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Abstract

This Master’s Thesis presents a pioneering approach in the field by utilizing a unique,

predictor-rich database to advance our understanding of ischaemic disease. Despite the

database’s limited size, it offers a wealth of predictors, including underexplored socio-

health descriptors. More precisely, the study analyzes data from approximately 2400

patients at the Hospital Universitario Marqués de Valdecilla’s Cardiology Unit from June

2016 to March 2020. The data includes a broad spectrum of variables, from medical

history and treatments to social factors and lifestyle behaviors, often overlooked in similar

studies.

The research focuses on predicting three critical determinants of a patient’s clinical

condition: cardiovascular death, heart attack, and hemorrhage. We employ Bayesian

Networks, supplemented with random forest algorithms, to enhance model robustness

and interpretability. These results are further expanded with additional classification

algorithms that provide further support to the validity of the network models built.

The primary goal is to assess the influence of various factors on patients’ cardiovascular

health, leading to improved risk understanding and the development of more personalized

interventions. Although some of the target variables attain low predictive accuracy, our

results have been generally positive and promising, indicating the potential of our ap-

proach in improving the understanding of cardiovascular health risks and developing more

personalized interventions.

Keywords: Ischemic heart disease, Bayesian Networks, Machine Learning, Random

Forests, Healthcare, Cardiovascular Disease Prediction
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Resumen

Esta tesis de máster presenta un enfoque pionero en el campo de la investigación de la

cardiopat́ıa isquémica al utilizar una base de datos única y rica en predictores para avanzar

en nuestra comprensión de la enfermedad isquémica. A pesar del tamaño limitado de la

base de datos, ofrece una gran cantidad de predictores, incluidos descriptores sociosani-

tarios poco explorados. En concreto, el estudio analiza datos de aproximadamente 2400

pacientes de la Unidad de Cardioloǵıa del Hospital Universitario Marqués de Valdecilla

desde junio de 2016 hasta marzo de 2020. Los datos incluyen un amplio espectro de vari-

ables, desde la historia cĺınica y los tratamientos hasta factores sociales y comportamientos

de estilo de vida, a menudo pasados por alto en estudios similares.

La investigación se centra en la predicción de tres determinantes cŕıticos del estado

cĺınico de un paciente: muerte cardiovascular, infarto de miocardio y hemorragia. Em-

pleamos redes bayesianas, complementadas con bosques aleatorios (random forests), para

mejorar la robustez y la interpretabilidad del modelo. Estos resultados se ampĺıan con

algoritmos de clasificación adicionales que respaldan aún más la validez de los modelos de

red construidos.

El objetivo principal es evaluar la influencia de diversos factores en la salud cardio-

vascular de los pacientes, lo que permitirá comprender mejor los riesgos y desarrollar

intervenciones más personalizadas. Aunque algunas de las variables objetivo obtienen una

precisión predictiva baja, nuestros resultados han sido en general positivos y prometedores,

lo que indica el potencial de nuestro enfoque para mejorar la comprensión de los riesgos

para la salud cardiovascular y desarrollar intervenciones más personalizadas y efectivas.

Palabras clave: Cardiopat́ıa isquémica, Redes Bayesianas, Aprendizaje Automático,

Bosques Aleatorios, Asistencia Sanitaria, Predicción de Enfermedades Cardiovasculares
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1

Introduction

1.1 Cardiovascular diseases: the leading cause of death

Cardiovascular diseases are the leading cause of death and morbidity worldwide, ac-

counting for approximately 17.9 million deaths in 2022, representing 32% of all global

deaths (WHO, 2023). This alarming figure underscores the severity of the problem and

the need for continued efforts in the prevention, diagnosis, and treatment of these diseases

(Vaduganathan et al., 2022). Among the various cardiovascular diseases, ischemic heart

disease, also known as coronary artery disease, occurs when there is a reduction in blood

flow to the heart muscle due to the obstruction of the coronary arteries, usually caused

by atherosclerosis (Rafieian-Kopaei et al., 2014).

In addition to their considerable impact on health, cardiovascular diseases also impose

a significant economic burden. Direct costs include medical expenses related to hospital-

izations, medications, procedures, and specialist visits. These are compounded by indirect

costs arising from loss of productivity, long-term disabilities, and the need for prolonged

care. According to a recent study, the global economic cost of cardiovascular diseases

amounts to billions of dollars annually, reflecting both healthcare expenses and associated

economic losses (Weintraub, 2023).

1



2 1. INTRODUCTION

Figure 1.1: Death rates standardized for the top five treatable diseases/conditions in individuals
under 75 years, 2021 (Source: Eurostat)

1.2 Factors contributing to cardiovascular risk

The risk factors for ischemic heart disease can be classified as modifiable and non-

modifiable. Among the non-modifiable factors, risk increases with age. Women experience

a delayed onset of ischemic heart disease compared to men, partly due to the protective

effects of estrogen before menopause (Bhupathy et al., 2010). Genetic predisposition

also plays a role, increasing the likelihood of hypertension, heart attacks, or arrhythmias

(Bachmann et al., 2012).

Among the modifiable risk factors, high blood pressure is one of the most significant.

This condition forces the heart to work harder, potentially thickening the heart muscle.

Effective hypertension treatment can significantly reduce the risk of cardiovascular events,

emphasizing the importance of medication, diet, and exercise (Wallace, 2003). Lower blood

pressure levels also reduce the risk of kidney failure (Cubrilo-Turek, 2003). High choles-
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terol significantly contributes to the formation of plaques on arterial walls, reducing blood

flow. Elevated cholesterol levels can lead to dyslipidemia, characterized by an imbalance of

lipids in the blood. To counteract this, a diet low in saturated fats and regular exercise are

recommended (Stefanick et al., 1998). Quitting smoking is crucial for improving cardio-

vascular health and reducing the risk of dyslipidemia. This can lead to immediate health

improvements, as carbon monoxide from tobacco smoke binds to hemoglobin, reducing

oxygen transport and blood lipid levels (Chen and Boreham, 2002). Smoking also alters

cholesterol, worsening dyslipidemia (López Garćıa-Aranda and Rubira, 2004). Obesity

contributes to the development of dyslipidemia. People with obesity tend to have elevated

LDL cholesterol levels and low HDL levels, increasing the risk of cardiovascular diseases.

Obesity is also closely related to insulin resistance and is a significant risk factor for type 2

diabetes, often associated with alterations in the lipid profile (Katta et al., 2021). Lifestyle

plays an essential role in cardiovascular health. Physical inactivity increases the risk of

obesity, alters cholesterol levels, and promotes the development of hypertension (Cassiano

et al., 2020; Alpsoy, 2020). A low-salt diet is crucial for prevention, as high salt intake is

associated with hypertension. Excessive alcohol consumption can also raise blood pressure

and negatively affect blood cholesterol levels (Whitman et al., 2017). The Spanish Heart

Foundation provides recommendations to control risk factors and prevent coronary events,

in line with other international authorities such as the European Society of Cardiology

(Visseren and ... et al., 2021). These include quitting smoking, controlling blood pressure,

and maintaining an ideal body weight. It is essential to reduce LDL cholesterol by 50%,

aiming for levels equal to or lower than 55 mg/dl. Adopting a healthy diet rich in fish,

fruits, and vegetables is also vital. Moreover, physical exercise plays a crucial role, with

cardiac rehabilitation programs focused on controlled physical exercise for patients who

have suffered an acute coronary syndrome (Fundación Española del Corazón, 2023).

Moreover, social determinants are important factors seldom analyzed in the literature

(Sun et al., 2023). By analyzing these factors, a model could potentially predict the risk

of ischaemic heart disease more accurately (Ohm et al., 2018; Freak-Poli et al., 2021),

enabling early intervention and better patient care, and that is the reason this Master’s

Thesis will make an emphasis in this type of variables, leveraging the socio-health profile

individual information gathered by the SCS, as detailed in Chapter 2.
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1.3 Machine Learning applications in Medicine

Currently, precision medicine, also known as personalized medicine, has gained impor-

tance. Although doctors have always sought individualized treatments, modern tools now

allow for a detailed view of patients, thus improving medical decision-making (Shameer

et al., 2017; Steinhubl and Topol, 2015). The integration of artificial intelligence (AI) and

machine learning is revolutionizing medical practice.

