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Discontinuous transition to chaos in a canonical random neural network
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We study a paradigmatic random recurrent neural network introduced by Sompolinsky, Crisanti, and Sommers
(SCS). In the infinite size limit, this system exhibits a direct transition from a homogeneous rest state to chaotic
behavior, with the Lyapunov exponent gradually increasing from zero. We generalize the SCS model considering
odd saturating nonlinear transfer functions, beyond the usual choice φ(x) = tanh x. A discontinuous transition
to chaos occurs whenever the slope of φ at 0 is a local minimum [i.e., for φ′′′(0) > 0]. Chaos appears out of
the blue, by an attractor-repeller fold. Accordingly, the Lyapunov exponent stays away from zero at the birth of
chaos.
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I. INTRODUCTION

Random neural networks are interesting mathematical ab-
stractions for neuroscience [1] and several machine learning
techniques [2]. In these systems the point of optimal compu-
tational performance is generally expected to be at (or near)
the “edge of chaos” [3–7]. Characterizing the onset chaos
in random neural networks represents therefore a significant
scientific endeavor [8,9].

A prototypic random neural network was put forward long
ago by Sompolinsky, Crisanti, and Sommers (SCS) [10]. This
system became a workhorse model for mathematical neuro-
science, at the core of more sophisticated models of plasticity
and learning [11,12], working memory [13,14], multiplicative
gating interactions [15], etc.

The SCS model consists of N � 1 neurons (or “rate
units”), whose activities {hi}i=1,...,N are scalar variables.
They are governed by N first-order ordinary differential
equations:

ḣi = −hi + g
N∑

j=1

Ji jφ(h j ). (1)

The coupling between them is weighted by the N × N ma-
trix J , whose off-diagonal elements are independently drawn
at random from a Gaussian distribution of zero mean and
variance 1/N . In addition, self-coupling is excluded setting
Jii = 0. The so-called transfer, activation, or gain function φ

possesses a sigmoidal shape. Finally, g > 0 is the coupling
constant (or “synaptic gain” in jargon).

Our current comprehension of the SCS model within its
basic setup, φ(x) = tanh x and large size N , is impressive. In
the thermodynamic limit (N → ∞), a direct transition from
a stable fixed point at the origin (FP0) to chaotic behavior
occurs when g is increased above 1. The level of “chaoticity”
gradually increases above g = 1: the asymptotic growth of the
largest Lyapunov exponent (LE) is λ � (g − 1)2/2 [10,16].
At the same time, the emerging chaotic attractor is not low-
dimensional: its dimension grows linearly with the system

size N—i.e., chaos is extensive [17,18]. Moreover, the onset
of chaos coincides with the birth of an unstable heterogeneous
rest state. For finite N this translates into an explosion in
the number n of (unstable) fixed points, scaling exponentially
with N : n ∼ e(g−1)2N for g just above 1 [19,20].

The scenario just described is markedly different from the
classical “low-dimensional” routes to chaos, and from the
onset of phase turbulence or spatiotemporal intermittency in
extended systems [21]. It is not completely robust though. For
instance, noise [22,23] or heterogeneous external inputs [20]
alter the transition to chaos as described above. Still, in both
cases the “chaoticity” (i.e., the LE) smoothly grows from zero.
In parallel, considerable effort has been devoted to generalize
the coupling matrix in (1) [24–27]. To our knowledge, these
works do not contradict the expectation that chaos sets in
smoothly, with a LE growing from zero above threshold. Only
recently, a discontinuous transition to chaos has been detected
in the SCS model supplemented with gating interactions [15]
and in a discrete-time neural connectivity model [9].

In the context of the SCS model the influence of the trans-
fer function φ remains largely ignored, since it is generally
believed that adopting the hyperbolic tangent serves as a “pro-
totype of generic odd symmetric saturated sigmoid functions”
[16]. In this paper we make this assertion more quantitative.
We find that the sign of φ′′′(0) determines if the transition to
chaos is qualitatively as described above, or discontinuous. In
the latter case—occurring when φ′′′(0) > 0—stable FP0 and
a chaotic attractor coexist in a finite interval of g. The chaotic
attractor appears out of the blue in an attractor-repeller col-
lision between chaotic sets. Accordingly, the LE stays away
from zero at the bifurcation point.

