
TRACK RECONSTRUCTION USING
GRAPH NEURAL NETWORKS

Trabajo de Fin de Máster

para acceder al

MÁSTER INTERUNIVERSITARIO (UC-UIMP) EN FÍSICA
DE PARTÍCULAS Y DEL COSMOS

Autor: Carlos Andres Cruz Carpio

Director: Pablo Martínez Ruiz del Árbol

Codirector: Rubén López Ruiz

Julio - 2024

ii

Abstract

After more than a decade of data-taking of the experiments at the Large Hadron Col-
lider at CERN, no evidence of New Physics has been found. A new accelerator, the
High-Luminosity Large Hadron Collider is currently under construction, increasing the
instantaneous luminosity by one order of magnitud. The new accelerator conditions gen-
erate a challenging environment for the detectors at the LHC. One of the most important
difficulties that the CMS experiment will find is the extremely large hit occupancy in the
tracker and the huge combinatorial problem associated to the track reconstruction. This
is even more difficult for displaced topologies emerging from potential new, long-lived
particles, where the traditional seeding methods cannot be used. This work explores the
use of Graph Neural Networks as an alternative procedure to identify tracks in a detec-
tor. A simple track generator has been developed together with a simplified model of the
CMS tracker, and the resulting tracks and hits are reconstructed using a dedicated GNN
algorithm trained with a number of example tracks. The performance of the algorithm is
tested to be higher than 80% even for 500 simultaneous tracks.

Key words: Track reconstruction, graph neural networks, Particle Detectors.

Resumen

Después de más de una década de toma de datos, los experimentos del Gran Colisionador
de Hadrones en el CERN, no han encontrado evidencia de Nueva Física. Un nuevo acel-
erador, el Gran Colisionador de Hadrones de Alta Luminosidad está siendo construido
actualmente, aumentando la luminosidad instantánea por un order de magnitud. Las
nuevas condiciones del acelerador generan un entorno complejo para los detectores del
LHC. Una de las dificultades más importantes que el experimento CMS va a encontrar, es
la alta ocupancia de hits en el tracker y el consecuente problema combinatorial asociado
a la reconstrucción de trazas. Esto es aún más acuciante para el caso de topologías de-
splazadas que puedan emerger de nuevas partículas con alto tiempo de vida. Este trabajo
explora el uso de Redes Neuronales de tipo Grafo como un procedimiento alternativo para
identificar las trazas del detector. Un generador de trazas sencillo junto con un modelo
simplificado del tracker the CMS ha sido desarrollado, y los hits resultantes han sido re-
construidos utilizando un algoritmo GNN entrenado con un número de trazas de ejemplo.
El desempeño del algoritmo ha resultado ser mejor que el 80% incluso para un caso con
500 trazas simultáneas.

Palabras clave: Reconstrucción de Trazas, Redes Neuronales, Grafos, Detectores de
Partículas.

iii

iv

Acknowledgements

En primer lugar debo agradecer a la Fundación Carolina, por confiar en mí y permitirme
acceder a este excelente programa. Quedo profundamente agradecido por esta oportu-
nidad.

Este trabajo no hubiera sido posible sin los directores Pablo y Rubén. Les agradezco por
la retroalimentación, los consejos y la paciencia a lo largo de estos meses de trabajo y en
los momentos mas decisivos.

Por último y no menos importante a mi familia, de sangre y por elección, quienes estu-
vieron apoyándome y evitando que desfallezca. Se que el tan ansiado reencuentro será
placentero.

v

vi

Contents

1 Introduction 1

2 Particle Tracking at the CMS detector 3
2.1 The CMS Tracker . 4

2.1.1 Pixel detector . 4
2.1.2 Strip detector . 4

2.2 Track Reconstruction . 5
2.2.1 Local reconstruction . 5
2.2.2 Kalman Filter . 5
2.2.3 Global Reconstruction . 6

3 Simulation Framework 9
3.1 Tracker Geometry Builder . 9
3.2 Track Propagation . 10

3.2.1 POCA parametrization . 12
3.3 Particle Generator . 12

4 Graph Neural Networks 17
4.1 Graph notions . 17

4.1.1 Definition . 17
4.2 Graph Neural Networks . 18

4.2.1 The Message Passing Mechanism 18
4.2.2 GNN variants . 19

4.3 PyTorch Geometric . 20
4.4 Graph generation from a collision event . 21

4.4.1 Point Generation . 21
4.4.2 Edge generation . 21
4.4.3 PyG Graph creation . 22

4.5 Model Definition . 24
4.6 Model Training . 25

4.6.1 Loss function . 25
4.6.2 Optimizer . 25
4.6.3 Training and validation sets . 26

4.7 Model Evaluation . 26
4.7.1 Post prediction filter . 26
4.7.2 Evaluation metrics . 26

vii

viii CONTENTS

5 Results 29
5.1 Results using an opening window of 20 degrees 29

5.1.1 Model training . 29
5.1.2 Accuracy studies . 30

5.2 Results obtained using an opening window of 45 degrees 32
5.2.1 Model training . 32
5.2.2 Accuracy . 33

5.3 Track accuracy comparison . 34

6 Conclusions 37

Bibliography 40

Chapter 1

Introduction

Track reconstruction is an important part of many High Energy Physics experiments. Its
goal is to identify the tracks and their parameters, position, direction and momentum,
using particle signals from the detectors. It can take several steps to achieve this goal,
and it will depend on various factors. Not only the experiment design is important, e.g.
how detectors are arranged to collect signals, but also how these signals are treated, the
algorithms implemented to select, discard, store or filter data, are also relevant to properly
reconstruct tracks.

Since each experiment is different than the others, the tracking task will be different as
well. Therefore, this work will be based solely on the Compact Muon Solenoid (CMS)
detector. The CMS [1] is a general purpose detector at the Large Hadron Collider (LHC)
[2], which has a broad physics programme from studying the Standard Model to searching
extra dimensions and particles that could make up dark matter. A description of CMS
tracker is given in Chapter 2.

The process of reconstruction in CMS is computationally challenging. Not all particles
will be detected, only the tracks of stable or sufficiently long lived charged particles, such
as electrons, protons or muons are visible in the tracking detectors. Short lived particles
are reconstructed from their decay product [3]. In addition, the tracking software must
run sufficiently fast to be used not only for offline event reconstruction (of ≈ 109 events
per year), but also for the CMS High-Level Trigger (HLT), which processes events at rates
of up to 100 kHz.

Figure 1.1 shows the transverse plane of a generic detector, with long-lived particles
(LLPs) decaying after traveling some distance from the interaction point. The inner layers,
which are part of the tracker, would detect none or a small number of hits and this could
lead to the decision to mistakenly associate to a different particle or discarding a potential
track. In general, track reconstruction algorithms are optimized to detect particles coming
from the vertex of the detector. This becomes evident taking into account that most of
the tracking algorithms start reconstructing the track from hits in the first layers of the
trackers (seeds) that may be missing for a displaced particle.

