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Abstract— Active transponders based on super-regenerative
oscillators (SROs) have the advantages of a high gain, low
consumption, and a compact implementation. They rely on
a switched oscillator excited by a low amplitude frequency-
modulated continuous-wave (FMCW) signal, which provides an
approximately phase-coherent response. Due to the complexity
of their operation mode, involving the start-up transient and a
time-varying phase shift, their realistic modeling is demanding.
Here, we present an in-depth semianalytical investigation of
an SRO transponder excited by a frequency-stepped signal,
which includes, for the first time to our knowledge, a thorough
analysis of the noise perturbations. The SRO is analyzed with
a 2-D envelope-domain formulation, derived from a current
function extracted from harmonic balance. As will be shown,
the SRO response to the incoming signal can be predicted
with two nonlinear functions, corresponding to the amplitude
and phase, obtained in a single oscillation interval. We will
derive an Ornstein–Uhlenbeck system from which the variance
of the SRO amplitude and phase will be determined through
a detailed analytical approach. Like the SRO response, the
noise behavior can be predicted with functions extracted from
a single oscillation pulse, which will relate the noise effects to
the unperturbed amplitude and phase at the various oscillation
stages. The complete investigation provides insight into the effect
of nonlinearity and noise on the detected baseband signal and
the estimated distance. It will be applied to an SRO at 2.7 GHz,
which has been manufactured and measured.

Index Terms— Active transponder, envelope transient, super-
regenerative oscillator (SRO).

I. INTRODUCTION

THE switched injection locked oscillator, first proposed
in [1], enables the implementation of a novel type of

secondary radar system with ranging and communication
capabilities. It is based on a super-regenerative oscillator
(SRO) that is switched on and off by a quench signal and
responds to the interrogation in an approximately phase-
coherent manner [1], [2], [3]. Thus, it avoids the need for
synchronization with the reader system. Besides its compact
implementation, the SRO has the advantages of low power
consumption and high gain, mainly due to the oscillator’s
exponential start-up transient [2], [4]. Following [1] and [5],
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other concepts and applications have been proposed [6],
[7], [8], [9], [10], including positioning based on multiple
backscatter transponders [7] and novel implementations with
downmixing capabilities to boost the reception frequency [6],
using subharmonic downconversion to increase the SRO oper-
ating frequency and bandwidth.

From an analysis viewpoint, previous theoretical deriva-
tions [1], [2], [3] have established the operating principles
of the SRO, which have been experimentally confirmed
in [1], [3], [5], [6], [7], [8], [9], and [10]. However, the
demonstrations are based on idealized oscillator models
and simplified descriptions of specific circuits, such as the
cross-coupled architecture considered in [11]. In the analysis
of the SRO transponder presented in [1], the switched oscil-
lator is described as a carrier frequency with a rectangular
amplitude modulation. Instead, the envelope of the switched
oscillation will exhibit a start-up transient and other dynamic
effects, disregarded in previous models. In those models, the
phase difference between the oscillation and the input signal
is assumed to be a linear function of time. However, the oscil-
lation frequency undergoes instantaneous variations during the
transient stage, which will affect the SRO response. Although
the simplified analyses offer an insightful description of the
transponder’s operation, they are generally insufficient for
accurately predicting the SRO behavior in realistic scenarios.

In the work [12], we presented a realistic modeling approach
for an SRO transponder excited by a frequency-stepped con-
tinuous wave (FSCW), intended for ranging applications. The
model consisted of a nonlinear phase function γ (t, ω), depend-
ing on time and the frequency ω of the received signal. The
phase function γ (t, ω) was extracted through a circuit-level
envelope-transient simulation of the standalone SRO during a
single quench period. Then, the response to an FSCW interro-
gation signal was obtained by introducing the function γ (t, ω)
into the system-level description of the complete transponder,
including propagation effects and downward mixing. The use
of the function γ (t, ω) avoided the need to simulate the oscil-
lator during the entire time interval required to estimate the
distance d to the target. However, the function γ (t, ω) in [12]
was purely numerical, preventing any insight into the system
operation. Moreover, the prediction of noise effects using that
function would be limited to costly Monte Carlo simulations.

This work will extend [12] with an in-depth semianalytical
investigation of the SRO transponder, including, for the first
time to our knowledge, a thorough analysis of the effect of
noise perturbations. The SRO analysis will begin with a 2-D
envelope-domain formulation [13], which will be treated in
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an original manner to facilitate its application to the SRO
transponder. This formulation is derived from a current func-
tion extracted through circuit-level harmonic balance (HB),
under any required number of harmonic terms, which ensures
both accuracy and general applicability. To obtain the response
of the SRO transponder at each frequency step of the input
signal, we will derive, for the first time, an amplitude function
and a phase function, defined in a single oscillation interval.
Their semianalytical nature will provide insights that are
not possible with the black-box envelope-transient analysis
of [12]. This should enhance the understanding of the effects
of the quench signal and the received signal on the SRO
dynamics. Unlike other nonlinear models, the amplitude and
phase functions can accurately model potential pulling and
locking phenomena [11].

However, the main advantage of the new formulation is
its suitability for the noise analysis of the SRO transponder.
To this end, the derivations in [13] will be adapted to the
transponder system. We will demonstrate that the noise behav-
ior at each input frequency can be modeled using functions
extracted from a single oscillation interval, unlike the case
of [13]. We will derive an Ornstein–Uhlenbeck system [14]
from which the variance of the SRO amplitude and phase
will be determined through a detailed analytical approach,
presented here for the first time. Note that the circuit-level
envelope-transient simulation would be limited to a costly
Monte Carlo analysis, offering no insight. The analytical
expressions will relate the noise behavior with the unperturbed
amplitude and phase at the various stages of the oscillation
pulse. For the first time to our knowledge, the new expressions
include the oscillator transient and particularize to the results
of the well-known works [15], [16] when reaching the periodic
steady state. The analysis will aid in understanding how
noise perturbations affect the detected baseband signal and the
estimated distance. It will be illustrated through its application
to an SRO at 2.7 GHz, which has been manufactured and
measured.

The article is organized as follows. Section II will demon-
strate the possibility to describe the SRO with a phase function,
extracted in a single quench interval. Section III will present
the semianalytical formulation from which the amplitude and
phase functions will be derived. Section IV describes the
amplitude and noise analysis. Finally, Section V presents the
experimental results.

II. TRANSLATION OF THE SENSOR SYSTEM DYNAMICS TO
A SINGLE QUENCH INTERVAL

A. Operating Principle of the SRO Transponder

The schematic of the SRO transponder system is shown in
Fig. 1. The base station transmits a linear stepped-frequency-
modulated signal

vRF(t) = VRF cos θRF(t) (1)

where the instantaneous frequency θ̇RF(t) grows in steps
µ1T of time-length 1T at the sweep rate µ [1]. In an
interrogation cycle, it can be expressed as θ̇RF(t) = ωk = ωosc
+ µ(k − N )1T for t ∈ [k1T, (k + 1)1T ), where ωosc is
the free-running frequency of the transponder oscillator, and

Fig. 1. Block diagram of the SRO transponder system.

Fig. 2. Schematic showing the time variation of the variables θ̇RF(t), vo(t),
and vb(t) during an interrogation cycle t ∈ [k1T, (k + 1)1T ). The time axis
is common to the three variables.

k = 0, . . . , 2N (see Fig. 2). As explained in [1], the overall
modulation bandwidth � = 2Nµ1T must be small enough
for the instantaneous RF frequency θ̇RF(t) to be close to the
oscillator free-running frequency ωosc.