This paper is organized in the following way. In Sec. II
we introduce a monoparametric family of transfer functions,
and show the results of our simulations, in particular the co-
existence mentioned above. Section III provides a theoretical
explanation for the observed results, and contains the main
results of this work. In Sec. IV we show a couple of additional
simulations. Finally, Sec. V serves to recall the main conclu-
sions of this work, and to provide some outlook.
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FIG. 1. Transfer function φ(x) for different values of parameter ε.

II. PRELIMINARY NUMERICAL RESULTS

Throughout this work numerical simulations are carried
out with a family of odd symmetric transfer functions:

φ(x) = tanh x + ε tanh3 x. (2)

For ε = 0 we recover the usual choice φ(x) = tanh x. And the
monotonicity of φ(x) is preserved for ε > −1/3. Moreover,
the slope remains 1 at the origin, irrespective of the ε value.
Function φ(x), saturates at ±(1 + ε) as x → ±∞. For the
sake of illustration, φ(x) is represented in Fig. 1 for several
ε values.

We start exploring the dynamics of the model defined by
Eqs. (1) and (2) numerically. We consider one specific net-
work realization of size N = 103. Linearizing the model, and
computing the eigenvalues of the corresponding 103 × 103

Jacobian matrix, we determined when the trivial fixed point
hi = 0 loses its stability. For the particular network the critical
coupling turned out to be g0 = 1.006 . . ., not far from gc = 1,
the actual stability boundary of FP0 in the thermodynamic
limit. Note that the value of g0 is independent of ε since
φ′(0) = 1 always holds.

We integrated Eq. (1) using a fourth-order Runge-Kutta
algorithm with time step �t = 10−2. The state of the network
was tracked measuring the variance:

�(t ) = h2
i − hi

2
. (3)

The overline denotes the population average. In Fig. 2(a) we
show the results for six different values of ε. In each case
the simulation started at a high value of g, and then its value
was decreased quasi-adiabatically. For each value of g (and
ε) the local maxima of �(t ) are represented by dots, while
the time average 〈�〉 is identified by one square. The LE λ

was also computed; see Fig. 2(b). At parameter values with
positive LE, i.e., chaos, the local maxima of � are scattered, as
expected. In contrast, when only a few different local maxima
of � are measured the LE is approximately zero, indicating
periodic dynamics.
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FIG. 2. Numerical results for a particular network of N = 103 units and six different values of ε = {0, 0.2, 0.4, 0.6, 0.8, 1}. The coupling
constant g was decreased at steps of size �g = 5 × 10−3. The simulations were finished when the system falls into the trivial fixed point FP0.
(a) The mean variance 〈�〉 and local maxima of �(t )—denoted by �max—are depicted for each g value with squares and dots, respectively.
The vertical dashed line signals the stability threshold of the homogeneous fixed point, located at g0 � 1.006. The trivial fixed point attractor
hi = 0 present for g < g0 is not shown. Solid lines are the variances c0 of chaotic solutions in the thermodynamic limit, predicted from Eq. (9).
(b) Largest Lyapunov exponent of the attractors in panel (a).
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If we look at the results for the canonical case ε = 0, it is
apparent that chaos—signified by a positive LE—disappears
at a certain value of g above gc (from above). This is the
kind of finite-size effect that we must keep in mind. Finite
networks do not exactly behave as the theory, valid in the
thermodynamic limit, dictates, specially near the bifurcation
points [17,28]. There the results between different realizations
of the coupling matrix will be specially conspicuous. This
drawback is minimized increasing the network size, but it is
difficult in practice since the computational cost grows quite
rapidly with the system size.

Let us now discuss the results for ε > 0 in Fig. 2. The
results for ε = 0.2 are qualitatively similar to those for ε = 0.
The variance attains larger values in the former case because
the transfer function saturates at a larger values (in abso-
lute value). Qualitatively new results are found for larger ε:
Variances remain above zero for g below gc. The most remark-
able observation is the bistability between chaos (or periodic
dynamics) and the trivial rest state (FP0). As occurred for
small ε, the nontrivial attractor becomes periodic before dis-
appearing. One might argue that the finiteness of the network,
or poorly treated transient dynamics, are responsible of the
peculiarities observed. As we show next, our analysis, valid in
the thermodynamic limit, successfully explains the behavior
of the system.