Advances in AI in the medical field are providing significant benefits. Using machine

learning techniques, AI analyzes large volumes of medical data, identifying patterns and

relationships that may go unnoticed by humans. Machine learning can be supervised,

unsupervised, or reinforcement-based, adapting to various needs and types of data.

For example, supervised learning is applied in the diagnosis of ischemic heart diseases

using labeled data, improving the accuracy and speed of diagnoses (Churpek et al., 2016).

In contrast, unsupervised learning discovers patterns without labels, helping to identify

new patient subgroups and personalize treatments. These machine learning algorithms

can predict cardiovascular risk more accurately than traditional methods (Weng et al.,

2017). Numerous studies have demonstrated their potential and effectiveness in improving

medical diagnoses and prognoses (Miotto et al., 2018; Ogunpola et al., 2024).

1.4 Objectives and structure of the document

The objective of this work is to employ machine learning algorithms to study the rela-

tionships between various cardiovascular risk factors and see how they influence ischemic

disease. To this end, the document is divided into 6 chapters and 3 appendices. The

distribution of the chapters is as follows:

• Chapter 1. Introduction: The context and objectives of the study are presented.

• Chapter 2. Dataset Overview: Detailed description of the dataset used for the

analysis.

• Chapter 3. Bayesian Networks: Explanation and application of Bayesian net-

works in the study.
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• Chapter 4. Random Forests: Description and use of random forest algorithms

in the analysis.

• Chapter 5. Conclusions and Future Research Directions: Summary of the

main findings and proposals for future research based on the results obtained.

1.5 Legal and ethical considerations. Reproducibility

Due to the sensitive nature of medical data, it is important to handle it with care. For

this reason, it has not been made public in this Master’s Thesis. However, the executed

notebooks showing the obtained results have been uploaded. The codes used for these

analyses are available in the following public repository:

https://github.com/JuanMiguelCano/TFM

While the medical data used in this study is sensitive and cannot be disclosed due

to privacy and ethical considerations, we have ensured that all other aspects of our re-

search adhere to the FAIR (Findable, Accessible, Interoperable, and Reusable) principles

(Wilkinson and ... et al., 2016). This includes the methodologies, algorithms, and code

used in our analysis.

This way, the Master’s Thesis codebase is thoroughly documented and structured in

a way that promotes reproducibility. We have provided clear instructions for setting up

the necessary computational environment, along with detailed comments explaining the

purpose and functionality of each section of the code. This ensures that other researchers

can understand, replicate, and build upon our work, even if they do not have access to

the original dataset. Furthermore, we have made every effort to ensure that our results

are robust and reliable. This includes rigorous testing of our code, cross-validation of our

models, and sensitivity analyses to assess the impact of potential sources of error or bias.

In summary, while the sensitive nature of our data prevents us from sharing it publicly,

we have taken all possible steps to ensure that our research is as open, transparent, and

reproducible as possible within these constraints.

https://github.com/JuanMiguelCano/TFM
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Dataset Overview

The study sample includes data from 2399 patients of the Servicio Cántabro de Salud

(SCS) who underwent procedures within the public health system of Autonomous Com-

munity of Cantabria (Spain) from June 12, 2016, to March 9, 2020, before the onset

of COVID-19. The data were collected through follow-up medical questionnaires, which

contain some redundancies and require preprocessing before starting the analyses. They

are originally presented in an xlsx file that includes an explanatory dictionary with the

variable categories. Most of these variables are categorical. As a result, the focus of this

Master’s Thesis is on specific ML classifiers that are designed to handle categorical data,

such as discrete Bayesian Network models (Chapter 3), Random Forests (Chapter 4) and

SVM, KNN, Naive Bayes . . . (Appendix C).

In their original format, the variables are grouped into five categories:

1. Background: Includes information such as age, sex, weight, height, family history

of ischemic heart disease, smoking, diabetes, hypertension, dyslipidemia, chronic

kidney disease, hemoglobin levels, history of myocardial infarction, arteries treated

with angioplasty and previous bypasses, peripheral arterial disease, and history of

stroke. This set of variables holds significant importance as they represent a priori

information about the patient. This means that these variables contain pre-existing

knowledge or conditions of the patient before the onset of the disease or prior the

patient’s admission. The remaining subsets are data collected after the patient’s

admission.

2. Procedure: Includes the arteries treated during the procedure, the type of access

7



8 2. DATASET OVERVIEW

(femoral or radial), and the treatment decided, with ejection fraction (EF) being one

of the most important measures to assess cardiac function.

3. Admission: Contains information on complications and medications such as Adiro,

ADP, and ACO.

4. Follow-up: It includes events of interest such as cases of cardiovascular death,

myocardial infarction, and hemorrhage observed during the follow-up.

5. Socio-Health Profile (PSS): Gathers information on clinical aspects, habits, car-

diovascular risk factors, self-care, and social aspects. This includes knowledge about

the disease, family habits such as smoking, alcohol or drug consumption, dietary pref-

erences, exercise practice, frequency of medical check-ups, educational level, type of

occupation, marital status, family support, and the use of social networks.

2.1 Data Curation and Preprocessing

Data preprocessing is fundamental to ensure the consistency of information. The vari-

ables were categorized into three main groups: MH (medical histories), TRT (treatments),

and SOC (social variables), along with the events of interest: cardiovascular death, acute

myocardial infarction, and hemorrhage. These target variables were named CVdeath, AMI

and HEMORRHAGE respectively.

During pre-processing of data, various types of errors were corrected, including erro-

neous data and outliers. Additionally, null rows and those with a significant number of

missing variables were eliminated.

The dataset contained many columns with repeated information, which allowed for

filling in missing values in some cases. However, due to inconsistencies in the duplicated

information, priority was given to the data provided in the Medical Histories (MH). Al-

though the number of missing values was not excessively high, they were imputed using the

Scikit-learn library in Python. During this preprocessing, binning discretization was used

for some continuous variables, as it facilitates their handling and inclusion in Bayesian net-

works (Dimitrova et al., 2010). Finally, all data was saved in a CSV file named DATA.csv.
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Regarding the variables in the MH group (14 variables), age (MH AGE) was catego-

rized into three groups: under 60 years, between 60 and 72 years, and over 72 years. A

new variable (MH BMI) was created to represent the Body Mass Index, using the ranges

0-18.5, 18.5-25, 25-30, and over 30, calculated from the continuous variables of weight and

height. Hemoglobin levels (MH HGB) were categorized according to clinical guidelines:

12.1-15.1 g/dL for women and 13.8-17.2 g/dL for men, classifying them as 1 for normal

levels and 2 for abnormal levels. The sex variable (MH SEX) was maintained as 1 for

female and 2 for male. The variable MH FHxIHD indicated a family history of ischemic

heart disease, with 0 for no and 1 for yes. Smoking status (MH SMK) was categorized as

1 for current smoker, 2 for ex-smoker, and 3 for never smoked. The presence of diabetes

mellitus (MH DM), hypertension (MH HTN), dyslipidemia (MH DLP), chronic kidney

disease (MH CKD), previous myocardial infarction (MH PMxMI), previous percutaneous

coronary intervention (MH PMxPCI), peripheral arterial disease (MH PAD), and history

of stroke (MH STK) were all represented with 0 for ‘no’ and 1 for ‘yes’.

For the variables in the procedures and treatments group TRT (8 variables), the pro-

cedure indication (TRT IND) was categorized as 1 for stable angina, 2 for ST-elevation

myocardial infarction, and 3 for others. The type of access for treatment (TRT ACC)

was maintained as 1 for femoral and 2 for radial. The variables TRT LCA, TRT LAD,

TRT RCA, and TRT LCX were categorized as 0 for no and 1 for yes. The treatment deci-

sion variable (TRT DEC) was classified as 1 for PCI, 2 for surgery, and 3 for conservative

treatment. The ejection fraction (TRT EF) was categorized into two groups: 0 for good

(50-70) and 1 for poor (different).

