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Abstract

Wind wave reanalyses have become a valuable source of information for wave

climate research and ocean and coastal applications over the last decade.

Nowadays, wave reanalyses databases generated with third generation models

provide useful wave climate information to complement, both in time and

space, the instrumental measurements (buoys and alimetry observations).

In this work, a new global wave reanalysis (GOW) from 1948 onwards is

presented. GOW dataset is intended to be periodically updated and it is

based on a calibration of a model hindcast with satellite altimetry data, after

verification against historical data. The outliers due to tropical cyclones (not

simulated due to insufficient resolution in the wind forcing) are identified

and not taken into account in the process to correct the simulated wave

heights with the altimeter data. The results are validated with satellite

measurements in time and space. This new calibrated database represents

appropriately the wave climate characteristics since 1948 and aims to be

the longest and up-to-date wave dataset for global wave climate variability
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analysis as well as for many coastal engineering applications.
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1. Introduction

Ocean surface gravity waves are the result of an important exchange of

energy and momentum at the ocean-atmosphere interface. Waves propagate

through the ocean basins transporting the accumulated energy obtained from

the wind. During wave propagation, some energy is dissipated through dif-

ferent processes. The knowledge about how energy from winds transfers into

the seas and how this energy propagates and dissipates is of great importance

for the scientific community, since it allows understanding and modeling of

wave fields. This modeling is of utmost importance for design purposes in

offshore and coastal engineering. Furthermore, current research topics in

ocean studies require long time series of wave climate with high spatial res-

olution at a global scale. Some examples of these research topics are the

evaluation and study of wave energy resources, ocean dynamics variability,

definition of operable conditions in shipping routes, maintenance and repair

strategies for offshore constructions, extreme wave analysis, etc. Besides en-

gineering, climate change also demands tools and data to define long-term

variability of wave climate within different scenarios. Note that for all these

research trends, global wave fields containing long time series of wave climate

parameters are required.

Over the last decades, there has been an increasing interest in collecting

wave climate information through instrumental devices such as buoys and

satellite altimetry. Buoy measurements provide very accurate time series
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records but they are relatively short and are sparsely located in space, most

of them in the Northern Hemisphere. In addition, they usually present in-

terruptions due to disruptions on the normal use caused by buoy failure and

maintenance activities. In contrast, satellite observations present a global

coverage and also provide information with a high level of precision (±3

cm, Krogstad and Barstow (1999)). However, this source of data is only

available since 1992 and with a non-regular time resolution. Both sources of

information, buoys and altimetry, do not configure a temporal and spatial ho-

mogeneous record of ocean wave climate variables for most of the purposes

mentioned above. This issue has motivated an increasing interest in wind

wave models, which allow obtaining spatially homogenous long-time series of

wave climate parameters, i.e. Wave Reanalyses Databases (WRD). However,

as it has been pointed out by several authors (Cavaleri and Sclavo, 2006;

Caires et al., 2004), WRD are not quantitatively perfect, presenting several

deficiencies with respect to instrumental data. Despite those shortcomings,

WRD constitute an optimal way to accurately interpolate data both in time

and space, even for those locations where no instrumental measurements exist

(Weisse and Von Storch, 2010). Results are accurate enough to make them

suitable, if carefully applied, to be used for coastal engineering purposes as

well to assess long-term changes and trends.

The most advanced state-of-the-art wind wave models are the third gen-

eration wave models (Komen et al., 1994). Two of the most relevant and

widely used within this group are the wave models WAM (Hasselman et al.,

1998) and Wavewatch III (Tolman, 2009, 2002b; Tolman et al., 2002) (de-

noted as WW3 in the following). Both models are recommended to be used
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for open ocean wave simulation because non-linear and wave-bottom interac-

tions are not appropriately addressed. For this reason, wave climate in coastal

and shallow waters is poorly described with these models. For details about

models focused on coastal and shallow waters conditions see Schneggenburger

et al. (1997); Booij et al. (1999) or Camus et al. (2011).

Wind wave models are driven by wind fields and constrained by ocean

sea/ocean cover. The quality of any WRD depends upon the quality of wind

forcing (Feng et al., 2006). There are several global meteorological reanalysis

carried out at different research centers and institutes. A comprehensive list,

including their characteristics, can be found in Weisse and Von Storch (2010).

It is worth noting the following among them:

1. The ERA-40 project (Uppala et al., 2005), carried out by the European

Center for Medium Range Weather Forecast (ECMWF), which also

includes the computation of the wave fields (Sterl and Caires, 2005);

2. The NCEP/NCAR reanalysis project (Kalnay et al., 1996), which con-

stitutes the longest and most up-to-date global reanalysis;

3. The Japan Meteorological Agency reanalysis, JRA-25 (Onogi et al.,

2007), covering the period 1979 to 2004, which is specially focused on

the study of tropical storms.

4. Recently, the ECMWF have developed a new reanalysis to replace the

ERA-40. It covers the period from 1989 onwards (Dee et al., 2011) and

it also includes wave computation.

Based on wind wave models and global meteorological reanalysis, many

efforts have been made in the last decades to generate consistent sets of data

to define the wave climatology. Sterl et al. (1998) computed the first ocean
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wave field using the ERA-15 surface winds. The success of this reanalysis

led to couple a wave model to the ERA-40 wind reanalysis (Uppala et al.,

2005) with a resolution of 1.5◦ x 1.5◦ (latitude x longitude). In an indepen-

dent study, these wind fields were used to force the ODG2P wave model for

1988 (ERA-40/ODGP2). Due to deficiencies of the ERA-40 wave dataset,

results present certain overestimation of low wave heights and a considerable

underestimation of large wave heights (see Sterl and Caires (2005)). Caires

and Sterl (2005a) produced a corrected version of the dataset, named as C-

ERA-40 with a significant improvement in the diagnostic statistics (Caires

and Sterl, 2005b). They use a non-parametric correction method based upon

non-parametric regression techniques. However, the corrected dataset still

shows some underestimation of high quantiles. Based on NCEP/NCAR

winds (1.25◦ x 2.5◦), global wave fields were obtained by Cox and Swail

(2001) for the period 1958-1997 using the ODGP2 wave model with resolu-

tion of 1.25◦ x 2.5◦ (CS01). Motivated by deficiencies in the NCEP/NCAR

input wind fields, Swail and Cox (2000) carried out an intensive kinematic

reanalysis of these winds in the North Atlantic using a finer wave model

grid (0.62◦ x 0.833◦). Pacific Weather Analysis (Graham and Diaz, 2001)

