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A B S T R A C T

Salinity gradient-based technologies offer a solution for desalination plants seeking clean, uninterrupted elec-
tricity to support their decarbonization and circularity. This work provides cost-optimal designs of a large-scale 
reverse electrodialysis (RED) system deployed in a desalination plant using mathematical programming. The 
optimization model determines the hydraulic topology and RED units’ working conditions that maximize the net 
present value (NPV) of the RED process recovering salinity gradient energy between brine and treated waste-
water effluents. We examine how electricity, carbon and membranes prices, desalination plant capacity, and 
membrane resistance may affect the NPV-optimal design’s competitiveness and performance. We also compare 
the conventional series-parallel configuration and the NPV-optimal solution with recycling and added reuse 
alternatives. In the context of soaring electricity prices and strong green financing support, with the use of high- 
performing, affordable membranes (~10 €/m2), RED could save 8 % of desalination plant energy demand from 
the grid, earning 5 M€ profits and LCOE of 66–126 €/MWh, comparable to other renewable and conventional 
power technologies. The optimization model finds profitable designs for the entire range of medium-capacity 
desalination plants. The findings underscore the optimization model effectiveness in streamlining decision- 
making and exploiting the synergies of full-scale, RED-based electricity in the energy-intensive water sector.

1. Introduction

The energy released by mixing two water streams of different sa-
linities, so-called salinity gradient energy (SGE), is a vast yet largely 
untapped renewable power source [1,2] to complement and diversify 
the current carbon and water-intensive energy mix [3,4], and sustain the 
energy-intensive water sector [5]. SGE technologies offer an integrated 
approach to the United Nations’ Sustainable Development Goal (SDG) 7 
on affordable, reliable, sustainable energy access, and SDG 6 on clean 
water and sanitation.

Desalination and wastewater reuse are projected to increase in the 
coming decades [6,7] to reduce withdrawals from conventional surface 
and groundwater resources, while meeting stringent water quality 
standards. However, as large energy users of conventional power sour-
ces [8], they are also large greenhouse gas (GHG) emitters that question 
their sustainability [9]. Seawater reverse osmosis (SWRO), the tech-
nology of choice in the global desalination market [10], is getting closer 
to the practical minimum energy to desalinate seawater hitting a record, 
low specific energy consumption (SEC) of ~2 kWh/m3 of desalted water 

[11]. Despite the marked decline in SEC, the carbon footprint of 
large-scale desalination plants remains an issue [12,13]. Hence, 
coupling desalination with renewable energy sources will be vital for the 
sustainable production of desalinated water [14]. SGE technologies can 
provide clean, base-load electricity to desalination and wastewater 
treatment plants, supporting their decarbonization and circularity [5].

Within the SGE technologies, reverse electrodialysis (RED) has made 
great progress in the past two decades, and is now closer to commer-
cialization with some pilot trials [15–17] and field demonstrations 
[18–20]. In principle, a RED system takes in low- and high-salinity 
waters (LC and HC) on either side of alternate pairs of 
cation-exchange (CEM) and anion-exchange (AEM) membranes that let 
through counter-ions, but not co-ions and water [21]. The salinity dif-
ference over each ion-exchange membrane (IEM) creates an electro-
chemical potential that drives the diffusion of cations through CEMs 
towards the cathode, and anions through AEMs towards the anode from 
the saltier stream to the less-salty side; redox reactions at the outer 
electrodes convert this ionic flow into an electron flux. The electric 
potential of the membrane pile and the resulting electric current can 
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then be used to power the external load.
Using natural underground seawater and treated municipal waste-

water from a local treatment plant in Jeju (South Korea), Nam et al. [15] 
tested a pilot-scale RED stack with 1000 cell pairs of IEMs. The stack had 
a total membrane area of 250 m2 and generated a gross power of 95.8 W. 
The presence of multivalent ions and natural organic matter result in a 
low power density (0.38 W/m2 total membrane) and energy conversion 
efficiency of 11.4 %–13.3 % [15]. Yasukawa et al. [16] assessed a 
small-scale RED system with 200 cells and 40 m2 of membrane surface 
area, using real brine from the Mamizu Pia SWRO desalination plant and 
effluent from the Wagiro sewage treatment plant in Fukuoka, Japan. 
They found a net power output of 18.2 W (net power density of 0.46 
W/m2) and an energy conversion efficiency of 17–26 %. Later on, 
Mehdizadeh and colleagues [17] assessed the performance of a RED 
stack consisting of 299 cell pairs and a membrane effective area of 179.4 
m2. The stack was run using brine from the Okinawa SWRO desalination 
plant and surface water, resulting in a net power output of 143.6 W 
(0.80 W/m2). The authors suggest that if the Okinawa desalination plant 
releases 60,000 m3 of brine daily, it could produce a net power of 437 
kW per day. The Afsluitdijk in the Netherlands became home to the 
REDstack BV demonstration plant at Technology Readiness Level (TRL) 
7 in 2014, marking a major milestone. Using a mixture of salt water (28 
g/L) from the Wadden Sea and freshwater (0.2–0.5 g/L) from Lake 
IJssel, this plant operates stacks with a total membrane area of 250 m2 

and is currently producing 50 kW [19,20]. In Trapani, Italy, the 
REAPower pilot plant is another demonstration project currently 
non-operational. It harnessed the power of natural saturated brine (5 M) 
from the nearby saltworks and brackish water (30 mM) from a shoreline 
well, producing a total of 330 W (total net power density of 0.75 W/m2) 
from three RED stacks with a combined membrane area exceeding 400 
m2 [22].

The low power density of large-scale RED (0.38–2.7 W/m2 total 
membrane area), fouling, and high cost of commercial membranes are 
the main limitations for RED technological readiness [1,23]. The 
benchmark for RED to be on par with other renewable energy sources is 
a sustained net power density of 2 W/m2 at 40 % energy efficiency [19]. 
Niche markets beyond utility-scale electricity open new avenues to 
prove and advance RED market readiness [24]. For instance, seawater 
desalination brine and wastewater are discarded streams that can be 
exploited to produce and save energy while minimizing the environ-
mental impact of brine disposal [25]. Besides, desalination’s seawater 
influent is already pre-treated to remove foulants [26], so the rejected 
brine would likely be less prone to cause fouling than raw seawater, 
which would require further energy-intensive purification.