For the social variables group SOC (13 variables), marital status (SOC MAR ST) was

categorized into 2 groups: 1 for married and 2 for single, divorced, or widowed. The

variable SOC LIV ALN (living alone) was simplified from 4 categories to 2, categorizing

it as 1 for no and 2 for yes. Educational level (SOC EDU) was classified as 0 for none

and 1 for minimal education. Employment status (SOC ACT EMP) was divided into 2:

unemployed or retired (1) and active (2). Work type (SOC WOR TYPE) was categorized

as 1 for white-collar and 2 for blue-collar. Family support (SOC SUPP) was categorized

as 0 for no and 1 for yes. Place of residence (SOC RES) was classified as 1 for rural

and 2 for urban. Exercise (SOC EX) was categorized as 0 for no and 1 for yes. Salt
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diet (SOC SALT DIET) was classified as 1 for no salt diet and 2 for salt diet. Alcohol

consumption (SOC ALC) was categorized as 1 for none, 2 for weekends, and 3 for daily.

Social media use (SOC SOC MED) was categorized as 0 for no and 1 for yes. Mobile

phone use (SOC MOB PH) was classified as 0 for no and 1 for yes. Treatment adherence

(SOC A TRT) was categorized as 0 for good and 1 for poor.

Appendix A provides a summary table with the variables and their categories. Ap-

pendix B shows the initial analysis of the correlations between the different variables.

The code used for data preparation can be found in NB1 datacuration. Addition-

ally, the notebooks NB2 univariateanalysis and NB3 bivariateanalysis were used to

observe the distributions and relationships of the variables. Significant imbalances were

observed in the variables for cardiovascular death (CVdeath), acute myocardial infarction

(AMI), and hemorrhage (HEMORRHAGE), with percentages of 95.75-4.25, 91.66-8.34,

and 96.25-3.75, respectively, which are taken into account when applying the algorithms.



3

Bayesian Networks

In this chapter, Bayesian networks are employed with the objective of discovering

knowledge through the analysis of relationships among various variables, with particular

interest in how they interact with the target variables CVdeath, AMI, and HEMOR-

RHAGE (Sec. 2.1). Bayesian networks are probabilistic graphical models that represent a

set of variables and their conditional dependencies through a graph (Castillo et al., 1997;

Scutari and Denis, 2014). Each node in the graph corresponds to one of these variables,

and direct dependency relationships are represented by arcs between pairs of variables.

An example of a Bayesian network is shown in Fig. 3.1. Indirect dependency relationships

are not explicitly represented, but they can be visualized as a sequence of arcs connect-

ing one variable to another through one or more variables, forming a path. These paths

in Bayesian networks cannot have cycles, as they are directed acyclic graphs (DAGs).

Neapolitan et al. (2004). It is important to understand that the presence of an arc in a

Bayesian network does not necessarily imply direct causality between the connected vari-

ables; rather, it indicates a probabilistic dependency between them. Bayesian network

models can be particularly advantageous for investigating ischaemic heart disease. The

Bayesian Network approach in this context has the following specific objectives for the

modelling and prediction of the target variables:

1. Input a patient’s data into the model (evidence) to estimate their risk (probability)

of the above factors (through propagation and inference). This can guide preventive

measures and early interventions.

2. Diagnostic Aid: If a patient presents with symptoms of ischaemic heart disease, the

11
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model can help determine the likelihood of the specified outcomes. This can assist

in making a more accurate diagnosis.

3. Treatment Planning: By updating the model with new information (such as the

background information, socio-health profile etc. –Chapter 2–, clinicians can pre-

dict the likely outcomes of different treatment options. This can inform treatment

planning.

4. Patient Education: The model can be used to explain to patients how different

factors contribute to their risk of disease. This can help patients understand why

certain lifestyle changes or treatments are recommended.

5. Research: Clinicians and researchers can use the model to investigate the relation-

ships between different risk factors and ischaemic heart disease. This can contribute

to a better understanding of the disease and the development of new treatments and

targeted prevention campaigns.

Throughout this chapter, the R language and the bnlearn (Scutari, 2010) and gRain

(Højsgaard, 2012) packages will be used for exact inference, as well as the Rgraphviz

package for network visualization (Hansen et al., 2024). The codes used in this chapter

are available in NB4 BNanalysis of the Github repo1.

3.1 Definitions and essential concepts

Formally, a Bayesian network is defined as a pair G = (V,E), where:

• V is a set of nodes, each of which corresponds to a random variable.

• E is a set of directed arcs between the nodes, representing the conditional dependency

relationships between the variables.

Each node Xi ∈ V is associated with a conditional probability distribution P (Xi |

Parents(Xi)), where Parents(Xi) are the nodes that have directed arcs towards Xi.

1https://github.com/JuanMiguelCano/TFM

https://github.com/JuanMiguelCano/TFM
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Figure 3.1: Example of a Bayesian Network with its Conditional Probability Tables

The joint distribution of all the variables in the Bayesian network can be expressed as

the product of the conditional probability distributions of each variable given its parents

in the graph:

P (X1, X2, . . . , Xn) =
n∏

i=1

P (Xi | Parents(Xi)).

(Scutari and Denis, 2014)

An important aspect of Bayesian network analysis is examining the fundamental struc-

tures that compose these networks (Fig. 3.2). These structures determine how variables

are interrelated and how information flows through the graph. Understanding these basic

structures is essential as they can be classified and extended to larger networks.
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Figure 3.2: Examples of the three fundamental connections in Bayesian Networks

• Series or cascade structure: The cascade structure with the variables MH AGE,

MH SMK, and MH HTN satisfies the condition that information flows fromMH AGE

to MH SMK and from MH SMK to MH HTN. MH HTN is conditionally indepen-

dent of MH AGE given MH SMK, meaning that once the intermediate variable

MH SMK is known, the final variable MH HTN does not provide additional infor-

mation about the initial variable MH AGE. That is,

MH AGE ⊥⊥ MH HTN | MH SMK.

Without knowing the smoking status, we know that age (MH AGE) may be related

to the smoking habit (MH SMK), and that smoking increases the likelihood of hy-

pertension (MH HTN). Therefore, it seems that age and hypertension are indirectly

related. However, if we know that a person smokes, the probability of hypertension

directly depends on the smoking habit, and we do not need to consider age, meaning

the relationship between age and hypertension disappears once the smoking habit is

known.
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• Divergent structure: The divergent structure with the variables MH AGE, MH HTN,

and MH SMK satisfies the condition that information flows fromMH AGE to MH HTN

and from MH AGE to MH SMK. Additionally, MH HTN is conditionally indepen-

dent of MH SMK given MH AGE, meaning that once the initial variable MH AGE

is known, the variable MH HTN does not provide additional information about the

variable MH SMK. This is expressed as

MH HTN ⊥⊥ MH SMK | MH AGE.

Without knowing the age, it might seem that smoking MH SMK and MH HTN are

related, as both can be influenced by MH AGE. However, if we know a person’s age,

both the probability of MH HTN and MH SMK directly depend on MH AGE, mean-

ing the relationship between MH SMK and MH HTN disappears once the person’s

MH AGE is known.

• V-structure: The V-structure with the variables MH HTN, MH SMK, and MH CKD

satisfies the condition that information flows from MH HTN to MH CKD and from

MH SMK to MH CKD. Additionally, MH HTN and MH SMK are conditionally de-

pendent given MH CKD, meaning that once the final variable MH CKD is known,

MH HTN provides additional information about MH SMK. Without knowing the

status of MH CKD, MH HTN and MH SMK are independent, but knowing the

status of MH CKD creates a dependency between MH HTN and MH SMK.

MH HTN ̸⊥⊥ MH SMK | MH CKD.