produced a 50-yr wave reanalysis (PWA-R) using NCEP/NCAR winds and

the model WW3 on a 1◦x1.5◦ grid for the North Pacific Ocean during the

winter season. One of the first but prominent attempts to reconstruct past

wave climate in the North-East Atlantic was carried out by the WASA group

(WasaGroup, 1998). Later on, within the project HIPOCAS, a high resolu-

tion wave (and sea level) reanalysis (Pilar et al., 2008) was developed using

the wave model WAM. More recently Dodet et al. (2010) computed a reanal-
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ysis with WW3 for the last six decades to analyze wave climate variability in

the North-East Atlantic. It is worth noting that the temporal resolution of

results vary between reanalyses, from one to six hours. Caires et al. (2004)

present a comparative study between some of the most relevant global WRD.

Changes over time in data sources, advances in data analysis techniques

and evolution of the wind wave models have conducted to inhomegeneities

between the wave results of the different reanalyses described above.

Therefore, available numerical data of wave climate vary both in time

range and in quality. The aim of this paper is to present a new WRD with

the following characteristics:

1. It pretends to be continuously updated, constituting a valuable dataset

of wave climate parameters for engineering applications.

2. Global coverage.

3. Long length of the simulated records (time series of different wave sta-

tistical parameters and energy spectra from 1948 onwards).

4. High temporal resolution of the outputs (hourly).

5. Exhaustive validation using instrumental measurements from buoys

and satellite altimetry.

6. Post-process using altimetry observations consisting of: (a) identifica-

tion of possible outliers (from 1992) related to hurricanes and typhoons

not appropriately reproduced by the numerical modeling, and (b) cal-

ibration of the model hindcast results to obtain a more accurate de-

scription of the wave statistical distribution according to instrumental

data.

The rest of the manuscript is organized as follows. Section 2 presents the
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methodology to obtain the Global Ocean Waves (GOW) reanalysis. It also

describes the instrumental wave data used for corrections and validation, the

model description, and a preliminary validation of the results with instru-

mental data from buoy and altimeter observations. Correction procedures

(outliers removal and calibration of wave heights) are also addressed in this

section. Results and verification of the correction procedure are presented in

section 3. Finally, concluding remarks are outlined in Section 4.

2. Methodology

2.1. Introduction

The development of the GOW database encompasses several stages, which

are summarized in the flow chart of Figure 1. This study presents a calibra-

tion of a model hindcast with satellite wave height data, after verification

against historical data. Firstly, the wave generation is obtained by using the

WW3 model and the NCEP/NCAR global wind and ice cover datasets. In

order to check the performance of the wave generation model and the quality

of the forcing fields, a preliminary validation is done using both buoy and

satellite altimetry data as benchmarks. Next stage consists of the calibration

of the numerical results (i.e. significant wave height) using satellite altimetry

data. This process aims to make several systematic corrections to reduce de-

viations between the probability distribution function of corrected hindcast

and instrumental data. However, previous to these corrections, an outlier

detection process over the data pairs, both numerical and instrumental, is

addressed. This filtering process is important to eliminate data related to

hurricanes or typhoons episodes, which may be captured by the altimetry
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Figure 1: Methodology diagram

but are not appropriately reproduced in the forcing wind fields because of

insufficient resolution. Finally, an additional validation using buoy data is

carried out to check the performance of the calibration process and the qual-

ity of the final database. Hereafter, we will refer to the hindcast data as

the Non-calibrated GOW (NC-GOW) results and we will use GOW for the

results after applying the corrections.

2.2. Model set-up

The generation and propagation of the wind waves are simulated with

the model WW3, version 2.22 (Tolman, 2002a). Simulations are computed

on a global grid with an spatial resolution of 1.5◦ in longitude and 1◦ in

latitude (a total of 22.945 computational nodes). Wave growth uses source

terms (Tolman and Chalikov (1996)) to account for wind input, non-linear

wave-wave interactions and whitecapping. Effects of depth-induced refrac-
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tion are also considered in the propagation model. Wave interactions with

currents and island shadowing are not considered in the simulation process.

Bathymetry data used for the simulation comes from the ETOPO dataset

(NOAA, 2006). The minimum propagation time-step used for the computa-

tion was 60 seconds and the spectral resolution covers 72 regularly spaced

directions. Frequencies extend from 0.03679 hz with 25 frequency steps and

a frequency increment factor of 1.1.

Because wave model output is very sensitive to the wind field input

choice, different studies have been developed to judge the quality of the

wind fields. Tolman (2002b) determines that the NCEP/NCAR winds pro-

vide the best results in terms of significant wave height estimates for the

model WW3. More recently, Feng et al. (2006) analyze four different wind

forcing fields with the WW3 model: (1) NCEP/NCAR reanalysis winds, (2)

the ECMWF wind fields, (3) the QuickSCAT wind observations blending the

NCEP/NCAR reanalysis winds and, finally, (4) an enhanced ECMWF wind

field with assimilation of wind speed measurements. Their results indicate

that NCEP/NCAR winds as input data produce the best agreement with

TOPEX altimetry wave measurements, at both global and regional scales,

while the others present a higher spatial variability and are all positively

biased.

The long temporal coverage, the up-to-date characteristic, the continu-

ously assimilated observations and the good evaluation obtained in the men-

tioned works, indicate that NCEP/NCAR wind fields are an adequate choice

for wave modeling performance. Although data assimilation on NCEP/NCAR

is maintained, special caution must be taken for the study of long-term
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changes due to the evolution of assimilated observations (Kistler et al., 1999).

Inhomogeneities caused by changes in the amount of assimilated observations

within NCEP-NCAR reanalysis are particularly relevant in the Southern

Hemisphere and before 1980 (Sterl, 2004). Potential users must be aware

of this fact and the use of the data in some regions of the Southern Hemi-

sphere must be done with caution due to homogeneity problems (Sterl and

Caires, 2005). Therefore, we force WW3 model with 6-hourly wind fields

from the NCEP/NCAR Reanalysis project (Kalnay et al., 1996), available

from 1948 to present. Wind data are defined on a Gaussian grid with a

spatial resolution of approximately 1.9◦ in latitude and 1.875◦ in longitude.

