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ABSTRACT 12 

One of the main sources of uncertainty in estimating regional projections affected by global 13 

warming is the choice of the global climate model (GCM). The aim of this study is to evaluate the 14 

skill of GCMs from CMIP3 and CMIP5 databases in the north-east Atlantic Ocean region. It is 15 

well known that the seasonal and interannual variability of surface inland variables (e.g. 16 

precipitation and snow) and ocean variables (e.g. wave height and storm surge) are linked to the 17 

atmospheric circulation patterns. Thus, an automatic synoptic classification, based on weather 18 

types, has been used to assess whether GCMs are able to reproduce spatial patterns and climate 19 

variability. Three important factors have been analyzed: the skill of GCMs to reproduce the 20 

synoptic situations, the skill of GCMs to reproduce the historical inter-annual time-scale 21 

variability and the consistency of GCMs experiments during twenty-first century projections. The 22 

results of this analysis indicate that the most skilled GCMs in the study region are UKMO-23 

HadGEM2, ECHAM5/MPI-OM and MIROC3.2(hires) for CMIP3 scenarios and ACCESS1.0, 24 

EC-EARTH, HadGEM2-CC, HadGEM2-ES and CMCC-CM for CMIP5 scenarios. These models 25 

are therefore recommended for the estimation of future regional multi-model projections of surface 26 

variables in the north-east Atlantic Ocean region. 27 

Keywords: Downscaling, General circulation models, Projections, Skill, Weather 28 

types. 29 

1 INTRODUCTION 30 

Changes in the Earth's climate throughout the twenty-first century and their potential impacts have 31 

become a global concern during the last years. In this context, the World Meteorological 32 

Organization (WMO) and the United Nations Environment Programme (UNEP) established the 33 

Intergovernmental Panel on Climate Change (IPCC) in 1988. The IPCC has produced a series of 34 

reports which show abundant evidence of changes in the global climate system during the twenty-35 

first century. Moreover, most of these changes are larger than those observed during the twentieth 36 

century (AR4, IPCC 2007). 37 

The output of global climate models (GCMs) has been one of the most important sources of 38 

information since the first IPCC assessment in 1990. The outcomes from GCMs are extensively 39 

used in many studies to understand changes in climate dynamics and determine the affects of 40 

climate change on a range of impacts. Furthermore, GCMs are used as  the basis for many 41 

dynamical and statistical downscaling experiments, providing refined information on variables that 42 

GCMs do not simulate directly, such as waves or storm surge (e.g. Marcos et al. 2011) or do not 43 

simulate at enough resolution (e.g. snow or precipitation). One of the main challenges associated 44 

with using GCMs, is model structural uncertainty. Notwithstanding the uncertainty of the forcings 45 

for the climate change scenarios, the skill of different GCMs is determined by the different 46 

methods used to solve the equations that describe atmospheric and oceanic dynamics. A systematic 47 
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evaluation of the performance of the models is, therefore, required to provide greater confidence in 48 

the use of GCMs. 49 

One of the first opportunities for climate scientists to compare the skill of a large group of GCMs 50 

was phase 3 of the Coupled Model Intercomparison Project (CMIP3) (Meehl et al. 2007). The 51 

archived data, officially known as WCRP-CMIP3 multi-model dataset, has been widely studied. 52 

For example, analysis of temperature simulations in Australia based on probability density 53 

functions (Perkins et al. 2007; Maxino et al. 2008) or studies of precipitation over the Iberian 54 

Peninsula (Nieto and Rodriguez-Puebla 2006; Errasti et al. 2010). In these studies, different 55 

statistical measures (e.g. RMSE, KS-test, BIAS, correlation indices) are used for objective spatial 56 

and quantitative comparison. There are even some studies that aggregate several statistical 57 

measures to form a single metric (e.g. Gleckler et al. 2008). Similar studies based on later 58 

coordinated multi-model experiments have helped to the process of ongoing improvement of the 59 

models. For example, the analysis of the two generations of models used in ENSEMBLES project 60 