Several simulation and optimization studies have investigated de-
signs and operating conditions that maximize the net power density 
[27–29], along with energy efficiency [30] of a single RED stack or 
several RED units in series [31–33] or simple layouts [34–36]. Few have 
considered more complex topologies and cost metrics (e.g., net present 
value, levelized cost of electricity), which are key drivers for widespread 
RED adoption [23]. Designing for the RED process involves multiple 
variables and constraints, making it more difficult to find the most 
cost-efficient solutions using heuristics. An alternative to making de-
cisions about RED process design is to use optimization-based methods 
that rigorously search for the optimal configuration in a given design 
space [37,38]. Notably, Generalized Disjunctive Programming (GDP) is 
a higher-level modeling framework that makes the formulation process 
more intuitive and systematic, while preserving the underlying logic 
structure of the problem in the model [39]. Tristán et al. [40] developed 
a GDP optimization model that incorporates a detailed model of the RED 
stack [41,42] to define the hydraulic topology and the working condi-
tions of a set of RED units that maximize the net present value (NPV) of 
the RED process. Our work illustrates the functionality and benefits of 
mathematical programming and GDP modeling on the conceptual 
design and optimization of small-scale RED process over conventional 
heuristics.

Niche market for testing and promoting RED on a large scale is 
electricity generation from brines. Yet, the intricate design and opera-
tion space of the growing number of RED units requires optimization- 
based methods to effectively handle the challenge. In this follow-up 
study, we apply our GDP optimization model [40] to define the 
cost-optimal design of a large-scale RED system in a SWRO desalination 
plant. In addition, we explore how electricity and emissions allowances 
prices over time, membranes price, SWRO desalination plant capacity, 
and membranes resistance, may affect the cost-optimal design, eco-
nomic feasibility, and competitiveness of the RED process using 
advanced mathematical programming tools, which is barely addressed 
in the open literature. To evaluate the benefits of the GDP model over 
heuristics, we also compare the conventional series-parallel configura-
tion with the optimal solution to the GDP problem, which includes 
recycling and reuse alternatives of the RED units’ exhausted streams. 
This case study serves to gauge the emissions and energy savings from 
the water- and carbon-intensive grid mix the RED system can offer to 
desalination in the most cost-conscious way, the way forward to make 
RED-based electricity a full-scale reality.

2. Methods

Optimization-based strategies involve three major steps: (i) postu-
lating a superstructure that embeds the relevant flowsheet alternatives 
from which the optimum solution is selected, (ii) its formulation as a 
tractable mathematical programming model; and (iii) solving the model 
with an optimization algorithm to determine the optimal configuration 
[37,43]. Since the GDP model for the optimal design of the RED process 
is thoroughly described in Ref. [40], we will brief the reader on the main 
equations and assumptions.

2.1. Problem statement and superstructure definition

The problem addressed is to determine the hydraulic topology, that 
is, the number and hydraulic arrangement of the RED units and their 
working conditions (e.g., electric current, inlet flow velocities, and molar 
concentrations) that yield the cost-optimal flowsheet design of the RED 
process for a given concentration, volume, and temperature of the high- 
salinity and low-salinity feed streams, and a fixed design of the RED 
stacks.

The superstructure in Fig. 1 displays the feasible design alternatives 
for the stated problem, i.e., RED-based electricity production from the 
embedded energy of the HC and LC feed waste streams, with a given 
number of conditional RED units, Nr = 2. The representation of alter-
natives consists of: (i) sets of units u ∈ {FSU,RSU,RU,RMU,DMU}; (ii) 
sets of inlet and outlet ports or mixers and splitters, p ∈ P = Pout ∪ Pin, 
where flows of material may take place; and (iii) sets of streams or 
feasible connections between outlet and inlet ports, s ∈ S ⊆ Pout × Pin.

In Fig. 1, the HC and LC feed units, fs ∈ FSU, supply the high- and 
low-concentration feedwaters, sol ∈ SOL = {HC, LC}, to the RED Process 
Unit (RPU). The source units rm ∈ RMU in the RPU parent block transfer 
HC and LC feedstreams from the feed units, FSU, to one or more of the 
candidate RED units, r ∈ RU = {r1,…, rNr}. After the active RED units 
have retrieved SGE from the inlet streams, the diluted HC and concen-
trated LC spent effluents can either be recycled back into other active 
RED units, reused, or directed to the sink units, rm ∈ RMU, where the 
RPU’s exhausted HC and LC effluents are disposed of in the corre-
sponding overall discharge units, dm ∈ DMU. Rather than passing 
through the RPU, the leftover feeds from FSU are directed straight to 
DMU for disposal, meaning feedstreams from RMU must go through the 
active RED units to recover SGE before reaching RSU. The transfer of 
ions from high-salinity to low-salinity compartments across membranes 
during SGE conversion is the only way for HC and LC waters to mix 
within the candidate RED units.

The reader is referred to Ref. [40] and Supplementary data for details 
on the superstructure definition and notation.
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2.2. Optimization model

The set of equations (1) describes the Generalized Disjunctive Pro-
gramming (GDP) optimization model for the superstructure in Fig. 1. 
GDP models involve continuous and Boolean variables with constraints 
in the form of algebraic expressions, conditional constraints within 
disjunctions, and logical propositions. The Nr two-term disjunctions 
represent the discrete activation and deactivation of the Nr candidate 
RED units. In problem (1), the objective is to maximize the Net Present 
Value (NPV) of the RED process subject to inequality constraints from 
process specifications and equality constraints from material, energy 
balances, and thermodynamic relationships. The continuous variables x 
are the molar concentrations and volumetric flows of the streams, and 
the internal variables of the active RED units. Decisions are made on the 
electric current and the concentration and flowrate of the RED stack’s 
inlet streams. 

max
x,Yr

NPV = f(x)

s.t. g(x) ≤ 0
[

Yr

hr(x) ≤ 0

]

⊻

[
¬Yr

Brx = 0

]

∀ r ∈ RU

Ω(Yr) = True

x ∈ X ⊆ Rn

Yr = {True, False}p

(1) 