Simulations also include ice coverage fields from NCEP/NCAR.

The output parameters obtained all over the grid are: the significant

wave height (Hs), mean wave period (Tm), peak period (Tp), peak direc-

tion (θp), mean wave direction (θm), directional spread and energy spectra

in specific locations along the coast to analyze multimodal sea states, with

different swell and wind sea components. This increment of data storage

in coastal areas allow summing higher resolution wave propagation models

(Camus et al., 2011) for engineering applications (ports, breakwaters, sedi-

ment transport, etc.). In this work we do not analyze the different swell and

wind sea components as in Semedo et al. (2011), although they could also be

obtained.

2.3. Validation data

An important aspect within WRD design is the validation process us-

ing instrumental information as a benchmark. For this particular issue, we

compare wave model results with measurements from deep-water buoys at
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different locations over the Atlantic and Pacific oceans and the Caribbean

Sea. In-situ buoy measured wave data are obtained from three different

sources: NOAA National Data Buoy Center, the Environment Canada and

Puertos del Estado (Spain). Table 1 includes the locations of the buoys used

in the validation process, which are also represented in Figure 6.

Although buoy observations are considered the most reliable wave mea-

surements, they are scattered in time and space, mainly located in the North-

ern Hemisphere and are generally available for the last two decades. In con-

trast, altimetry wave measurements provide the best possible spatial coverage

to evaluate global wave data. From the nineties, different satellite missions,

such as, Jason 1, Jason 2, TOPEX, ERS-2, Envisat and GFO, incorporate

altimetry sensors. Wave data from these sources show very good agreement

between each other and, as a consequence, they are combined for compari-

son with reanalysis results. In this study, we have used the significant wave

heights from the mentioned six satellite missions from 1992 to 2008. The cal-

ibration procedures summarized in Cotton (1998) and Woolf and Challenor

(2002), and later updated by Hemer et al. (2010) using extra years and ad-

ditional satellite missions have been applied to the altimeter measurements.

2.4. Preliminary validation

In order to assess the quality of the numerical simulated results, these are

compared with respect to buoy and altimetry data. Different wave param-

eters (Hs, Tp and θm) are compared in a total of 21 buoy stations, some of

them directional gauges. Several diagnostic statistics for comparing model

performance (y) with respect to instrumental data (x ) are calculated:
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• The systematic deviation between two random variables (BIAS; usually

model minus data):

BIAS = x̄− ȳ. (1)

• The root mean square error (RMSE):

RMSE =

√√√√ 1

nd

nd∑
i=1

(xi − yi)2. (2)

• The residual scatter index (SI), which measures dispersion with respect

to the line x = y:

SI =
RMSE

x̄
. (3)

• The Pearson’s correlation coefficient (ρ):

ρ =
cov(x,y)

σx · σy
. (4)

where cov(x,y) represents the covariance between the two variables and

ρ varies between -1 and 1.

• Sample distribution moments: means (x̄, ȳ) and standard deviations (

σx, σy).

These statistics are used to measure the quality of the results at the two

validation stages:

1. Comparing numerical results (NC-GOW) with buoy data at a first

stage.

2. Comparing calibrated numerical results (GOW) with buoy data and

altimetry after the calibration process.
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Due to the scattered distribution of buoy locations in the oceans, the only

way to validate numerical results on a global scale is by comparing them with

altimetry observations. To make meaningful comparisons, reanalysis data are

interpolated to the instants and positions of the instrumental observations.

For every node of the simulation grid, all altimetry observations within cells

of the same dimension as the model resolution (1◦ x 1.5◦) are selected.

Figure 2 shows scatter and quantile-quantile (25 equally distributed quan-

tiles on a Gumbel scale) plots comparing buoy data and wave model results

at different locations. In all cases, NC-GOW shows a good agreement. Note

that in the case of the buoy CAR-41041, a tropical cyclone appears in the

buoy record with a maximum significant wave height around 7 m, which is

not appropriately reproduced by the wave model (Hs around 2 m height).

This is due to the poor resolution of the input wave fields. Note also that

for high quantiles, wave heights appear to be under-estimated in some buoys

while in others they are slightly over-estimated. This result supports the

need of a correction, especially for the highest quantiles, which are the most

relevant for engineering applications.

In Figure 3, hindcast and instrumental Hs time series of six different

buoy locations, covering different years, are shown. For all cases, model data

reproduces appropriately the magnitude and temporal evolution of the in-

strumental Hs records. Note that the highest differences correspond to peak

events, where some of them are accurately reproduced in magnitude while

others are not. For instance, the peak events of NWUS-46006 buoy show

little discrepancies during the first months of the year whereas differences up

to 2 m occur for the last months of the year.
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Figure 4 shows the model performance on i) significant wave height (Hs),

ii) peak period (Tp) and iii) mean wave direction (θm) at Silleiro buoy station

during year 2006. Note that besides Hs, both peak period and mean wave

direction present very good agreement with respect to instrumental data. In

general terms, we have found good agreement between model results and

observations, and the higher discrepancies are associated with the highest

wave events. This result is also observed, from a statistical point of view, in

the quantile-quantile plots (see Figure 2).

Table 1 provides for different buoy locations the following information:

the name of the buoy, longitude and latitude, length of records (n), and

several diagnostic statistics related to Hs and Tp, respectively, comparing

NC-GOW data versus buoy observations. From this validation the following

remarks are pertinent:

1. The biases related to wave heights are relatively low. The highest

absolute values correspond to negative biases, which means that the

model overestimates wave heights on average.

2. The buoys located in areas with frequent storm (BER-46035, ALA-

46003, NWUS-46006, CAN-46004, NWUS-46005) tend to show a poorer

performance in wave heights and are also associated with higher dis-

persion range (see scatter plots in Figure 2).

3. The scatter indexes and correlation coefficients of Hs are below 0.3

and above 0.85 respectively, which are appropriate diagnostic values

for these kind of comparisons. Note that lower scatter indices and

higher correlation coefficients correspond to higher reanalysis quality.

Diagnostic statistics for CADIZ and CH-32301 (Chile) buoys are com-
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paratively worse than for the rest of locations. The former is due to the

coarse spatial grid resolution in semi-enclosed areas such as small gulfs

and the latter may be due to the doubtful quality and short length

(1984-1986) of the record.