(van der Linden and Mitchell 2009) conducted by Brands et al. (2011). Recently, the efforts to 61 

reduce model uncertainty have led to a new generation of global climate models called Earth 62 

System Models as they incorporate the capability to explicitly represent biogeochemical processes 63 

that interact with the physical climate (Flato 2011). These models are the basis of the fifth phase of 64 

the Coupled Model Intercomparison Project (CMIP5, Taylor et al. 2012) constituting the most 65 

current set of coordinated climate model experiments. Several authors have analyzed subsets of 66 

CMIP5 models obtaining different rankings of models; e.g. Yin et al. (2012) studied the 67 

precipitation over South America, Brands et al. (2013) analyzed several variables in Europe and 68 

Africa and Su et al. (2012) studied precipitation and temperature over the Tibetan Plateau.  69 

The main aim of this study is to define a methodology for evaluating the quality of GCMs in a 70 

region. The method can therefore assist GCM users in the choice of the most appropriate model to 71 

study changes in climate dynamics, to evaluate impacts or to downscale surface variables.  A 72 

common procedure to evaluate the ability of GCMs is to compare outputs of model simulations 73 

against historical reconstructions (reanalysis) or observations. This can be achieved by analyzing 74 

differences between mean climatologies or even the whole probability density functions. Recent 75 

works have evaluated the skill of GCMs to reproduce synoptic climatology (e.g. Lorenzo et al. 76 

2011; Belleflamme et al. 2012) by using classification methods. The circulation classification 77 

method has demonstrated to be a useful and computational efficient tool for the validation of 78 

GCMs (Huth 2000). The study of synoptic climatology from circulation patterns or weather types 79 

takes into account the natural climate variability and allows the evaluation of spatial relations 80 

between different locations.  81 

In this work, we characterize the synoptic patterns from sea level pressure (SLP) fields. SLP 82 

provides information of surface climate conditions and it has been found to be a better predictor 83 

for downscaling purposes than other variables (e.g. von Storch et al. 1993; Busuioc et al. 2001; 84 

Frias et al. 2006). 85 

Taking this into account, we have evaluated the performance of a range of GCMs within the north-86 

east Atlantic Ocean region. The methodology, based on weather types and statistical metrics, 87 

analyzes not only the skill of the GCMs to reproduce mean climatologies but also the interannual 88 
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variability. Moreover, the consistency of future simulations is also evaluated. This method has 89 

been applied to 68 models from CMIP3 to CMIP5, providing useful information about the quality 90 

of the GCMs over the European region. 91 

The rest of the paper is organized as follows. In section 2, the data from the model reanalysis 92 

databases used for comparison and the analyzed GCMs are presented. Section 3 explains the 93 

methodology that has been developed, describing the analyzed region, the weather type 94 

classification approach and the statistical analysis of the performance of the GCMs. The study is 95 

completed with the presentation of the results in section 4, and the conclusions in section 5. 96 

2 DATA 97 

2.1. Atmospheric reanalysis data 98 

The evaluation of the performance of the GCMs requires the comparison against historical 99 

observations. Atmospheric reanalyses are long historical climate reconstructions that can be 100 

considered to be quasi-real data as they integrate multiple instrumental measurements and have 101 

been widely validated against independent observations. Nowadays, there are several global 102 

atmospheric reanalysis databases. In this work, we use 6-hourly SLP data obtained from the three 103 

global reanalysis covering the most extensive period of the 20th century: NCEP/NCAR Reanalysis 104 

I (NNR, Kalnay et al. 1996), ECMWF 40 Year Reanalysis (ERA-40, Uppala et al. 2005) and 105 

NOAA-CIRES 20th Century Reanalysis V2 (20CR, Compo et al. 2011). 106 

NNR (1948-present), created by the National Centers for Environmental Prediction (NCEP) and 107 