On the other hand, LLPs are an important physics case nowadays. After more than a
decade of searches at the LHC, no Physics Beyond the Standard Model (BSM) has been

1

2 CHAPTER 1. INTRODUCTION

Figure 1.1: Cross section of a detector showing particle tracks and displaced vertex [4].

found. The answer could be that BSM is realized through long-lived particles that escape
detection due to the difficulties explained above. The situation is even worse when it is
extrapolated to the next High-Luminosity Large Hadron Collider (HL-LHC) [5], where
the pattern recognition problem is even more complicated due to the large multiplicity
of tracks. The combinatorial seeding and track building algorithms are inherently serial
and scale quadratic or worse with detector occupancy. It is thus worthwhile to investigate
new solutions such as methods based on Deep Learning [6]

This work intends to explore the Graph Neural Network approach with the PyTorch Ge-
ometric library in order to reconstruct tracks using particle hits but without including a
seeding step, and therefore suitable for displaced tracks. To do this, a controlled envi-
ronment is required, that is a simulation framework where tracks can be generated with
desired parameters and detectors that can return the position of the particle.

The simulation framework is described in Chapter 3, including how it has been coded, its
output and limitations. The basis of graph neural networks and the model employed is
found in Chapter 4. And finally the results and conclusions will be presented in the last
Chapters of this work.

Chapter 2

Particle Tracking at the CMS detector

This Chapter will describe the CMS tracker: geometric layout, detector arrangement,
dimensions, etc, and the tracking process itself. The importance of this section lies on
the next step of the work, this section establishes the basis for the simulation framework
that will be presented in the next Chapter.

Roughly speaking CMS consists of four different systems. From the center of the detector,
a central tracking system (tracker), where the position of charged particles is recorded,
is located. Electrons and photons are then detected in an electromagnetic calorimeter.
Increasing in radius, a hadronic calorimeter is placed to measure the properties of hadrons,
and finally a muon system to detect and measure muons, can be found. [7]. A sketch of
these systems is shown in figure 2.1.

Figure 2.1: Slice of a cross section of CMS, showing the different systems and the particles they
could detect.

3

4 CHAPTER 2. PARTICLE TRACKING AT THE CMS DETECTOR

2.1 The CMS Tracker

The following description of the CMS tracker is based on reference [8] dated on the year
2014.

The tracker can be visualized as a series of concentric barrels. The whole cylindrical
structure has dimensions of 5.8 m in length and 2.5 m in diameter This volume is aligned
with the LHC beam line and is surrounded by a 3.8 T magnetic field From this an axis
can be set along the beam line, the Z axis, and draw an orthogonal plane, the transverse
XY plane, with the X axis pointing to the center of the LHC ring and the Y axis pointing
upwards. Thus, a three-dimensional coordinate system has been established and will be
used in the simulation process afterwards.

The tracker is divided in two sub detectors, the pixel and trip tracker, both made of
silicon. The pixel tracker comprises the first three layers up to 10.2 cm and the strip
tracker has ten layers up to 110 cm. Both sub detectors have their endcaps at each end
of the cylinder.

2.1.1 Pixel detector

This is the innermost section of the tracker, it consists of three layers with radii of 4.4, 7.3
and 10.2 cm. The pixel tracker provides three dimensional positions measurement with
high resolution. It has about 66 million pixel with each having dimensions of the order of
µm.

Because of its location it plays a major role in the reconstruction process. It takes part of
the seeding process, establishing starting parameters of possible tracks with hits of this
section, this process will be described later.

Figure 2.2 show a transverse plot of the tracker where the pixel section is clearly marked
as PIXEL.

2.1.2 Strip detector

The strip tracker is the complement of the pixel tracker. It in turn can be divided in three
parts. The tracker inner barrel (TIB), the tracker outer barrel (TOB) and the encaps.
While it does not have the same resolution of the pixel tracker it does cover a larger area.

The inner barrel covers the region between r < 55cm and |z| < 118cm and the outer
barrel covers the region r > 55cm and |z| < 118cm. The endcaps are placed at both ends
of the barrels.

In figure 2.2 the strip tracker constituents can be seen, labeled as TIB, TOB and TEC.

2.2. TRACK RECONSTRUCTION 5

Figure 2.2: Schematic view of the CMS tracker extracted from [8] dated on 2014. The pixel
tracker as well as the strip tracker can clearly noted

2.2 Track Reconstruction

2.2.1 Local reconstruction

The basic idea of the algorithms used in this step will be given, they can be skipped for
the purpose of this work. Reference [8] covers them in detail.

The main goal of this step is to estimate positions and uncertainties of hits. Only signals
that surpass a certain threshold in both the pixel or the strip tracker will be clustered
and considered hits.

To do this two algorithms are applied. The first, a fast one, compares nearby pixels,
and by studying the charge in the pixels the position of the cluster is estimated. The
second algorithm appears due to the need to maintain the performance after high level
radiation, and so the comparison is made with simulation templates, and again position
can be estimated.

2.2.2 Kalman Filter

The Kalman filter is an algorithm to make estimations of an unknown variable or variables,
based on previous observations over time and considering uncertainties or noise. It is
widely used in navigation systems and signal processing.

Part of state space models, which describe the changing state of an object in space or
time but only of interest at discrete instances, the Kalman filter can be understood as a
sequence of alternating prediction and update steps. [3].

In the application of the Kalman filter to track reconstruction, the system equation is
usually non linear, as the next chapter will show, so it will have a general form:

qk = fk|k−1(qk−1) + γk, E[γk] = gk, V ar[γk] = Qk (2.1)

Where qk is a state vector at an instance k, γk process noise, covariance matrix Qk

6 CHAPTER 2. PARTICLE TRACKING AT THE CMS DETECTOR

The idea is that given some observationsmi, an initial state q0 and a initial state covariance
matrix C0 all states can be estimated recursively by the Kalman filter. The estimated
vector is obtained by different steps. A prediction, an update and a smoothing.

• Prediction: State vector and its covariance matrix are propagated to the next in-
stance using the system equation.

• Update: Weighted mean of the predicted step and the observation mi, it has an
associated chi-square statistic χ2.

• Smoothing: Propagates the full information in the last estimate back to all previous
states.

2.2.3 Global Reconstruction

The tracking software used at CMS is known as Combinatorial Track Finder (CTF), it is
an extension of the Kalman filter, previously described. Applying multiple iterations of
the CTF sequence reconstructed tracks are obtained. The CTF process has four steps,
seed generation, track finding, track fitting and track selection. [8]

Seed generation

Charged particles follow helical paths and therefore five parameters are needed to define
a trajectory. This parameters will be given in detail in Chapter 3.

Seeds define the starting parameters. These seeds are built from three or two hits coming
out of the inner part of the tracker with the assumption the particle originated near the
interaction point.

Track finding

This process is based on the Kalman filter method. After defining seeds, track candidates
are built by adding hits from successive layers.

Similar to the Kalman filter process here four steps are performed. Navigation, where the
next layer is determined by using the parameters of the seeding stage. The second step
looks for compatible hits with no more than three standard deviations. The third step
groups hits and a χ2 test is performed to check compatibility. The final step updates the
trajectory, the original track candidates get a new compatible hit.