The global constraints outside the disjunctions, g(x) ≤ 0 equation 
(S1) in Supplementary data, are equalities and inequalities describing 
specifications and physical relationships that apply for all feasible con-
figurations in the superstructure, e.g., mass balances of the feed, source, 
sink, and discharge units, and the upper and lower bounds on concen-
tration and flowrate. In each term of the disjunctions, the Boolean var-
iables Yr define the existence or absence of the RED unit; if a unit exists 
or is selected (Yr = True), the associated active constraints hr(x) ≤ 0 in 
(S2) impose the relevant mass and energy balances or other physico-
chemical phenomena that apply in the RED unit (rr(x) ≤ 0), add the 
incurred capital and operating cost to the objective function, and set 
lower and upper bounds on its internal variables and the concentration 
and flowrate of its inlet and outlet streams; otherwise, the negation 
(¬Yr) ignores the RED unit equations in the inactive disjunctive term, 
and Br x = 0 constraints in (S3) set to zero a subset of the continuous 
variables and cost terms in the objective function. Other types of logical 
relationships for selecting the candidate RED units (Ω(Yr) = True) are 
specified using logic propositions.

To formulate the GDP problem, we assume. 

(a) The feed streams are pure sodium chloride (NaCl) solutions, thus 
neglecting the non-idealities of aqueous solution (i.e., unity 

activity coefficients) and the existence of other species that would 
undermine the RED performance.

(b) The internal losses depend only on the ionic resistance of solu-
tions and membranes.

(c) Constant membranes permselectivity and ionic resistance apply, 
regardless of the solutions concentration and temperature.

(d) There is no water transport across the membranes against the 
concentration gradient due to osmosis, which implies a constant 
streamwise volumetric flowrate in RED’s channel.

(e) Salt diffusivities in the membrane phase are independent of so-
lutions concentration and temperature.

(f) No fluid leakage or ionic shortcut currents in the RED stack’s 
manifolds.

(g) Co-current flow of the high- and low-concentration streams.
(h) The RED system operates under isothermal and isobaric 

conditions.

The solution to the GDP model maximizes the NPV of the RED pro-
cess (2), which considers operating (OPEX in €/year), and capital costs 
(CAPEX in €) annualized over the expected lifetime of the plant LT in 
years, using the capital recovery factor, CRF, given in (4) with a discount 
rate DR. The OPEX and annualized CAPEX define the total annual cost 
(3), TAC, of the RED system. The NPV accounts for electricity sales and 
carbon pricing revenues. The RED plant electricity is sold to the grid at 
Spanish average price of electricity for non-house consumers, ep [44], 
and the abated GHG emissions from the grid mix (Spanish emission 
factor, ef [45]) are subsidized at the average price, cp, in the European 
Union Emission Trading System (EU ETS) [46].

We use a semi-rigorous version of Tristán et al. [40,41] RED stack 
model, to balance model fidelity and tractability. When the RED unit is 
active (Yr = True), the discretized model rr(x) ≤ 0 in (S2) predicts the 
net power output, NPr, that is added to the net power capacity of the RED 
system, i.e., total net power, TNP in kW (5). When the RED unit is absent 
(¬Yr) the net power output is set to zero.

We consider plant downtime due to membrane cleaning and system 
maintenance by applying a load factor, LF, to the annual energy yield 
(kWh/year) of the RED plant working at full capacity. 

NPV =
(ep + cp⋅ef) TNP 8760 LF − TAC

CRF
(2) 

TAC = CRF⋅CAPEX + OPEX (3) 

CRF =
DR

1 − (1 + DR)− LT (4) 

TNP =
∑

r∈RU
NPr (5) 

To estimate the capital investment in (6), we determine the cost of 
RED stacks, 

∑
r∈RUCCstack,r, pumps, CCpump, and civil and electrical 

Fig. 1. Superstructure for the RED process with two candidate RED units. High (HC) and low-salinity (LC) feed (fs ∈ FSU) and discharge (dm ∈ DMU) units. The set of 
source (rs ∈ RSU) and sink (rm ∈ RMU) units and the set of candidate RED units (r ∈ RU) are children of the parent RED Process unit (RPU).
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infrastructure costs, CCcivil. 

CAPEX =
∑

r∈RU
CCstack,r + CCpump + CCcivil (6) 

The annual operating cost (7) comprises the electricity cost from 
pumps, 

∑
r∈RUOCpump,r, the replacement cost of membranes, 

∑
r∈RUOCIEMsrep,r, and maintenance and labor costs (as 2 % of CAPEX 

[47]). 

OPEX =
∑

r∈RU
OCpump,r +

∑

r∈RU
OCIEMsrep,r + 0.02 CAPEX (7) 

When the RED unit is active, CCstack,r in (S2) is added to CAPEX, and 
OCpump,r and OCIEMsrep in (S2) to OPEX; otherwise, these terms take zero 
values.

The objective function in (2) is maximized subject to constraints in 
the GDP that are detailed in Tristán et al. [40] and Supplementary data. 
The remainder financial parameters are those reported in Table 1.

2.3. Solution strategy

We code the GDP model using the Python-based, algebraic modeling 
language Pyomo [49] and Pyomo.GDP, a Pyomo library extension for 
logic-based modeling and optimization [50]. To solve the GDP problem, 
we apply the Global Logic-based Outer Approximation (GLOA) algo-
rithm [51,52] implemented in the logic-based solver GDPopt version 
20.2.28 built on Pyomo.GDP. The GLOA algorithm decomposes the so-
lution to the GDP into a sequence of mixed-integer linear programming 
(MILP) master problems and reduced nonlinear programming (NLP) 
subproblems.

We solve the MILP master problems with CPLEX and the NLP sub-
problems with the multistart heuristic algorithm MSNLP using IPOPTH 
as a local NLP solver on a machine running Windows 10 (x64) with 6 
cores processor (Intel® Core™ i7-8700 CPU @3.2 GHz) and 16 GB of 
RAM. We access the MINLP and NLP solvers from GAMS 34.1.0 through 
the Pyomo-GAMS interface. The stopping criteria depend upon the 
specified MSNLP solver’s maximum number of iterations to guarantee a 
near-optimal solution.

