a
predefined percentage of spots for each category. The data summarized in
this matrix are derived from the testing set, which includes 250 synthetic
mixed images, 50 of them from each category. The errors in this data are
indicated by standard deviations.

20–80% 40–60% 60–40% 80–20%

I–II 99.24� 0.05 99.29� 0.05 99.30� 0.03 99.34� 0.06

II–III 99.16� 0.08 99.10� 0.05 99.12� 0.05 99.14� 0.04

III–IV 99.1� 0.2 99.37� 0.03 99.35� 0.05 99.3� 0.1

IV–V 98.7� 0.3 99.0� 0.1 98.7� 0.1 98.4� 0.2

V–VI 99� 1 98.9� 0.7 99.0� 0.2 98.6� 0.1
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a focal loss function was employed instead of the conventional
categorical cross-entropy loss function. Yet, the achieved accu-
racy for the different classes (excluding the background pixels)
spans from 84% to 93%. In conclusion, the deep learning
strategy implemented in this study presents a highly reliable tech-
nique for classifying cast irons based on graphite morphology.

In the domain of materials engineering, the metallographic
classification of cast irons represents a significant area of
research. A notable and very recent contribution to this field
was made by Sarrionandia et al.,[25] who explored a topic akin
to our specific investigation into the classification of pure
images. Their study employed a combination of CNNs, includ-
ing two pretrained models (VGG16 and VGG19) and a custom
model designed for alphanumeric classification, to categorize
metallographic images of graphite cast irons. This classifica-
tion was conducted in accordance with ISO 945-1:2019 stand-
ards. To address class imbalance, data augmentation techniques
were applied, resulting in an achieved overall classification accuracy
of 95%. However, their analysis revealed a higher classification
error for class V. Furthermore, the authors developed algorithms
to elucidate the features recognized by their DL classifier, enhanc-
ing understanding of the CNNs’ operational mechanisms. Our
research posits that the observed improvement in classification
accuracy, as detailed in our study, can be substantially attributed
to the application of transfer learning. As discussed in
Section 2.2.4 of our article, transfer learning offers several benefits
over traditional CNN approaches, including accelerated conver-
gence, reduced data requirements, enhanced model performance,
improved generalization capabilities, and decreased computational
demand. We conjecture that these advantages have contributed to
the superior accuracy rates reported in our findings.

Microstructure modeling with commercial software
packages has gained significant prominence in recent years.
Conventionally, the automatic classification of graphite’s mor-
phology in cast iron has been carried out through traditional sta-
tistical methods or conventional ML. This involves a considerable
amount of time spent on manual feature selection and engineer-
ing, in which the developer relies on domain-specific knowledge
to create features that enhance the performance of ML algo-
rithms. Subsequently, these manually curated features are
introduced to a classifier, a method followed, for example, by
Gomes and Paciornik,[3] among others. These authors correctly
identified the challenge in cast iron classification as selecting a
set of parameters capable of grouping particles within the same
class, while accounting for inherent variability and ensuring opti-
mal discrimination among the six classes defined by the ISO 945-
1:2019 standard.[11] However, in DL the need for manual feature
extraction from images is eliminated. Deep neural networks
autonomously extract features and determine their impact on
the output by assigning weights to their connections. In this pro-
cess, raw images are input into the network and, as they progress
through the network layers, the network identifies patterns
within the images, from which features are created. As such,
deep neural networks can be seen as feature extractors in con-
junction with classifiers that are trainable end to end, in contrast
with traditional ML models that rely on manually curated
features. CNNs demonstrate exceptional proficiency in image
classification due to their inherent ability to automatically discern
spatial feature hierarchies, such as edges, textures, and shapes, all

necessary for object recognition within images. The accumulation
of evidence over the past 20 years validates the superior perfor-
mance of CNNs in contrast to traditional ML for the task of image
classification. Specifically, in the context of complex, real-world
image data, such as the graphite morphology in cast irons,
CNNs significantly outperform alternative methodologies.

5. Conclusion

The following list of conclusions encapsulates the main achieve-
ments of this article, providing a concise summary of its contri-
butions to the field of materials science and engineering and the
broader domain of AI and ML applications: 1) Innovative appli-
cation of CNNs: The study introduces a pioneering approach that
applies CNNs—MobileNet for image classification and U-Net for
semantic segmentation—to automate the classification of graph-
ite cast iron alloys. This marks a significant shift from traditional
manual methods to a more objective, reliable, and efficient auto-
mated system; 2) High classification accuracy: The research
achieves remarkable classification precision, providing an overall
accuracy of 98.9� 0.4% for pure image classification across all
six classes and accuracy ranging between 84% and 93% for
semantic segmentation of mixed images. This demonstrates
the model’s ability to consistently identify and categorize graph-
ite morphology with precision. 3) Creation of a comprehensive
synthetic dataset: To overcome the challenge of limited
real-world datasets, a significant contribution of this study is
the generation of a synthetic dataset, including 2400 pure and
1500 mixed images based on the ISO 945-1:2019 standard.
This synthetic dataset ensures a robust training process, enhanc-
ing the model’s generalization capability across various graphite
morphologies. 4) Effective addressing of class imbalance: The
research innovatively addresses the potential issue of class
imbalance—a common challenge in ML and particularly relevant
due to the high percentage of background pixels in images—
using a focal loss function during semantic segmentation.
This significantly improves model performance on minority
classes. 5) Contributions to materials science and engineering:
By automating the classification of cast iron alloys based on
graphite morphology, the study directly contributes to materials
science and engineering. It aids in the selection process for vari-
ous industrial applications by providing a more accurate, speedy,
and objective method to classify cast iron alloys, which is crucial
due to its impact on mechanical properties. 6) Demonstration of
transfer learning benefits: Utilizing pretrained models (MobileNet
and U-Net) through transfer learning, the study highlights the effi-
ciency and effectiveness of leveraging existing neural networks for
new classification tasks, thereby reducing computational resources
and time required for training from scratch.
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