The SRO, at a distance d from the transmitter, receives the
RF input signal: vin(t) = κ(d)vRF(t − τ) = Vin cos θRF(t − τ),
where κ(d) is the attenuation due to the transmission loss,
Vin = κ(d)VRF is the attenuated amplitude, and τ = d/c is the
time of flight. On the other hand, the oscillation is switched on
and off by a low-frequency Tm-periodic quench voltage signal
vq(t) that modulates the bias voltage. Note that 1T is larger
than Tm . Here, to simplify the analysis, we will choose 1T to
be a multiple of Tm , setting 1T = qTm , q ∈ Z+. Because of
the quench source vq(t), the SRO oscillates during intervals
of time length Ts that repeat periodically with period Tm (see
Fig. 2). In the time between these intervals, the SRO does not
oscillate, providing vo(t) ≃ 0. The output voltage vo(t) is sent
to the transmitter and then mixed with vRF(t) (see Fig. 1).
The resulting signal is filtered by a low-pass filter to obtain
the baseband component

vb(t) = (vr (t)vRF(t)) ∗ h(t) (2)

where vr (t) = κ(d)vo(t − τ), h(t) is the impulse response
of the filter, and ∗ is the convolution operator. Next, the
baseband signal vb(t) is processed in the following way. Let us
consider the interval [k1T, (k + 1)1T ] corresponding to the
kth frequency step. Inside this interval, there are q equivalent
subintervals, where vb(t) ̸= 0. For each kth frequency step,
we will select only one of these intervals Rk denoted as
reception subinterval, to take the sample sk at the receiver (see
Fig. 2). Each Rk is associated with an SRO oscillation interval
Ok = [tk, tk + Ts]. Note that at t = tk , the quench signal vq(t)
triggers the oscillation. The reception interval Rk is delayed
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from Ok by the time of flight τ , fulfilling Rk = [tk + τ, tk +

Ts + τ ]. The starting point of each oscillation interval Ok can
be expressed as tk = k1T + t0, where t0 + τ is the starting
time of the first reception interval R0. The baseband signal
vb(t) is sampled in Rk obtaining

sk = vb(tk + ν + τ) (3)

where ν ∈ (0, Ts). The set of samples is obtained by
repeating this procedure for the reception intervals Rk for
k = 0, . . . , 2N . The method to estimate the distance d between
the transmitter and the SRO from the set of samples {sk} will
be presented in Section II-B. In that section, the possibility
to model the SRO transponder behavior from the simulation
of just one interval for each RF input frequency will be
demonstrated.

B. Envelope-Transient Description of the System Dynamics
in Each Oscillation Interval Ok

The frequencies ωk ∈ [ωosc − �/2, ωosc + �/2] and ωosc
are, in general, much higher than ωm = 2π/Tm . In the
following, only the fundamental-frequency component of the
SRO output signal vo(t) will be considered due to the oscillator
output-filtering effects. However, as shown in Section III, the
circuit-level analysis will be carried out with NH harmonics.
The SRO output signal vo(t) is

vo(tk + ξ) ≃ Ak(ξ) cos
(
ωkξ + θin,k + φk(ξ)

)
(4)

where ξ ∈ [0, Ts] is a time variable that extends to the
length of the oscillation interval and θin,k = θRF(tk − τ) is the
instantaneous phase of the SRO input at the beginning of Ok .
The variables Ak(ξ) and φk(ξ) are the time-varying amplitude
and phase of the SRO output voltage at the fundamental
frequency in Ok . The fundamental frequency in (4) has been
set to ωk to facilitate the comparison with vRF(t). Without
loss of generality, the time origin can be chosen so that t0 is
a multiple of Tm . Then, the quench signal in Ok satisfies

vq(tk + ξ) = vq(ξ) ∀k (5)

where the condition k1T = kqTm has been applied. The RF
input at the SRO in Ok is

vin(tk + ξ) = Vin cos θRF(tk + ξ − τ)

= Vin cos (ωkξ + θRF(tk)− ωkτ) (6)

where we have applied

θin,k = θRF(tk)− ωkτ (7)

where it has been assumed that the start time of the first
oscillation interval O0 fulfills t0 > τ . The signals entering
the mixer in (2) during the reception interval Rk are

vRF(tk + ξ + τ) = VRF cos(ωk(ξ + τ)+ θRF(tk))

vr (tk + ξ + τ) = κ(d)Ak(ξ) cos
(
ωkξ + θin,k + φk(ξ)

)
. (8)

For the expressions (8) to be valid, the two signals must
correspond to the same step of the RF frequency ωk . This
is equivalent to Ok, Rk ⊂ [k1T, (k + 1)1T ], implying that

tk + Ts + τ < (k + 1)1T . Introducing expressions (8) in (2),
the baseband signal in Rk can be approached as

vb(tk + ξ + τ) ≃
1
2

Vin Ak(ξ) cos(2ωkτ − φk(ξ)) (9)

where it has been assumed that the low-pass filter removes the
higher-order frequency components of the mixer output. Next,
in each Rk , the signal vb(tk + ξ + τ) is sampled at ξ = ν ∈

(0, Ts), which provides the following set of samples (3):

sk =
1
2

Vin Ak(ν) cos(2ωkτ − φk(ν)) (10)

for k = 0, . . . , 2N . In this work, we will make use of the
functions Ak(ξ) and φk(ξ) to obtain a realistic model of
the SRO transponder. These functions are determined by the
initial conditions at the kth oscillation interval. The method to
calculate these functions from the simulation of the SRO in the
short time interval ξ ∈ [0, Ts] will be provided in Section III.
This will avoid simulating the whole time interval t ∈ [0, tk),
which will significantly reduce the computational cost and the
accumulation of numerical errors.

To illustrate the usage of the new functions, they will be
initially particularized to the previous idealized model [1]. This
model assumes that the SRO output voltage in Ok has the form

vo(tk + ξ) = A(ξ) cos
(
ωoscξ + θin,k + θL

)
(11)

where A(ξ) is independent of the input frequency ωk and θL

is a constant phase shift that is independent of the frequency
ωk of the RF input source. Equating (11) with (4), we obtain
the linear function

φk(ξ) = (ωosc − ωk)ξ + θL . (12)

Introducing (12) in (9) for ξ = ν and substituting ωk =

ωosc + µ(k − N )1T , expression (10) becomes

sk =
1
2

Vin A(ν) cos(ωb(τ )k1T + φb(τ )) (13)

which conforms to a periodic sinusoidal signal with frequency

ωb(τ ) ≡ µ(2τ + ν) (14)

and phase

φb(τ ) ≡ ωb(τ )

(
ωosc

µ
− N1T

)
− νωosc + θL . (15)

The baseband frequency ωb resulting in a distance d = cτ
can be detected through the application of the fast Fourier
transform (FFT) to the sampled waveform (13). Then, the
estimated distance de is derived from (14) as

de =
c
2

(
ωb

µ
− ν

)
. (16)

Note that if the function φk(ξ) agrees with the linear
expression (12), the set of samples sk in (10) conform a
sinusoidal signal whose frequency ωb is given by (14), and
therefore, de = d

de =
c
2

(
2π
1L

− ν

)
= cτ = d (17)

where 1L = 2π/(2τ + ν). However, we must note that in
practice, the frequency dependence of the function φk(ξ) can
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be nonlinear, and therefore, φk(ξ) may disagree with the linear
expression (12). In addition, the noise sources existing in the
SRO will perturb both the amplitude and phase of the output
voltage (4), thus distorting the baseband signal (9). Thus, the
baseband frequency ωb obtained from the FFT applied to the
set of samples sk in (10) will be different from the value (14).
Consequently, the distance de estimated with (16) will differ
from the real distance d.

In Sections III and IV, a nonlinear model of the SRO will
be derived to analyze both the amplitude and phase functions
Ak(ξ), φk(ξ) and the amplitude and phase perturbations pro-
duced by the noise sources.

III. ANALYSIS OF THE SRO TRANSPONDER IN THE
ABSENCE OF NOISE SOURCES

In principle, envelope transient [17], [18] should be
well-suited for the analysis of the SRO transponder due to
the existence of two different time scales, associated with the
oscillation and the quench signal. However, this circuit-level
analysis presents two main drawbacks. On the one hand,
its black-box quality prevents understanding the mechanisms
by which the external sources influence the SRO’s transient
dynamics. On the other hand, under the effect of noise sources,
the high number of variables involved (NH harmonics for each
state variable) will limit the stochastic analysis to brute-force
simulations. To perform a realistic and insightful analysis,
we will adapt the semianalytical formulation of [13] and [19]
to the transponder system. This adapted formulation will be
used to obtain the amplitude and phase functions that provide
the SRO response to an FSCW in a single oscillation interval.