4. Correlations related to the Tp are lower than those associated with Hs.

This result is consistent with results from other reanalyses existing in

the literature.

5. The bias associated with Tp is negative for all cases (overestimation of

the model) except for the three buoys in the tropical Atlantic. This

result is probably induced by (i) not enough swell dissipation in the

model and (ii) the discrete interaction approximation (DIA) for non-

linear wave interaction, which would also be consistent with the ob-

served overestimate of the wave heights.

Caires et al. (2004) made a comparison of several global wind wave re-

analysis, contrasting results during four different years (1978, 1988, 1994 and

1997) with several buoy records over the globe. Table 2 provides those results

at the Peruvian coasts (buoy CH-32302), including also NC-GOWresults for

comparison purposes. Analogously, tables 3 and 4 provide the same infor-

mation as table 2 but related to four islands in Hawaii (buoys HW-51001,

HW-51002, HW-51003 and HW-51004) and three buoys close to the coast of

Alaska (ALA-46001, ALA-46003 and CAN-46004), respectively. Note that

their work did not include the comparison with more modern and better

global reanalyses, like C-ERA-40 or ERA-Interim (Dee et al., 2011) datasets,

this reason prevent us from making this comparison. It is important to note

that expression (3) used for the Scatter Index in the present paper differs
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Hs (m) Tp (s)

Buoy Name Time span Lon. Lat. n BIAS (m) RMSE (m) ρ SI n BIAS (s) RMSE (s) ρ SI

BILBAO 1990-08 356.95 44.00 49132 0.00 0.51 0.92 0.27 51517 -0.72 2.13 0.79 0.22

PENYAS 1997-08 353.83 44.00 67365 -0.24 0.66 0.85 0.34 68035 -0.66 2.02 0.79 0.21

ESTACA 1996-08 352.38 44.06 62277 0.05 0.52 0.92 0.22 62471 -0.69 2.13 0.78 0.22

VILLANO 1998-08 350.08 43.50 60848 0.03 0.55 0.91 0.23 60899 -0.74 2.09 0.77 0.23

SILLEIRO 1998-08 350.61 42.13 39043 0.06 0.44 0.94 0.20 39184 -0.74 1.92 0.78 0.20

CADIZ 1996-08 352.50 36.48 30755 -0.08 0.60 0.71 0.49 35682 -3.09 4.17 0.71 0.58

CAR-41043 2007-08 294.99 20.99 14363 0.04 0.25 0.93 0.14 14363 0.33 1.43 0.79 0.16

CAR-41040 2005-08 306.96 14.48 23060 0.07 0.26 0.90 0.13 23061 0.38 1.60 0.76 0.18

CAR-41041 2005-08 313.99 14.36 28581 0.04 0.27 0.88 0.13 28581 0.30 1.75 0.78 0.20

CH-32301 1984-86 254.80 -9.90 3359 0.00 0.33 0.76 0.15 3359 -0.98 3.46 0.71 0.29

CH-32302 1986-95 274.90 -18.00 68944 0.05 0.32 0.88 0.15 68939 -0.20 3.07 0.71 0.24

BER-46035 1985-07 182.42 57.05 158843 -0.16 0.67 0.92 0.25 159523 -0.37 2.73 0.67 0.30

ALA-46003 1976-07 205.02 52.70 191687 -0.15 0.66 0.92 0.22 185827 -0.24 2.67 0.71 0.26

ALA-46001 1972-07 211.83 56.30 234247 0.03 0.65 0.91 0.24 222623 -0.50 3.20 0.65 0.32

CAN-46004 1988-07 226.10 48.35 109988 -0.22 0.77 0.89 0.27 109988 -0.49 3.06 0.69 0.28

NWUS-46005 1976-07 228.98 46.05 210187 -0.19 0.59 0.93 0.21 201655 -0.86 3.42 0.69 0.32

NWUS-46006 1977-07 222.52 40.80 187124 -0.14 0.57 0.94 0.20 179605 -0.60 3.23 0.70 0.29

HW-51001 1981-07 197.79 23.43 189167 -0.02 0.40 0.91 0.17 189126 -0.42 3.08 0.70 0.29

HW-51002 1984-07 202.22 17.19 174107 0.07 0.43 0.84 0.18 174122 -1.58 3.67 0.66 0.37

HW-51003 1984-07 199.18 19.22 168201 -0.01 0.37 0.87 0.17 168196 -1.17 3.46 0.68 0.33

HW-51004 1984-07 207.52 17.52 171378 0.02 0.38 0.85 0.16 171375 -1.61 3.76 0.65 0.37

Table 1: Correlation statistics for significant wave height and peak period between NC-

GOW and buoy observations.
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slightly from the one used in Caires et al. (2004):

SIC =

√√√√ 1

nd

nd∑
i=1

[(yi − ȳ)− (xi − x̄)]2

x̄
=

√√√√ 1

nd

nd∑
i=1

[(yi − xi)− BIAS]2

x̄
, (5)

however, they are equal (SIC = SI) in case the BIAS is null. The comparison

hereafter has been made with the SIC index.

In addition, there are some differences about how the data is pre-processed

for comparison purposes. Caires et al. (2004) process the time series using

the procedure described in Caires and Sterl (2003), and compare reanalyses

with a 6-h average from buoy observations. We compare 6 hour average data

interpolated to the position and time (hourly) when the buoy records were

registered, considering that the reanalysis winds are only available on a six

hourly data. In this manner, the number of data (n) for comparison is of the

same order than the reference. From results given in tables 2, 3 and 4, the

following observations are pertinent:

1. The mean values corresponding to ERA-40 and NC-GOW coincide for

buoys on the Peruvian coast and Hawaii, and they are very close with

respect to results in Alaska.

2. NC-GOW data preserves the quality of the correlation coefficients (ρ)

and scatter indexes (SI).

3. NC-GOW gives lower BIAS results with respect to compared reanalyses

for all locations.