National Center for Atmospheric Research (NCAR) has been widely used by the scientific 108 

community. This global reanalysis is generated by numerical simulation using models similar to 109 

those used for weather forecasting, and includes a data assimilation process. ERA-40 (1957-2002) 110 

was created by the European Centre for Medium-Range Weather Forecasts (ECMWF), with one 111 

version of the Integrated Forecasting System (IFS). 20CR (1871-2010) has been created by the 112 

NOAA ESRL/PSD (National Oceanic and Atmospheric Administration Earth System Research 113 

Laboratory/Physical Sciences Division). In this reanalysis, pressure observations have been 114 

combined with a short-term forecast ensemble of an NCEP numerical weather prediction model. In 115 

this study, NNR has been selected to characterize the synoptic patterns of atmospheric circulation 116 

because it has been widely validated by the scientific community, covers a large historical period 117 

and is an up to date database, nevertheless, ERA-40 and 20CR reanalyses have also been 118 

compared with the GCMs. 119 

2.2. Global Climate Models 120 

In this study, the available information on daily sea level pressure from 68 GCMs has been 121 

catalogued and subsequently stored. These models have been divided into two groups depending 122 

on which generation of scenarios have been simulated. One group includes 26 models from 123 

CMIP3 and ENSEMBLES projects and the other one includes 42 CMIP5 models. Tables 1 and 2 124 

show the names of the models that have been used as well as the research centers and countries 125 
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that they belong to, the atmospheric resolution and the number of future simulations analyzed 126 

(runs). Data from 1961 to 1990 (reference period) have been used to characterize recent past 127 

conditions and projections from 2010 to 2100 have been taken to represent future conditions, as 128 

they are time periods available from most models. 129 

The simulations analyzed in the CMIP3 and ENSEMBLES models are called 20C3M (Twentieth 130 

Century Climate in Coupled Models) for recent past conditions and SRES B1, SRES A1B and 131 

SRES A2 (Special Report on Emission Scenarios, Nakicenovic et al. 2000) for future scenarios. 132 

The three selected scenarios are generally taken to represent low, medium and high CO2 133 

concentrations, respectively. A total of 44 20C3M simulations, 43 of A1B, 19 of A2 and 26 of B1 134 

are studied. Eighteen models belong to CMIP3 and eight models (CNRM-CM33, 135 

ECHAM5C/MPI-OM, EGMAM, EGMAM2, IPSL-CM4v2, UKMO-HadCM3C and UKMO-136 

HadGEM2) belong to the ENSEMBLES project. Data are obtained from the results of the models 137 

sent to the Program for Climate Model Diagnosis and Intercomparison (PCMDI) at the Lawrence 138 

Livermore National Laboratory in the USA (http://www-pcmdi.llnl.gov/ipcc/about_ipcc.php) and 139 

from the CERA database of the World Data Center for Climate (WDCC) in Hamburg (http://cera-140 

www.dkrz.de/CERA/).  141 

For the 42 CMIP5 models, the experiments analyzed are called historical for recent past conditions 142 

and RCP2.6, RCP4.5, RCP6.0 and RCP8.5 (Representative Concentration Pathways, Moss et al. 143 

2010) for the future. The four selected RCPs included one mitigation scenario leading to a very 144 

low forcing level (RCP2.6), two medium stabilization scenarios (RCP4.5/RCP6.0) and one very 145 

high baseline emission scenario (RCP8.5) leading to high greenhouse concentration levels (van 146 

Vuuren 2011). This makes a total of 136 historical simulations, 48 of RCP2.6, 83 of RCP4.5, 31 of 147 

RCP6.0 and 63 of RCP8.5. CMIP5 data are available through the Earth System Grid - Center for 148 

Enabling Technologies (ESG-CET), on the page (http://pcmdi9.llnl.gov/).  149 

3 METHODS 150 

The methodology developed to study the skill of the GCMs is summarized in a diagram in Figure 151 