A. Semianalytical Formulation

We will first consider the HB system that describes the
standalone SRO at a given dc value of the quench signal
vq with the RF input source: vin(t) = Vin cos (ωt + θin). The
voltage at the output node can then be represented as

vo(t) =

NH∑
p=−NH

X pe j pωt (18)

where the first harmonic of the series will be expressed as
X1 = Ae jφ1 with (A, φ1) being constant values. We will
make use of the first-harmonic equation resulting from the
application of Kirchhoff’s current law (KCL) to the oscillator
output node

I1(ω, X) = 0 (19)

where I1 is the first harmonic component of the total current
entering the output node and X is the vector containing the
harmonic components of the oscillator state variables and input
sources. By applying the implicit function theorem [20] to
the HB system, we can express X = X (vq , A, φ1, ω, Vin, θin).
Thus, (19) can be written as

I1
(
vq , A, φ1, ω, Vin, θin

)
= 0 (20)

where the phase dependence in (20) must preserve the sys-
tem invariance under a global constant time shift, which is
equivalent to

I1
(
vq , A, φ1 +1α,ω, Vin, θin +1α

)
= 0 ∀1α. (21)

Considering (21) and the fact that Vin is small, the current
function I1 can be approached by a first-order Taylor series
obtaining [22]

I1 = Y
(
vq , A, ω

)
Ae jφ1 + B1Vine jθin + B−1Vine j (2φ1−θin).

(22)

The coefficients B1,−1 are given by B1 = (Br −

j Bi )/2 and B−1 = (Br + j Bi )/2, where Br ≡ ∂ I1/∂U r
|Vin=0

and Bi ≡ ∂ I1/∂U i
|Vin=0, the superscripts r, i in U mean real

and imaginary parts, and U ≡ Vine jθin [22]. Note that the
phase dependence in (22) fulfills condition (21). To focus on
the phase deviation of the SRO from the input RF source, it is
useful to perform in (22) the change of variable φ = φ1 − θin.
During the SRO performance, the variables A(t) and φ(t)
become time varying by the effect of the quench signal vq(t).
To analyze their dynamics, the frequency dependence in (20)
is modified as ω → ω− js, where s acts as a time-derivative
operator [21]. Since Vin is small, the current source I1 can be
approached by a first-order Taylor series about ω = ωosc. The
use of the quiescent frequency ωosc is enabled by the narrow
modulation bandwidth � ≪ ωosc and the slow-varying nature
of the quench frequency (ωm = 2π/Tm ≪ ωosc). Then, the
envelope-domain equation associated with (20) is

I1(t) = Y
(
vq(t), A(t), ωosc

)
A(t)

− jYω
(
vq(t), A(t), ωosc

)(
Ȧ(t)+ j A(t)

(
φ̇(t)+1ω

))
+ Iin

(
vq , A(t), φ(t)

)
= 0 (23)

where the admittance function Y (η, A, ω) = I1/X1|Vin=0 has
been introduced, t ∈ [0, Tm], 1ω ≡ ω − ωosc, and the
current function Iin (depending on Vin) models the effect of
the RF input source. Note that in (23), we have considered the
frequency derivative Yω(vq , A, ωosc) ≡ ∂Y (vq , A, ωosc)/∂ω

[20]. In this analysis, it has been assumed that the quench
frequency is low enough to neglect baseband filtering effects
on the amplitude and phase dynamics [19]. A full nonlinear
dependence is considered in A, which will grow from a very
small value to a steady state. The current function Iin in (23),
accounting for the input signal, has the form

Iin(η, A, φ) ≡ B1Vine− jφ
+ B−1Vine jφ (24)

where the coefficients B1,−1 depend, in general, on the values
of (vq , A), which will vary during the SRO performance.
This dependence is explicitly shown in (23). The nonlinear
functions (Y, Yω, Br , Bi ) can be easily calculated with circuit-
level HB, as explained in Appendix.

The nonlinear system (21) contains two coupled differential
equations in the state variables (A, φ). Note that when the SRO
is introduced in the transponder system, the frequency ω of
the RF source varies across the oscillation intervals Ok , which
is explicitly indicated with the notation: A(t, ω) and φ(t, ω).
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TABLE I
PROCEDURE TO OBTAIN A(t, ω) AND φ(t, ω)

Fig. 3. SRO circuit. The prototype is an FET-based SRO built on
Rogers 4003 C substrate (εr = 3.55 and H = 32 mils). The transistor is
an ATF-34143 HEMT. The quench signal vq (t) is introduced through the
gate bias network. Port 1 is used to inject the RF signal vin(t) and extract the
output voltage vo(t). Port 2 is used to monitor the oscillation signal.

B. Calculation of the Amplitude and Phase Functions Ak(t)
and φk(t)

As shown in [13], before the quench signal vq(t) triggers the
oscillation, the SRO system will have converged to a periodic
solution of small amplitude A = ε(Vin, ω), with a phase
φ = χ(Vin, ω), forced by the input RF source, at the frequency
ω. This forced solution can be easily obtained by solving (23)
for Ȧ = φ̇ = 0. Note that the above convergence to the forced
solution requires oscillation extinction before the start of each
new quench cycle, which is a general condition for the proper
operation of any SRO [2]. The dc component, amplitude, and
period of the quench signal must be chosen appropriately,
which can be achieved through a simple simulation of the
SRO in the absence of the RF input. When the oscillation
is triggered by vq(t), the system evolves from this forced
solution to the oscillating solution (A(t, ω), φ(t, ω)). Thus, the
amplitude and phase of the SRO output voltage in the interval
Ok are obtained by setting ω = ωk and solving (23) with
the initial conditions A(0, ωk) = ε(Vin, ωk) and φ(0, ωk) =

χ(Vin, ωk). The integration of (23) provides Ak(ξ) = A(ξ, ωk)

and φk(ξ) = φ(ξ, ωk), where ξ ∈ [0, Ts]. The complete
procedure to calculate the functions A(t, ω) and φ(t, ω) is
summarized in Table I.

The analysis method is illustrated through its application to
an FET-based oscillator at ωosc = 2π · 2.76 GHz shown in
Fig. 3. The oscillation is switched on and off with a square
voltage signal vq(t) of period Tm = 1 µs, introduced through
the gate bias network. In the quench cycle t ∈ [0, Tm], the
oscillation is triggered at t = 0, fulfilling vq(0) = von

q =

−0.7 V and switched off at t = Ts , where Ts = 500 ns and
vq(Ts) = voff

q = −1 V. The RF amplitude is Vin = 0.2 mV.
The amplitude and phase components A(t, ω) and φ(t, ω)

have been calculated following the procedure of Table I for
(1ω/2π) = −8 and 8 MHz. They are represented in Fig. 4,

Fig. 4. Simulation of the standalone SRO. The input RF source amplitude
and frequency are, respectively, Vin = 0.2 mV and ω = ωosc + 1ω, where
(1ω/2π) = −8 and 8 MHz. The results of the new model are validated
with independent envelop-transient simulations in HB software. (a) Amplitude
solution A(t, ω), which can be approached to be independent of ω. (b) Phase
solutions φ(t, ω).

where they are validated with independent envelope-transient
simulation in commercial HB software (ADS at Keysight).
As can be seen, since Vin is very small and the SRO operates
in the nonlinear mode, the oscillation amplitude A(t, ω) is
practically independent of ω in the frequency range consid-
ered. It departs from the small value A(0, ω) = ε(Vin, w) and
eventually reaches the steady state, so the interval t ∈ [0, Ts]

can be divided into transient and steady-state subintervals. For
the two frequencies, 1ω/2π = −8 and 8 MHz, the trajectory
reaches the steady state at t = tss ≃ 5 ns after a transient of
rapid growth in φ(t, ω) [see Fig. 4(b)]. For t > tss, the phase
φ(t, ω) increases or decreases monotonically, depending on
the sign of 1ω/2π . This is because, as demonstrated in [20]
and [23], the output voltage vo(t) contains the beat frequency
ω′

osc −ω, where ω′
osc is the SRO autonomous frequency, which

can be pulled from its free-running value ωosc toward ω [20],
[23]. This makes the mean value of the frequency shift to be
⟨φ̇(t, ω)⟩ ≃ ω′

osc −ω for t ≥ tss. The beat frequency decreases
for a smaller 1ω = ωosc − ω, which reduces the absolute
value of the phase slope of the curves shown in Fig. 4(b).

As shown in Fig. 4, there is a good agreement between
the circuit-level envelope transient and the semianalytical
formulation. In circuit-level envelope transient, all the circuit
state variables are integrated from their initial conditions,
while the semianalytical formulation considers the fundamen-
tal frequency of the voltage at the observation node and its
initial condition. However, in the two cases, the dominant
initial values are provided by the RF input, properly captured
by the semianalytical formulation. On the other hand, as the
oscillation amplitude grows, the structural difference between
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the two formulations becomes less relevant since SRO tends
to the steady-state oscillation, which should be the same for
the two formulations. Their convergence is due to the recovery
effect of the steady-state oscillation amplitude.