III. THEORY

A. Dynamic mean-field analysis

Analyzing the model (1), even assuming N → ∞, is a
difficult task. Either a path integral approach [16] or dynamic
mean-field theory [8,10,29] can be used. We do not review
these mathematical treatments here. Instead, we simply bor-
row the final results as recently published in [29], and apply
them to our transfer function (2).

In the original work by SCS [10], it was found that the
autocovariance

c(τ ) = 〈hi(t )hi(t + τ )〉 (4)

is a key quantity. Note that c(τ ) in Eq. (4) solely depends
on the time difference, as the dynamics is assumed to settle
into a stationary state. For τ = 0, we recover the variance
c(0) ≡ c0 (〈hi〉 = 0 for N → ∞). Eventually, we shall com-
pare c0 with the time average 〈�〉 computed in Fig. 2. Both
quantities should coincide in the thermodynamic limit as, due
to symmetry, we expect limN→∞ hi = 0.

One may can prove that the autocovariance obeys a second-
order ordinary differential equation [10,29]:

d2c(τ )

dτ 2
= −V ′(c; c0). (5)

The constant c0 plays two roles in this equation: it is a pa-
rameter of the potential V , and it specifies the initial condition
for c0 = c(0). The value of c0 has to be determined requiring
self-consistency. The exact form of V is [29]

V (c; c0) = −c2

2
+ g2 f�(c, c0) − g2 f�(0, c0), (6)

with

f�(c, c0) =
∫∫ ∞

−∞
�

⎛
⎝

√
c0 − c2

c0
z1 + c√

c0
z2

⎞
⎠

× �(
√

c0z2)Dz1 Dz2.

Here Dz is the Gaussian integration measure Dz =
exp(−z2/2)/

√
2π dz, and � is the integral of φ:

�(x) =
∫ x

0
φ(x′) dx′ = (1 + ε) ln(cosh x) − ε

2
tanh2 x. (7)

The last term in Eq. (6) is an offset to ensure V (0, c0) =
0. As already explained, the shape of the potential depends
on the constant c0, acting as a parameter that must be self-
consistent with the dynamics. For instance, a (heterogeneous)
fixed point corresponds to a τ -independent covariance c∗,
which is satisfied by an equilibrium point of Eq. (5). In turn
V (c; c∗) must exhibits an extremum precisely at c = c∗. As
a double check of our numerical integral solvers, we verified
that the variance c∗ of the heterogeneous fixed point, obtained
through static mean-field theory (see the Appendix) corre-
sponded to a minimum of the potential of V (c; c∗) exactly
at c = c∗. Periodic orbits, corresponding to periodic c(τ ) are
also possible, but we do not consider them. It was already
concluded for ε = 0, that such orbits are unstable [10], and
there is not physical reason to expect them to become stable
for ε > 0.

B. Chaotic solutions

For a chaotic solution, c0 is such that, imposing the initial
condition c(0) = c0 (and ċ(0) = 0 as noise is absent [29]) in
Eq. (5), the asymptotic behavior is limτ→∞ c(τ ) = 0, i.e., the
autocorrelation vanishes in the infinite-τ limit. As the initial
and the asymptotic points possess null potential and kinetic
energies, the self-consistent condition boils down to

V (c0; c0) = 0. (8)

Needless to say, this condition can be fulfilled for certain
values of ε and g, but not for others. For example, at the critical
value g = 1, when ε is small or zero the only self-consistent
solution is c0 = 0 (i.e., the fixed point FP0). Contrastingly, for
large enough ε, other self-consistent potentials exist. Four of
them are shown in Fig. 3.