Track fitting

The previous stage yields a series of points and estimated track parameters. This stage
refits the track by applying a Kalman filter and a smoother. Also, chi square χ2 statistic
is applied to search for outliers.

The process proceeds iterative from the innermost point to the outermost one. To obtain
a better precision the filtering and smoothing sections use a Runge-Kutta propagator, a
numerical method to estimate values after a given time step, with great accuracy.

2.2. TRACK RECONSTRUCTION 7

Track selection

Because in a CMS event many different particles are present, the algorithm could provide
fake tracks. Thus, track selection is made by analyzing the the number of layers that
have hits, whether their fit yielded a good χ2/dof , and how compatible they are with
originating from a primary interaction vertex.

Figure 2.3 shows a scheme summarizing the described iterative process. After each suc-
cessful step the used hits are discarded and new combination are considered.

Figure 2.3: Scheme of the iterative process

8 CHAPTER 2. PARTICLE TRACKING AT THE CMS DETECTOR

Chapter 3

Simulation Framework

This work represents a proof-of-concept on the use of Graph Neural Networks for particle
reconstruction. Due to the intrinsic complexity of the CMS Tracker and its real track-
ing procedure, a simulation framework has been devised, simplifying the CMS tracker
geometry.

The framework is divided in three parts: the first is the tracker builder geometry where
concentric polygonal layers resembling the CMS tracker with the capability to “detect”
hits within them are built. The second is the particle generator, where the 4-momenta of
the particles is obtained from random distributions. And the third and final is the track
propagation, in which the trajectories of the particles are estimated.

It has been developed using python [9] and heavily relying on the numpy [10] and mat-
plotlib [11] libraries. The code is designed following a object oriented scheme, where each
part is a class object, and each class has several functions for the different required tasks.

3.1 Tracker Geometry Builder

As mentioned in Chapter 2 the tracker of CMS has a cylindrical shape consisting on
concentric layers immersed in a magnetic field. The idea is to model the layers of detectors
as concentric polygons. To do this, points over a circumference are generated. And then,
two points are taken and a line is drawn between them.

The hits are calculated by expressing each side of one layer as a plane of the form ax +
by+ cz + d = 0. With the choice of building them around the z axis it turns out that the
component c is always 0, making the equation simpler to work with. Here numpy plays
an important role, as x,y are collections of values of a given length, numpy arrays; the
calculation to find intersections is then straightforward, just plugging the equation, the
arrays and filtering which points give a null output. Afterwards, another condition must
be fulfilled in order to check that the point being tested belong to the desired portion of
the polygon and not somewhere else.

Thus, the code for this part outputs the following images:

9

10 CHAPTER 3. SIMULATION FRAMEWORK

Figure 3.1: Tracker geometry in three dimensions as well two dimensions. 10 layers of 12 sided
polygons with linearly increasing radius from 10 cm to 100 cm

3.2 Track Propagation
The equations of motion needed to model the tracks come from the relativistic Lorentz
force because only charged particles in a homogeneous magnetic field are being considered.
It is helpful to start with equation and consider a factor of proportionality that will depend
on the desired units, for example reference [3] uses k = 0.29979 GeV/cT−1m−1

dp⃗

dt
=

q

m
p⃗× B⃗, (3.1)

where p⃗ = γmv⃗ is the momentum of the particle, q is an integer relating the elementary
charge e.g. 1 for electron, -1 for muon. The solution of this differential equation is
straightforward once B⃗ = Bz and w = kqB

γm
are defined. So expanding 3.1 gives

dpx
dt

=
q

m
Bpy (3.2)

dpy
dt

= − q

m
Bpx (3.3)

dpz
dt

= 0. (3.4)

Differentiating once more with respect to time and combining the first two equations

3.2. TRACK PROPAGATION 11

results in a harmonic oscillator equation

d2px
dt2

= −w2px. (3.5)

By proposing a solution of the type p = A cos(wt + δ) two important parameters are
defined. The transverse momentum pT and the direction ϕ√

p2x + p2y = A = pT (3.6)

arctan(
py
px

) ≡ −ϕ (3.7)

So,

px = pT cos(wt− ϕ) (3.8)
py = −pT sin(wt− ϕ) (3.9)

pz = pz0. (3.10)

Regarding pz, it can be related to pT quantity introducing the pseudorapidity η:

η = − ln(tan(
θ

2
)) −→ e−η = tan(

θ

2
). (3.11)

Now, using the trigonometric relations

eη − e−η

eη + e−η
= tanh(η), (3.12)

cos2(x)− sin2(x) = cos(2x) (3.13)

and cos(θ) =
pz
p
, (3.14)

the next relation is obtained:
pz = pT sinh(η). (3.15)

So, the momentum spatial components are:

px = pT cos(wt− ϕ) (3.16)
py = −pT sin(wt− ϕ) (3.17)

pz = pT sinh(η). (3.18)

Recalling the definition of momentum p⃗ = γmv⃗ and carefully integrating once more

x(t) = x0 +
pT

γkqB
[sin(wt− ϕ) + sin(ψ0)] (3.19)

y(t) = y0 +
pT

γkqB
[cos(wt− ϕ)− cos(ψ0)] (3.20)

z(t) = z0 +
pT
γm

sinh(η)t. (3.21)

12 CHAPTER 3. SIMULATION FRAMEWORK

Given the momentum in units of GeV/c, mass in GeV/c2, B in T , positions in cm, and t
in s, the set of equations will be:

x(t) = x0 + 333.55 · pT
γqB

[sin(wt− ϕ) + sin(ϕ)] [cm] (3.22)

y(t) = y0 + 333.55 · pT
γqB

[cos(wt− ϕ)− cos(ϕ)] [cm] (3.23)

z(t) = z0 + 29.98 · pT
γm

sinh(η)t [cm]. (3.24)

3.2.1 POCA parametrization

The found set of equations give the position of a charged particle inside an homogeneous
magnetic field at a given time. However, the work it’s not quite finished. The last step is to
parametrize the track. The track are parametrized taking the Point of Closest Approach
(POCA) as a reference. The POCA is the point of the track that is closest to the center
of the detector (0, 0, 0). This condition is achieved when the position and momentum are
orthogonal in the transverse plane (XY) x⃗(tPOCA) · p⃗(tPOCA) = 0. To generate the tracks,
the starting point will be when tPOCA = 0.

The final parametrization involves six parameters including the POCA:

• dPOCA: distance in the transverse plane (XY) from the origin (0,0) to the track.

• dz: distance from the origin to the track in the z direction.

• ϕ: direction in the transverse plane at the poca point.

• pT : transverse momentum, (see equation 3.6).

• q Integer reflecting the charge of the particle, whether positive or negative will imply
clockwise or anticlockwise movement.

• η: pseudorapity (see equation 3.11).

Applying the equations and conditions yields figure 3.2.

3.3 Particle Generator
For simplicity only muons and antimuons are being considered in this work. This sets the
charge and mass to unchangeable values. -1 or 1 for muons or antimuons respectively,
and its mass of 0.106 GeV [12].

