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Abstract—In this paper, we propose a new structured Grass-
mannian constellation for noncoherent communications over
multiple-input multiple-output (MIMO) Rayleigh block-fading
channels with two transmit antennas. The constellation, which
we call Grass-Lattice, is based on a measure preserving mapping
from the unit hypercube to the Grassmann manifold. The
constellation structure allows for on-the-fly symbol generation
and low-complexity decoding. Simulation results show that Grass-
Lattice offers a superior bit error rate performance than other
structured Grassmannian constellations such as Exp-Map.

Index Terms—Noncoherent communications, Grassmannian
constellations, MIMO channels, measure-preserving mapping.

I. INTRODUCTION

In communications over fading channels, the channel state
information (CSI) is typically estimated at the receiver side
by sending a few known pilots and then used for decoding at
the receiver and/or for precoding at the transmitter. These are
known as coherent schemes. However, in scenarios dominated
by fast fading or massive MIMO systems dedicated to ultra-
reliable low-latency communications (URLLC), getting an
accurate channel estimate would require pilots to occupy a
disproportionate fraction of communication resources. The
advent of 5G and beyond (B5G) systems has introduced
these novel scenarios that underscore the need for noncoherent
communications schemes in which neither the transmitter nor
the receiver has any knowledge about the instantaneous CSI.

Despite the absence of CSI at the receiver, noncoherent
communication schemes can achieve a substantial fraction of
the coherent capacity when the signal-to-noise ratio (SNR)
is high, as shown in [1]–[4]. These works proved that at high
SNR in the presence of additive Gaussian noise, and assuming
a Rayleigh block-fading MIMO channel with coherence time
T ≥ 2M symbol periods (where M denotes the number of
transmit antennas), the optimal strategy for attaining capacity
is to transmit isotropically distributed unitary matrices belong-
ing to the Grassmann manifold.

Significant research efforts have been dedicated to the
design of noncoherent constellations as optimal packings on
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the Grassmann manifold [5]–[18]. These constellation designs
generally fall into two overarching categories: structured and
unstructured. Within the realm of unstructured designs, we can
mention the alternating projection method [6], the numerical
methods in [7]–[10], which optimize certain distance measures
on the Grassmannian (e.g., chordal or spectral), and the
methods outlined in [11] and [12], which aim to maximize
the diversity product [19].

On the other side, structured designs impose some kind
of structure on the constellation points, facilitating low-
complexity constellation mapping and demapping. These de-
signs use algebraic constructions, such as the Fourier-based
constellation in [13], the uniquely factorable constellations in
[20] or the analog subspace codes proposed in [14], group
representations [15], [16], parameterized mappings of unitary
matrices, such as the Exp-Map design in [17], or structured
partitions of the Grassmannian like the Cube-Split constel-
lation [18]. The main disadvantage of these methods is that
most of them can only be used in scenarios with single-
antenna transmitters. Therefore, we propose an extension of
the Grass-Lattice method, which was proposed in [21], [22],
to the case M = 2 transmit antennas. This constellation
design is based on a measure preserving mapping between
the unit hypercube and the Grassmannian. This characteristic
ensures that any set of uniformly distributed points in the input
space (the hypercube) is mapped onto another set of points
or codewords uniformly distributed in the output space (the
Grassmann manifold). The constellation structure enables on-
the-fly symbol generation and low-complexity decoding.

II. SYSTEM MODEL

We consider a transmitter with M = 2 antennas commu-
nicating in a noncoherent MIMO scenario with a receiver
equipped with N antennas. We assume a frequency-flat block-
fading channel model with coherence time T symbol periods,
such that T ≥ 2M . Hence, the channel matrix H ∈ CM×N

remains constant during each coherence block of T symbols,
and changes in the next block to an independent realization.
The MIMO channel H is unknown to both the transmitter and
the receiver and assumed to have a Rayleigh fading distribution
with entries distributed according to a complex Gaussian dis-
tribution with zero mean and unit variance (hij ∼ CN (0, 1)).
Within a coherence block, the transmitter sends a unitary



matrix X ∈ CT×M , XHX = IM , that is an orthonormal
basis for the linear subspace spanned by the columns of X
within CT . The signal at the receiver Y ∈ CT×N is1

Y = XH+

√
M

Tρ
N , (1)

where N ∈ CT×N represents the additive Gaussian noise,
with entries modeled as wij ∼ CN (0, 1), and ρ represents
the signal-to-noise-ratio (SNR).

For unitary constellations, the optimal Maximum Likelihood
(ML) detector that minimizes the probability of error, assum-
ing equiprobable codewords, is given by

X̂ = argmax
X∈C

tr
(
YHPXY

)
, (2)

where C = {X1, . . . ,XK} represents the codebook of K
codewords and PX = XXH is the orthogonal projection
matrix onto the column space of X. Each codeword carries
log2(K) bits of information.