Although results obtained from different reanalyses are not directly com-

parable due to pre-processing, our results are consistent with respect to anal-
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Year REAN n Mean (m) BIAS (m) RMSE (m) ρ SIC

1988

ERA-40 1461 2.21 -0.03 0.33 0.84 0.15

ERA-40/ODGP2 -0.30 0.41 0.87 0.13

CS01 -0.24 0.40 0.83 0.15

PWA-R -0.14 0.38 0.84 0.16

NC-GOW 1410 2.22 -0.03 0.28 0.90 0.12

1994

ERA-40 1457 2.18 -0.14 0.30 0.92 0.12

CS01 -0.43 0.56 0.82 0.17

PWA-R -0.33 0.48 0.83 0.16

NC-GOW 1412 2.18 0.13 0.32 0.89 0.14

Table 2: Comparison in Peruvian coast for several wave reanalysis (modified from Caires

et al. (2004)).

ogous reanalyses and instrumental data, increasing the confidence on the NC-

GOW performance. In addition, validation using buoy observations confirms

the quality of the hindcast data related to: i) the time series evolution, and

ii) the quantile statistical distribution.

Regarding the validation of NC-GOW on a global scale using altimetry

data from 1992 up to 2008, Figure 5 shows colour plots of the mean and the

95th percentile Hs for both altimetry and NC-GOW data. The storm tracks

regions can be clearly identified, both in the Northern and Southern Hemi-

sphere. Contour plots related to altimetry data present the same patterns

as those associated with the NC-GOW data, which indicates that the model

is properly describing the wave climate at a global scale. The larger differ-

ences are detected on those areas of higher significant wave heights, which
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Year REAN n Mean (m) BIAS (m) RMSE (m) ρ SIC

1988

ERA-40 3399 2.20 -0.23 0.42 0.87 0.16

ERA-40/ODGP2 -0.31 0.45 0.87 0.15

CS01 -0.16 0.40 0.83 0.17

PWA-R -0.45 0.62 0.81 0.19

NC-GOW 4013 2.20 0.04 0.37 0.86 0.17

1994

ERA-40 4570 2.55 -0.38 0.51 0.90 0.13

CS01 -0.46 0.62 0.81 0.17

PWA-R -0.59 0.73 0.83 0.17

NC-GOW 4342 2.55 0.18 0.46 0.85 0.17

1997

ERA-40 5569 2.37 -0.16 0.35 0.90 0.13

CS01 -0.31 2.48 0.85 0.15

PWA-R -0.37 0.58 0.84 0.19

NC-GOW 6820 2.34 -0.03 0.39 0.86 0.17

Table 3: Comparison in Hawaii for several wave reanalysis (modified from Caires et al.

(2004)).
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Year REAN n Mean (m) BIAS (m) RMSE (m) ρ SIC

1978
ERA-40 3313 2.54 -0.24 0.38 0.90 0.29

CS01 0.35 0.48 0.86 0.31

NC-GOW 1134 2.49 -0.45 0.70 0.88 0.22

1988

ERA-40 4054 3.18 -0.35 0.68 0.94 0.18

ERA-40/ODGP2 -0.14 0.57 0.93 0.18

CS01 0.29 0.71 0.92 0.20

PWA-R -0.14 0.80 0.91 0.25

NC-GOW 3139 3.07 -0.03 0.60 0.93 0.20

1994

ERA-40 3793 2.91 -0.37 0.60 0.97 0.16

CS01 0.20 0.59 0.94 0.19

PWA-R -0.17 0.70 0.93 0.24

NC-GOW 2700 2.98 -0.07 0.60 0.94 0.20

1997

ERA-40 3788 2.87 -0.21 0.50 0.96 0.16

CS01 0.20 0.65 0.92 0.22

PWA-R -0.22 0.75 0.91 0.26

NC-GOW 3684 2.81 -0.08 0.61 0.92 0.21

Table 4: Comparison in Alaska buoys for several wave reanalysis (modified from Caires

et al. (2004)).

20



are associated with high latitudes on both hemispheres.

Results indicate that Northern Hemisphere presents higher variability in

wave climate conditions than the Southern Hemisphere. According to Iza-

guirre et al. (2011), by using satellite data, and Caires and Sterl (2005a), by

numerical modeling, the differences between average wave variations (vari-

ance) and extreme wave heights are larger in the Northern than in the South-

ern Hemisphere.

Visual inspection of Figure 5 allows the identification of the same spa-

tial patterns for both mean and 95th percentile values, which is a qualitative

measure of the goodness of the dataset. In contrast, Figure 6 show the Pear-

son’s correlation coefficient (ρ) for the hourly Hs from 1992 to 2008. Note

that diagnostic statistics are calculated removing outliers, i.e. data related to

hurricanes and typhoons, using the method given in Mı́nguez et al. (2011b),

which is briefly described in the next subsection. The higher and lower values

for the correlation coefficient and scatter index, respectively, are obtained in

areas of large mean significant wave heights (see Figure 5). Comparatively

worse correlation and scatter index results are obtained in tropical areas,

big archipelagos and semi-enclosed basins. The same conclusion is reached

if different statistics, such as RMSE and Bias, are used instead (not shown

due to space limitations). The discrepancies between numerical and altime-

try data sets, especially in those areas where reanalysis is more limited due

to the temporal and spatial resolution, justify the application of additional

corrections to embed instrumental information.
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2.5. Wave field corrections procedures

Validation results given previously show the good performance of the wave

reanalysis with respect to: i) analogous reanalysis existing in the literature,

and ii) instrumental data (buoys and altimetry). These characteristics make

this reanalysis a useful design tool for offshore and coastal structures, since it

offers long continuous time series and good spatial coverage for the statistical

characterization of wave climate with respect to other sources of information.

However, several authors (see Caires and Sterl (2005b), Cavaleri and Sclavo

(2006),Mı́nguez et al. (2011a) or Mı́nguez et al. (2011b)) point out that there

are still discrepancies when comparing WRD with instrumental data. These

differences are mainly provoked by insufficient forcing resolution, and it be-

comes more evident in the presence of hurricanes and typhoons, which make

instrumental data to appear as outliers.

In order to improve robustness of the reanalysis and configure the GOW

database, a calibration procedure based on Mı́nguez et al. (2011a) is per-

formed using altimetry instrumental data. Previous to calibration, an outlier

filter (see Mı́nguez et al. (2011b)) is applied to remove instrumental data re-

lated to hurricanes and typhoons. These two procedures are briefly described

in the following sections.