1. Data from reanalysis and GCMs are collected first. The study area is then defined and SLP 152 

fields are preprocessed to the spatial domain in the selected region (chart upper level). In order to 153 

get the estimated indicators of the performance of the GCMs, a weather type (WT) classification 154 

from the reanalysis data is carried out. The occurrence rate of each synoptic situation group is 155 

assessed from both the reanalysis data and the GCMs for several time periods (chart middle level). 156 

Finally, different statistical indices are computed to compare the occurrence rates (chart bottom 157 

level). The comparison between the observed and simulated historical WT frequency indicates the 158 

skill of the GCMs to simulate the recent past climate. The results of this comparison are used to 159 

analyze the similarity of the synoptic situations and the ability of the GCMs to reproduce the 160 

interannual variability. On the other hand, the comparison between the historical and future WT 161 

frequency from GCMs determine the simulated rates of change. These rates of change are used to 162 

analyze the consistency of future projections. 163 
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3.1. Study area 164 

The domain of interest in this work is the North Atlantic. This region is dominated by the North 165 

Atlantic Oscillation (NAO), which is one of the most prominent climate fluctuation patterns in the 166 

Northern Hemisphere (Hurrell et al. 2003). NAO is usually described with an index based on the 167 

pressure difference between Iceland and the Azores and it has important influence on climate from 168 

the United States to Siberia, and from the subtropical Atlantic to the Arctic. We have therefore 169 

selected an area in the north-east Atlantic from 25ºN to 65º N and from 52.5º W to 15º E. In this 170 

region, many surface variables are highly correlated with pressure fields, such as wind waves 171 

(Izaguirre et al. 2012), precipitation (Rodriguez-Puebla and Nieto 2010), snow (Seager et al. 2010) 172 

and cereal production (Rodriguez-Puebla et al. 2007). Given the fact that data from GCMs are 173 

provided in different spatial resolution grids, in order to make a coherent comparison, all SLP data 174 

have been interpolated by means of bilinear interpolation to a grid of 2.5º latitude by 2.5º 175 

longitude, identical to the mesh of the NNR results. The analyzed spatial domain and resolution is 176 

shown in Figure 2. 177 

3.2. Classification of weather types 178 

Non-initialized simulations by GCMs aim to simulate long-term statistics of observed weather 179 

rather than day-to-day chronology. For this reason, mean climatologies from GCMs are usually 180 

compared against reanalysis to evaluate the ability of the GCMs. However, mean climatology 181 

comparison ignores the climate variability of the atmospheric circulation, which causes a wide 182 

variety of meteorological situations, even severe storm conditions. The evaluation of GCMs 183 

throughout a classification of weather types reduces this problem, since classification aims to 184 

group similar meteorological situations minimizing the variability within each group. Therefore, 185 

each group is more or less homogeneous and distinct from other groups. Many authors are aware 186 

of the importance of the models to reproduce climate variability over a region and have used 187 

atmospheric circulation type classifications; e.g. (Belleflamme et al. 2012; Lee and Sheridan 2011; 188 

Pastor and Casado 2012). Here, the circulation type classification is developed by applying the 189 

non-hierarchical clustering technique K-means (McQueen 1967) over the SLP fields in the study 190 

region. To do this, 3-daily averaged SLP fields, SLP(x,t), from the NNR are analyzed. The three 191 

days time scale is chosen to be able to capture mid- latitude cyclogenesis situations.  192 