Without knowing whether a person has MH CKD, MH HTN and MH SMK are

independent because they do not influence each other directly. However, if we know

that a person has MH CKD, the probabilities of MH HTN and MH SMK become

dependent, meaning the relationship between MH HTN and MH SMK appears once

we know the status of MH CKD.
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In the series and divergent structures, the intermediate node acts as a separator of

the probabilistic dependence between the other nodes when it is observed. This means

that by knowing the state of the intermediate node, the initial and final variables become

independent. In contrast, in the V structure, the separation occurs when the intermediate

node is not observed. In this case, the variables that influence the intermediate node

are independent of each other. However, when the intermediate variable is observed, the

variables that influence it become conditionally dependent on each other.

Another important concept is the Markov blanket, which is the minimal set of nodes

that can isolate a specific node from the rest of the graph. The Markov blanket of a node

contains all the information necessary to predict the state of that node, and once it is

known, the node is conditionally independent of the rest of the graph.

Given a node X in a directed acyclic graph (DAG), the Markov blanket of X,

denoted as M , is the set of nodes composed of:

1. Parents of X: The nodes that have an arrow pointing directly to X.

2. Children of X: The nodes to which X directly points.

3. Parents of the children of X: The nodes that directly point to the children of

X.

Formally, for a node X in a graph G, the Markov blanket M is defined as:

M = Parents(X) ∪ Children(X) ∪ Parents(Children(X)) \ {X}

The main property of the Markov blanket is that any node X is conditionally inde-

pendent of all other nodes in the graph given its Markov blanket M .

3.1.1 Structural learning

The structural learning of Bayesian networks involves constructing an appropriate graph

that represents a dataset. This process can be carried out using expert knowledge or by

learning the graph structure directly from the dataset. Algorithms that perform this task

explore the possible graph configurations and are classified according to the statistical

criterion employed to find the optimal configuration.
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Some algorithms use conditional independence tests to determine the presence of arcs

in the graph. They focus on identifying probabilistic dependencies at a local level, often

starting by finding the Markov Blanket. If a dependency is supported by the data, the

corresponding arc is included in the DAG. Examples of these algorithms are PC, Grow-

Shrink, and Incremental Association Markov Blanket (IAMB). Other algorithms focus on

maximizing a global score that measures the fit of the DAG to the dependency structure

implicit in the data, rather than focusing on individual nodes or arcs. One of the most

common scores is the Bayesian Information Criterion (BIC). Among these algorithms are

Tabu and Hill Climbing (HC). The Hill Climbing algorithm starts with an empty DAG and

proceeds by adding, reversing, and deleting arcs successively, retaining the changes that

maximize the score at each step. Additionally, there are hybrid algorithms that combine

constraint-based and score-based approaches to leverage the advantages of both methods,

improving accuracy and efficiency in constructing the graph.

3.1.2 Parametric learning

In most cases, the parameters of the local distributions in a Bayesian network are estimated

from an observed sample. The parameters to be estimated are the conditional probabilities

in the local distributions. These probabilities can be calculated using the corresponding

empirical frequencies in the dataset.

Once the graph and the distribution of local probabilities for each variable are defined,

they are combined to create the actual Bayesian network. The parameters to be estimated

are the conditional probabilities of the local distributions of each node, and they can be

determined simply by computing the empirical frequency tables from the dataset. A

common method for this estimation is Bayesian estimation.

3.1.3 Inference

Inference in Bayesian networks is fundamental for probabilistic calculation and can be

performed using exact or approximate methods. Exact inference relies on the junction

tree algorithm, which transforms the Bayesian network into a junction tree, facilitating

the calculation of conditional probabilities. By reorganizing the network into a more
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manageable format, the junction tree allows for more efficient exact inference.

The gRain package in R implements exact inference, providing fast and accurate re-

sults. However, its main disadvantage is that as the network grows in size, the computa-

tional cost increases exponentially.

On the other hand, approximate inference is based on generating random observations

from the Bayesian network. Observations that match the given evidence are used to

estimate the conditional probability of the event of interest. In R, the cpquery package

allows for this approximate inference, returning the probability of an event given certain

evidence.

3.2 Practical implementations

Using the CSV file DATA.csv, an analysis and construction of four Bayesian networks

have been carried out. These networks have been configured and analyzed as follows:

1. Social variables and cardiovascular death analysis

2. Medical history, treatments, social variables and cardiovascular death

analysis

3. Medical history, treatments, social variables and acute myocardial infarc-

tion analysis

4. Medical history, treatments, social variables and hemorrhage analysis

The structural learning of the Bayesian networks was conducted using the hill-climbing

(hc) algorithm. Prior to this, a bootstrap test with 200 resamples (Efron and Tibshirani,

1994) as carried out to compare the hc, tabu, mmhc, and rsmax2 algorithms. The best

overall net log-likelihood was obtained with the hc algorithm (Fig. 3.3), which is why it

was selected for structural learning, confirming previous findings in the intercomparison

of algorithms for discrete bayesian network (Scutari et al., 2019).
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Figure 3.3: Comparative Analysis of Log-Likelihood Scores: A Study on Hill-Climbing (hc), Tabu,
MMHC, and RSMax2 algorithms for structural network learning using bootstrap resampling (R =
200).

3.2.1 Social variables and cardiovascular death analysis

A first Bayesian network was constructed using a threshold that included edges appearing

at least 100 times out of 200 bootstrap iterations, considering only the social variables.

This approach was used to observe the relationships between the different social variables

before analyzing the complete networks with all variables (Fig. 3.4).
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Figure 3.4: Bayesian network constructed with social variables and the target node CVdeath. The
description of the nodes can be found in Appendix A.

According to data obtained from this network, when SOC MOB PH is ”0” (no mobile

phone), the probability of not dying from cardiovascular causes is 0.90, and the probability

of dying is 0.10. In contrast, when SOC MOB PH is ”1” (having a mobile phone), the

probability of not dying increases to approximately 0.9643, while the probability of dying

decreases to 0.0357. Possessing a mobile phone (SOC MOB PH = ”1”) is associated with

a higher probability of survival compared to not having one (SOC MOB PH = ”0”).

The strength of the arcs was analyzed, revealing that the strongest connection is be-

tween the variables SOC MAR ST and SOC LIV ALN, with a BIC of -405.00. Other sig-

nificant connections include SOC ACT EMP and SOC SOC MED (-98.31), SOC LIV ALN

and SOC SUPP (-79.79), and SOC SOC MED and SOC MOB PH (-44.42).

When SOC MAR ST is 1 (married), the probability of not living alone is 0.9904, while

the probability of living alone is 0.0096. In contrast, when SOC MAR ST is 2 (another

marital status, single, divorced, or widowed), the probability of not living alone decreases

to 0.5352, and the probability of living alone increases to 0.4648. This reflects that married

individuals have a much higher probability of not living alone compared to those who are

not married, which is an obvious result that supports the coherence of the network (Fig.

3.5).
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Figure 3.5: Distribution of SOC MAR ST (marital status) over SOC LIV ALN (lives alone).
The frequencies change drastically between levels, suggesting a strong correlation. SOC MAR ST
has the states 1 (Married) and 2 (Others), while SOC LIV ALN has the states 1 (No) and 2 (Yes).
This information comes from the conditional probability tables (CPTs) associated with each node,
which are updated when new evidence is presented.

For individuals with SOC ACT EMP at 1 (inactive), the probability of not using social

media is 0.8053, while the probability of using social media is 0.1947. In contrast, when

SOC ACT EMP is 2 (active), the probability of not using social media decreases to 0.5031,

and the probability of using social media increases to 0.4969. Active individuals have a

higher probability of using social media compared to inactive individuals.

In cases where SOC SOC MED is 0 (does not use social media), the probability of

not using the mobile phone (SOC MOB PH = 0) is 0.1488, while the probability of using

the mobile phone (SOC MOB PH = 1) is 0.8512. In contrast, when SOC SOC MED is

1 (uses social media), the probability of not using the mobile phone is 0.0064, and the

probability of using it is 0.9936. This shows that almost all people who use social media

also use the mobile phone.