2.4. Techno-economic performance metrics

To assess the technical performance of the optimal RED process de-
signs, we determine its net power density, i.e., the net power produced 
per membrane area, and its net energy efficiency, or the fraction of 
exergy or theoretical maximum energy attainable in form of SG, con-
verted to useful work. We consider the Levelized Cost of Energy (LCOE) 
to assess the cost-competitiveness of the RED optimal designs. The LCOE 
is the average revenue per unit of electricity generated needed to recover 
building and operating costs for a generation plant over a specific period 
and duty cycle, reflecting the overall competitiveness of different gen-
eration technologies.

2.4.1. Net and thermodynamic energy efficiency
The exergy or Gibbs free energy of mixing is the theoretical 

maximum energy that is available for useful work from a system 
reaching equilibrium. The difference in the Gibbs free energy between 
the final mixture and the initial high and low-salinity solutions yields the 

change in free energy of mixing of the inlet ΔGmix,in and outlet ΔGmix,out 

(8) streams of the RED process unit, i.e. streams (fso, rsu) and (rmu,dmi) 
[53,54]. 

ΔGmix,i = 2 R T
∑

sol∈{HC,LC}

Qi,sol Ci,sol ln
Ci,sol

CM,i

∀ i ∈ in ∪ out = (fso, rsu) ∪ (rmu, dmi)

(8) 

CM,i =

∑

sol∈{HC,LC}
Qi,sol Ci,sol

∑

sol∈{HC,LC}
Qi,sol

∀ i ∈ in ∪ out = (fso, rsu) ∪ (rmu, dmi)

(9) 

where R is the gas constant (8.314 J/mol/K), T is the absolute temper-
ature (K), 2 denotes the number of ions each NaCl molecule dissociates 
into, Q is the volumetric flowrate (m3/s) and C the concentration (mol/ 
m3) of the initial high and low-salinity solutions entering and leaving the 
RED process. Equation (9) yields the concentration of the mixed solution 
in thermodynamic equilibrium (CM in mol/m3) of the RED process 
inflow and outflow streams.

The net energy efficiency, ηnet, measures the input fraction of free 
energy that RED converts into electricity (10). The exergy change be-
tween RED process inlet and outlet streams is the exergy recovered for 
conversion, i.e., the retrieved exergy for useful work (ΔGmix,retrieved), that 
is used to compute the thermodynamic efficiency, ηth, of the RED pro-
cess, equation (11). 

ηnet =
TNP

ΔGmix,in
(10) 

ηth =
TNP

ΔGmix,in − ΔGmix,out
=

TNP
ΔGmix,retrieved

(11) 

2.4.2. Levelized Cost of Energy (LCOE)
The LCOE (€/kWh) estimates the average cost per unit of energy 

generated during the lifetime of a power plant that would break even the 
RED project costs. The LCOE gives a first-order assessment of the RED 
project viability. Assuming the energy provided annually is constant 
during the lifetime of the project, the LCOE reduces to (12). 

LCOE =
CRF⋅CAPEX + OPEX

TNP 8760 LF
− cp⋅ef (12) 

2.5. Specifications for the RED optimal design deployed in a desalination 
plant

Fig. 2 illustrates RED process integration with desalination and 
wastewater treatment plants and Table 2 reports the site-specific con-
ditions of the case study. The large-scale RED system recovers energy 
from the concentrate effluent of Maspalomas II SWRO desalination plant 
in Gran Canaria (Canary Islands, Spain) [55–58]. Maspalomas II plant 
produces 26,184 m3/day of desalted water with a SEC of 3.77 kWh/m3. 
Nearby wastewater treatment plants (e.g., el Tablero, las Burras) supply 
the low-salinity feedwater [58,59]. We assume the same LC and HC feed 
volume available for SGE conversion.

The case study explores how (i) electricity and carbon prices, (ii) 
membrane price, (iii) desalination plant capacity, and (iv) membrane 
resistance, may affect the cost-competitiveness, power density, and en-
ergy efficiency of the NPV-optimal RED design. Additionally, we assess 
the benefits of the GDP optimization model over trial-and-error ap-
proaches by comparing the traditional series-parallel layout to the 
optimal design that incorporates reuse and recycling of RED stacks 
outlet streams. All the assessments refer to a commercial RED unit 
(Table 3) in 2022, unless otherwise stated.

To assess the influence of electricity price and carbon pricing over 
time, we gather Spanish average electricity price [44] and EU ETS 

Table 1 
Financial parameters for the RED plant [48].

Parameter Value

Plant lifetime, LT (years) 30
Membranes’ lifetime, LTm (years) 10
Load Factor, LF 90 %
Discount rate, DR 5 %
Spanish emission factor, ef (kg CO2-eq/kWh) 0.374
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average emission allowances price [46] for the period 2017–2022. We 
regress EU-27 data from 2007 onwards [44] to estimate 2030 electricity 
prices; the carbon price in 2030 is a central estimate benchmark from 
OECD [60]. We assess the sensitivity to membrane costs by setting 
values between the current price of membranes (i.e., average CEM and 
AEM cost from Fumatech®, 87.5 €/m2) and the lowest price reported in 
the literature (~10 €/m2) [61]. We reduce the flowrate of both HC and 
LC feedwaters to estimate the minimum SWRO desalination plant ca-
pacity that would allow the NPV-optimal RED process earn profits. We 
assume 20 % drop in membranes resistance to reflect future advance-
ments in membranes design.

To evaluate the benefits of the GDP optimization model in RED 
process design over heuristic approaches, we compare two hydraulic 
arrangements each with the same number of candidate RED units (i.e., 
Nr = 35): 

(i) Fixed series-parallel layout, from our previous assessment [41], 
where the RED system treats desalination concentrate into 
several identical parallel arrays of units in series, so neither 
recycling nor alternative reuse of the outlet streams is allowed. 
The objective is to maximize the total net power of the parallel 
branch, as it was set in our previous study [41].

(ii) GDP layout, leaving the connection between the superstructure 
units free as a discrete decision. In this case, the objective is to 
maximize the NPV.

In the Series layout, we estimate the working conditions that maxi-
mize the net power of a stand-alone RED stack to fix the flowrate of the 
inlet streams to each parallel branch. We assume that the high and low 
salinity feedwaters are evenly split among the parallel branches, each 
with the same optimal configuration, so the net power output and costs 
of the RED system scale accordingly.