The sampled phase function φ(ν, ω) has been represented
in Fig. 5(a) choosing ν = Ts/2. The result provided by the
linear analysis (12) and (13) is superimposed, where a suitable
phase shift θL has been chosen to facility the comparison.
Remember that this value does not influence the distance esti-
mated with (16). If the difference |ω − ωosc| is high enough,
we will have ω′

osc ≃ ωosc and φ(ν, ω) ≃ φ(tss, ω) + (ωosc
− ω)(ν − tss). Thus, the slope ∂φ(ν, ω)/∂ω ≃ −ν will agree
with that of the linear analysis provided in (12). However,
as shown in Fig. 4(b), the nonlinear function φ(t, ω) exhibits
a transient subinterval disregarded by the ideal model (12).
The function φ(tss, ω) is frequency-dependent, which will give
rise to discrepancies in the value φ(ν, ω) attained by the two
models. Note that these discrepancies are well modeled by
system (23), which, for t > tss, provides the same value of
φ(t, ω) as the envelope-transient simulation in HB software.
In addition, as ω approaches ωosc, we observe a nonlinear
behavior near the central region of Fig. 5(a). The integration
of (23) can capture the frequency pulling, which will be
stronger for a higher Vin and a smaller difference between ω
and ωosc. For small enough |ω − ωosc|, the oscillator may even
get locked to the input RF source and ω′

osc = ω. We would
have φ̇(t, ω) = 0, producing the almost flat central zone.
This is observed with both circuit-level envelope transient
and semianalytical model, which exhibit a good agreement
for the reasons explained above. The pulling effects will be
relevant if the distance between the transmitter and the SRO
transponder decreases under specific operating conditions or
if the transmitted power is too high for a given operating
distance.

The effect of the nonlinear functions A(t, ω) and φ(t, ω)
on the estimated distance can be analyzed by introducing the
frequency-dependent function

s(ω) =
1
2

Vin A(ν, ω) cos(2ωτ − φ(ν, ω)). (25)

When varying the input frequency as ωk = ωosc + µ(k −

N )1T , expression (25) provides the set of samples in (10),
given by sk = s(ωk). To perform a general analysis, inde-
pendent of the number N of samples, we will consider the
function s(ω) in terms of continuous 1ω = ω − ωosc. This
function is shown in Fig. 5(b) for ν = Ts/2, where we have
taken τ = 40 ns, corresponding to d = 12 m. We will consider
the frequency distance 1NL between two consecutive minima
of the function s(ω). Note that 1NL defines a pseudoperiod of
s(ω) since, in practice, this function will not be fully periodic.
The distance de can be estimated from the baseband frequency
ωb obtained from the set of samples lying on the frequency
interval comprised between both minima. Considering that the
time and frequency steps between samples are, respectively,
1T and µ1T , this frequency can be approached as ωb ≃

2πµ/1NL. To obtain de, we replace ωb in (16). Comparing
with the ideal model, the error produced by the nonlinear

Fig. 5. Simulation of the standalone SRO. (a) Function φ(ν, ω). The linear
approach (12) for ξ = ν = Ts/2 has been superimposed, and the size and
location of the flat region predicted by the new model have been indicated.
(b) Function s(ω). The values 1NL and 1L correspond to the frequency
distance between two consecutive minima of s(ω).

behavior of A(t, ω) and φ(t, ω) is given by

de − d ≃ πc
(

1
1NL

−
1
1L

)
. (26)

By choosing the two minima indicated in Fig. 5(b), we have
1NL > 1L , and therefore, both approaches produce different
values for ωb. The nonlinear behavior of φ(ν, ω) produces an
estimation error de − d ≃ 1.8 m.

Note that the aim of this work is to provide a technique
to detect the deviations of the functions A(t, ω) and φ(t, ω)
from the ideal model (12) and (13). For that reason, the simple
approach ωb ≃ 2πµ/1NL has been used here to estimate
the baseband frequency ωb. In the literature, there exist more
sophisticated techniques, based on the FFT analysis, to extract
ωb from the set of samples sk [24], [25], [26]. These techniques
can be fed with the set of samples provided by (25) using the
realistic functions A(t, ωk) and φ(t, ωk).

For a given transmitted power, the input-signal amplitude
Vin depends on the distance d and so does the accuracy of the
estimated distance de. Note that (25) depends on d through
Vin, both explicitly and implicitly, as it affects A(ν, ω) and
φ(ν, ω), which are calculated from (23). The pulling effects
will be smaller for a larger d (smaller Vin) and will eventually
become negligible. On the other hand, the nonlinear transient
is inherent to the oscillator circuit, so the impact of the distance
d may be relatively small. However, this should be analyzed
on a one-by-one basis.

In the case of a frequency-modulated continuous-wave
(FMCW) signal, the change in the input frequency is contin-
uous, so some aspects of the analysis will be different. As in
the FSCW case, we take one sample in one oscillation interval
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every certain number of intervals, so the system analysis can
be limited to the sampled ones. It will also be sufficient to
consider the input signal at the beginning of the analyzed
oscillation intervals. However, with an FMCW signal, the input
frequency varies linearly over time, following a ramp-like
pattern. This variation must be considered in the integration
of the SRO equations and in the calculation of the baseband
signal vb. The detailed analysis of the FMCW case is beyond
the scope of this initial work.

IV. ANALYSIS OF THE INFLUENCE OF THE NOISE
SOURCES ON THE BEHAVIOR OF THE SRO TRANSPONDER

In the presence of the SRO noise sources, both the ampli-
tude and phase variables in each oscillation interval Ok get
perturbed as

Ak(t) = A(t, ωk)+1Ak(t)

φk(t) = φ(t, ωk)+ ψk(t) (27)

where t ∈ [0, Ts] and (1Ak(t), ψk(t)) are the components of
the amplitude and phase perturbations. Following a derivation
analogous to (4)–(10), the samples sk are given by

sk =
Vin

2
(A(ν, ωk)+1Ak(ν))

× cos(2ωkτ − φ(ν, ωk)+ ψk(ν)). (28)

Thus, the detection of the frequency ωb from the set of
samples {sk}

2N
k=0 is altered by the set of random vectors M =

{zk(ν)}
2N
k=0, where zk(t) ≡ (1Ak(t), ψk(t))t . To model the

effect of the SRO noise sources, a single current source is
placed at the output node, which is fit through a noise analysis
of the standalone oscillator. This single source should provide
the same noise spectrum obtained with all the existing noise
sources [27]. This noise source will be expressed in the same
frequency basis as the output voltage in (18)

in(t) = Re
{

In(t)e j (ωt+θin)
}

(29)

where the real and imaginary parts of the phasor In(t) are
stochastic processes. As stated, this current source is intro-
duced at the oscillator output node. Consequently, the envelope
domain (23) becomes

I1(t) = Y
(
vq , Ap, ωosc

)
Ap

− jYω
(
vq , Ap, ωosc

)(
Ȧp + j Ap

(
φ̇ p +1ω

))
+ Iin

(
vq , Ap, φp

)
+ In(t)e− jφp = 0. (30)

The perturbed state variables in (30) are Ap(t) = A(t, ω) +

1A(t) and φp(t) = φ(t, ω)+ ψ(t), where A(t, ω) and φ(t, ω)
are the amplitude and phase functions obtained through the
procedure of Table I and (1A, ψ) are the amplitude and
phase perturbations. Note that 1Ak(t) and ψk(t) agree with
the perturbation components 1A(t) and ψ(t) provided by
system (30) for ω = ωk . To better understand the transient
dynamics, it will be useful to translate equation (30) of the
standalone SRO from the complex plane C to ℜ

2 using the
natural isomorphism û + jv = (u, v)t . This provides

Î 1(t) = a0 Ap + a1 Ȧp + ã1 Ap
(
φ̇ p +1ω

)
+ Î in + R

(
−φp

)
Î n

= 0 (31)

where a0 ≡ Ŷ (vq , Ap, ωosc), a1 ≡ − ĵY ω(vq , Ap, ωosc), ã1 ≡

Ŷ ω(vq , Ap, ωosc), and R(φ) ∈ SO(2) is the rotation matrix of
angle φ. The advantage of formulating (30) as in (31) is that
the components of vector Î 1(t) in a time-varying orthogonal
basis {a1, ã1} provide the amplitude and phase equations.
These two equations are directly obtained by making a1 ·