Next, we illustrate the three Bayesian networks obtained using the variables MH, TRT,

and SOC, each with one of the target nodes: CVdeath (Fig. 3.6), AMI (Fig. 3.7), and

HEMORRHAGE (Fig. 3.8).
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Figure 3.6: Bayesian network obtained with MH, TRT, and SOC variables, and the target node
CVdeath. Threshold: 150 out of 200 bootstrap, 113 parameters. The description of the nodes can
be found in Appendix A.
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Figure 3.7: Bayesian network obtained with MH, TRT, and SOC variables, and the target node
AMI. Threshold: 50 out of 200 bootstrap, 319 parameters. The description of the nodes can be
found in Appendix A.
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Figure 3.8: Bayesian network obtained with MH, TRT, and SOC variables, and the target node
HEMORRHAGE. Threshold: 150 out of 200 bootstrap, 113 parameters. The description of the
nodes can be found in Appendix A.
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3.2.2 Medical history, treatments, social variables and cardiovascular death analysis

Another Bayesian network is constructed for analyzing the node CVdeath (cardiovascular

death) using a threshold that includes the edges that appear at least 150 times out of the

200 iterations in the bootstrap. We observe that the edge connecting the nodes MH CKD

and CVdeath is quite robust, appearing 183 times out of 200, and has a BIC strength of

-26.779768. In fact, it is among the top 20 strongest edges (Fig. 3.9).

Figure 3.9: Strength of the top 20 arcs in the Bayesian network analysis of medical history,
treatments, social variables and cardiovascular mortality.
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When MH CKD is 0 (without chronic kidney disease), the probability of not suffering

a cardiovascular death is 0.9716, while the probability of suffering it is 0.0284. In contrast,

when MH CKD is 1 (with chronic kidney disease), the probability of not suffering a cardio-

vascular death decreases to 0.8488, and the probability of suffering it increases to 0.1512.

The presence of chronic kidney disease significantly increases the risk of cardiovascular

death.

The three strongest connections identified are: the relationship between MH AGE and

SOC ACT EMP, with a value of -498.482094; the connection between SOC MAR ST and

SOC LIV ALN, with a value of -405.001224; and the relationship between TRT DEC and

TRT LAD, with a value of -241.608179.

For the youngest group (MH AGE = 1), the probability of not being active

(SOC ACT EMP = 1) is 0.3355, while the probability of being active (SOC ACT EMP =

2) is 0.6645. In the intermediate age group (MH AGE = 2), the probability of not being

active rises to 0.8643 and the probability of being active drops to 0.1357. In the oldest age

group (MH AGE = 3), the probability of not being active is 0.9854 and the probability

of being active is 0.0146. This reflects that the intermediate and older age groups are the

least active, as they include retired individuals.

The second relationship was already analyzed in the previous network.

For TRT DEC = 1 (ACTP), the probability of not performing treatment on the left

anterior descending artery (TRT LAD = 0) is 0.3371, while the probability of performing

treatment (TRT LAD = 1) is 0.6629. In the case of TRT DEC = 2 (surgery), the proba-

bility of not performing treatment is 0.3017 and the probability of performing treatment

is 0.6983. Finally, for TRT DEC = 3 (conservative), the probability of not performing

treatment is 0.6485 and the probability of performing treatment is 0.3515. This shows that

the probability of performing treatment on the left anterior descending artery significantly

decreases in conservative approaches compared to ACTP and surgery.

3.2.3 Medical history, treatments, social variables and acute myocardial infarction anal-

ysis

The third Bayesian network is used to analyze the variable AMI (acute myocardial in-

farction). A threshold of 50 is set for the edges since the most frequently occurring edge
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involving the AMI node appears only 76 times out of 200 iterations, indicating it is less ro-

bust. This results in a network with more connections and a greater number of parameters

(319).

The edges that most frequently involved the AMI node were MH PMxPCI (previous

percutaneous coronary intervention) - AMI, appearing 76 times; MH PMxMI (previous

myocardial infarction) - AMI, appearing 61 times; and MH CKD - AMI, appearing 57

times. We also observe that the obtained strengths are much lower compared to the

previous network.

For MH PMxPCI = 0 (without previous percutaneous coronary intervention), the

probability of not having an acute myocardial infarction (AMI = 0) is 0.9301, while the

probability of having one (AMI = 1) is 0.0699. In contrast, for MH PMxPCI = 1 (with

previous percutaneous coronary intervention), the probability of not having an acute my-

ocardial infarction is 0.8820, and the probability of having one is 0.1180. A previous

percutaneous coronary intervention is associated with a higher probability of suffering an

acute myocardial infarction.

When MH PMxMI = 0 (without a history of myocardial infarction), the probability

of not having an acute myocardial infarction (AMI = 0) is 0.9278, while the probability

of having one (AMI = 1) is 0.0722. In contrast, for MH PMxMI = 1 (with a history

of myocardial infarction), the probability of not having an acute myocardial infarction is

0.8711 and the probability of having one is 0.1289. This reflects that a history of myocardial

infarction also increases the probability of suffering another subsequent infarction.

Finally, when MH CKD = 0 (without chronic kidney disease), the probability of not

having an acute myocardial infarction (AMI = 0) is 0.9237, while the probability of having

one (AMI = 1) is 0.0763. In contrast, if MH CKD = 1 (with chronic kidney disease),

the probability of not having an acute myocardial infarction decreases to 0.8655 and the

probability of having one increases to 0.1345. Chronic kidney disease is also associated

with a higher probability of suffering an acute myocardial infarction.

3.2.4 Medical history, treatments, social variables and hemorrhage analysis

The fourth Bayesian network is used to analyze the variable HEMORRHAGE. A threshold

of 150 is set, similar to that for CVdeath. This results in a Bayesian network with 113
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parameters.

It is observed that the edge connecting SOC ACT EMP and HEMORRHAGE appears

167 out of 200 times, indicating it is quite robust. However, the strength is not very high,

with a BIC of -9.691784.

For individuals with SOC ACT EMP = 1 (inactive), the probability of not experienc-

ing hemorrhage (HEMORRHAGE = 0) is 0.9319, while the probability of experiencing it

(HEMORRHAGE = 1) is 0.0681. In contrast, for active individuals (SOC ACT EMP =

2), the probability of not experiencing hemorrhage is 0.9169 and the probability of expe-

riencing it is 0.0831. It is observed that the incidence of hemorrhage is slightly higher in

active individuals.

3.2.5 Factors influencing cardiovascular mortality

The risk of death from cardiovascular causes increases with age. For individuals older than

72 years, this probability is 0.0524, while it is 0.0396 for those aged 60-72 years, and 0.0342

for individuals under 60 years old. Regarding body mass index (BMI), obese individuals

exhibit the highest rate at 0.0435, followed by overweight individuals at 0.0416. Those

with normal weight have a slightly lower risk of 0.0402, and underweight individuals have

a probability of 0.0429.

The presence of hypertension significantly raises the risk of death, with a probability

of 0.0468 compared to 0.0321 for those without hypertension. Similarly, the presence of

dyslipidemia is associated with an increased probability, rising from 0.0402 in individuals

without dyslipidemia to 0.0429 in those with it. Additionally, hemoglobin levels play a

crucial role: individuals with abnormal levels have a probability of 0.0443, while those

with normal levels have a slightly lower risk of 0.0406.

In terms of social variables, individuals without formal education have a probability of

cardiovascular death of 0.0478, whereas those with education have a reduced probability of

0.0415. Similarly, unemployed individuals have a probability of 0.0443, compared to 0.0354

for those employed. Regarding the use of social networks, non-users have a probability

of 0.0437, while users have a probability of 0.0373. As for mobile phone usage, non-users

have a probability of 0.0478, whereas users have a probability of 0.0412.
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Random Forests

The primary aim of this chapter is to examine the outcomes of a classifier that is fun-

damentally different from Bayesian networks, specifically, random forests. This analysis

will provide insights into the consistency of variable importance within the model, help-

ing us to build trust in the Bayesian Network models developed and their consistency as

compared to other classifiers in case that both models have similar “important” variables.