In order to locate chaotic solutions in parameter space, it
is convenient to minimize the numerical effort. Imposing the
condition in Eq. (8) to Eq. (6) we obtain g as a parametric
function of c0:

g2
ch(c0) = c2

0/2

f�(c0, c0) − f�(0, c0)

= c2
0/2∫

[�(
√

c0z)]2Dz − [
∫

�(
√

c0z)Dz)]2
. (9)

The integrals in this expression were solved using Mathemat-
ica, and the results are depicted as solid lines in Fig. 2(a).
For large enough ε two chaotic solutions coexist in a range
of g values below 1. As one could have presumed, the nu-
merical simulations indicate that the branch with the highest
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FIG. 3. Potential V (c; c0) for g = 1 and four different values of
ε. In each case the value of parameter c0 was selected to correspond
to the chaotic state, i.e., a trajectory obeying Eq. (5), with initial
condition c(0) = c0, converges to 0 as τ → ∞. The c0 values are
c0 � 1.203, 0.745, 0.365, and 0.0736; in order of decreasing ε.

variance corresponds to an attractor, while the lower branch
corresponds to a chaotic saddle; see Sec. IV A below.

C. Critical ε

We elucidate next what determines if the line of chaos
emerging at g = 1 has positive or negative slope. We start
assuming 0 < c0  1, and Taylor expand �(

√
c0z) in Eq. (9).

Taking into account that φ is an odd symmetric function, and
φ′(0) = 1, we get

g2
ch � 1

1 + φ′′′(0)c0 + O
(
c2

0

) . (10)

In this formula the sign of the third derivative of φ at zero
determines the existence of the solution either above or below
g = 1. The usual scenario is observed for negative φ′′′(0),
i.e., when the slope of φ at the origin is a local maximum.
Otherwise, if φ′′′(0) > 0, then the chaotic branch emanates
with negative slope, and a fold develops.

For our particular transfer function in Eq. (2), φ′′′(0) =
−2 + 6ε, and therefore the critical ε value turns out to be
εc = 1/3. In Fig. 4 we illustrate the effect of crossing this
value, displaying c0 as function of g (in logarithmic scale). For
the crossover value ε = 1/3 a thick cyan line is displayed. A
fold is apparent for all ε values above 1/3. We interpret this
fold as an attractor-repeller collision of chaotic sets, with the
upper (lower) branch corresponding to the attractor (saddle).
Numerical simulations do not contradict this expectation. For
illustration, two potentials corresponding to the upper and
lower branches of chaotic dynamics are shown by solid gray
lines in Fig. 5.

As mentioned in the Introduction, in the SCS model (with
ε = 0) an unstable heterogeneous fixed point bifurcates from
FP0 at g = 1. In the Appendix we determine the variance
of the heterogeneous fixed point c∗ using static mean-field

0.8 1 1.2 1.4 1.6 1.8 2
10 -2

10 -1

10 0

FIG. 4. Solid line: Variance c0 of the chaotic solutions, obtained
from Eq. (9). Dashed line: Variance c∗ of the heterogeneous rest state,
obtained from Eq. (A1). The arrow indicates the direction of growing
ε. The curves corresponding to ε > 1/3 exhibit a fold.

theory. In Fig. 4 the variance c∗ is depicted by a dashed
line for the same values of ε that c0. Both quantities exhibit
a fold for ε > 1/3. This means that varying g the system
exhibits a fold (or saddle-node) bifurcation of fixed points (in
infinitely many dimensions). The pair of fixed points are both
unstable. This is analytically investigated in the Appendix. We
can also appreciate in Fig. 4 that the values of c∗ and c0 are
asymptotically the same in the g → 1 limit; cf. Eq. (10) and
Eq. (A3) in the Appendix.
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FIG. 5. Self-consistent potentials V (c; c0) for ε = 1 and two dif-
ferent values of the coupling constant g. Dashed red line: The single
potential at the fold, gF

ch = 0.866216 . . .. Solid gray lines: The pair of
self-consistent potentials at g = 0.87 (slightly above gF

ch). The thick
line corresponds to the upper branch (u), and the thin line to the lower
branch (l). The values of the variances are c0 � 0.1964, 0.269, and
0.358.
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D. Finiteness of the Lyapunov exponent at the fold

As already explained, if ε > 1/3, then chaos appears out
of the blue at certain gF

ch in an attractor-repeller collision (as-
suming the N → ∞ limit). Simulations indicate that only the
upper branch of the chaotic solution is attracting. The lower
branch, corresponding to a repeller, terminates at g = 1. In
Fig. 5 the self-consistent potential at the critical value gF

ch for
ε = 1 is depicted by a red dashed line. This potential does not
exhibit any peculiarity (in contrast with the normal scenario
when g → 1+). The covariance c(τ ) will approach zero at a
finite decay rate. This indicates the LE is necessarily above
zero.