Î 1(t) = 0, and ã1 · Î 1(t) = 0, where · means the dot product.
The two products provide the following system of Langevin
equations:(

Ȧp

φ̇ p

)
= g

(
vq , Ap

)
+ h

(
vq , Ap

)(
Î in + R

(
−φp

)
Î n

)
(32)

where t ∈ [0, Ts] and

g
(
vq , Ap

)
= −

1
|a1|

2

(
Apa1 · a0
ã1 · a0

)
−

(
0
1ω

)
h
(
vq , Ap

)
= −

1
|a1|

2

(
at

1
ãt

1/Ap

)
(33)

where the superscript t means transposition. Nonlinear sys-
tem (32) contains two coupled stochastic differential equations
in the state variables (Ap, φp). Note that for a given quench
signal vq(t), the two functions g(vq , Ap) and h(vq , Ap) are
fully determined by the amplitude variable Ap, whereas the
influence on the phase variable φp is provided by the terms
Î in and R(−φp). The term g(vq , Ap) ∈ ℜ

2 accounts for the
oscillator dynamics. In turn, the influence of the input RF
signal and the noise sources depends on the 2 × 2 matrix
h(vq , Ap). Since the SRO oscillates for a short time Ts , the
effect of the low-frequency colored noise sources can be
discarded [28]. Thus, the components of the vector Î n(t) can
be assumed to be white noise sources. These components will
fulfill 〈

Î n(t) Î n(s)t
〉
= 0δ(t − s)

(
1 0
0 1

)
(34)

where 0 ∈ ℜ, δ(t) is Dirac’s delta and ⟨ Î n(t)⟩ = 0,∀t .
To set the initial conditions of (32), we must consider the
following. As explained in Section III-B, before the oscillation
is triggered, the solution of (32) is nonoscillating and forced
by the input RF source, with amplitude ε(Vin, ω) and phase
χ(Vin, ω). Let us consider now the complex stochastic process
X p

1 (t) = Ap(t)e jφp(t). Since the forced solution is stable,
X p

1 (0) is a normally distributed complex random variable
whose probability density function is concentrated in a small
disk about ⟨X p

1 (0)⟩ = ε(Vin, ω)e jχ(Vin,ω). Due to the small
value of ε(Vin, ω), this disk can include the origin point in
the complex plane, providing a great phase uncertainty in
X p

1 (0). The influence of X p
1 (0) is illustrated by considering

103 realizations of X p
1 (t) and simulating system (32) during

an oscillation interval. We have used the same rectangular
quench signal as in the case analyzed in Fig. 4, with 1ω/2π =

−6 MHz and Vin = 0.2 mV. The results are shown in Fig. 6(a).
Due to the presence of the RF source, the realization of

X p
1 (t) remains close to the unperturbed trajectory X1(t) =

A(t, ω)e jφ(t,ω), superimposed in the same figure. Conse-
quently, the phase uncertainty of X p

1 (0) is significantly reduced
in X p

1 (t) for t > 0, and the influence of the variance of X p
1 (0)

on X p
1 (t) is negligible in comparison with the influence of the
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Fig. 6. Time evolution of the perturbed phasor X p
1 (t) in the complex plane.

(a) Under the influence of the RF source, the realizations of X p
1 (t) remain

close to the unperturbed trajectory X1(t) (shown in orange). (b) In the absence
of the RF source, the uncertainty of the initial phase of X p

1 (0) is transferred
to the whole oscillation interval.

noise sources acting along the transient. We have compared
the results with those obtained in the absence of the RF
source (Vin = 0) under the same initial conditions. This
second analysis is shown in Fig. 6(b). When removing the
RF source, the uncertainty of the initial phase of X p

1 (0) is
transferred to the whole oscillation interval. In fact, for proper
performance of the SRO transponder, the RF input signal
must remove the phase uncertainty accumulated during the
nonoscillating interval, as in the example of Fig. 6(a). In this
case, the impact of the variance of X p

1 (0) can be neglected.
It is possible to consider the initial conditions of (32) to be the
deterministic values Ap(0) = ε(Vin, ω) and φp(0) = χ(Vin, ω)

in consistency with [1], [3], and [29].
Considering the small amplitude of the noise sources,

system (33) can be linearized about the unperturbed solution
(A(t, ω), φ(t, ω)). Neglecting quadratic terms in the perturba-
tion components, we obtain the following linear time-variant
(LTV) system:

ż =
(
gA(t)

(
1 0

)
+ B(t)

)
z + H(t) Î n(t) (35)

where z(t) ≡ (1A(t), ψ(t))t , t ∈ [0,Ts] and

gA(t) ≡
∂g

(
vq , A(t, ω)

)
∂A

B(t) ≡
∂
(
h
(
vq , A

)
Î in(t)

)
∂(A, φ)

∣∣∣∣∣A=A(t,ω)
φ=φ(t,ω)

H(t) ≡ h
(
vq , A(t, ω)

)
R(−φ(t, ω)). (36)

From (34), Î n(t)dt is a 2-D Wiener process, and (35)
is an Ornstein–Uhlenbeck system with time-varying coef-
ficients [30]. Following the analysis of Fig. 6, the initial

TABLE II
PROCEDURE TO OBTAIN C(t, ω)

conditions of (35) can be approached to be z(0) ≃ 0, and
applying the LTV-system theory [22], system (35) can be
solved in terms of its fundamental matrix as

z(t) =

∫ t

0
8(t, u)H(u) Î n(u)du (37)

where 8(t1, t2) = P(t1)P(t2)−1 is the state transition matrix
and P(t) is the fundamental matrix, which fulfills

Ṗ(t) =
(
gA(t)

(
1 0

)
+ B(t)

)
P(t) (38)

where P(0) = I . Thus, to obtain P(t), we should integrate the
above linear system considering the columns of the identity
matrix as initial conditions. The first two moments of the
vector random process z(t) can be derived from (37). On the
one hand, since ⟨ Î n(t)⟩ = 0,∀t , we have ⟨z(t)⟩ = 0 for
t ∈ [0, Ts]. On the other hand

C(t, ω)

≡
〈
z(t)z(t)t

〉
=

∫ t

0

∫
0
8(t, u1)H(u1)

〈
Î n(u1) Î n(u2)

t 〉H(u2)
t8(t, u2)

t du1du2

= 0

∫ t

0
8(t, u)H(u)H(u)t8(t, u)t du

= 0

∫ t

0

8(t, u)8(t, u)t

|a1(u)|2
du (39)

where t ∈ [0, Ts] and the double integrand in (39) has been
simplified using (34). The matrix H(u) is given by (36),
where R(φ) vanishes due to its orthogonality. Note that the
matrix C(t, ω) depends on the RF frequency ω through the
unperturbed components A(t, ω) and φ(t, ω) used in the cal-
culation of the transition matrix 8(t1, t2). The procedure
to calculate the covariance matrix C(t, ω) is summarized
in Table II.

Note that the variance components ⟨1Ak(t)2⟩ and ⟨ψk(t)2⟩
agree with the elements on the diagonal of C(t, ω) calculated
through the procedure in Table II for ω = ωk . As will be
shown, the results agree with the computationally costly Monte
Carlo simulations. The formulation (39) provides numerical
values, but it is also useful to get analytical insight into the
dependence of the variances ⟨1Ak(t)2⟩ and ⟨ψk(t)2⟩ on the
unperturbed variables A(t, ω) and φ(t, ω). In the following,
this dependence is first analyzed in the case of a stan-
dalone switched oscillator (homogeneous case). The analysis
is illustrated in the oscillator studied in Fig. 4, using the
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Fig. 7. Stochastic analysis of the free-running SRO. Time-varying variance
of the amplitude noise 1A(t) in the most significative part of the interval
t ∈ [0, Ts ]. The amplitude pole λA(t), whose sign determines the growth
or decrease of this variance, has been superimposed. For t ∈ [0, tu),
λA(t) > 0 and the amplitude variance grows. For t ∈ (tu , Ts ], λA(t) < 0 and
the unperturbed amplitude decreases, becoming negligible in the steady-state
interval t ∈ [tss, Ts ], where the unperturbed amplitude Vo(t) settles (see
Fig. 8).

same rectangular quench signal. The results are then extended
to the SRO (non-homogeneous case), where an independent
validation with a Monte Carlo simulation will be performed.
Finally, we address the sampled baseband signal.