3. Results and discussion

For all the scenarios and the given parameters, each solution pro-
vides the NPV-optimal topology and decision variables that balance 
electricity production and capital and operating outlays increase. 
Discrete decisions include the working RED units and the active water 
streams. Continuous decisions are the flowrate and concentration of the 
inlet streams and the electric current of each active RED stack.

It is worth noting that simplifications and assumptions of the RED 
stack model [40] result in an overestimation of the net power output 
and, as such, an underestimation of the LCOE and an overestimation of 
the NPV. Besides, detailed and long-term electricity price data is 
essential in accurately evaluating the financial viability of renewable 
energy investments. Yet, there are significant hurdles to overcome that 
the electricity price regression to 2030 in this work does not fully 
address: balancing long-term time frames with fine time resolutions; 
forecasting electricity and carbon prices in future energy and market 
scenarios or unfamiliar pricing structures; and uncertainty in the price 
drivers [62].

3.1. Electricity and carbon price assessment

As expected, the upward trend of electricity and emissions allow-
ances prices over time (Fig. 3, semi-log graph) favors RED process 
techno-economic performance (Fig. 4), which in turn relieves the grid 
mix supply of Maspalomas II desalination plant (RED-based electricity 
could meet about ~7–8% of the SEC). The optimal process designs 
feature power densities between 1.8 W/m2 and 2.1 W/m2 (markers la-
bels, Fig. 4) and thermodynamic efficiencies ranging from 39 % to 42 % 
(markers color, Fig. 4).

Russia’s invasion of Ukraine in early 2022 brought severe disrup-
tions in the EU energy market. The unprecedent surge in European fossil 
gas prices is echoed in the unparallel electricity price spike in 2022 
(Fig. 3), soaring prices that incentivizes the promotion of emerging 
renewable technologies such as RED. Besides, the cap-and-trade EU ETS 
limits the volume of allowances in the market over time (Fig. 3) to 
comply with emissions reduction targets, the scarcity of emission al-
lowances (among other factors) increases their price used in financing 
RED (Fig. 5).

For the assessed period (Fig. 5), electricity sales are the main source 
of revenue, with lower yet growing revenue shares from auctioning al-
lowances in the EU ETS (e.g., from 1 % of all revenues in 2017 to ~11 % 
in 2022 and ~17 % in 2030). As a result, RED benefits grow by about 52 
% in five years, a 25 % increase in NPV (Fig. 4). Despite the slight decline 

Fig. 2. RED-based energy recovery from the salinity gradient between seawater 
reverse osmosis (SWRO) desalination concentrate effluent (HC) and reclaimed 
wastewater (WW) effluents from WW treatment plants (LC).

Table 2 
High-salinity (HC) and low-salinity (LC) feedwater properties.

Feedwater HC LC

Source Maspalomas II SWRO 
plant

El Tablero and las Burras WW 
treatment plants

Flow rate (m3/h) 733 733
NaCl concentration 

(M)
1.67 0.02

Temperature 20 ◦C.

Table 3 
Parameters of the commercial RED stack (Fumatech GmbH®, Germany) [40].

Parameter Value

Number of cell pairs 1000
Channel size 1.824 m × 1.532 ma

Spacers
Thickness (μm) 270b

Porosity 82.5 %
Membranes properties: fumasep® CEM (FKS-50)/AEM (FAS-50)
Areal resistance (Ω⋅cm2) 1.8/0.6c (− 20 %)d

Permselectivity (− ) 0.93
Thickness dry (μm) 50
Active area (m2) 0.7a

a Four times the size of fumatech® ED-1750 pilot-scale module.
b Equal to inter-membrane distance, i.e., HC or the LC channels height.
c Measured in 0.5 M NaCl at 25 ◦C.
d Reduction assuming future advances in membranes design.
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of electricity price in 2030, the RED process may raise 724,155 euros 
each year during their lifetime yielding a NPV of about 4.4 million euros 
(Fig. 4).

When electricity is priced high, the revenue gained outstrips the 
increase in costs from a larger number of RED units (Fig. 5). The optimal 

solution therefore activates more RED units to raise the nominal gen-
eration capacity of the RED system (10 units in five years delivering 23 
% more TNP), but at a cost. Each unit added to the RED system reduces 
the overall net power density from 2.1 W/m2 in 2017 to 1.8 W/m2 in 
2022 (markers label, Fig. 4). On the flip side, the RED system retrieves 
more exergy for conversion (15 % more exergy than in 2017) from 
which a greater share (39 % in 2017 and 42 % in 2022) is converted into 
net electricity, enhancing the overall energy efficiency and net power 
output of the RED system (markers color, Fig. 4).

The overall net power density loss is related to the lower inlet 
flowrate of the RED units. This is because the same HC and LC feed 
volumes (kept constant throughout the years) are sourced to a larger 
number of RED units. Such lower inlet flowrate causes the RED units to 
depart from the net-power optimal working conditions, thereby 
reducing its power rate.

These findings indicate that in a context of high electricity prices and 
strong green financial support, RED technology does not require to reach 
the ambitious ~2.0 W/m2 to be competitive as previous studies sug-
gested. This is a reassuring result for RED transition from lab-scale to 
commercialization.

3.2. Membrane price assessment

The membrane price that breaks even the NPV-optimal RED design 
falls somewhere between 23 €/m2 and 24 €/m2 (Fig. 6), just under twice 
to six times the price of previous estimates of similar feeds concentra-
tions (see Table 3).

Membranes priced above 23 €/m2 yield larger economic losses when 
more than one RED unit is active, that is, the capital and operational 
expenses overshadow incomes from electricity sales and green financing 
incentives to a greater extent with an increasing number of working RED 
units (Fig. 7, semi-log graph); therefore, the optimal RED process design 
keeps one RED unit active under near-optimal working conditions (i.e., 
maximum net generation), which results in a higher power density of 
2.4 W/m2 but reduced net (21 %) and thermodynamic (36 %) effi-
ciencies (Fig. 8). As a result, the net power output and the derived 
electricity and emissions revenues from a single RED unit remain un-
changed, whereas the investment and operational costs (i.e., mem-
branes’ replacement cost) increase linearly with membrane price 
(Fig. 7). The balance between the constant revenues and higher total 
costs of a single but costlier RED stack is reflected in the linear decline of 
NPV with membrane price (Fig. 6).

Fig. 3. Revenues per MWh from electricity and emission allowances over the 
period 2017–2022 with projections to 2030.