However, the remaining track parameters cannot acquire all possible values and they must
be constraint to a certain interval to be selected. To ensure a common behaviour for all
the generated particles random uniform distributions were assigned:

Parameter q pT η ϕ dPOCA dz

Interval [-1 1] (discrete choice) [25, 100] GeV [-2.4, 2.4] [0,2π] [0,0.5] cm [-0.5, 0.5] cm

Table 3.1: Track’s POCA parameters random uniform intervals

3.3. PARTICLE GENERATOR 13

Figure 3.2: Example of parametrized track. The helix behaviour can be appreciated, as well as
the POCA point. Whether using equation 3.22 as it is or with the POCA parameters returns
the same curve

With this choice of values 3D momentum vector can be calculated with equations 3.16
and the particle’s energy

E =
√
p2 +m2 =

√
p2T + p2z +m2. (3.25)

Finally, the γ factor:

γ =
E

m
. (3.26)

This way all the listed parameters as well as the remaining kinematic parameters are
settled. In other words, tracks can be generated for muons or antimuons with specific
values.

The final result of the simulation framework will be points of muon or antimuon tracks
that belong to the intersection of the particles tracks and a series of polygonal layer, which
resembles the CMS tracker. These tracks can be visually appreciated in Figures 3.3, 3.4
and 3.5.

14 CHAPTER 3. SIMULATION FRAMEWORK

Figure 3.3: 30 tracks generated randomly with the stabilised constraints. A 3D view as well as
all the 2D associated planes are appreciated

Figure 3.4: 100 tracks generated randomly with the stabilised constraints. A 3D view as well as
all the 2D associated planes are appreciated

3.3. PARTICLE GENERATOR 15

Figure 3.5: 500 tracks generated randomly with the stabilised constraints. A 3D view as well as
all the 2D associated planes are appreciated

16 CHAPTER 3. SIMULATION FRAMEWORK

Chapter 4

Graph Neural Networks

This chapter describes the basic ideas required to understand graphs and graph neural
networks (GNNs), then a short introduction to the library used to perform the analysis
and finally the details of the model employed in this work.

4.1 Graph notions

4.1.1 Definition

A graph can be understood as an ordered pair of finite sets (V,E) where pairwise relations
are modeled. V represents the set of vertices or nodes, and E the set of edges, meaning
the relation or link there could be between nodes [13]. A graph is said to be weighted if
the edges map to a set of real values [14].Figure 4.1 shows a simple representation of a
weighted graphs indicating nodes and edges.

Figure 4.1: A simple weighted graph with 6 nodes and 5 edges.

The number of vertices in a graph defines its order |G|. This order is the same as the
cardinality of the vertex set |V |. The number of edges in a graph is its size m, denoted
as the cardinality of the edge set |E|. A graph with n vertices may also be referred to as
an n-graph, denoted Gn [13].

17

18 CHAPTER 4. GRAPH NEURAL NETWORKS

A subgraph of a graph G = V, E is a graph H = W, F such that W is a subset of the
vertices V W ⊂ V and F is a subset of the edges E, F ⊂ E.

Usually, the edges of a graph have no direction, they are called undirected, meaning that
none of the nodes is considered the source or the end (xy = yx). However, on the other
hand there are directed graphs. Where the last equality does not hold, and the origin and
the end of the connection has to be specified. This way xy will be a source vertex x and
an end vertex y. An edge yx that joins y to x is called the inverse edge of xy.[13]

4.2 Graph Neural Networks
Deep learning is used to understand or “learn” complicated concepts, patterns; starting
from simple ones in a multi layer manner. The most popular examples of such structure
are artificial neural networks (ANN) [15].

Deep neural networks (DNN) are successful because they can take advantage of the data
statistical properties of the input datasets. These networks can be applied to a large
variety of different data formats. For example, when the input is a collection of images,
the concept of convolution is used. Convolutions are geometrical filters that combine
the information of a set of adjacent pixels in the image. Two effects come by using
convolutions: one is to allow to extract shared local features, greatly reducing the number
of parameters compared to other generic architectures; the other, it imposes initial insight
about the data.

It can be said that geometric deep learning is an attempt to generalize deep neural models
to structures like for instance graphs or manifolds instead of images. Thus, a graph neural
network (GNN) is a deep learning model that will learn about a graph, rather than an
image or speech. If a convolutional layer is present it will then be a convolutional graph
neural network (GCN).

In particular, a GNN can learn and predict tasks associated with operations in a graph.
For example, it can classify nodes or edges; predict the presence of edges between nodes; or
even extract features of the whole graph [6]. This results very interesting in many problems
of real life. Track reconstruction is one of these problems, since tracks can be visualized as
connected points in a particular pattern. A graph model that takes as input a collection
of hits, considered as nodes, and predicts which ones are connected to make a track can
be an alternative method to the track reconstruction process. Interestingly enough, this
process would not use any seeding procedure and would be therefore particularly suitable
to reconstruct tracks not emerging from the center of the detector.

4.2.1 The Message Passing Mechanism

Conventional ANN are based on neurons or nodes, organized in layers with a given di-
rection. The input information is provided to the neurons in the first layer. Each of the
neurons multiplies the input by a given weight and adds up the total. A non-linear func-
tion such a sigmoid, RELU, tanh, etc is then applied on the previous quantity resulting in
the neuron outcome, which is propagated to the next layer. The neurons in the last layer
produce the output of the ANN. In the training process, input examples are provided, and

4.2. GRAPH NEURAL NETWORKS 19

the output is contrasted with the ground truth, through a Loss function that measures
their compatibility. This function is minimized with respect to the weights of the neurons
by estimating the Loss function gradient through the back-propagation algorithm.

The message passing mechanism refers to the aggregation of information from a node’s
neighborhood [16]. In a GNN the input is a graph with a set of features associated to
either nodes, edges or both and with a given connectivity that the GNN must not alter.
Nonetheless, what the network can modify is the output features, called embeddings. The
aggregation, i.e. the gathering of information, can be done by means of sums, mean or
max calculation, so that the message summarizes the neighborhood details. The term
node’s neighborhood refers to all the connections a node has. Therefore, even if the edge
and edge attributes are not explicitly mentioned, they are present.

For example, [17] uses the following equation to explain the message passing of node
features:

x
(k)
i = γk(x

k−1
i ,

⊗
ϕk(xk−1

i , xk−1
j , eji)) (4.1)

Where, xk−1
i denotes node features of node-i, in layer k − 1, eji denote optional features

from node j to i. And
⊗

is a differentiable invariant function such as sum, mean or max,
γ and ϕ are differentiable functions as MLP (Multi Layer Perceptrons).

4.2.2 GNN variants

Two different types of GNN’s will be shortly described.

Graph Convolutional Networks

Graph Convolutional Networks (GCNs) perform in a similar way to convolutional neural
networks CNN, in that learning about features is achieved by analyzing neighborhoods
of nodes, by multiplication of the inputs with weights or filters. They are one of the
basic variants and are applied to solve many problems as classification or forecasting for
example.