A. Homogeneous Case

The homogeneous case corresponds to Vin = 0 and ω =

ωosc. System (35) becomes

1 Ȧ = gA,1(t)1A + H1(t) · Î n (a)

ψ̇ = gA,2(t)1A + H2(t) · Î n (b) (40)

where gA,i (t) and Hi (t) for i = 1, 2 are the i th component of
the vector gA(t) and the vector composed by the i th row of the
matrix H(t), respectively. To get insight, we will make use of
the analytical expression of the vectors Hi (t), which regulate
the influence of the noise sources on the system dynamics

H1(t) = −
1

|a1|
2 R(φ(t, ω))a1

H2(t) = −
1

|a1|
2Vo(t)

R(φ(t, ω))ã1 (41)

where, to simplify the notation, we have denoted the unper-
turbed amplitude in this homogeneous case as Vo(t) ≡

A(t, ωosc). As observed in (40), in this homogeneous case,
the explicit dependence on ψ(t) vanishes. Consequently, the
amplitude (40a) is independent of the phase variable and
can be separately analyzed. The variance ⟨1A(t)2⟩ calculated
through the procedure of Table II is represented in Fig. 7.
To ease the further comparison with the nonhomogeneous
case (Vin > 0), the initial conditions of the unperturbed
components have been set to A(0, ωosc) = ε(Vin, ωosc) and
φ(0, ωosc) = χ(Vin, ωosc) with Vin = 20 µV. The behavior of
⟨1A(t)2⟩ can be explained in terms of the components of the
amplitude (40a). In the absence of noise perturbations, Vo(t)
fulfills V̇ o(t) = g1(Vo(t)), where g1 is the first component of
the vector g. Considering this equation, the coefficient gA,1(t)
of (40a) is given by gA,1(t) = ∂ V̇ o(Vo(t))/∂Vo ≡ λA(t), where
λA(t) will be called the amplitude pole. Using this pole, the

Fig. 8. Stochastic analysis of the free-running SRO. Time-varying variance
of the phase noise ψ(t) in the most significative part of the interval t ∈ [0, Ts ].
The unperturbed amplitude Vo(t) has been superimposed. For t ∈ [0, t1], Vo(t)
is small, and in agreement with (48), the variance undergoes fast growth. For
t ∈ [t1, tss], the amplitude noise burst is integrated by (39), producing a step
on the phase variance. Finally, for t ∈ [tss, Ts ], the unperturbed amplitude
settles about Vo = Vss, and the phase variance grows linearly with time,
in agreement with (51).

solution of (40a) can be expressed as

1A(t) =

∫ t

0
αA(t, u)H1(u) · Î n(u)du (42)

where αA(t, s) = exp
∫ t

s λA(u)du. As already stated, just
before the oscillation is triggered, the system remains in a sta-
ble nonoscillating steady-state solution, providing ⟨1A(0)⟩ ≃

⟨1A(0)2⟩ ≃ 0. Then, the initial condition 1A(0) ≃ 0 has
been imposed in (42). The time-varying pole λA(t), which is
superimposed in Fig. 7, governs the behavior of the amplitude
variance. To see this, let us first derive ⟨1A(t)2⟩ from (42),
expressing H1(t) as in (41) and applying (34)

⟨1A(t)2⟩ = 0

∫ t

0

αA(t, s)2

|a1(s)|2
ds. (43)

Next, using (43), we derive the following rule for the time
evolution of ⟨1A(t)2⟩:

⟨1A(t +1t)2⟩ = αA(t+1t, t)2⟨1A(t)2⟩

+ 0

∫ t+1t

t

αA(t, s)2

|a1(s)|2
ds (44)

where 1t ≥ 0. At t = 0, the quench source triggers the
oscillation by making the dc solution unstable with λA(0) > 0.
The unperturbed amplitude Vo(t) grows from this point until
it settles at Vo(t ≥ tss) ≃ V ss = 0.55 V, where tss ≃ 5 ns,
as shown in Fig. 8. Due to the system continuity, we will
have λA(t) > 0 in a time interval t ∈ [0, tu), where tu < tss
(see Fig. 7). Then, for t, t + 1t ∈ [0, tu), we have αA(t +

1t, t)2 > 1, and consequently, ⟨1A(t + 1t)2⟩ > ⟨1A(t)2⟩,
in agreement with the behavior shown in Fig. 7. From the
definition of αA(t, s), given by αA(t, s) = exp

∫ t
s λA(u)du, the

maximum variance attained is proportional to the maximum
value of λA(t) in [0, tu).

For t ∈ (tu, Ts], by setting t = tu in (44), we observe
two different contributions to ⟨1A(tu + 1t)2⟩. On the one
hand, the amplitude pole fulfills λA(t) < 0, producing αA(tu +

1t, tu)2 < 1. Consequently, the first term of (44) decreases
with time. On the other hand, the integral term of (44)
grows monotonically with 1t . This growth is bounded since,
as shown in Fig. 8, for t ≃ tss, the unperturbed amplitude
settles to Vo = Vss. Considering a square quench signal, the
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vectors ao(Vo(t)) and a1(Vo(t)) in Ok are fully determined by
Vo(t), so they will also settle. Therefore, the amplitude pole
becomes constant

λA(tss) =
∂ V̇ o(Vo(tss))

∂Vo
= gA,1(tss)

≃ Vss
ass

1 · ass
0V∣∣ass

1

∣∣2 (45)

where ass
1 ≡ a1(Vss) and ass

0V ≡ ∂a0(Vss)/∂V . Since the
dynamics of Vo(t) is governed by a first-order equation, its
convergence to the steady-state interval is asymptotic, fulfilling
λA(tss+1t) ≃ λA(tss) < 0. Therefore, αA(tss+1t, tss) → 0 for
1t → ∞. Then, using (44) and (45), we have

lim
1t→∞

〈
1A(tu +1t)2

〉
=

0

2Vssass
1 · ass

0 V
(46)

which is in agreement with Fig. 7, where, for t ∈ (tu, Ts], the
variance of the amplitude perturbation decreases to a small
value (46). This is because of the recovery effect of the
steady-state oscillation amplitude.

The variance ⟨ψ(t)2⟩ calculated numerically is represented
in Fig. 8. To analyze its behavior, the phase perturbation is
derived from (40b) as

ψ(t) = ψ(0)+

∫ t

0
gA,2(t)1A(s)ds +

∫ t

0
H2(t) · Î n(s)ds.

(47)

From (41), |H2(t)| ∝ 1/Vo(t), and therefore, this term is
dominant in the phase equation (47) for small values of Vo(t)
Then, there exists a time interval [0, t1], where the phase
variance can be approached from (47) as

⟨ψ(t)2⟩ ≃ ⟨ψ(0)2⟩ + 0

∫ t

0
|H2(s)|2ds

= ⟨ψ(0)2⟩ + 0

∫ t

0

ds

Vo(s)2|a1(Vo(s))|2
(48)

where t ∈ [0, t1] and |H2(s)|2 has been derived using (41).
Expression (48) predicts a fast-growing phase variance for
small Vo(t), in agreement with Fig. 8. Note that the procedure
of Table II considers the initial variance ⟨ψ(0)2⟩ = 0 since,
as stated before, in the nonhomogeneous case (Vin > 0),
the presence of the RF source should remove the impact
of this initial uncertainty. For t > t1, the amplitude Vo(t)
is big enough to give rise to a noticeable reduction in this
growth rate. In fact, in the subinterval t ∈ [t1, tss], the burst
of the amplitude perturbation shown in Fig. 7 is translated
to the phase by the coefficient gA,2(t), producing a step in
the phase variance when integrated in (39). As already seen,
in the steady-state interval, the amplitude variance decreases
to a small value (46). Consequently, we can approach 1 Ȧ ≃

0 in (40), which leads to

ψ̇(t) ≃ kψ · Î n(t) (49)

where t ∈ [tss, Ts] and

kψ =
gA,2(tss)

gA,1(tss)
H1(tss)+ H2(tss). (50)