Fig. 4. Net present value, net power density (markers text), and thermody-
namic energy efficiency (markers color) of the NPV-optimal RED process design 
over the past five years from 2022 and forecast to 2030.

Fig. 5. NPV-optimal RED process over the period 2017–2022 with projections 
to 2030: cost and revenues breakdown in present value and number of active 
RED units, # RU.

Fig. 6. Membrane price influence on the NPV-optimal RED process design: net 
present value and number of active RED units. The inset magnifies the NPV in 
the membrane price range within the boxed part of the graph.
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The NPV trend shifts for membranes rated below 23 €/m2, following 
a steep increase with lower membrane prices (Fig. 6). As membrane 
price falls the GDP model activates more RED units since the revenues 
earned outweigh the increase in capital and operating cost. The overall 
net power density decreases due to the larger number of RED units fed 
with the same feed flowrate, which recover a larger fraction of the input 
exergy for conversion increasing the net efficiency (Fig. 8). The ther-
modynamic efficiency also increases because the active RED units 
operate at lower inlet flowrates, reducing the overall pump power 
consumption.

With the reduction of membrane costs, designers can focus on 
achieving higher energy recovery rates from SG, leading to the devel-
opment of more efficient and economically viable designs that increase 
the RED-based share of the SWRO desalination plant supply from 0.3 % 
from a single costlier RED unit to 8 % from 33 cheaper RED units. The 
scale-up of the RED process capacity to the MW order would likely make 
the project profitable in the short run if cheaper manufacturing mem-
brane processes lower its cost to ~20 €/m2.

3.3. SWRO desalination plant capacity assessment

The available feeds flowrate restricts the exergy input which in turn 
bounds the useful work of the RED process. The exergy input scales 

linearly with the desalination plant capacity (Fig. 9), and so does the 
TNP of the RED plant (Fig. 9 and markers size in Fig. 10). As such, to 
maximize the NPV with scarce feed volumes, the GDP optimization 
model deactivates RED units (keeping a single RED unit in the low-end 
capacity range of medium-sized SWRO desalination plants, i.e., 500 m3/ 
day). By reducing the number of RED units, the NPV-optimal RED pro-
cess attempts to emulate the overall working conditions with larger feed 
volumes. With larger HC and LC feed volumes (4400–17,600 m3/day) 
the NPV-optimal solution retrieves ~76 % and converts ~31 % of the 
input exergy into electricity (TNP, Fig. 9). The net power density and 
thermodynamic efficiency (Fig. 10) remain roughly constant at ~1.8 W/ 
m2 and ~42 % up to a tenth of Maspalomas II capacity. owing to the 
lower number of RED units (3 units) operating with larger, net-power 
optimal flowrates that increase the net power density to 1.9 W/m2 

with a slight decline in thermodynamic efficiency (41 %).
Desalination plants rejecting ~334 m3/day (i.e., 500 m3/day nomi-

nal capacity), would allow to install a single RED unit, that must run 
with a lower sub-optimal flowrate due to the scarce HC and LC feed 
flowrates, as such the net power density decreases to 1.4 W/m2, while 
the energy efficiency increases to 44 % (Fig. 10). This is because the RED 
unit depletes to a greater extent the concentration gradient with lower 
hydrodynamic losses. Even so, the RED unit would source about 7.5 kW 
to the desalination plant with a profit of 53,595 euros.

Overall, the integration of on-site electricity generation based on 
RED technology in desalination plants of up to 500 m3/day capacity can 
alleviate the reliance on water and energy-intensive grid mixes, 
contributing to more sustainable and self-sufficient water supply 
systems.

3.4. Membrane resistance assessment

The use of high-performance membranes would provide slightly 
more powerful—i.e., 7.4 % more TNP with a 4.2 % increase in the 
overall net power density (Fig. 11)—and efficient designs—3.5 % more 
efficient in terms of thermodynamic efficiency (Fig. 11)–by simply 
adding a RED unit to the RED system (about 5.6 km2 of total IEM area in 
a single stack). Such a small improvement would add up almost a million 
euros of benefits with virtually no impact on capital and operational 
costs, resulting in a 13 % NPV increase (Fig. 12). The LCOE would also 
improve, moving from 103 €/MWh to 97 €/MWh. These results 
emphasize that any improvement in membranes’ performance has a 
positive impact on cost-competitiveness and widespread adoption of 
RED, a solid reason to thrust the development of cost-effective 
manufacturing processes and mass production of low-resistance mem-
branes to reach prices of ~10 €/m2.

Fig. 7. Membrane price influence on the NPV-optimal RED process design: cost 
and revenues breakdown in present values.

Fig. 8. Membrane price influence on the NPV-optimal RED process design: net 
power density, net and thermodynamic energy efficiencies.

Fig. 9. SWRO desalination plant capacity influence on the NPV-optimal RED 
process design: energy balance.
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3.5. Conventional series-parallel layout vs. NPV-optimal layout

The optimal GDP layout outperforms the series-parallel arrange-
ment, as it renders economically viable RED process designs with almost 

equal energy and emissions savings from the grid (~7 % in the con-
ventional layout and ~8 % in the cost-optimal layout).

The optimal series-parallel design of the RED process that peaks the 
total net power output with (i) a fixed hydraulic arrangement of the RED 
units, (ii) fixed concentration and flowrate of the HC and LC inlet water 
streams, and (iii) leaving the number of working RED units and its 
electric current as single decision variables, is far from being profitable 
(negative NPV of 2.9 million euros, Fig. 13). The GDP optimization 
model activates the largest feasible number of RED units in series, i.e., 5 
out of the 35 candidate RED units per parallel branch, to maximize the 
net power generation of the whole system. Even though the last RED 
units in the series increase the net power of the system, the RED unit’s 
net power density well decreases from the first 1.9 W/m2 to the last ~7 
mW/m2, which makes them prohibitively expensive.

While the net energy efficiency of the series layout (33 %, Fig. 14) 
aligns with the estimated value to make RED technology competitive 
with other renewables (i.e., 40 %) [19], the total net power density (0.9 
W/m2, Fig. 14) falls well below the estimated value to make RED 
cost-competitive (2.0 W/m2) [19]. The capital and operational expenses 
outweigh the benefits from electricity sales and green financing in-
centives which cover 78 % of the total costs, as seen in Fig. 13.