A GCN will work following this order. First, each node is associated to a feature vector.
Then, convolution is applied, information of a node’s neighborhood is extracted, this can
be done with weighted sum of feature vectors. Next is the weighted aggregation, the
extracted information is scaled and accumulated. Then, these aggregated features go
through an activation function, like ReLu, this process lets the GNN adapt to the desired
task, before the output is transformed according to the desired task many layers can be
stacked where the output of one layer is the input for the next.

Z = σ(A′ F W + b) (4.2)

This equation represent the output of a layer Z, dependence of the non linear activa-
tion function σ applied to the normalized adjacency matrix A’, node features F and the
weighted matrix W and a bias vector b.

20 CHAPTER 4. GRAPH NEURAL NETWORKS

Graph Attention Networks

Graph Attention Network (GAT/GAN) are variations of GCN that incorporates the called
"attention mechanism". It allows nodes to focus on characteristics of its neighbors without
much computational expense and assign different weights.

A GAT will work in this order. First the nodes are analyzed, associating them with a
feature vector. Here the attention mechanism is introduced, where each node is allowed
to focus on different neighborhoods when extracting information and assign different co-
efficients to neighbor nodes. Next is the weighted aggregation for all neighboring nodes.
Then, is often used multiple attention heads to compute attentions core and accumulate
aggregation. Similar to GCN , many layers can be stacked and the final output will
depend on the desired task.

hl+1
i = σ(

∑
jϵN

1

Ci,j

W lhlj) (4.3)

in this case the output hi of a particular node is the result of a non linear activation
function σ applied on the sum one hop neighbor of the weight matrix W, the normalized
vector C and the previous node h.

To summarize, graph neural networks are an extension of deep learning models but applied
on different complex structures. In order to build a GNN special caution must be taken,
first a task must be selected, then data must be processed to fit a specific graph structure
and type, its nodes and edge must be clearly specified as well as their features. In this
way a class of GNN can be selected and an architecture built.

4.3 PyTorch Geometric

PyTorch Geometric is a library built upon PyTorch to easily write and train Graph Neural
Networks (GNN) for a wide range of applications related to structured data [17]. Its use
for this work is justified not only because it has a connection to python, the language
chosen to develop the simulation, but also because it is one of the most popular libraries
to develop GNN-based applications.

PyTorch Geometric consists of various methods for deep learning on graphs and other
irregular structures. This category of Machine Learning is usually known as geometric
deep learning and it is supported by a variety of papers. PyTorch contains a large number
of libraries covering several functionalities: easy to use mini batch loaders for operating on
many small and single giant graphs, multi GPU support, torch compile support, DataPipe
support, a large number of common benchmark datasets and helpful transforms, both for
learning on arbitrary graphs as well as on 3D meshes or point clouds [17].

A single graph in PyG is described by an instance of a Data object, which could have the
following attributes:

• Data.x. It is the node feature matrix, containing the list of features for every node
of the graph. Its dimension is the number of nodes times the number of features.

4.4. GRAPH GENERATION FROM A COLLISION EVENT 21

• Data.edge_index. It is the graph connectivity in COO format: it represents all the
edges by the source and end nodes. Its dimension is therefore 2 times the number
of edges.

• Data.edge_attr. It is the edge feature matrix, it contains the list of features for
every edge of the graph. Its dimension is the number of edges times the number of
features.

• Data.y. It is a matrix that contains the ground truth associated to the nodes. Its
dimension is 1 times the number of nodes.

This work will address the task of predicting proper links between nodes. The mandatory
attributes of the graph object will then be, the x matrix of node features, the edge index
to denote connections within the graph and the edge features matrix, where it has been
relabeled as edge_label and only one feature is being considered, which assigns a value
to each edge of the graph.

4.4 Graph generation from a collision event

Once the details of the library used have been described, a full description of the procedure
to generate graphs is provided. This includes the simulation of the tracks and the graph
generation.

4.4.1 Point Generation

Following the description of the simulation framework in chapter 3, the point generation
consists in the simulation of a collision event composed by a number N of tracks that
are detected by a tracker made of plane detectors. The set of the intersections of the
tracks and the detectors is the set of the nodes. They have have several attributes, such
as the position (x,y,z) and the track parameters, and three labels: the track label, to refer
to which track the point belongs; the layer label, to refer in which layer was the point
detected; and finally, the node label, a unique identification for each point, starting from
0. This information is stored in a .csv file with an structure as the one shown in figure 4.2.

Figure 4.2: Structure of a csv file containing the generated points and their attributes.

4.4.2 Edge generation

In this step the connections between the nodes (points) are generated. Though every
node in a graph can be connected to the other ones; in this case, certain conditions must
be met in order to establish a link between two nodes.

22 CHAPTER 4. GRAPH NEURAL NETWORKS

First of all, the points in the same layer are by definition not connected. Indeed, only
edges between nodes in consecutive layers are considered. This choice is justified by the
fact that high-momentum particles in the detector will always have an in-out direction.
From a technical point of view, this is achieved by grouping the points table using the
layer label.

A second restriction is applied in the generation of the edges due to the track topology.
Indeed, high momentum tracks do not bend very large angles. To illustrate this effect, it
is possible to think that for a track pointing towards the upper part of the detector, it
does not make sense to consider points in the lower part of the detector.

Then, a space region is extended to constraint even further the edge connection. This can
be divided in two ways. Extending an angle for a given point with reference to the origin
and looking if other points lay inside this new region, so this way impossible connections
are excluded, as shown in figure 4.3. And lastly, after the second layer the progressing z
path must be coherent, no jumps from negative z to positive z are allowed and vice versa.

As for the connection attribute value only two values are assigned as a “weight” label.
“1” if they correspond to a known track, checking if they share the same track label.
Otherwise “0” is applied to denote possible connections.

Figure 4.3: Example of how points are joined, red lines mean simulated tracks, black lines are
possible connections

4.4.3 PyG Graph creation

The chosen object type is Hetero Data, which is a data object describing a heterogeneous
graph, holding multiple node and/or edge types in disjoint storage objects. In the follow-
ing lines, the key elements of the code are provided just to show the notation and power
of the PyTorch Geometric framework.

4.4. GRAPH GENERATION FROM A COLLISION EVENT 23

Graph object creation

The first step in order to convert the list of nodes and edges into a PyTorch Graph consists
in the creation of an empty object of the class HeteroData:

data=HeteroData ()

Node addition

Two types of nodes will be added to the heterogeneous graph: source and target. It should
be noted that, there is no physical difference among them, but it will be useful to take
advantage of the graph type. This can be easily expressed in the framework as:

data[‘source’].node_id = torch.tensor(node_s, dtype=torch.long)

data[‘target’].node_id = torch.tensor(node_t, dtype=torch.long)

where node_s and node_t are just vectors containing the the unique node label of each
point. They are the same, just assigned to a different node type.