Note that kψ is a constant vector coefficient that can be
analytically obtained in terms of the vector functions a0(Vss),

Fig. 9. Stochastic analysis of the injected SRO for ω = ωosc +1ω, where
(1ω/2π) = 4 and 6 MHz. Time-varying variance of the amplitude and phase
perturbation components 1A(t, ω) and ψ(t, ω). The qualitative behavior of
both components during the transient subinterval is like the free-running case,
as shown in Figs. 7 and 8.

a1(Vss), using (33) and (36). Applying (34) and neglecting the
second-order derivatives in a0 and a1, we obtain the following
expression for the phase variance:〈

ψ(t)2
〉
≃

〈
ψ(tss)

2〉
+

0
∣∣ass

0 V

∣∣2

V 2
ss

(
ass

1 · ass
0 V

)2 (t − tss) (51)

where t ∈ [tss, Ts]. Expression (51) predicts that in the steady-
state interval, the phase variance grows linearly with time
(zoomed-in view in Fig. 8). This result is consistent with the
analyses [15], [31], [32] of the phase-noise variance of the
periodic steady-state solution of a free-running oscillator in
the presence of white noise sources. Note that the investigation
presented here extends the analysis of the amplitude and phase
variance to the oscillator transient regime. This new analysis
includes the steady state as a limit case.

B. Nonhomogeneous Case

Here, we will analyze the time-varying amplitude and phase
variances in the presence of the RF input signal (Vin > 0).
To illustrate the influence of the frequency ω of the RF
input source, the cases 1ω/2π = 4 and 6 MHz have been
considered. As seen in Fig. 9, during the transient to the limit
cycle (t ≤ 5 ns), the behavior of ⟨1A(t)2⟩ and ⟨ψ(t)2⟩ is
similar to that of the homogeneous case (see Figs. 7 and 8).
Due to the large value of ⟨1A(t)2⟩ during the transient,
we should avoid setting the sampling time ν in the transient
interval. However, as A(t, ω) approaches the steady-state value
Vss, ⟨1A(t)2⟩ becomes negligible. As in the homogeneous
case, this is because of the recovery effect of the steady-state
oscillation under amplitude perturbations.

The behavior of ⟨ψ(t)2⟩ after the oscillation has settled (see
Fig. 10) can be predicted from the unperturbed phase φ(t, ω).
The result has been validated with a Monte Carlo simulation.
As in the homogeneous case, for A(t, ω) ≃ Vss, the amplitude
variance is negligible, and we can approach Ȧ ≃ 0 in (32).
Then, for t ∈ [tss, Ts], (32) becomes a first-order ordinary
differential equation (ODE) in the phase variable. Thus, it can
be rewritten as φ̇ p ≃ F(φp, Î n). Using the decomposition
φp(t) = φ(t, ω)+ ψ(t), we can linearize this equation about
the unperturbed state ( Î n = 0), obtaining

ψ̇ ≃
∂F(φ(t, ω), 0)

∂φ
ψ +

∂F(φ(t, ω), 0)
∂n

Î n

= λψ (t)ψ + kψ · Î n. (52)
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Fig. 10. Stochastic analysis of the injected SRO for ω = ωosc + 1ω,
where (1ω/2π) = 4 and 6 MHz. Time-varying variance of the phase
perturbation component ψ(t) in the most significant part of the steady-state
subinterval. The RF amplitude is Vin = 0.2 mV. The values ⟨ψ(v)2⟩, where
ν = Ts/2 = 250 ns, are marked with points. The results of the new model
have been independently validated with a Monte Carlo simulation with 103

realizations (superimposed).

Note that the expression of the vector coefficient kψ is given
in (50). The term λψ (t) in (52) will be called the phase pole.
By considering that φ̇(t, ω) = F(φ(t, ω), 0), the phase pole
λψ (t) can be obtained from the unperturbed phase function
φ(t, ω) as

λψ (t) =
∂φ̇(t, ω)
∂φ(t, ω)

=
φ̈(t, ω)
φ̇(t, ω)

(53)

where t ∈ [tss, Ts]. Since the time dependence is provided
by φ(t, ω), λψ (t) varies periodically at the beat frequency
ω′

osc − ω. Note that for Vin = 0, at the steady-state ( Ȧ ≃

0) system, (23) produces φ̇(t, ω) = −1ω, and therefore,
according to (53), λψ (t) = 0. The phase variance in the steady
state can be analyzed by first solving ψ(t, ω) from the LTV
equation (52) and then obtaining ⟨ψ(t)2⟩ as〈

ψ(t)2
〉
≃ αψ (t, tss)

2〈ψ(tss)
2〉

+
0

∣∣ass
0 V

∣∣2

V 2
ss

(
ass

1 · ass
0 V

)2

∫ t

tss

αψ (t, s)2ds (54)

where t ∈ [tss, Ts] and αψ (t, s) = exp
∫ t

s λψ (u)du. The
term αψ (t, tss)

2
⟨ψ(tss)

2
⟩ in (54) and the phase pole λψ (t)

are represented in Fig. 11, for two values of the RF input
frequency. In the two cases, λψ (t) oscillates periodically at
the beat frequency ω′

osc − ω taking positive and negative
values. Hence, as shown in Fig. 11(a), the function αψ (t, tss)

2

modulates the time-varying phase variance and is responsible
for its oscillating nature. As deduced from the definition of
αψ (t, s), given by αψ (t, s) = exp

∫ t
s λψ (u)du, the maxima and

minima of αψ (t, tss)
2 agree with the zero crossings of λψ (t)

with negative and positive slopes, respectively. The second
term in (54) is a monotonically growing component, whose
growth rate is modulated by αψ (t, tss). The function αψ (t, tss),
which can be obtained from the unperturbed phase φ(t, ω),
determines the qualitative behavior of the variance ⟨ψ(t)2⟩
for t > tss with no need to solve (39).

Note that as already stated, in the homogeneous case,
λψ (t) = 0 for t > tss. In this case, αψ (t, tss) = 1, and (54)
agrees with the linearly growing phase variance (51).

Fig. 11. Stochastic analysis of the injected SRO for ω = ωosc +1ω, where
(1ω/2π) = 4 and 6 MHz. Prediction of the behavior of ⟨ψ(v)2⟩ during the
steady-state interval shown in Fig. 10. (a) Oscillatory behavior of ⟨ψ(v)2⟩ is
well predicted by the term αψ (t, tss)

2σ ss
ψ . (b) Maxima and minima of ⟨ψ(v)2⟩

agree with the zero crossings of λψ (t) with negative and positive slopes,
respectively.

When the RF frequency ω gets close to ωosc or the amplitude
Vin increases, the oscillator may get locked to the input RF sig-
nal. In that case, as stated in Section III-B, the signal φ(t, ω),
converges to a constant value, where the SRO instantaneous
frequency becomes ω+ φ̇(t, ω) = ω. Since φ(t, ω) obeys the
first-order system φ̇(t, ω) = F(φ(t, ω), 0), its convergence
must be asymptotic. Then, according to (53), the phase pole
fulfills λψ (t) < 0, and expression (54) becomes

lim
t→∞

〈
ψ(t)2

〉
=

0
∣∣ass

0V

∣∣2

2V 2
ss

(
ass

1 · ass
0V

)2 (55)

showing that in the locked case, the phase variance decreases
down to small value (55).

Under a given transmitted power, the input amplitude Vin
decreases as the distance d increases, resulting in greater
uncertainty in the estimated distance de. If the noise becomes
too significant relative to the received signal, the oscillator’s
phase will have difficulty tracking the phase of the RF input.
This is because, as seen in system (30), the noise sources act
as additional inputs that make tracking more difficult. Because
the sampling is carried out, while the oscillation is in a steady
state, only the phase noise will be relevant. In an approximate
manner, the degradation as noise increases can be quantified
using the following figure of merit:

Sin/N = 10 log10
V 2

in
Vo(tss)

2

ν

∫ ν
0 ⟨ψ(t)2⟩dt

. (56)

At 1ω/2π = 4 MHz, for Vin = 0.2 mV (d = 12 m) and
Vin = 0.1 mV (d = 24 m), we obtain Sin/N = −60 dB and
Sin/N = −65 dB, respectively.
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Fig. 12. Test bench. (a) Schematic. (b) Photograph of the implementation
for a distance d = 12 m.