III. MULTI-ANTENNA GRASS-LATTICE CONSTELLATION

A. Overview

The Grass-Lattice constellation is based on a measure
preserving mapping from the unit hypercube (product of the
interval (0, 1) with itself 2M(T−M) times) to the Grassmann
manifold, which is the space of M -dimensional subspaces in
CT denoted as G(M,CT )

ϑ : I = (0, 1)× · · · × (0, 1)︸ ︷︷ ︸
2M(T−M) times

→ G
(
M,CT

)
.

It is important to note that M(T − M) is the complex
dimension of G(M,CT ). The mapping ϑ is composed of three
consecutive mappings ϑ = ϑ3 ◦ ϑ2 ◦ ϑ1:

1) Mapping ϑ1: from i.i.d. points uniformly distributed in
the unit hypercube to i.i.d. points normally distributed
in C(T−M)M .

2) Mapping ϑ2: from i.i.d. points normally distributed in
C(T−M)M to i.i.d. points uniformly distributed in the
operator norm unit ball BC(T−M)×M ,op(0, 1) = {W ∈
C(T−M)×M , ∥W∥op < 1}. Here ∥W∥op denotes the
operator norm, which is the largest singular value of
matrix W.

3) Mapping ϑ3: from i.i.d. points uniformly distributed in
BC(T−M)×M ,op(0, 1) to i.i.d. points uniformly distributed
in G(M,CT ).

The composition ϑ = ϑ3 ◦ ϑ2 ◦ ϑ1 is a measure-preserving
mapping that maps points uniformly distributed in I to points
uniformly distributed in G(M,CT ). As it was proved in [22],
it is possible to find mappings ϑ1 and ϑ3 for M ≥ 1. However,
mapping ϑ2 must be designed specifically for each value of
M . We succeeded in doing so for M = 1 in [21], [22] and here

1Here we are adopting the signal model that is commonly used in the
noncoherent communications literature, which is equivalent to Y = HX +√

M/(Tρ)N when transmitting information over the row space of X.

we derive mapping ϑ2 for M = 2, which will be explained in
depth in Section III-B.

Let us first define the (T − 2) × 2 complex matrix, which
will be the input to mapping ϑ1:

G =
(
a b

)
, (3)

where a and b are column vectors of size T − 2 with entries
ak, bk ∈ C and ℜ(ak),ℜ(bk),ℑ(ak),ℑ(bk) ∈ (0, 1). As we
did in [22] for M = 1, the real and imaginary components of
ak and bk will be equispaced points on [α, 1−α], where α is
the so-called lattice size.

Now we can define the (T −2)×2 normal matrix with i.i.d.
CN (0, 1) entries obtained through mapping ϑ1 as

Z =
(
r s

)
, (4)

where the entries of r are obtained as rk = F−1(ℜ(ak)) +
jF−1(ℑ(ak)) and the entries of s are obtained as sk =
F−1(ℜ(bk)) + jF−1(ℑ(bk)), where F (·) is the cdf of a
real normal random variable N (0, 1/2) and j denotes the
imaginary unit. This matrix Z will be the input of mapping
ϑ2.

B. Mapping ϑ2 for M = 2

In this section we describe the mapping ϑ2, which maps
i.i.d. (T − 2)× 2 normal matrices Z to (T − 2)× 2 uniformly
distributed matrices W in the operator norm unit ball

BC2(T−2),op(0, 1) = {W ∈ C2(T−2), ∥W∥op < 1} .

The first step of mapping ϑ2 is to construct

u =
rHs

∥r∥2
r , s̄ = s− u , (5)

where u is the projection of s onto the span of r and s̄ is the
orthogonal component of s to r. Note that the entries of s̄ and
u are i.i.d. complex normal CN (0, 1) distributed.

Then, we construct

p = rhT−2(∥r∥) , q̄ = s̄hT−3(∥s̄∥) , (6)

where hT−2(·) and hT−3(·) are transformations such that
p ∈ CT−2 has density Γ(T )(1 − ∥ · ∥2)/πT−2 in the ball
BCT−2(0, 1) and q̄ ∈ CT−2 has constant density Γ(T−1)(1−
∥ · ∥2)/πT−3 in the same ball BCT−2(0, 1). These functions
are defined in Lemma 1 in the Appendix.