Then node attributes are added. For the final graph, only the point positions are con-
sidered. Though track attributes can also be added in this part, it was decided no to,
because in a real scenario the only available information for points will be their position.

data[‘source’].x = Tensor(dataframe[[‘x’,‘y’,‘z’]])

data[‘target’].x = Tensor(dataframe[[‘x’,‘y’,‘z’]])

Edges addition

Edges are added establishing a relation between the two types of nodes and a name for
this relation, in this case ‘weight’. These edges come from the file described in the edge
generation section:

edge_index=torch.tensor([df_edge[‘source’] ,df_edge[‘target’]], dtype=torch.long)

Then, the weight attribute is also added:

data[‘source’,‘weight’,‘target’].edge_label= weight_values

Direction

Once the edges have been defined in one direction, the connections are reversed, to add
also the reciprocal connection in the HeteroGraph. PyG takes care of this operation by
applying the corresponding transformation.

data = T.ToUndirected()(data)

Validation

Finally, PyG has a function to validate the graph object, checking the coherence of con-
nections and tensor dimensions. If the edge index does not contain different nodes than
the ones added, if the attributes correspond to the nodes length.

24 CHAPTER 4. GRAPH NEURAL NETWORKS

data.validate (raise_on_error = True)

Figure 4.4: Output of running the object construction code, validation is correct and nodes and
their connections are shown

4.5 Model Definition
So far the type of graph to be used and the task is defined. With those considerations in
mind the GNN model architecture can be established. To recall, the objects in question
are heterogeneous undirected graphs, with node and edge features; and the task is to
make edge predictions.

The designed network is a Graph Convolutional Network (GCN). This architecture com-
prises of two primary sections: an encoder and a decoder. The encoder leverages convolu-
tional layers of the SAGE (Sample and AggregatE) type to capture and encode the graph’s
structural and feature information. The decoder, on the other hand, uses a predictor to
perform the desired task.

The encoder is crucial for effectively capturing the complex interconnections within the
graph. Using SAGE convolutional layers[18], the encoder iteratively samples and aggre-
gates information from neighboring nodes. This approach allows the network to learn
robust representations of each node by considering both its features and the features of
its neighbors. The SAGE method is particularly advantageous as it improves scalability
and can handle graphs with varying neighborhood sizes, making it suitable for large and
heterogeneous graphs. Two layers of convolutions are present with the first being followed
by a non lineal activation function ReLu.

In the decoder section, the encoded embeddings are used to make predictions about the
presence or absence of edges between nodes. This is achieved through linear transfor-
mations resembling a Multi-Layer Perceptron (MLP) predictor [19]. This way an easy
implementation and computational efficiency is assured. The output will return a score
of the edge attribute for two nodes between the two values used to build the graphs, 0
and 1.

4.6. MODEL TRAINING 25

It is thought that combining the strengths of SAGE convolutional layers for encoding
and the linear transformation for decoding, this GCN network is well-suited for the link
prediction task, and in turn it can reconstruct tracks without going through the whole
process described previously in chapter 2. Figure 4.5 shows the PyG output after defining
the model. Again, the encoder consists of convolutional layers and the decoder of two
linear transformations that will return the task specific output.

Figure 4.5: Output of the code defining the model’s architecture. The encoder and decoder can
be noted, just like the convolutional SAGE layers

4.6 Model Training

After generating the data and adapting it for the case study purpose, and having defined
the architecture for a graph convolutional network (GCN), the next stage is to train
the model. But before doing so, several parameters must be fixed. These include, the
optimizer, the learning rate and the number of epochs the model will be trained. Also,
the sets for training and validation have to be defined. Here hyperparameter tuning must
be performed. That is trying different configurations of the learning rate, epochs, etc.,
with the goal to ensure a proper learning process and avoid overfitting or underfitting.

4.6.1 Loss function

The loss functions are a way to measure the performance of the GCN as it learns through
iterations. There are many option to choose from the torch library.

The loss functions used in this work is the MSE loss. It creates a criterion that measures
the Mean Squared Error between each element in the input and target. [20]

4.6.2 Optimizer

Similar to the loss function there are many options for the optimizer, Adam, Stochastic
Gradient Descent or its variants are available to use. In this work, the used optimizer is
Adam with a learning rate of 0.005.

26 CHAPTER 4. GRAPH NEURAL NETWORKS

4.6.3 Training and validation sets

Contrary to what is common to perform in model training, the training and validation
sets are not split from one data graph. Instead, a whole graph of 1000 tracks is used to
train the model and others with a reduced number of tracks than the training graph are
used for validation.

4.7 Model Evaluation

4.7.1 Post prediction filter

The defined GNN has the task to predict weighted connections between nodes. After
training the model it will return a predicted edge with a value as attribute. Nonetheless,
this value is not quite the same as the one from input, the values 1 or 0 defined in the
graph building section, but in turn it returns a value in the continuous interval [0,1].
And also, there is the possibility that a node has many edges, so a selection is needed so
the track can be built. Therefore, to properly test the model with generated graphs as
explained before, a post training process must be implemented.

For the multiple connection case each node is analyzed. If it has multiple connections the
one with the highest prediction value is selected. However, as the graph is undirected and
heterogeneous, two searches are performed one looking from the “source” type node and
the other the other way around, looking from the “target” type node. And after each pass
the non selected edges are discarded.

To address the self imposed classification problem a threshold is set. This way it reduces
to a simple comparison of the predicted value with the threshold value and if it is greater
then change the prediction to 1 or if it is less change the prediction to 0. So the usual graph
structure feature is recovered and comparison can be made. The value of the threshold is
a matter of tuning until proper behavior is observed.

4.7.2 Evaluation metrics

Now that that the output data has been adapted to correctly make comparison the next
task is to evaluate its performance against not known graphs for the model. The model will
receive as an input a graph, that is an HeteroData object with two types of nodes, ‘source’
and ‘target’, with each node type having their spatial positions (x,y,z) as attributes. And
it will predict edges between nodes with a certain value from 0 to 1, this has been called
the weight of the connection.

The accuracy is the quantity used to evaluate the model performance. Though, it could
be as simple as comparing the predicted edges with the corresponding ground truth, this
strategy is poor since this kind of graph is very unbalanced. This means that there is
a larger amount of edges not connecting points than connecting points. For this reason,
two accuracies are studied in parallel, the accuracy to predict active and negative links.
The definition is the following:

4.7. MODEL EVALUATION 27

Total Accuracy =
Correct Edge Predictions

Total Edges

Connected Accuracy =
Correct Connected Prediction

Connected Edges

Disconnected Accuracy =
Correct Disconnected Prediction

Disconnected Edges

Equation 4.4 expresses the idea behind accuracy. A number of selected events are counted
and then divided by the total giving the proportion regarding the entire data.

Even if the edge counting is more interesting from the point of view of the network
evaluation, from a physical point of view, it is more interesting to define an accuracy
associated to the tracks. To to this, tracks from the testing graph are compared to the
predicted tracks by counting the correct edge predictions and dividing by the sum of
correct predictions, missing predictions and incorrect predictions. Equation 4.4 describes
this track accuracy.

Track Accuracy =
Good Edge

Good Edge + Fake Edge + Missing Edge
(4.4)

These metrics will be used in the results chapter in order to describe the performance of
the graph model.