Moreover, the advancement of random forests will enable a comparative analysis with

Bayesian Networks, focusing on the predictive accuracy of the variables of interest. This

comparison will provide further insights into the efficacy and potential of our Bayesian

network models, reinforcing their role as expert systems for clinical diagnosis. It’s impor-

tant to note that the predictive accuracy experiment is not only limited to the comparison

between random forests and Bayesian Networks. It is, in fact, further enriched by the

inclusion of additional classification algorithms. However, to maintain conciseness in this

discussion, the results derived from these additional algorithms are presented separately

in Appendix C.

4.1 Overview of random forests

Random Forests are a supervised learning method composed of multiple decision trees,

which significantly improve prediction accuracy and reduce the risk of overfitting (Breiman,

2001). The construction of a Random Forest involves generating numerous independent

decision trees, each trained with a random sample of the original dataset. This sample is

taken with replacement, meaning some data points may be repeated in the sample used

29
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to train a tree, while other data points may not be used at all for that particular tree.

A key feature of Random Forests is the use of the ”Out of Bag” (OOB) error (Matthew

et al., 2011). During the formation of each tree, the data not selected for training that

specific tree is referred to as ”Out of Bag.” These OOB data points are used to evalu-

ate the tree’s performance, providing an internal and unbiased estimate of the model’s

generalization error.

The calculation of the OOB error is done by predicting the labels of the OOB data

points using the tree that did not see them during its training. By averaging the prediction

errors of all the trees, an accurate estimation of the model’s performance on unseen data

is obtained, without the need for a separate test set. This methodology not only improves

the efficiency of the validation process but also increases the reliability of error estimates,

as it is based on a large number of individual evaluations.

To construct a decision tree, various criteria are applied to determine how and where

to split the data at each node. One of the most common methods is the Gini index, used in

classification problems to measure the impurity of a node. The Gini index is calculated by

assessing the probability that a randomly selected sample would be incorrectly classified

based on the class distribution in the node. During tree construction, the feature and

threshold that maximize the reduction in Gini index between the current node and its

resulting child nodes are chosen. Additionally, the number of predictors selected randomly

as candidates in each division, denoted as ’mtry’, has been set to the square root of the

total number of predictors. The number of trees used in the forest, ’ntree’, has been set

to 100. Furthermore, ’minsize’, the minimum size of terminal nodes has been set to 1.

4.2 Variable importance measure

During the construction of a decision tree, variable selection is performed by evaluating

each available feature and choosing the one that provides the greatest reduction in the

Gini index. For each possible split point of a feature, the Gini impurity is calculated for

the resulting nodes and compared with the impurity of the original node. The feature and

threshold that result in the greatest reduction in the Gini index are selected to make the

split at the current node. Variable importance is measured by accumulating the reduction
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in the Gini index that each variable provides in all the splits it participates in throughout

the tree. Variables that generate the largest reductions in the total impurity of the tree

are considered the most important, indicating that these features have a greater impact

on the correct classification of the samples.

4.3 Dataset Balancing

In order to make a fair comparison of classifiers, we have undertaken the data balancing,

and identical balanced datasets have been used to prepare the out-of-sample predictions.

Balancing classes is important because machine learning algorithms can be biased towards

the majority class, leading to poor performance on the minority class. This can be prob-

lematic if the minority class is of particular interest, as it is the case in our database

for some of the key variables such as CVdeath, AMI and HEMORRHAGE, that are rare

outcomes among all the ischaemic disease cases recorded.

Data balancing is typically not required for Bayesian Network models. This is because

Bayesian Networks are probabilistic models that learn the joint probability distribution

of the data. They are less sensitive to class imbalance as they do not rely on the same

assumptions as many other machine learning algorithms and can perform well in this case

(Flores and Gámez, 2015). However, a balanced dataset has been specifically prepared

for this chapter’s comparison against random forests. For this purpose, we have used the

ovun.sample function from the R package ROSE (Lunardon et al., 2014), which randomly

selects an equal number of instances from each class (0/1). Additionally, it has been used

for the classifier inter-comparison in Appendix C, since in that case we are using the ROC

area and other ROC-based performance scores, which are sensitive to class imbalance.
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4.4 Practical implementations

Figure 4.1: The Gini index is used to assess the importance of variables in explaining cardiovas-
cular death (CVdeath). A bootstrap method with 200 iterations has been used to ensure a robust
estimation of variable importance.

In the previous chapter, it was observed that the Bayesian network identified MH CKD

as the most important node for predicting cardiovascular death (CVdeath). When compar-

ing this information with the variable importance provided by the Gini index, MH CKD

also stood out as a significant variable, tying in importance with MH AGE. Addition-

ally, MH AGE was located very close to the CVdeath node in the Bayesian network,

further reinforcing its relevance in predicting CVdeath. Despite the two models being

completely different, they share similar results, highlighting the importance of MH CKD

and MH AGE in the predictive model.
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Figure 4.2: The Gini index is used to assess the importance of variables in explaining acute
myocardial infarction (AMI). A bootstrap method with 200 iterations has been used to ensure a
robust estimation of variable importance.

For the case of AMI, the nearby nodes were MH PMxPCI, MH PMxMI, and MH CKD.

However, it was observed that the robustness of these connections was considerably lower

compared to the previous network, with these links appearing 76, 61, and 57 times respec-

tively. Additionally, the strength obtained using the arc.strength function and the BIC

was low (11.154624, 10.803513, and 10.222042 respectively). When checking the results

of the ranking obtained by the Gini variable importance index, it is observed that in this

case, the values give more importance to the variables MH BMI, TRT IND, MH AGE,

MH SMK, and SOC ALC. The three variables ordered by robustness and strength remain

in the same order, although this time in positions 11, 21, and 26.
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Figure 4.3: The Gini index is used to assess the importance of variables in explaining hemorrhage.
A bootstrap method with 200 iterations has been used to ensure a robust estimation of variable
importance.

Finally, in the case of hemorrhage, we observed that the edge SOC ACT EMP - HEM-

ORRHAGE appeared in 167 out of 200 instances, indicating notable robustness. However,

when evaluating its strength, the value of -9.691784 was not very high. Now, comparing

these results with random forest, we see that it also does not rank this edge among the

most important variables. Random forest gives more importance to age and the indicated

treatment among the three variables studied.
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Conclusions and Future Research Directions

Cardiovascular diseases often appear suddenly; however, in reality, they have a long

asymptomatic course before manifesting. Understanding the relationships between various

factors and variables dependent on a given variable becomes very useful in these cases.

In this work, it has been shown, for example, that for a fatal outcome of cardiovascular

death (variable CVdeath) , the Bayesian network has correctly identified the importance

of the variable chronic kidney disease (MH CKD), as it is linked to many others related

to ischemic heart disease.

The fact that both Bayesian Network models and its random forests counterpart iden-

tify the same groups of variables as important provides a form of cross-validation. It

strengthens the confidence in these variables’ true significance in predicting the outcome,

confirming the validity of the models developed. The consistency indicates that both mod-

els are robust, as they agree on the influential variables despite their different underlying

methodologies. The overlap in important variables could open up possibilities for inte-

grating the two models, potentially leveraging the strengths of both to improve predictive

performance. These are some possibilities of such multimodel integration:

Model Stacking: Random Forest and a Bayesian Network model are trained separately,

as we did in this work; then another third model can be trained to learn how to best

combine their predictions, for example using a weighting scheme. This second-level

model is trained to effectively capture the strengths of each model based on the

patterns in the data.

Feature Engineering: The feature importance from the Random Forest can be used to

35
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guide the structure learning in the Bayesian Network (or vice versa). This can help

to force some nodes and/or arcs to be present/absent in the bayesian network (via

whitelist/blacklist arguments), or simply discarding features that have low impor-

tance in the random forest algorithm.

Hybrid Models: Develop a hybrid model that uses the Bayesian Network for probabilis-

tic reasoning and the Random Forest for handling high-dimensional data. This could

be as simple as taking a weighted average of the two predictions, or it could involve

a more complex scheme like training another model to learn how to best combine

the predictions from both classifiers.