First, we process each 3-day averaged SLP field anomaly, ( , ) ( , ) ( )SLPA x t SLP x t SLP t  , where t 193 

represents each 3-days interval and ( )SLP t  is the mean SLP in the 3-days interval in the spatial 194 

domain. So, two situations with similar patterns but slightly different mean SLP can be grouped 195 

together. Then, we apply principal components analysis (PCA) to the processed 3-daily SLP fields 196 

of NNR from 1950 to 1999. PCA helps the clustering technique reduce dimensions whilst 197 

conserving the maximum data variance. That is, the covariance of the SLP anomalies in the study 198 

region is used to obtain uncorrelated principal components. In this case, eleven components have 199 

explained more than 95% of variance. In order to get a set of synoptic climatologies (weather 200 

types), the K-means algorithm has been applied over these modes. The K-means technique divides 201 
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the data space into N classes, which are represented by their centroids. Each class represents a 202 

group of atmospheric states of similar characteristics. We force the K-means algorithm to start 203 

with dissimilarity-based compound selection (Snarey et al. 1997) and the number of classes has 204 

been set to N=100. The selection of a hundred classes is made based on the compromise between 205 

the best possible characterization of synoptic climatologies, represented by the largest number of 206 

clusters and including an average number of 40 data per group. A proximity criterion is applied 207 

over the N=100 obtained WTs, and the centroids are visualized in a 10x10 lattice (Figure 3). The 208 

proximity criterion is based on minimizing the sum of Euclidean distances between each centroid 209 

and its neighbors. This organization helps to interpret results since weather types of similar 210 

characteristics appear near to one another. For example, the dominant winter pattern is 211 

characterized by a low pressure center over the Azores Islands, while a high pressure center 212 

dominates the summer synoptic situation. The weather types located in the right side of figure 3 213 

are characterized by low pressures in Iceland and high pressures in the Azores Islands, which is 214 

usually associated with a positive phase of NAO. 215 

3.3 Evaluation of the performance of GCMs 216 

3.3.1 Similarity of synoptic situations 217 

Here, the climate information obtained from the synoptic classification of NNR has been used to 218 

evaluate the skill of GCMs. First, the relative frequency of each of the one hundred weather types 219 

has been calculated for NNR, as the reference pattern (Figure 4). The relative frequencies are 220 

estimated from the number of 3-day atmospheric states that can be attributed to each WT, 221 

characterized by its centroid, during the reference period of 30 years (from 1
st
 January 1961 to the 222 

31
st
 of December 1990). The Euclidean distance in the reduced EOF-space has been used to assess 223 

which centroid is the closest. Then, the same methodology has been applied to compute the 224 

relative frequencies from ERA40, 20CR and GCMs.  225 

Objective indexes to measure the differences between frequencies of the reference pattern and 226 

those for the GCMs during the same period in the historical/20C3M simulations have been 227 

applied. The scatter index and a metric based on the relative entropy have been used for this 228 

purpose. The scatter index (SI) is the root mean square error normalized by the mean frequency: 229 

 230 

' 2

1 1

( ) ( )
N N

i i i

i i
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 

                                                           (1) 231 

being pi the relative frequency of the i
th

 weather type from the reanalysis for the reference period, 232 

p’i the relative frequency of the i
th

 weather type from a GCM simulation for the reference period 233 

and N the number of weather types. This index has been used to compare the relative frequencies 234 

of each simulation of each GCM with the ones of the reanalysis during the reference period. The 235 

metric based on the relative entropy (RE) is defined here as: 236 
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Lower values of SI and RE therefore indicate a high degree of similarity and hence a better 238 

performing GCM. This index has been used to analyze the skill of the different GCMs to simulate 239 

weather types of low probability of occurrence. The analysis of these situations, which could be 240 

associated to extreme events, requires a relative index, such as RE since the scatter index analysis 241 

gives more importance to commonly occurring situations.  242 

This analysis has been done both for annual time-scale as well as seasonal time-scales, considering 243 

the following distribution: winter (December, January and February), spring (March, April and 244 

May), summer (June, July and August) and fall (September, October and November). An example 245 

of the application of these indexes is shown in figure 4. The reference pattern represents the 246 

relative frequency of each characterized synoptic situation (weather type) for the recent past 247 

conditions. NNR has been used to derive this pattern although ERA-40 and 20CR show similar 248 

characteristics. 249 

The frequencies obtained from ECHAM5 (CMIP3) and ACCESS1.0 (CMIP5), provide low SI and 250 