2.6. Identification and removal of outliers

The bad performance during hurricanes and typhoons, which can be ob-

served in the scatter plot of CAR-41041 in Figure 2 and in the corresponding

time series in Figure 3, is produced because the tropical cyclones are not

appropriately resolved using WW3, due to the resolution of the input wind

fields. Note that failing to exclude those outlier observations may provoke the

22



distortion of any corrective action. Besides, these data should be treated and

analyzed separately for the results of the correction to be fully reliable. For

this reason we apply an outlier filter to eliminate these unresolved processes.

Mı́nguez et al. (2011b) present different outlier detection regression tech-

niques applied to WRD. The methods are intended for an automatic hurri-

cane and typhoon identification. The advantage of using any of these tech-

niques are: i) it allows the identification and removal of Hs related to tropical

storms, inappropriately reproduced by the reanalysis, ii) it does not require

the availability of a tropical storm database, and iii) it allows the identi-

fication of areas where the influence of tropical storms are relevant, which

should be further studied using appropriate models, higher temporal and

spatial resolution, etc.

For this particular case, we have selected the method based on a nonlinear

heteroscedastic regression model because it is robust and the parameteriza-

tion is flexible to be applied on different wave climates, which is particularly

important as the filtering is applied all over the grid. The model can be

expressed in the form:

yi = fµ(xi;β) + εi, i = 1, 2, . . . , n, (6)

where xi corresponds to the ith predictor variable (interpolated hindcast

data), and yi is the ith value of the response variable (instrumental data).

The model mean and standard deviation are parametrized as follows:

fµ(xi,β) = β0x
β1
i (7)

σ(xi,γ) = γ0x
γ1
i , (8)
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where β and γ are parameter vectors related to the model mean (7) and

standard deviation (8), respectively. Note that the standard deviation het-

eroscedasticity is modeled through the nonlinear function (8), and εi; i =

1, . . . , n are jointly normally distributed ε ∼ N(0, σi) errors.

Once data pairs (instrumental versus reanalysis) are selected, the outlier

identification technique encompasses the following steps:

1. Estimate the parameters β0,β1,γ0 and γ1 using the method of maxi-

mum likelihood.

2. Calculate the residual vector:

ε̂ = y − fµ(x; β̂) , (9)

where the tilde “ ˆ ” refers to estimated values.

3. Obtain the residual variance-covariance matrix Ω using a first-order

Taylor series expansion of the regression model at the optimum.

4. Compute the studentized residuals as follows

zi =
ε̂i√
Ωi,i

=
yi − fµ(xi; β̂)√

Ωi,i

i = 1, . . . , n, (10)

where Ωi,i is the ith diagonal element of Ω.

5. Outlier identification: For a given confidence level, i.e. α = 0.0001, any

case is identified as an outlier if |zi| > Φ−1(1− α/2).

For the purpose of this study, simulation and sensitivity tests performed

in Mı́nguez et al. (2011b), allow us to set the significance level to α = 0.0001,

for an appropriate removal of data associated with hurricanes and typhoons.

Figure 7 presents an example of filtering for a particular location close

to the Caribbean sea, which is an area where the presence of hurricanes
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and tropical storms is highly frequent. The figure shows the scatter plot,

empirical and fitted regression model, and information the data removed for

different confidence levels. Black dots in the scatter plot indicate those points

detected as outliers using a significance level of α = 0.0001. Note that there

are instrumental significant wave heights above 7 m which do not exceed 3 m

within the hindcast. Those points are related to high values of standardized

residuals and are removed for calibration purposes. Alternation in colours

indicate data located between different significance levels.

2.7. Wave Height Calibration

Even though there has been an important improvement in numerical wave

generation models, validation of results still present discrepancies with re-

spect to instrumental data. There are several reasons, such as a bad descrip-

tions of wind fields and insufficient forcing and model resolution (Feng et al.,

2006). Additional factors also contribute to poor model performance on

shallow waters, such as, inappropriate shallow water physics in wave models,

unresolved island blocking, imperfect bathymetry, etc. (see Cavaleri et al.

(2007) for a summary). For this reason, several attempts to correct wave

heights with instrumental data has been presented in the literature.

Caires and Sterl (2005a) propose a relation between buoy and ERA-40

wave data for the 100-year return values, based on a nonparametric method

with “analogs” from a learning dataset. Tomás et al. (2008) present a spatial

calibration method based on empirical orthogonal functions. More recently,

Mı́nguez et al. (2011a) presents a calibration procedure which depends on

mean directions. Once the outliers have been identified and removed, we

use the method proposed by Mı́nguez et al. (2011a) to embed satellite in-
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formation in the GOW database. The calibration procedure is based on

measurements during satellite age and the correction is applied for the full

period of wave hindcast. This assumption can be considered suitable for en-

gineering applications since statistics are corrected. Spatial caution must be

taken for climate variability analysis however.

The model can be mathematically expressed as:

HC
s = aR(θ)

[
HR
s

]bR(θ)
(11)

where HR
s is the reanalysis significant wave height, HC

s is the calibrated or

corrected significant wave height, and aR(θ) and bR(θ) are the parameters

dependent on the mean wave direction θ from reanalysis. Note that for sea

states with multiple components this correction does not consider the differ-

ent directions of each component and its effect should be further explored

depending on the relative importance of each energetic component. This

deficiency on the calibration process is also acknowledged in Mı́nguez et al.

(2011a).

The parameter values for all possible directions are obtained by interpo-

lation using smoothing cubic spline functions:

aRi (θi) = aj + xaj (θi − θj) + yaj (θi − θj)2 + zaj (θi − θj)3, (12)

bRi (θi) = bj + xbj(θi − θj) + ybj(θi − θj)2 + zbj(θi − θj)3, (13)

where aRi and bRi are the interpolated model correction parameters for a given

direction θi, aj, bj; j = 1, . . . , np are the parameters to be estimated, i.e. the

parameter values associated with directions θj; j = 1, . . . , nd, and xaj , y
a
j ,

zaj , xbj, y
b
j , z

b
j ; j = 1, . . . , nd are the corresponding cubic spline parameters,
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which are obtained using zero, first and second order continuity conditions

along the circumference (0 ≤ θ ≤ 2π).