These results show that the optimal design from the technical 
perspective is not always the same from an economical viewpoint. The 
series configuration recovers a larger fraction of SGE at expense of lower 
power density that renders the RED process unprofitable.

Even though the conventional layout retrieves more energy for 
conversion (by increasing the extent of mixing through the series), the 
input exergy is lower than the optimal GDP layout (Fig. 15). This is 
because the total LC feed (assumed equal to Maspalomas II’s desalina-
tion brine, ~733 m3/h) restricts the number of parallel branches to 11. 
The optimal net-power inlet flowrate is about 0.6 times lower than the 
inlet LC flowrate. As such, around 42 % of the brine remains untapped 
reducing the input exergy of the RED system to 866 kW (Fig. 15).

As opposed to the series arrangement, the GDP layout, with its (i) 
larger volume of HC and LC feeds, and (ii) recycling and additional reuse 
alternatives, provides cost-optimal designs that can earn large profits 
(Fig. 13) while reconciling high efficiency and higher power densities 
(Fig. 14). The reduced extent of mixing and lower pump consumption of 
the GDP layout (Fig. 15) improves the thermodynamic energy efficiency 
which increases from 35 % in the series-parallel arrangement to 42 % in 
the GDP layout (Fig. 14) despite the larger fraction of exergy unused 
(Fig. 15), which yields a modest decrease in net efficiency (Fig. 14).

In the series-parallel arrangement, we enforce all RED units to work 
with higher flow velocities, those that peak the net power of the stand- 

Fig. 10. SWRO desalination plant capacity influence on the NPV-optimal RED 
process design: net present value, net power density (markers text), total net 
power output (markers size), and net thermodynamic efficiency 
(markers color).

Fig. 11. Membrane resistance influence on the net power density, net and 
thermodynamic energy efficiencies of the NPV-optimal design.

Fig. 12. Membrane resistance influence on the NPV-optimal design: cost and 
revenues breakdown in present values and net present value (markers).

Fig. 13. Cost and revenues breakdown in present value and net present value 
of the series-parallel and NPV-optimal layouts.
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alone RED unit (2.6 cm/s in the HC and 4.5 cm/s in the LC compart-
ments). The effect of such high velocities is twofold: an overall pump 
power increase (eight times the GDP’s), which in turn raises the in-
vestment and running costs (Fig. 13) and lowers the energy conversion 
efficiency (Loss in Fig. 15, and thermodynamic efficiency in Fig. 14).

These results underscore the value of mathematical programming 
and higher-level GDP modeling over heuristics for determining cost- 
optimal RED flowsheet designs.

3.6. Contextualizing RED economic competitiveness

Despite the discrepancy between the assumptions and scale of re-
newables projects (i.e., utility-scale projects of at least 1 MW) in IRENA’s 
LCOE estimates [63] and the NPV-optimal LCOE of RED, Fig. 16 pro-
vides some insights into RED competitiveness.

The assumed low membrane cost of 10 €/m2 in all the assessed years 
would make the LCOE of the NPV-optimal RED design fall within the 
range of fossil fuel-fired power generation technologies (Fig. 16). In the 
face of soaring electricity prices and stiff emission reduction targets to be 
on track of 2030 Paris Agreement’s goals, the NPV-optimal RED process 
would even be on par (i.e., concentrated solar power, CSP) or in the 

range of other renewables.
If similar trends of steep cost reduction, technological advancements, 

and high penetration rates were to occur in RED technology, it is plau-
sible that the LCOE for RED could reach levels comparable to established 
renewable technologies such as solar photovoltaic (PV) or onshore and 
offshore wind. This is in line with the steep cost reductions witnessed in 
solar PV, CSP, and offshore wind over the past decade (Fig. 16). Even 
though IRENA’s analysis excludes the impact of government incentives 
or subsidies, carbon emission pricing or the benefits of renewables in 
reducing other externalities, these figures highlight the need to prove 
and advance RED to reach market readiness.

Table 4 compares reported cost estimates of RED and the LCOE of the 
NPV-optimal RED process designs for current and future membrane 
price scenarios in 2022. The lack of detailed economic evaluations and 
wide variability in LCOE (16–4956 €/MWh) across existing studies due 
to disparity in their underlying financial and process assumptions, 
makes any comparison inconclusive and open to discussion. As such, it 
serves to extract some general guidelines and trends.

The HC and LC feed concentration, volume, and temperature deter-
mine the input exergy and, thus, the nominal capacity and cost of the 
RED process. HC sources such as brines from coal mines, desalination, 
saltworks, salt lakes, or regenerated thermolytic salt solutions used in 
the so-called RED heat engines (1–5 M), offer higher SGE potential than 
less salty water bodies such as seawater (0.5–0.6 M). A purposely 
designed RED system could efficiently exploit these high-salinity sour-
ces, thus, reducing the LCOE.

Depending on the source, the feeds purity may also affect the per-
formance and durability of RED if not properly pre-treated, which may 
increase capital and operational expenses. In this work, the objective 
function, i.e., the NPV, excludes the pre-treatment cost, which is likely to 
result in an underestimation of the actual LCOE for RED systems that use 
sources with extensive pre-treatment requirements, e.g., treated waste-
water effluents, raw seawater, or river water.

None of the reported cost estimates in Table 4 consider the working 
conditions of each RED stack and their relative arrangement that may 
greatly improve both the performance and cost of the RED process as 
seen in the case study. Instead, most of them derived the cost of RED 
electricity or the LCOE for an estimated or projected RED unit power 
density or a targeted nominal capacity of the RED plant. Some also 
considered the impact of availability, concentration, and fouling po-
tential of the HC and LC feeds, different RED stack sizes, and IEMs 
properties on RED system costs under fixed, suboptimal working con-
ditions of the RED units. Such detailed assessments, however, miss cost- 
optimal design alternatives that optimization-based approaches can 

Fig. 14. Overall net power density, thermodynamic efficiency, and net energy 
efficiency of the series-parallel and NPV-optimal layouts.