28 CHAPTER 4. GRAPH NEURAL NETWORKS

Chapter 5

Results

This chapter describes the results obtained by applying the GNN described before. Two
different cases have been considered: results with an opening window (see previous section)
of 20 degrees, and results with an opening window of 45 degrees. The use of a narrow
opening window is justified by the fact that high momentum tracks are almost straight
and they do not bend significantly in the tracker volume. For this reason, the baseline
result is the one obtained with an opening window of 20 degrees. On the other hand,
it was interesting how much degradation was observed in the results when opening the
window, increasing the complexity of the problem, due to the higher number of edges
involved in the graphs.

In both cases, a total of 9 graphs have been produced with a different number of tracks: 10,
20, 30, 50, 100, 200, 300, 500 and 1000. The higher track multiplicity case (1000 tracks)
has been used as the training sample, and the others have been utilized to benchmark the
performance of the method.

5.1 Results using an opening window of 20 degrees

5.1.1 Model training

As mentioned before, the training has been performed using the graph with 1000 tracks.
The learning rate has been fixed to 0.005. Variations of this hyper-parameter were done
although no large improvements were observed. The model was trained for a total of 3000
epochs. The total running time was of the order of 10 minutes running on a conventional
laptop.

Figure 5.1 shows the evolution of the loss curve for the model along the 3000 training
epochs. Both the train and validation curves are displayed. In this case the validation
curve is based on a graph with 100 tracks. The two curves rapidly diminish the value of
the loss function, although this happens much faster for the training sample than for the
validation. The curves exhibit curious, quasi-periodic fluctuations, whose origin has not
been completely understood.

29

30 CHAPTER 5. RESULTS

Figure 5.1: Evolution of the loss function (square root of MSE) for the training dataset (graph
of 1000 tracks) and the validation dataset (graph of 100 tracks), and an opening angle of 20
degrees.

5.1.2 Accuracy studies

Table 5.1 shows the accuracy obtained for the different size graphs and a training based
on the 1000 tracks graph and an opening angle of 20 degrees. The results show the overall
accuracy, the connected accuracy, the disconnected accuracy and the track accuracy as
stated in chapter 4.

N° Tracks 10 20 30 50 100 200 300 500
Overall Accuracy 0.90 0.98 0.92 0.94 0.93 0.94 0.94 0.95

Connected Accuracy 0.90 0.98 0.92 0.94 0.91 0.90 0.85 0.81
Disconnected Accuracy 1.0 1.0 0.91 0.96 0.97 0.98 0.98 0.98

Track Accuracy 0.90 1.0 0.93 0.96 0.96 0.96 0.86 0.80

Table 5.1: Overall, connected, disconnected and track accuracies are shown compared to the
number of tracks.

5.1. RESULTS USING AN OPENING WINDOW OF 20 DEGREES 31

Results of the table 5.1 are visually represented in figure 5.2. As the number of tracks
increases the connected accuracy starts to decrease. However, all accuracies are over the
0.8 mark, meaning that at least 80% of the time the model will make a correct prediction
for graph with a reduced number of tracks compared to the graph training set, 1000 in this
case. It has to be noted that for the smallest sets there is a fluctuation, the reason behind
this might be that as it contains a small number of tracks, each individual connections
exerts a disproportional large influence on the accuracies measures.

Figure 5.2: Plot of the overall, connected and disconnected accuracies shown in table 5.1

Nevertheless, it is best if the results other than the selected metrics are displayed in a
plot. This way not only the accuracy values will be confirmed but also the tracks would
be noted, which are the subject of study of the work. Figure 5.3 show the two end stages
for a 100 and 500 tracks graph, up and down respectively. The input stage, just a cloud of
points before turning into a graph and the output stage, after passing through the GNN
model and post processing it, building tracks.

Figure 5.3 is remarkable. Following the post prediction filter process practically all tracks
look properly connected. Though, there is at least one notable missing link in those figures
it has to be remembered that their that their respective accuracies are over 0.9 and 0.8.
It also has to be noted that although as the number of tracks increases the image looks
blurred, no strange patterns are distinguishable.

32 CHAPTER 5. RESULTS

Figure 5.3: Left: cloud of hits for a case with 100 tracks (top) and 500 tracks (bottom). Right:
Track reconstruction provided by the GNN for the two cases on the left.

5.2 Results obtained using an opening window of 45
degrees

5.2.1 Model training

The training conditions in this case are the same as for the 45 degrees case. Figure 5.4
shows the loss curve for the model along the 3000 training epochs. Both the train and
validation curves are displayed.

A quick comparison between this curve and the previous case, indicates that the training
is not as effective for the wide opening window. Indeed, there is a large bias between the
validation and the training loss. This may indicate that a longer training, or a graph with
more than 1000 tracks, could be needed in order to achieve better results.

Also, the observed difference between training and validation loss, which is large and

5.2. RESULTS OBTAINED USING AN OPENING WINDOW OF 45 DEGREES 33

Figure 5.4: Evolution of the loss function (square root of MSE) for the training dataset (graph
of 1000 tracks) and the validation dataset (graph of 100 tracks), and an opening angle of 45
degrees.

maintained for over 2000 epochs, leads to the possibility that we may have overfitting. One
possible explanation is that the model is learning too well the training graph structure,
therefore not being able to discern track characteristics. This would also explain why the
validation curve does not decrease.

5.2.2 Accuracy

Table 5.2 show the results of testing the model, trained with a graph made of 1000 tracks
and an opening angle of 45 degrees. The results show the overall accuracy, the connected
accuracy, the disconnected accuracy and the track accuracy as stated in Chapter 4

N° Tracks 10 20 30 50 100 200 300 500
Overall 0.49 0.67 0.75 0.77 0.80 0.89 0.90 0.93

Connected 0.48 0.56 0.61 0.55 0.50 0.57 0.50 0.41
Disconnected 1.0 1.0 0.99 0.97 0.98 0.98 0.98 0.98

Track Accuracy 0.50 0.60 0.63 0.58 0.48 0.50 0.43 0.24

Table 5.2: Overall, connected, disconnected and track accuracies are shown compared to the
number of tracks.

Results of table 5.2 are visually displayed in Figure 5.5. Even though the disconnected
accuracy gets closer to the maximum value of 1; the connected accuracy, the interest
of this work, barely surpasses the 0.5 mark. This biased behavior may indicate that by
broadening the angle window the model is learning more about the structure of the non
connected edges than the connected. And it is reasonable, because by using a wider angle
window the number of non connected edges is larger than the connected ones. This size
discrepancy can account for the increase of the total accuracy but the almost constant
connected and non connected accuracies. Thus, resulting that the model trained with an

34 CHAPTER 5. RESULTS

Figure 5.5: Overall, connected, disconnected and track accuracies are shown compared to the
number of tracks

unbalanced set, and it is able to make high accurate predictions of only one of the edge
types in study.