Model parameters aj, bj; j = 1, . . . , np are estimated using the least

squares method. Once these parameters are obtained it is possible to correct

the complete reanalysis time series using mean wave direction records and

expression (11). The calibration method makes the directional correction

based on quantiles on a Gumbel scale, which gives more importance to the

upper tail of the wave heights distribution. Note that for this reason the

outlier removal is necessary, because if there exist data related to hurricanes

or typhoons they will present discrepancies with instrumental data and the

calibration may distort model data misguidedly all over the quantile range

in the attempt to correct the discrepancies, as seen in Figure 8. For more

details about the methodology and its hypothesis see Mı́nguez et al. (2011a).

Figure 8 presents the calibration results for the same example used in

Figure 7 after outlier removal. The figure shows the cumulative distribution

functions of instrumental, NC-GOW and GOW data including 95% confi-

dence bands on a Gumbel probability plot. Although the performance for

buoy data previously shown did not improve significantly, the empirical cu-

mulative distribution function (ecdf) related to calibrated data is closer to the

instrumental ecdf, especially in the upper tail of the distribution. Calibrated

results always present better agreement from a statistical viewpoint.

Figure 9 shows the relevance of outliers filter in the calibration procedure

for a buoy (NOAA, 42059: 15.054◦ N, 67.47◦ W) located in the Caribbean

sea. The Hs scatter and quantile-quantile plots of instrumental versus cal-

ibrated reanalysis, after (right panels: b, d) and before (left panels: a, c)

27



calibration, are shown without no removal of outliers (upper panels: a, b)

and after applying the outlier filter (lower panels: c, d). Hurricanes Dean

(year 2007) and Omar (year 2008) have been remarked in the upper-left panel

(a). Note that for Omar hurricane, instrumental wave heights between 3 and

5 m correspond to model wave heights between 1.2 and 2.5 m, and also in-

strumental wave heights above 7 m for Dean do not exceed 3 m in the model.

These circumstances provoke the highest four quantiles to move away from

the bisector. If the calibration procedure is applied without removing those

observations which are not properly resolved in the model, results given in

the upper-right panel (b) are obtained. Note that the calibration process

deteriorates results, obtaining worse diagnostic statistics with respect to re-

analysis data, i.e. higher bias, root mean square error and scatter index, and

lower correlation coefficient. However, if the outlier filter is applied previ-

ously to make the calibration, the scatter and quantile-quantile plots, shown

in the lower-left panel (c) of Figure 9, are obtained, which after the cali-

bration process transforms into results shown in the lower-right panel (d)

of Figure 9. Diagnostic statistics after the calibration process improve, i.e.

lower bias, root mean square error and scatter index, and higher correlation

coefficient.

Figure 10 shows the number of data suspicious to be outliers for a signif-

icance level α = 0.0001 all over the GOW grid domain. Note that the larger

values are located in areas where the occurrence of hurricanes, typhoons and

tropical cyclones is frequent. Reanalysis data over those locations should be

used with care if high values of significant wave heights are analyzed.
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3. The GOW wave reanalysis

As mentioned in the previous section, the calibration is applied to each

node of the simulation grid using the satellite data cells. In order to further

compare the effect of the calibration process, we have applied the calibration

method using several buoy time series records, as shown in Figure 11, where

different quantiles before and after the calibration process are provided. Note

that although reanalysis quantiles present good agreement with respect to

buoy time series quantiles, the calibration process improves results, especially

in the upper part of the distribution, with the exception of the extreme tail at

ESTACA buoy. The calibration is applied using the estimated parameters of

calibration of the closest reanalysis grid node, and using instrumental data.

This result reinforce the consistency of the calibration method.

Figure 12 shows Hs time series related to i) buoy (red line), ii) NC-GOW

hindcast (black line), and iii) GOW (green line), for different buoys over

different years (1987, 1995, 1997, and 2007). The corrected record maintains

the concordance in the temporal fluctuations and do not imply significant

changes in magnitude for the CH-32302 buoy. For the ALA-46001 station,

the calibration process improves the storm peak value occurred in March

1995. It is worth noting the higher variability observed in the buoy CAR-

41043 record. This effect is probably produced by the variability of winds

below the 6 hour temporal resolution of the wind database. Note that despite

the correction, the time series differences during October remain unsolved.

Related to PENYAS time series record, the improvement of the calibration

process implies a decrease of storm peaks.

The influence of the calibrated procedure for the annual mean and the
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95th percentile of Hs is shown in Figure 13. As can be seen, the GOW wave

reanalysis is able to model adequately those parameters is also presented.

Comparison with buoy records does not provide the spatial verification

of how the correction performs. For this reason, next section presents the

verification of the calibration process, analyzing the spatial distribution of:

i) correlation statistics and ii) wave parameters.

The verification of the calibration method is presented based on an anal-

ysis of the performance by using altimetry data available from 1992 to 2005

(training set) for calibration parameter estimation purposes. These esti-

mated parameters allow comparison of calibrated times series from 2006 to

2008 with respect to altimetry observations during the same period (verifica-

tion set). This verification is needed in order to compare the corrected wave

heights in a global domain and not only in scattered locations.

Figure 14 represents the difference in the 95th percentile of Hs between

altimetry versus NC-GOW hindcast and altimetry versus GOW for the ver-

ification set of data. The areas where the differences are higher previous to

calibration correspond to high latitudes, and coastal and island areas. Over

these areas, where there are differences up to 1.5 meters height, the cali-

bration process reduces this difference to less than 0.5 meters height. The

higher differences after corrections are found in the Southern Hemisphere,

which on average presents lower discrepancies previous to calibration with

respect to altimetry data. The mean difference in the Northern Hemisphere is

about -0.174 meters for the 95th percentile (model underestimation), which is

reduced to 0.017 meters after the calibration process. In the Southern Hemi-

sphere, the difference decreases from -0.064 to 0.020 meters. Considering data
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on a global scale, mean differences change from -0.106 before calibration to

0.019 meters afterwards. The mean significant wave height differences are

lower than those obtained for the 95th percentile which decrease from 0.026

to -0.008 m after calibration.

The absolute change in Hs although important may not be completely

representative of the effect of the calibration because the wave conditions

vary considerably in latitude (see Figure 5) and in areas with higher waves

the differences are expected to be greater, while in relative terms the effect

can be not so noticeable. For this reason, Figure 15 focuses only on the

transformation of the simulated results, before and after the calibration, in

terms of difference and relative change. The critical zones, where the effect of

the correction is more important, can be clearly identified: high latitudes in

the Atlantic and Pacific Oceans and coastal and island influenced areas. Note

that it is in theses coastal and island areas where the correlation statistics

presented the worst agreement with respect to instrumental data, and for

this reason, the percentage of change is higher.