Moreover, as originally found [10], the LE is related with
the quantum-mechanical ground-state energy of a particle
confined in a symmetric potential well W (τ ) = −V ′′(c(τ )).
Given the time-independent Schrödinger equation,

−ψ ′′(τ ) + W (τ )ψ (τ ) = Eψ (τ ), (11)

the energy of the ground state E0 yields the LE,

λ = −1 +
√

1 − E0. (12)

In our numerical implementation, we started fitting V (c) by an
even polynomial, such that the nontrivial zero coincided with
c0 up to the six decimal digit (at least). The second derivative
of the polynomial was evaluated at numerical solutions of
c(τ ) obtaining in this way W (τ ). Finally, the value of E0

was obtained applying the shooting method to Eq. (11). We
impose ψ ′(0) = 0 and iteratively search for a solution ψ (τ )
monotonically decreasing to zero (since the ground state is
even symmetric and node-free).

The previous numerical scheme was applied to the upper
chaotic branch for ε = 1 and g � 1. The result is shown by
a solid gray line in Fig. 6(a). The LE disappears with a finite
value at g = gF

ch. This is precisely what should occur in an
attractor-repeller collision between chaotic solutions; see the
solid gray line in Fig. 6(b).

As a complement to the theoretical results we also show
in Fig. 6 the results for two network realizations with N =
4 × 103. In Fig. 6(a) we additionally represent the average
over 20 realizations for N = 103 (a few realizations with no
chaos were discarded). The numerical results are fully con-
sistent with the theory. The gap between theory and numerics
narrows as the system size increases.

It is important to keep in mind that a finite network nec-
essarily behaves as a generic dynamical system (with global
inversion symmetry hi → −hi). Hence, the disappearance of
the nontrivial chaotic state necessarily follows a standard
route, instead of an attractor-repeller collision of chaotic sets.
However, the larger the network the closer to the asymptotic
scenario.

E. Phase diagram

We end this section condensing our previous results in the
phase diagram displayed in Fig. 7. The fold of the fixed point
and the fold of chaos almost overlap; cf. Fig. 4. Increasing
g, the pair of (unstable) fixed points appear prior to the pair
of chaotic states (attractor and repeller). The distance be-
tween both fold bifurcations is tiny. For example, at ε = 1 the
folds for chaos and the fixed point are at gF

ch � 0.8662 and
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FIG. 6. Behavior of two different networks of size N = 4 × 103

as a function of g (ε = 1). (a) The LE for each network. The the-
oretical value of the LE (upper branch) obtained from Eqs. (11)
and (12), as well as the average LE over 20 network configurations
with N = 103, are depicted by a solid line and circles, respectively.
(b) Mean variance 〈�〉 and maximum values of �(t ) for the same
attractors than in panel (a). The solid line is the variance c0 predicted
by dynamic mean-field theory, Eq. (9).

gF
fp � 0.8655, respectively. For a large finite network, this

means that topological complexity (an exponential number of
fixed points), precedes dynamical complexity (chaos).

0.9 1 1.1
0

1/3

2/3

1

FIG. 7. Phase diagram of the SCS model with the transfer func-
tion in Eq. (2). In the light shaded region, the chaotic attractor and
the stable trivial fixed point (FP0) coexist. The pink square is located
at the doubly degenerate point (g, ε) = (1, 1/3).
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FIG. 8. Time evolution of �(t ) for a network of size N = 4 ×
103 with ε = 1 and g = 0.92. The solid gray line is the result of the
unperturbed dynamics. The dashed and dash-dotted lines correspond
to initial conditions obtained rescaling the variance � at t = 0 by
a factor f = 0.228814 . . .. The factors f differ in 10−15. After a
transient near the saddle, the trajectory depicted by a dash-dotted
blue line returns to the chaotic attractor, while the dashed red one
converges to the trivial fixed point (� = 0). Two horizontal dotted
lines mark the average variance c0 of two self-consistent chaotic
solutions according to dynamic mean-field theory; see Figs. 4 or 6(b).