Fig. 15. Energy balance of the series-parallel and NPV-optimal layouts. In: Gibbs free energy entering the RED system. Out: Gibbs free energy leaving the RED system 
unused. Retrieved: Difference between input and output Gibbs free energies used for conversion in the RED system. Loss: Gibbs free energy lost in energy conversion. 
Net: total net power output of the RED system.
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effectively handle and identify.
The case study and the reviewed studies reveal that realizing high- 

performing (i.e., low-resistant, high-permselective), affordable mem-
branes is a crucial lever for RED techno-economic progress toward 
market competitiveness. As shown in the case study, membrane cost 
weighs heavily on the objective function. Even though all scenarios have 

equal feedstreams conditions and candidate RED units, the high price of 
commercial membranes makes the NPV-optimal design uneconomic. 
Only if IEMs were one-order-of-magnitude cheaper, such that revenues 
offset the outlays increase, the NPV-optimal design would retain more 
RED units tuning their working conditions such that they reach the net 
power density that maximizes the NPV. The cumulative experience in 

Fig. 16. Global LCOE from newly commissioned, utility-scale renewable power generation technologies, 2010–2020 [63]. NPV-optimal RED process LCOE range 
2017–2022 and 2030 (green filled area) and 2021 LCOE (green dashed line). Grey filled area denotes price range of fossil fuel-fired technologies. All monetary values 
are in real, 2021 euros considering inflation and applying the exchange rate for each year. PV: photovoltaic; CSP: concentrating solar power.

Table 4 
Cost estimates of RED reported in the literature and the present study. TP: Total power. PD: Power density. DR: Discount rate.

High-salinity 
solution

Low-salinity 
solution

TP 
(MW)

PD (W/ 
m2)

Capacity 
Factor

Lifetime 
[years]

IEMs Price 
(€/m2)f

DR LCOE 
(€/MWh)f

Plant IEMs

Turek (2007) [64] 0.6 M 9.6 mM NR 0.46a NR NR 10 73 ($100/m2)c NR 4956 (6790)e

Turek (2008) [65] 1.9 M 9.6 mM NR 1.04a NR NR 10 68 ($100/m2)d NR 2041 (3000)e

Post et al. (2010) [19] 0.5 M 5 mM 0.2 2a 91 % 20 7 2 
10

6 % 79 
200

Daniilidis et al. (2014) [66] 0.5 M 17 mM 200 2.2b

2.7b
84 % 25 7 4.3, 50 

4
10 
%

18, 71 
16

Weiner et al. (2015) [67] 0.6 M 17 mM NR 1.2b NR 20 NR 676 ($750/m2)c 6 % 5705 (6330)
Bevacqua et al. (2017)g

[68]
2.6 M NH4HCO3 

2.4 M NH4HCO3 

2.5 M NH4HCO3

75 mM NH4HCO3 

10 mM NH4HCO3 

40 mM NH4HCO3

0.1a 4.30 
2.39 
4.06

91 % 20 NR 50 6 % 683 
306 
436

Micari et al. (2019)g [69] 5 M 10 mM 1b 3.2 90 % 30 10 30 5 % 400
Papapetrou et al. (2019)g

[70]
3.8 M 
5 M

10 mM 
10 mM

0.1 
1

0.66b

4.67b
90 % 30 10 30 5 % 1360 

210
Giacalone et al. (2019) 
[48]

1.2 M 
5 M

17 mM 
<103 mM

2b

4b

0.01–1b

0.04–3b

1a

2a

1.5–2a

6.5a

90 % 30 10 15 
4, 15 
15 
4

5 % 500 
110, 250 
270–330 
30–50

Ranade et al. (2022) [71] 5 M 0.5 M 0.015 
0.031

1.19b

2.44b
82 % 20 10 5, 50 5 % 250, 1500 

120,750
This workh 1.67 M 20 mM 0.327 

0.013
1.8b

2.3b
90 % 30 10 10 

87.5
5 % 98 

998

a Gross power.
b Net power.
c Total investment cost.
d Including endplates and electrodes.
e Cost of electricity.
f Values between brackets in US $ converted to € with the corresponding year average exchange ratio from the International Monetary Fund.
g RED heat engine.
h Circa 2022.
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operating and developing RED technology will likely decrease its LCOE 
to the estimated 66–126 €/MWh.

4. Conclusions

RED technology has great potential in solving the water-energy 
challenge but needs to prove that it can generate electricity reliably to 
gain the trust of investors and manufacturers to unlock economies-of- 
scale cost reduction. This work applies an optimization model to 
devise techno-economic viable RED process designs that support the 
leap from lab to market. The Generalized Disjunctive Programming 
(GDP) model allowed us to define the hydraulic topology and working 
conditions of a set of RED units to maximize the net present value of the 
RED process deployed in a medium-capacity seawater reverse osmosis 
plant.

We have estimated the energy and emissions savings from the grid 
RED-based electricity may offer to desalination exploring relevant fac-
tors involved in the cost-optimal design of the RED process, providing 
valuable insights: 

(a) The growing electricity and emission allowance prices over time 
strengthen RED market readiness in niche applications such as 
desalination and wastewater treatment sectors, reaching LCOE of 
66–126 €/MWh on par or in the range of other renewable and 
conventional power technologies.

(b) A realistic near-term reduction in membrane cost (~20 €/m2) 
would make RED profitable.

(c) The NPV-optimal RED process design may reap profits in 
medium-capacity SWRO desalination plants of up to 500 m3/day.

(d) The use of low-resistance, low-cost membranes does improve the 
cost-competitiveness of the RED process; a 20 % drop in mem-
branes resistance would increase profits by 13 %.

(e) Recycling and reusing alternatives brings on RED process designs 
that attain profits, reduce grid mix emissions, and accommodate 
higher power densities and energy efficiencies. Indeed, with a 
slightly lower RED-based take of the total desalination energy 
demand (~7 % and ~8 % in the series-parallel and NPV-optimal 
layouts), the series-parallel layout is as efficient as the GDP layout 
at the expense of a significant drop in power density which bears 
large economic losses.

These assessments show that mathematical programming is an effi-
cient and systematic modeling and optimization tool to assist early-stage 
research, and to identify optimal design and operation guidelines for 
full-scale RED implementation. A natural progression of this work is to 
incorporate in decision-making uncertainty from electricity and emis-
sion allowances prices and membrane cost through stochastic optimi-
zation [72] and sustainability criteria through multi-objective 
optimization coupled with life cycle assessment principles [38].
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