In terms of correlation statistics, Figure 16 shows the global maps of

the RMSE of Hs (m) before and after the calibration for the verification

period. Again, the areas with higher discrepancies with respect to altimetry

observations can be clearly identified, as previously remarked in Figure 6

for the full period of the altimetry data. After the calibration, the results

improve considerably in the areas that were incorrect and remains the same

in most of the domain where the reanalysis data was satisfactory. In global

average values, RMSE decreases from 0.554 to 0.529, SI from 0.219 to 0.206,

the BIAS from -0.026 to 0.008 m and the correlation coefficient increases
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from 0.869 to 0.873. In global terms this change is not very significant, but

the improvement in coastal regions is remarkable.

From the verification analysis, we can conclude that: (1) after the calibra-

tion, the differences with altimetry observations are reduced, (2) larger wave

heights are more affected by the correction; (3) critical areas that showed

the worst agreement with observations are corrected with the calibration

method, (4) coastal regions are considerably improved; and (5) the correc-

tion performance is supported by the improvement achieved when comparing

with respect to altimetry and buoy data.

4. Conclusions

We have presented a global wave dataset simulated with the model Wave-

WatchIII and driven by the NCEP/NCAR reanalysis winds and ice fields,

covering the period from 1948 to 2008, which may be periodically updated.

Based on the application of a calibration method the dataset has been cor-

rected using altimetry data from the period from 1992 to 2008. The outliers

due to tropical cyclones are not appropriately reproduced in the simulation

process, due to lack of resolution in the wind fields. For that reason, these

data have been identified and removed from the analysis. The quality of

the results and the corrections applied have been compared with buoy and

satellite altimetry measurements. The results show a satisfactory transfor-

mation in the high quantiles distribution when necessary and no changes in

areas where the initial simulated data present good agreement with respect

to observations.

Additionally, a verification of the calibration method has been performed,
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obtaining a correction based on the altimetry data from 1992 to 2005 and

judging the effect with the remaining observations. A regionally varying

correction is confirmed, specially remarkable for high wave heights range and

coastal regions.

After incorporating the altimeter data through the calibration process, an

exhaustive validation of the results have been performed with altimeter and

buoy measurements. The diagnostic statistics show a fine agreement both

in the scatter data and in the statistical distribution of the wave heights

indicating that the reanalysis reflects appropriately the wave characteristics

identified by the satellites from 1992 to 2008.

The spatial and temporal coverage (1948 onwards) of the dataset and

the results obtained in the statistical distribution for the full range of wave

heights, make GOW database to be considered a long-term and consistent

reanalysis, suitable for global applications in ocean wave climate as well as

for coastal engineering purposes.
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Figure 2: Scatter and quantile-quantile plots of buoy measurements (horizontal axis) and

wave model results (vertical axis). Large black dots represent the quantile values (plotted

equally spaced in a Gumbel scale), small dots correspond to data pairs of significant wave

heights (buoy versus model) and the color intensity represents the density of data. Data

for each buoy correspond to the time span given in table 1.
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Figure 3: Reanalysis (black) and instrumental (red) significant wave height (Hs) time

series at several buoy locations. Data for each buoy correspond to the time span given in

table 1.
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Figure 4: Time series of significant wave height (Hs), peak period (Tp) and mean wave

direction (θm) at SILLEIRO buoy. Red: buoy measurement, Black: wave model.
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Figure 5: Mean and 95th percentile of significant wave height from NC-GOW hindcast

data (panels a and b respectively) and differences with altimeter satellite data ([SAT] -

[NC-GOW]) for both statistics from 1992 to 2008 (panels c and d, respectively).44



Figure 6: Global map of Pearson correlation coefficient between satellite observations

and hindcast results (NC-GOW) for the full period of available altimetry observations

(1992-2008). Red dots represent buoy locations.

Figure 7: Significant wave height outlier identification scatter plot (buoy versus model) in

one location near the Caribbean affected by hurricanes. Black dots represent the identified

outliers and blue and red dots correspond to data at different confidence levels (see legend

in the right panel). The black discontinuous line depicts the empirical quantile distribution

and the blue solid line the quantiles for the fitted model..
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Figure 8: Diagnostic plot for the calibration process for one particular location. Blue, green

and red lines represent, respectively, the cumulative distribution function of instrumental,

model and calibrated significant wave heights. Red shadowing correspond to the 95%

confidence calibrated confidence bounds..
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Figure 9: Scatter and quantile-quantile plots before (a, c) and after (b, d) the calibration

process, without the outlier identification (a, b) and after the removal of the outliers (c,

d). Outliers due to Dean and Omar hurricanes are outlined in panel a.
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Figure 10: Spatial distribution of the percentage of outliers removed at each location

within GOW domain, for a given confidence level α = 0.0001.
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Figure 11: Quantile distributions before and after the calibration process at several buoys

(plotted equally spaced in a Gumbel scale).
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Figure 12: Buoy (red), NC-GOW (black) and GOW (green) significant wave height (Hs)

time series at several locations.
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Figure 13: Comparison of (a) annual mean significant wave height and (b) 95th percentile,

between buoy data from table 1 with respect to NC-GOW (left panels) and GOW (right

panels) data, respectively.
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Figure 14: Absolute value differences of the significant wave height 95th percentile from

satellite observations (SAT) with respect to: a) NC-GOW results (SAT - NC-GOW) and

b) GOW data (SAT - GOW), for the validation period from 2006 to 2008. Calibration is

computed with a training set of altimeter data from 1992 to 2005.
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Figure 15: Absolute (a; GOW - NC-GOW) and relative (b; [GOW - NC-GOW] / NC-

GOW) change in the 95th percentile of significant wave height in the reanalysis data for

the period from 2006 to 2008 after the calibration process. Calibration is computed with

a training set of altimeter data from 1992 to 2005.
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Figure 16: RMSE (m) of altimetry (SAT) and the reanalysis significant wave height data,

for the period from 2006 to 2008: (a) before (SAT, NC-GOW) and (b) after the calibration

process (SAT, GOW). Calibration is computed with a training set of altimeter data from

1992 to 2005.
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