IV. ADDITIONAL NUMERICAL SIMULATIONS

We now present a couple of simulations, which intend to
provide a wider perspective of the system behavior. They were
carried out with N = 4 × 103 units and ε = 1.

A. The saddle solution

We now corroborate the existence of a saddle solution
between the chaotic attractor and the stable trivial rest state.
Adopting g = 0.92, we let the system evolve in the chaotic
attractor up to at a particular time (t = 0). At this moment
the coordinates of all units are rescaled by a certain factor√

f with respect to the population average. As we may see in
Fig. 8, at the critical f value (for our particular numerical ex-
periment fc = 0.228814 . . .) the dynamics initially converges
to a saddle state. Remarkably, the range of values exhibited by
the variance �(t ) is near the value c(l )

0 predicted in the ther-
modynamic limit. For f slightly above fc the system returns
to the chaotic attractor, while just below the system becomes
attracted by the trivial rest state FP0. This means that the stable
manifold of the saddle is the boundary between the basins of
attraction of both attractors.

B. High-dimensional chaos

The standard SCS model exhibits hyperchaos, i.e., more
than one positive Lyapunov exponent [17]. We have com-
puted the largest Lyapunov exponents for the two networks
in Fig. 6, obtaining 13 and 15 positive Lyapunov exponents
for networks no. 1 and no. 2, respectively. The relevant part of
the Lyapunov spectrum is shown in Fig. 9.

The quasicontinuous appearance of the Lyapunov spectrum
suggests that—as in the standard SCS model [17]—chaos is
extensive, i.e., typical measures of chaos (the fractal dimen-
sion, the Kolmogorov-Sinai entropy, etc.) grow linearly with
the network size.

1 20 40 60

-0.06

-0.04

-0.02

0

0.02

FIG. 9. Sixty largest Lyapunov exponents {λi}i=1,...,60 for the two
networks in Fig. 6 at g = 1 (ε = 1, N = 4 × 103). The integer part
of the Kaplan-Yorke dimension is 28 for network no. 1, and 32 for
network no. 2.

V. CONCLUSIONS

In this work we have analyzed the classical SCS ran-
dom neural network considering a monoparametric family
of odd-symmetric transfer functions φ, which includes the
usual hyperbolic tangent as a particular case (ε = 0). The
third derivative of the transfer function at zero determines
the abruptness of the edge of chaos. This might be relevant
for tuning the learning capability of neural networks, and
certainly deserves further study. When the transfer function
φ(x) is concave for all x > 0 (ε < 1/3) the usual continuous
transition from the trivial fixed point to the chaotic phase
is observed. At ε = 1/3 (φ′′′(0) = 0) the transition to chaos
becomes particularly abrupt, while remaining continuous.
Finally, for ε > 1/3, the transition becomes discontinuous.
(Retrospectively, this situation had been already anticipated
for the time-discrete SCS model with an “accelerating non-
linearity” [6].) In the discontinuous transition, the appearance
of a pair of heterogeneous fixed points precedes chaos, which
appears out of the blue in an “attractor-repeller fold.” It must
be stressed that in low-dimensional systems such a fold for
chaotic sets is not observed (it may be fabricated, of course,
but it is completely nongeneric).

Here we have focused on the chaotic and the resting states.
Self-consistent periodic solutions corresponding to periodic
c(τ ) also exist, although they are expected to be unstable.
Unstable periodic orbits constitute the skeleton of finite di-
mensional chaotic attractors. Do they play any relevant role?
A quick analysis indicates that periodic c(τ ) solutions also
appear via fold bifurcations. However, those with positive en-
ergy, able of visiting negative values of c, appear only for g >

gF
ch. Is this a generic property of infinite-dimensional chaos in

random neural networks with global hi → −hi symmetry?
In the mind set of comparing with low-dimensional

systems, we found the phase diagram in Fig. 7 quite sug-
gestive. The degenerate point at (g, ε) = (1, 1/3) resembles
codimension-two points encountered in bifurcation theory.
The spectral properties of infinite-dimensional random net-
works do not permit usual center manifold reduction. Still,
one may wonder if there exists a systematic classification
of bifurcations for these systems. At this stage, we can only

014201-6



DISCONTINUOUS TRANSITION TO CHAOS IN A … PHYSICAL REVIEW E 110, 014201 (2024)

conclude that the dynamics of random neural networks repre-
sents a challenge for chaos theory.