The predictive models for acute myocardial infarction (AMI) and hemorrhage did not

yield good predictive results, with AUC values below 0.6 in most cases. This can be due

to a low sample size (there are few positive cases among the database) or to the absence of

some key predictors (although the database use is quite comprehensive, well beyond the

number of predictors usually handled in the literature of cardiovascular disease research).

The prediction of cardiovascular death, however, suggests an accurate classifier that could

be useful in real applications. Nevertheless, it has been demonstrated that, although it

is not their primary purpose, when Bayesian networks are used as classification models,

the results obtained are comparable to those of widely supported classification models

like random forest or SVM, resulting in very competitive classifiers for ischaemic disease

analysis. Bayesian networks facilitate the processing of large volumes of data to generate

informed decisions or recommendations, often exceeding human abilities in the analysis of

intricate information. This proves particularly beneficial in the context of ischemic disease

prevention, diagnosis, and treatment. Clinicians often face the challenge of making –

quick– decisions based on multifaceted problems involving numerous variables, which often

interact in non-linear and complex ways. As demonstrated in our work, the capabilities

of Bayesian networks significantly aid in navigating these complexities.

One of the greatest strengths of Bayesian networks is their ability to understand and

represent the relationships between variables. They allow for the incorporation of knowl-

edge at any time, based on more or less complete evidence, making them extremely flexible

and adaptive. This characteristic has proven to be especially useful in this work.
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Regarding future lines of research, the use of continuous data could be explored, which

would allow for better utilization of data variability and improve the accuracy of predic-

tions. This improvement in the representation of continuous data could lead to significant

advances in the accuracy and utility of Bayesian networks in various fields of study.

Furthermore, with an expanded database, we could leverage the power of deep learning

models to gain insights into ischemic disease, complementing the knowledge derived from

our existing Bayesian network models. Deep learning models, with their ability to learn

complex patterns and relationships from large volumes of data, can provide a different

perspective and potentially uncover novel insights. These models excel at identifying

intricate structures within high-dimensional data, making them particularly suited for

tasks such as feature extraction and pattern recognition. This could be invaluable in the

context of ischemic disease, where numerous variables and their complex interactions play

a role. However, it’s important to note that the effectiveness of deep learning models is

directly proportional to the size of the available dataset, and that is the main reason that

prevented us from the application in this work. Larger datasets allow these models to

better learn and generalize, thereby improving their predictive performance. Therefore,

having access to a larger database would enable us to tap into the potential of deep

learning, providing a more comprehensive understanding of ischemic disease alongside our

Bayesian network models.
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Appendix A: Curated Database Variable Description

Variable Description Categories Percentages

MH AGE Age 1 (Less than 60) 33.06%
2 (60-72) 35.06%
3 (More than 72) 31.89%

MH SEX Patient sex 1 (Female) 23.09%
2 (Male) 76.91%

MH BMI Body Mass Index (BMI) 1 (Underweight) 0.17%
2 (Normal) 20.47%
3 (Overweight) 49.40%
4 (Obesity) 29.97%

MH FHxIHD Family history of ischemic heart disease 0 (No) 60.53%
1 (Yes) 39.47%

MH SMK Smoking status 1 (Current) 26.97%
2 (Ex-smoker) 45.94%
3 (Never smoked) 27.09%

MH DM Diabetes mellitus 0 (No) 70.53%
1 (Yes) 29.47%

MH HTN Hypertension 0 (No) 33.56%
1 (Yes) 66.44%

MH DLP Dyslipidemia 0 (No) 37.89%
1 (Yes) 62.11%

MH CKD Chronic kidney disease 0 (No) 88.37%
1 (Yes) 11.63%

MH HGB Hemoglobin 1 (Normal levels) 65.53%
2 (Abnormal levels) 34.47%

MH PMxMI History of myocardial infarction 0 (No) 80.70%
1 (Yes) 19.30%

MH PMxPCI Previous percutaneous coronary intervention 0 (No) 72.57%
1 (Yes) 27.43%

MH PAD Peripheral arterial disease 0 (No) 89.83%
1 (Yes) 10.17%

MH STK Stroke 0 (No) 94.25%
1 (Yes) 5.75%

Table A1: Description of variables in the medical history dataset (MH) and their adapted cate-
gories. Percentages indicate the prevalence of each case within the database.



Variable Description Categories Percentages

TRT IND Indication for procedure 1: Stable angina 27.47%
2: ST elevation myocar-
dial infarction

27.76%

3: Others 44.77%

TRT ACC Type of access for treatment 1: Femoral 53.90%
2: Radial 46.10%

TRT LCA Treatment of the left coronary artery 0: No 89.29%
1: Yes 10.71%

TRT LAD Treatment of the left anterior descending artery 0: No 40.64%
1: Yes 59.36%

TRT RCA Treatment of the right coronary artery 0: No 49.69%
1: Yes 50.31%

TRT LCX Treatment of the circumflex artery 0: No 61.19%
1: Yes 38.81%

TRT DEC Treatment decision 1: ACTP 76.20%
2: Surgery 5.59%
3: Conservative 18.22%

TRT EF Ejection fraction 0: Good: 50-70 57.52%
1: Bad: Different from
50-70

42.48%

Table A2: Same as Table A1 but for the variables in the treatment dataset (TRT).

Variable Description Categories Percentages

SOC MAR ST Marital status (has a partner) 1: Married 70.40%
2: Others 29.60%

SOC LIV ALN Lives alone 1: No 85.58%
2: Yes 14.42%

SOC SUPP Family support 0: No 2.54%
1: Yes 97.46%

SOC RES Place of residence 1: Rural 56.90%
2: Urban 43.10%

SOC EDU Education 0: None 6.59%
1: With education 93.41%

SOC ACT EMP Active employment 1: No 72.82%
2: Yes 27.18%

SOC WOR TYPE Type of work 1: White-collar 30.80%
2: Blue-collar 69.20%

SOC EX Exercise 0: No 35.43%
1: Yes 64.57%

SOC SALT DIET Salt diet 1: Salt-free diet 52.40%
2: Diet with salt 47.60%

SOC ALC Alcohol consumption 1: No 50.90%
2: Weekend 12.88%
3: Daily 36.22%

SOC SOC MED Social media 0: No 72.32%
1: Yes 27.68%

SOC MOB PH Mobile phone 0: No 10.92%
1: Yes 89.08%

SOC A TRT Adherence to treatment 0: Good 88.70%
1: Bad 11.30%

Table A3: Same as Table A1 but for the variables in the social dataset (SOC) and their categories.

46



Appendix B: Associations between variables

Figure B1: Cramer’s V Matrix describing the association between variables.

To represent the correlation matrix (Fig. B1), Cramer’s V coefficient is used, a measure

of association for categorical variables that ranges between 0 and 1.

The graph highlights a strong association between a history of previous heart attack
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and percutaneous coronary intervention. Additionally, it shows a significant relationship

between marital status and living alone, as well as a connection between age and active

employment.

A contingency table is constructed, showing the observed frequencies of category com-

binations for each pair of variables. For example, for MH AGE and SOC ACT EMP:

SOC ACT EMP = 1 SOC ACT EMP = 2

MH AGE = 1 266 527

MH AGE = 2 727 114

MH AGE = 3 754 11

The chi-square statistic is then calculated for the contingency table:

χ2 =
∑ (Oij − Eij)

2

Eij

Where Oij are the observed frequencies and Eij are the expected frequencies under

the null hypothesis of independence.

In this case, the chi-square statistic is χ2 = 953.12.

Subsequently, Cramér’s V coefficient is calculated:

V =

√
χ2/n

min(k − 1, r − 1)

Where n is the total sample size (2399), k is the number of rows in the contingency

table (3), and r is the number of columns in the contingency table (2).