C. Stochastic Properties of Baseband Sampled Signal

Expression (28) for the perturbed samples sk can be
approached by a first-order Taylor series expansion as

sk ≃
Vin

2
(A(ν, ωk)+1Ak(ν))(cos(2ωkτ − φ(ν, ωk))

− sin (2ωkτ − φ(ν, ωk))ψk(ν)) (57)

where, as shown at the beginning of Section IV, ⟨1Ak(v)⟩ =

⟨ψk(v)⟩ = 0. Let us consider that the samples sk are obtained
in the steady-state interval (ν > tss) to avoid the burst of the
amplitude process. Then

⟨sk⟩ ≃
Vin

2
A(ν, ωk) cos(2ωkτ − φ(ν, ωk)) (58)

where, considering ν > tss, the correlation terms between
the amplitude and phase perturbations have been neglected.
Using (57) and (58), the second-order central moment of these
samples σ 2

k ≡ ⟨(sk − ⟨sk⟩)
2
⟩ can be approached as

σ 2
k =

V 2
in

4
A(ν, ωk)

2 sin2(2ωkτ − φ(ν, ωk))⟨ψk(v)
2
⟩ (59)

where we have applied that ⟨1A(v)2⟩ ≃ 0 for ν > tss,
as previously derived. Expression (59) shows that the moments
σ 2

k are affected both by the unperturbed functions A(ν, ωk),
φ(ν, ωk) and the variance of the phase perturbation ⟨ψk(v)

2
⟩.

In Section V, expression (59) will be applied to predict the
central moments of the noisy samples extracted from the
measurements.

V. MEASUREMENT RESULTS

The new model has been validated using the test bench
shown in Fig. 12. The stepped-frequency-modulated signal
vRF(t) is generated with a Signal Hound VSG60A Vector
Signal Generator and transmitted using a PCB log periodic
antenna with a gain of 5 dBi. A similar receiving antenna is
connected to port 1 of the SRO, and an R&S FPL spectrum
analyzer is connected to port 2 to monitor the oscillation.

Fig. 13. Normalized sampled baseband signal for d = 12 m. Comparison
of the simulated results with two sets of measured samples sk .

The sinusoidal quench signal is generated with an Agilent
8118B Arbitrary Waveform Generator. In the base station,
a circulator isolates the transmitted signal vRF(t) from the
received signal vr (t). A sample of the RF signal is obtained
using a 10-dB directional coupler and mixed with the received
signal vr (t) using a Mini-Circuits ZEM-4300+ mixer. Since
the RF signal sample has very low power, two Mini-Circuits
ZX60-6013E-S+ amplifiers are required to adjust the LO
power in the mixer. High-frequency components are filtered at
the mixer output with a Mini-Circuits SLP-10.7+ Low Pass
Filter. The baseband signal vb(t) is monitored with an Agilent
DSO90804A Digital Oscilloscope. Finally, Keysight E36311A
dc power supply sources have been used to bias the amplifiers
and the SRO.

To get the set of samples, we have used a stepped
frequency-modulated signal with N = 65 steps of size
µ1T/2π = 250 kHz, with time between steps 1T = 1 µs.
The frequency of the square quench signal is fm = 1 MHz,
and the length of the oscillation interval is Ts = 500 ns.
To avoid the undesired pulling effects predicted in the analysis
of Fig. 5 for ω close to ωosc, the transmitted power has been
reduced to provide an input RF signal of Pin ≃ −64 dBm.
We have separated the base station and the transponder by a
distance of d = 12 m. This corresponds to a time delay of
τ = 40 ns. By sampling each oscillation interval at ν = Ts/2,
we obtain a set of voltage samples sk conforming a period
curve. Each sample sk has been obtained using the average
option in the oscilloscope data acquisition. Fig. 13 shows
two sets of samples. Note that by the effect of the phase
perturbation, each sk in (28) is a random variable that will
provide different results in each measurement. The samples
obtained with the new nonlinear model (25) and the ideal
model (12)–(14) have been superimposed in Fig. 13. As can
be seen, the new model is able to predict the nonideal behavior
of the measured samples. Considering the step frequency
µ1T/2π = 250 kHz between samples, the application of (26)
bounds the distance estimation error to de − d ≤ 2 m.

Next, to validate the noise analysis of Section IV, we have
obtained the sequence of second-order central moments of the
samples σ 2

k ≡ ⟨(sk −⟨sk⟩)
2
⟩. In Fig. 14, the values of the com-

ponents σ 2
k obtained from the experimental measurements are

compared with those obtained from (59). From the moments
σ 2

k , we can predict the impact of the noise perturbations at
the different frequency steps. This is valuable for FFT-based
techniques [24], [25], [26] that, departing from the set of
samples sk , enable the calculation of the estimated distance de.
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Fig. 14. Second-order central moments σ 2
k ≡ ⟨(sk − ⟨sk⟩)

2
⟩ for d = 12 m.

Comparison between the measured values with the predictions of model (59).

With the central moments σ 2
k , it should be possible to obtain

the uncertainty in the estimated distance.
The predictions of the new model (see Fig. 14) resemble

the measurement results. However, there are discrepancies
that we attribute to modeling inaccuracies and tolerances,
particularly in the active device. This is supported by the
fact that the baseband-signal samples, sk , obtained with
circuit-level envelope transient exhibit similar disagreements
with the experimental results, as shown in [12]. In fact,
the most reliable validation of the new analysis method is
the comparison with circuit-level envelope transient. This is
because, only in this comparison, we can be sure that the
models of all the circuit components (both active and passive)
are identical.

VI. CONCLUSION

This work has presented an in-depth semianalytical inves-
tigation of the SRO transponder excited with a frequency-
stepped signal, including an insightful analysis of the effect
of noise perturbations. Our study demonstrated that the SRO
behavior at each input frequency could be modeled using func-
tions extracted from a single oscillation interval. We described
the SRO response to each frequency step using amplitude and
phase functions defined in a single oscillation interval. They
are obtained from a 2-D envelope-domain formulation, which
is developed from a nonlinear current function, extracted
from HB. In addition, we derived an Ornstein–Uhlenbeck
system to determine the variance of the SRO amplitude and
phase perturbations through a detailed analytical approach,
presented here for the first time. Unlike costly Monte Carlo
analyses, our analytical expressions offer clear insights by
relating noise behavior to the unperturbed amplitude and phase
during different stages of the oscillation pulse. Extending this
analysis to the entire transponder system revealed valuable
effects on the detected baseband signal and the estimated
distance. To validate our method, it was applied to a 2.7-GHz
SRO, which was manufactured and measured. This work
enhances the understanding of SRO behavior under noise
perturbations, providing practical insights for designing more
robust transponder systems.

APPENDIX
CALCULATION OF THE NONLINEAR COEFFICIENTS

The nonlinear coefficients (Y, Yω, Br , Bi ) can be calculated
using circuit-level HB, following the procedure described

Fig. 15. Schematic of the SRO used for the calculation of the nonlinear
functions. The quench voltage is set to a dc value vq = Vq , and the oscillator
is forced with an AG [20], introduced into the oscillator circuit at the output
node.

in [19] and summarized here. First, the quench voltage is
set to a dc value vq = Vq , and the oscillator is forced
with an auxiliary generator (AG) [20], introduced into the
oscillator circuit at the output node (see Fig. 15). This AG
is composed of a one-tone voltage source of amplitude A,
phase 0, and frequency ωAG in series with an ideal filter of
admittance Y f (ω) = δ(ω − ωAG). The input RF source is set
to vin(t) = Re{Ue jωAGt

}. Consequently, the current entering
the AG is a function IAG(Vq , A, ωAG,U r ,U i ) that can be
calculated by solving the circuit of Fig. 15 in circuit-level
HB. Using this function, we obtain

Y
(
Vq , A, ωosc

)
=

IAG
(
Vq , A, ωosc, 0, 0

)
A

Yω
(
Vq , A, ωosc

)
=

1
A
∂ IAG

(
Vq , A, ωosc, 0, 0

)
∂ω

Br,i
(
Vq , A

)
=
∂ I AG

(
Vq , A, ωosc, 0, 0

)
∂U r,i

. (60)

The functions in (60) are obtained through a double sweep
in (Vq , A). At each point of the sweep, the partial derivatives
are obtained through the method of finite differences using
small increments in ωAG and U r,i about ωAG = ωosc and U =

0, respectively.
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