Finally, it deserves to be emphasized that this work deals
with a network of idealized “rate neurons.” In the spirit of
[8] (see also [30,31]), it would be interesting to verify if the
results can be extended to spiking neuronal circuits.
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APPENDIX: HETEROGENEOUS FIXED POINT

1. Static mean-field theory

Besides the homogeneous state FP0 (hi = 0), heteroge-
neous fixed points exist for large enough g. They are solutions
of the fixed-point equation h∗

i = g
∑

j Ji jφ(h∗
j ). In the follow-

ing calculations we assume the system is self-averaging; see,
e.g., the Appendix in Ref. [26] for a more rigorous treatment.

In the thermodynamic limit, all the heterogeneous solu-
tions become the same density ρ(h∗). For large N , it is
reasonable to expect Ji j and h∗

j to become uncorrelated.
Hence, by virtue of the central limit theorem, ρ(h∗) is
a normal distribution around zero, with variance c∗. Self-
consistency implies the variance necessarily satisfies

c∗ = g2
fp

∫ ∞

−∞
φ
(√

c∗z
)2

Dz. (A1)

From this expression we obtained the parametric curves
gfp(c∗) in Fig. 4. (Other order parameters, besides the variance
c∗, can be of interest as well [32].)

Taylor expanding Eq. (A1), one finds how the heteroge-
neous solution branches off the trivial fixed point. We get

c∗ = g2
fp

∫ ∞

−∞

[
c∗ z2

2
(φ2)′′ + c2

∗z4

24
(φ2)′′′′ + O(c3

∗)

]
Dz, (A2)

where the derivatives of φ2 are evaluated at 0; we have used
the identities φ(0) = φ′′(0) = 0. After a few manipulations

we obtain the asymptotic dependence of gfp on c∗:

g2
fp(c∗) � 1

1 + φ′′′(0)c∗ + O(c2∗)
� 1 − φ′′′(0)c∗, (A3)

where we have assumed φ′(0) = 1. It is manifest in Eq. (A3)
that the sign of φ′′′(0) determines the orientation of the branch
emanating from g = 1 in the bifurcation diagram: If φ′′′(0) <

0 [i.e., φ′(0) is a local maximum], then the usual scenario
is recovered. Instead, if φ′′′(0) > 0, then the nontrivial fixed
point emanates from FP0 towards g < 1. As written in the
main text φ′′′(0) = −2 + 6ε, and the critical ε value is hence
εc = 1/3.

2. Stability of the heterogeneous fixed point

As mentioned in the main text, the heterogeneous rest
states are always found to be unstable. The linear equation for
infinitesimal perturbations is

δ̇hi = −δhi + g
∑

j

Ji jφ
′(h∗

j )δh j . (A4)

The Jacobian is minus the identity matrix plus a inhomoge-
neous random matrix, with the elements in the jth column
possessing a specific variance φ′(h∗

j )2/N . In the thermody-
namic limit the eigenvalues of the Jacobian are contained
in a circle of radius squared r2 = φ′(h∗

j )2 centered at −1
[24,30,33]. The eigenvalue with the largest real part is

λmax = −1 + gr, (A5)

where r satisfies

r2 =
∫ ∞

−∞
[φ′(

√
c∗z)]2Dz. (A6)

Numerical solution of this system yields positive λmax in all
cases we have investigated. In the small c∗ region we need
to Taylor expand the right-hand side of Eqs. (A1) and (A6)
at order c3

∗ and c2
∗, respectively. After some algebra, we get

the asymptotic value of the dominating eigenvalue for the rest
state branching off FP0:

λmax = 6
(
ε − 1

3

)2
c2
∗ + O(c3

∗). (A7)

Remarkably, λmax remains positive for all ε (save for ε = 1/3,
in which case the next order in c∗ should be computed).
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