Therefore, Cramér’s V coefficient is:

V =

√
953.12/2399

min(3− 1, 2− 1)
=

√
0.397

1
= 0.63
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Appendix C: Other classification models

Model intercomparison and evaluation

Evaluating the quality of a predictive model isn’t a one-score-fits-all scenario; vari-

ous metrics shed light on different facets of the correlation between actual and forecasted

values. This complexity escalates when dealing with probabilistic predictions (Broecker,

2011). Compared to deterministic predictions, quantitative probabilistic predictions offer

several benefits, including the ability to convey valuable information by introducing a con-

cept of probability or associated cardiovascular risk. In terms of management applications,

probabilistic metrics offer greater adaptability to end users of the model, enabling them

to establish probability thresholds that align best with their specific objectives. Conse-

quently, in our experiment to assess predictive accuracy performance, we will evaluate the

model’s classification capability using the Area Under the ROC Curve (AUC) for model

intercomparison.

In the case of probabilistic predictions, the receiver operating characteristics (ROC)

curve is commonly used as a generalization of the above validation procedure to describe

the accuracy of the model (Mandrekar, 2010). Probabilities above/below a certain prob-

ability threshold u are set to positive/negative. The ROC curve describes the predictive

ability of the system under the whole range of probability thresholds, thus representing a

global measure of model performance. The area enclosed under the ROC curve (AUC),

which ranges from 1 (perfect prediction) to 0 (completely inverted prediction), passing

through 0.5 (random prediction), provides a quantitative measure of model performance.

This curve is defined by plotting the sensitivity(u) versus 1-specificity(u) values for the

deterministic prediction. Thus AUC is to be preferred as a measure of model accuracy

when interest is focused in comparing and ranking the performance of different classifiers

(see e.g. Fielding and Bell, 1997; Bedia et al., 2011).
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Note that all the classifiers have been trained with the same balanced datasets, pre-

pared as detailed in Sec. 4.3, in order to obtain a fair comparison in terms of their

classification ability.

Ultimately, the models were evaluated ten times, with each iteration involving a dif-

ferent subsampling of the balanced dataset and applying Leave-One-Out Cross-Validation

(LOOCV) to calculate the AUC (Kohavi, 1995). In each LOOCV sub-iteration, the dataset

was divided into a training set and a test set, and each model was trained and evalu-

ated. After completing all the sub-iterations for each subsampling iteration, the AUC was

calculated. Once all iterations were completed, graphs were generated to visualize the

distribution of the AUC and the average ROC curves.

Classification algorithm description

The models used included Bayesian networks, random forest, and Naive Bayes, a clas-

sification algorithm based on Bayes’ theorem that assumes independence between features.

This algorithm calculated the probability that an instance belonged to a given class based

on the joint probability of the features and assigned the class with the highest posterior

probability (Ng and Jordan, 2001). SVM was also utilized, which sought to find the opti-

mal hyperplane that maximized the separation (margin) between classes in a feature space,

using data points close to the margin (support vectors) to define and orient the hyperplane

(Cortes and Vapnik, 1995). Additionally, the K-nearest neighbors method (KNN, Lorenz,

1969) was employed, which assigned a class to an instance based on the classes of its K

nearest neighbors in the feature space (Lorenz, 1969).

In Bayesian Networks, the hill-climbing (hc) algorithm was used to learn the model

structure (see Sec. 3.2). The Random Forest was configured with 100 trees (Sec. 4.1).

SVM with a radial kernel was also employed to classify data points and predict class

probabilities for new data, converting these probabilities into binary class labels based on

a threshold.

The K-Nearest Neighbors (KNN) model, which assigns the class of an unknown sample

based on the classes of its k nearest neighbors, was configured with 5 neighbors. Naive

Bayes, assuming independence between features, calculates the posterior probability of
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each class using Bayes’ theorem, assigning the new data to the class with the highest

posterior probability based on the likelihood of observing the features given each class and

the prior probability of the class (Ng and Jordan, 2001).

Intercomparison results

Model CVdeath AMI HEMORRHAGE

Bayesian Network 0.7073 0.5354 0.5857

Random Forest 0.7087 0.5625 0.5687

SVM 0.7042 0.5700 0.5756

KNN 0.6467 0.5189 0.5424

Naive Bayes 0.6899 0.5726 0.6004

Table C1: AUC Results for the 5 Models

Model CVdeath (5th-95th) AMI (5th-95th) HEMORRHAGE (5th-95th)

Bayesian Network 0.6562 - 0.7560 0.4022 - 0.6296 0.5145 - 0.6329

Random Forest 0.6797 - 0.7413 0.5318 - 0.5990 0.5303 - 0.6253

SVM 0.6733 - 0.7340 0.5116 - 0.6152 0.5375 - 0.6115

KNN 0.6097 - 0.6771 0.4966 - 0.5447 0.5087 - 0.5829

Naive Bayes 0.6729 - 0.7170 0.5362 - 0.6105 0.5687 - 0.6272

Table C2: AUC Results (Bootstrapped confidence interval of 90%). Essentially random predictions
(containing 0.5 in their AUC interval) are indicated in italics. These AUC interval results were
obtained from the ROC curved depicted in Figs. C2, C4 and C6 for the classification of death
(CVdeath), stroke (AMI) and hemorrhage respectively.

The AUC values obtained for the five models have been compiled. It was found that,

for cardiovascular death, the best results were achieved with Random Forest, SVM, and

Bayesian networks, all showing very similar results. This suggests that Bayesian networks

could effectively compete with more popular algorithms like Random Forest and SVM.

Regarding the AMI variable, the models did not demonstrate significant discriminative

capability. The best results were obtained with Naive Bayes classifier and SVM. Lastly,

for hemorrhage, slightly better generalization capabilities were observed, with Naive Bayes

again performing the best followed by SVM (Table C1).

The AUCs obtained for predicting AMI and HEMORRHAGE (Table C1) are low

compared to those for predicting CVdeath. This poor performance in predicting AMI and

HEMORRHAGE is likely due to the limited amount of data available for these events.
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The small dataset size can negatively impact the models’ ability to generalize and accu-

rately predict these outcomes. Notably, Naive Bayes is one of the models that performs

comparatively better under these conditions.

To reinforce the validity of predictive models, bootstrapped confidence intervals at

90% were obtained (Table C2). For cardiovascular death, Bayesian networks performed

with a range of 0.6562 to 0.7560, while Random Forest showed more consistent and higher

performance, ranging from 0.6797 to 0.7413. SVM exhibited performance similar to Ran-

dom Forest but with a slightly wider interval, ranging from 0.6733 to 0.7340. KNN had

the lowest performance, with an interval between 0.6097 and 0.6771, whereas Naive Bayes

showed a range of 0.6729 to 0.7170, also demonstrating consistency (Figure C1).

In terms of AMI, both Bayesian networks and KNN included the value 0.5 in their

accuracy, indicating they did not outperform a random classifier. For Random Forest,

SVM, and Naive Bayes, results did not significantly surpass this benchmark (Figure C3).

Regarding hemorrhage, KNN performed similarly to a random classifier, while the

other four models achieved slightly higher results compared to those obtained for AMI

(Figure C5).

When evaluating the ROC curves across the five models, it is observed that Random

Forest tends to produce ROC curves that are less steep or flatter compared to the other

models. This is due to its ability to combine multiple decision trees into a final predic-

tion, providing a more robust classification that is less sensitive to small variations in the

decision threshold (Figures C2, C4, C6).
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Figure C1: AUC distribution for Bayesian Network, Random Forest, SVM, KNN, and Naive
Bayes Models Predicting CVdeath. Bootstrap resampling with 10 iterations.

Figure C2: Mean ROC Curves for Bayesian Network, Random Forest, SVM, KNN, and Naive
Bayes Models Predicting CVdeath
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Figure C3: AUC distribution for Bayesian Network, Random Forest, SVM, KNN, and Naive
Bayes Models Predicting AMI. Bootstrap resampling with 10 iterations.

Figure C4: Mean ROC Curves for Bayesian Network, Random Forest, SVM, KNN, and Naive
Bayes Models Predicting AMI
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Figure C5: AUC distribution for Bayesian Network, Random Forest, SVM, KNN, and Naive
Bayes Models Predicting Hemorrhage. Bootstrap resampling with 10 iterations.

Figure C6: Mean ROC Curves for Bayesian Network, Random Forest, SVM, KNN, and Naive
Bayes Models Predicting Hemorrhage
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