Now, we generate

v = uf1(∥u∥)
√

(1− ∥p∥2)(1− ∥q̄∥2) ∈ CT−2 , (7)

so that v is uniformly distributed in the disk of radius√
(1− ∥p∥2)(1− ∥q̄∥2) in the space Span(r). Here f1(·) is

given by

f1(∥u∥) =
1

∥u∥

(
1− e−∥u∥2

)1/2
. (8)

Finally, we construct the matrix whose first column is p
and whose second column is q̄+ v:

W =
(
p q̄+ v

)
. (9)



With this, W is uniformly distributed in the set of matrices
of operator norm at most 1.

IV. ENCODING AND DECODING

In this section, we describe the whole encoding and decod-
ing procedures of the proposed Grass-Lattice constellation for
M = 2 transmit antennas.

A. Encoder

As we did in [22], we consider 2B equispaced points on
the interval [α, 1−α] for each real and imaginary component
of the elements ak, bk of matrix G defined in (3):

x̂p = α+ p
1− 2α

2B − 1
, 0 ≤ p ≤ 2B − 1 , (10)

where α is a parameter that can be optimized for performance.
The uniformly distributed points on the unit cube are chosen
randomly from the regular lattice defined by (10). The proce-
dure for computing the codeword to be transmitted X for an
input a1, b1, . . . , aT−2, bT−2 is the following:

1) Construct Z =
(
r s

)
where r and s are vectors of

dimension T − 2 with entries rk = F−1(ℜ(ak)) +
jF−1(ℑ(ak)) and sk = F−1(ℜ(bk)) + jF−1(ℜ(bk)),
where F (x) is the cdf of a N (0, 1/2).

2) Compute u and s̄ as in (5).
3) Construct vectors p and q̄ as in (6), where hn(·) is the

function defined in Lemma 1 in the Appendix.
4) Generate v as in (7).
5) Construct the matrix W as in (9).
6) Output

X =

((
I2 −WHW

)1/2
W

)
, (11)

where I2 denotes the 2× 2 identity matrix.
Notice here that step 1 corresponds to mapping ϑ1, steps

2-5 to mapping ϑ2 and step 6 to ϑ3. The cardinality of the
structured Grassmannian constellation is |C| = 24B(T−2), and
the spectral efficiency is η = 4B(T−2)

T = 4B
(
1− 2

T

)
b/s/Hz.

B. Decoder

The inverse mapping ϑ−1 : G(2,CT ) → (0, 1)4(T−2)

is obtained by inverting each of the steps of the encoder
presented in the previous section. The steps performed by the
Grass-Lattice decoder are the following:

1) Denoising step: compute the left singular vectors c1, c2
corresponding to the two largest singular values of Y
and construct the matrix C =

(
c1 c2

)
.

2) Invert mapping ϑ3: given the matrix C =
(
C1

C2

)
repre-

senting an element of G(2,CT ), let C1 = QP be the
polar decomposition of C1 and let

Ŵ = C2Q
H . (12)

3) Invert step 5 of encoder: let p̂ be the first column of Ŵ,
let t be its second column and define:

v̂ =
p̂Ht

∥p̂∥2
p̂ , ˆ̄q = t− v̂ . (13)

TABLE I
OPTIMAL VALUES OF THE LATTICE SIZE α FOR DIFFERENT PAIRS (T,B).

B = 1 B = 2 B = 3

T = 4 0.22 0.15 0.11
T = 5 0.21 0.15 0.13
T = 6 0.24 0.18 0.14
T = 7 0.23 0.17 0.12
T = 8 0.23 0.16 0.14

4) Invert step 4 of encoder: solve for u in

∥v̂∥ = uf1(u)

√
(1− ∥p̂∥2)(1− ∥ˆ̄q∥2) , (14)

and let û = uv̂/∥v̂∥.
5) Invert step 3 of encoder: solve for m and n in

∥p̂∥ = mhT−2(m) , ∥ˆ̄q∥ = nhT−3(n) , (15)

and let r̂ = mp̂/∥p̂∥ and ˆ̄s = nˆ̄q/∥ˆ̄q∥.
6) Invert step 2 of encoder: construct

s = s̄+ u . (16)

7) Invert mapping ϑ1: compute

âk = F (ℜ(rk)) + jF (ℑ(rk)) , (17)

b̂k = F (ℜ(sk)) + jF (ℑ(sk)) , (18)

where F (x) is the cdf of a N (0, 1/2).
8) Finally, ak = ⌊âk⌉ and bk = ⌊b̂k⌉, where ⌊x⌉ denotes

the nearest point to x in the lattice.

V. PERFORMANCE EVALUATION

In this section, we evaluate the performance of the proposed
Grass-Lattice constellation for M = 2 transmit antennas and
we compare it to another structured Grassmannian constella-
tion named Exp-Map [17]. This constellation is constructed
through a non-linear map, called the exponential map, applied
to space-time codes for coherent systems. It also uses a
simplified decoding rule instead of the ML detector, which
makes the performance comparison fair. We have not analyzed
the performance of unstructured constellations due to the ex-
tremely high complexity of the ML detector for the considered
spectral efficiencies.