5.3 Track accuracy comparison
Finally, both angle windows are compared in terms of track accuracy. Figure 5.6 shows
the track accuracies of tables 5.1 and 5.2 as a function of the number of tracks in the
graph. That is, how well the model behaves in terms of recognizing the original tracks by
changing the opening window to build the graph.

The figure clearly indicates that results are very good for the 20 degrees opening window,
and certainly better than for the 45 degrees case. For both cases, the efficiency degrades
with the number of tracks, which is expected, but it degrades quicker for the 45 degrees
case. This plot, together with the loss evolution, are most likely indicating that more
tracks are needed for training in the case of 45 degrees. It should be stressed in any case,
that an angle of 20 degrees is considered realistic for high momentum tracks and therefore
results are encouraging.

5.3. TRACK ACCURACY COMPARISON 35

Figure 5.6: Track accuracy comparison between the two opening angle choices with reference to
the number of tracks a graph contains.

36 CHAPTER 5. RESULTS

Chapter 6

Conclusions

A model based on a Graph Neural Network has been implemented in order to identify
tracks in a simplified tracker. The architecture of this model was explained in detail in
chapter 4, although it can be summarized as model that returns edge predictions based
on graphs that contain two types of nodes, with each having the spatial position of hits
as arguments.

The performance of the model has been studied under several conditions: the opening
window angle and the number of tracks to be reconstructed.

Concerning the opening window, two angles were studied, 20 and 45 degrees. The study
clearly shows that a smaller opening window yields better results. The results for the 20
degree window show not only convergent loss curves but also high accuracies, even for
the 500 tracks scenario (> 80%), compared to the 45 degree window case. It has to be
mentioned as well that the loss curves for the 20 degree window 5.1 exhibit oscillatory
fluctuations. Whether this comes from noise in the training data or an inappropriate
learning rate was not determined.

The fact that a GNN model can reconstruct tracks so successfully without the need
of the iterative process of the Kalman filter shows there are alternative ways for track
reconstruction that need to be studied. Also, because this process does not require seeding,
could be a promising way to study displaced vertex coming from particles that do not
decay near the interaction point.

The approach taken in this work relies on simplicity and a controlled test environment.
Further work could consider adding energy loss and interactions in the track propagation
section, different shapes or number of layer for the barrel detectors employer and different
choices for track parameters pT , η, etc. Also, it would be interesting to study the case of
increasing track number, larger than the 1000 tracks used.

37

38 CHAPTER 6. CONCLUSIONS

Bibliography

1CERN, Cms, Accessed on june, 2024.
2CERN, The large hadron collider, Accessed on june, 2024.
3R. Frühwirth and A. Strandlie, Pattern recognition, tracking and vertex reconstruction
in particle detectors (2021).

4D. Curtin and R. Sundrum, “Hidden worlds of fundamental particles”, Physics Today
70, 46–52 (2017).

5CERN, High-luminosity lhc, Accessed on june, 2024.
6S. Farrell, P. Calafiura, M. Mudigonda, Prabhat, D. Anderson, J.-R. Vlimant, S. Zheng,
J. Bendavid, M. Spiropulu, G. Cerati, L. Gray, J. Kowalkowski, P. Spentzouris, and A.
Tsaris, Novel deep learning methods for track reconstruction, 2018.

7CERN, Cms detector design, Accessed on june, 2024.
8T. C. Collaboration, “Description and performance of track and primary-vertex recon-
struction with the cms tracker”, Journal of Instrumentation 9, P10009 (2014).

9G. Van Rossum and F. L. Drake, Python 3 reference manual (CreateSpace, ScottsVal-
ley,CA, 2009).

10C. R. Harris, K. J. Millman, S. J. van der Walt, R. Gommers, P. Virtanen, D. Courna-
peau, E. Wieser, J. Taylor, S. Berg, N. J. Smith, R. Kern, M. Picus, S. Hoyer, M. H.
van Kerkwijk, M. Brett, A. Haldane, J. F. del Río, M. Wiebe, P. Peterson, P. Gérard-
Marchant, K. Sheppard, T. Reddy, W. Weckesser, H. Abbasi, C. Gohlke, and T. E.
Oliphant, “Array programming with NumPy”, Nature 585, 357–362 (2020).

11J. D. Hunter, “Matplotlib: a 2d graphics environment”, Computing in Science & Engi-
neering 9, 90–95 (2007).

12P. D. G. Live, µ, Accessed on june, 2024.
13S. Georgousis, M. P. Kenning, and X. Xie, “Graph deep learning: state of the art and

challenges”, IEEE Access 9, 22106–22140 (2021).
14M. Fey and J. E. Lenssen, Fast graph representation learning with pytorch geometric,

2019.
15M. M. Bronstein, J. Bruna, Y. LeCun, A. Szlam, and P. Vandergheynst, “Geometric

deep learning: going beyond euclidean data”, IEEE Signal Processing Magazine 34, 18–
42 (2017).

16B. Khemani, S. Patil, K. Kotecha, and S. Tanwar, “A review of graph neural networks:
concepts, architectures, techniques, challenges, datasets, applications, and future direc-
tions”, Journal of Big Data 11, 10.1186/s40537-023-00876-4 (2024).

17P. Team, Pyg documentation, Accessed on june, 2024.
18W. L. Hamilton, R. Ying, and J. Leskovec, Inductive representation learning on large

graphs, 2018.

39

https://doi.org/10.1063/pt.3.3594
https://doi.org/10.1063/pt.3.3594
https://doi.org/10.1088/1748-0221/9/10/P10009
https://doi.org/10.1038/s41586-020-2649-2
https://doi.org/10.1109/MCSE.2007.55
https://doi.org/10.1109/MCSE.2007.55
https://doi.org/10.1109/ACCESS.2021.3055280
https://doi.org/10.1109/msp.2017.2693418
https://doi.org/10.1109/msp.2017.2693418
https://doi.org/10.1186/s40537-023-00876-4
https://doi.org/10.1186/s40537-023-00876-4

40 BIBLIOGRAPHY

19S. Sheikh, Link prediction in gnns made easy- deep graph library (dgl), Accessed on july,
2024.

20L. Foundation, Pytorch documentation, Accessed on july, 2024.

	Introduction
	Particle Tracking at the CMS detector
	The CMS Tracker
	Pixel detector
	Strip detector

	Track Reconstruction
	Local reconstruction
	Kalman Filter
	Global Reconstruction

	Simulation Framework
	Tracker Geometry Builder
	Track Propagation
	POCA parametrization

	Particle Generator

	Graph Neural Networks
	Graph notions
	Definition

	Graph Neural Networks
	The Message Passing Mechanism
	GNN variants

	PyTorch Geometric
	Graph generation from a collision event
	Point Generation
	Edge generation
	PyG Graph creation

	Model Definition
	Model Training
	Loss function
	Optimizer
	Training and validation sets

	Model Evaluation
	Post prediction filter
	Evaluation metrics

	Results
	Results using an opening window of 20 degrees
	Model training
	Accuracy studies

	Results obtained using an opening window of 45 degrees
	Model training
	Accuracy

	Track accuracy comparison

	Conclusions
	Bibliography