We first evaluate the influence of α, which determines the
length of the lattice used for each real component, on the bit
error rate (BER). The BER curves with regard to α are smooth
functions with a unique minimum. This minimum, however,
cannot be solved in closed form and must be estimated via
Monte Carlo simulations. The optimal values of α, which
mainly depend on the coherence time T and the number of
bits per real component B, can be precomputed offline and
are shown in Table I.

Fig. 1 shows the estimated probability density functions
of the chordal distance between codewords for the proposed
Grass-Lattice constellation, Exp-Map, and uniform distribution
on the Grassmann manifold for a scenario with T = 4 symbol
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Fig. 1. Estimated probability density functions of chordal distance for Grass-
Lattice, Exp-Map and uniform distribution on the Grassmann manifold for
T = 4 and η = 4.

periods and η = 4 b/s/Hz. As we can notice, the Grass-
Lattice constellation approximates the uniform distribution
much better than the Exp-Map constellation, thus achieving a
closer distribution to the optimal one in terms of capacity for
noncoherent communications under Rayleigh fading channels
[3].

In addition to achieving a closer distribution to the optimal
one in terms of capacity (uniform distribution), the minimum
chordal distance (also called packing efficiency) of the constel-
lation is greater in the case of Grass-Lattice when compared
to Exp-Map. This translates into a better BER performance
as it is shown in Fig. 2. In this figure, we obtain the BER
curves for different scenarios with T = 4 symbol periods,
N ∈ {2, 4} receive antennas, and η ∈ {4, 6} b/s/Hz. We can
see that in all cases Grass-Lattice constellations offer superior
performance than Exp-Map, with the gap being especially
relevant (almost one order of magnitude) when the spectral
efficiency is increased.

VI. CONCLUSIONS

We have proposed a new Grassmannian constellation for
noncoherent communications in MIMO channels with two
transmit antennas based on a measure preserving mapping
from the unit hypercube to the Grassmann manifold. Thanks
to its structure, the encoding and decoding steps can be per-
formed on the fly with no need to store the whole constellation.
Further, it allows for low-complexity and efficient encoding-
decoding. Simulation results show that this constellation out-
performs other unstructured constellations such as Exp-Map
in terms of BER under Rayleigh block fading channels.

APPENDIX

Lemma 1 Let z = (z1, . . . , zn)
T be i.i.d. such that zi ∼

CN (0, 1). Moreover, for any t ≥ 0 let hn(t) be the unique
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Fig. 2. BER curves of Grass-Lattice and Exp-Map constellations for T = 4,
N ∈ {2, 4} and η ∈ {4, 6}.

solution to

(n+1)(thn(t))
2n −n(thn(t))

2n+2 =
1

Γ(n)

∫ t2

0

sn−1e−s ds .

Then, the random variable

x = φ(z) = zhn(∥z∥)

is distributed in the unit ball B(0, 1) ⊆ Cn with probability
density function

ρ(x) =
Γ(n+ 2)

πn
(1− ∥x∥2) .

PROOF. The function hn is the unique solution of:

h(t)2n−1(h(t) + th′(t))(1− t2h2) =
e−t2

Γ(n+ 2)
, h(0) = 0 ,

which satisfies th(t) ∈ [0, 1] and it is easy to see that φ :
Cn → B(0, 1) is a diffeomorphism. The Jacobian of φ is:

Jacφ(z) = hn(∥z∥)2n−1(hn(∥z∥) + ∥z∥h′
n(∥z∥)) =

e−∥z∥2

Γ(n+ 2)(1− ∥z∥2hn(∥z∥)2)
=

e−∥z∥2

Γ(n+ 2)(1− ∥φ(z)∥2)
.

Given any integrable mapping g : B(0, 1) → R, the
expected value of g(x) when x follows the distribution of
the lemma is:

1

πn

∫
z∈Cn

g(φ(z))e−∥z∥2

dz =

Γ(n+ 2)

πn

∫
z∈Cn

g(φ(z))(1− ∥φ(z)∥2)Jacφ(z) dz ,

which by the change of variables theorem equals

Γ(n+ 2)

πn

∫
x∈B(0,1)

g(x)(1− ∥x∥2) dx .

This is the expected value of g in B(0, 1) with respect to the
claimed volume density.
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algorithm for designing Grassmannian constellations,” in 25th Interna-
tional ITG Workshop on Smart Antennas (WSA 2021), (EURECOM,
France), Nov. 2021.
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