RE since the most common and unusual situations are well reproduced. These models show only 251 

small variations between occurrence of neighboring weather types which represent near synoptic 252 

situations and probability of occurrence. Alternatively, CNRM-CM3 (CMIP3) and FGOALS-g2 253 

(CMIP5) show less similarity with the reanalysis reference pattern and consequently larger SI and 254 

RE. These models tend to overestimate the frequency of particular WT´s associated to synoptic 255 

situations with weaker gradients between low and high pressure centers. Note that here and 256 

henceforth, SI and RE are interpreted in relative values (i.e. lowest values versus highest values 257 

across the ensemble). 258 

3.3.2 Interannual variability 259 

The skill of a model to represent the climate state is the most important test to evaluate its quality. 260 

It is for this reason that mean climatologies over several decades are often used to compare GCMs 261 

with observations. It is however, important to note that the variance (i.e. interannual variability) is 262 

also a requirement for good model performance. We have analyzed the skill of GCMs to represent 263 

interannual climate variability because it is an indicator of their ability to respond to changing 264 

conditions. The magnitude of the interannual variability has been measured for each WT by 265 

assessing the standard deviation of the 30 annual values of relative frequency over the reference 266 

period (1961-1990). The comparison of the variability values of the reanalysis with those that 267 

correspond to each GCM is conducted by the scatter index of the standard deviations of the N 268 

weather types (stdSI). 269 

' 2

1 1

( ( ) ( )) ( ( ))
N N

i i i

i i

std p std p std p
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N N

 




 

                                           (3)  270 

The lower the stdSI the better the performance of the GCM to simulate the interannual climate 271 

variability. 272 
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3.3.3 Consistency of future projections 273 

We have evaluated the skill of GCMs to reproduce historical climate and its variability. However, 274 

good model performance evaluated from the present climate does not necessarily guarantee 275 

reliable predictions of future climate (Reichler and Kim 2008). This is mainly due to projections 276 

consider future greenhouse gas forcings outside the used range in the historical period of 277 

validation. Consequently, the skill of GCMs to reproduce future climate projections cannot be 278 

directly evaluated. However, multi-model ensembles are often used to analyze future projections. 279 

In order to provide information about uncertainty on the ensembles, we have evaluated the 280 

consistency between GCMs during future projections. 281 

To assess the consistency between future projections of GCMs, we have divided the twenty-first 282 

century in three different periods: short term (2010-2039), mid-term (2040-2069) and long-term 283 

(2070-2099), while evaluating which models predict inconsistent variations in each of these 284 

periods, i.e. magnitudes of change much larger or much lower than those of most models. We 285 

assume the stationary hypothesis over climate dynamics, that is, the WT classification remains 286 

valid throughout the twenty-first century. For every analyzed simulation and future time period, 287 

we have calculated two metrics of the magnitude of change towards the reference period. The 288 

magnitude of change in the frequency of synoptic situations has been evaluated through SI and the 289 

magnitude of change in the interannual variability has been analyzed through stdSI. The mean 290 

magnitude of change has been used in case of several simulations of the same model. For each 291 

scenario, future period and metric, we have computed the quartiles of the magnitudes of change. 292 

The interquartile range (IQR) is the difference between the upper quartile (Q3, 75 percentile) and 293 

the lower quartile (Q1, 25 percentile). IQR is a robust statistic to measure the dispersion of a set of 294 

data. In this study, models with magnitudes of change lower than Q1 - 1.5(IQR) or higher than Q3 295 

+ 1.5(IQR) are considered outliers, i.e. GCMs of a very different behavior compared with the rest 296 

of GCMs. 297 

4 RESULTS 298 

4.1 Skill of GCMs to perform climatologies 299 

The ability of the GCMs to represent the relative frequency of synoptic situations in the reference 300 

period can be assessed by direct comparison with the reference pattern. Figure 5 summarizes the 301 

bias of the GCMs for the 20C3M simulations (CMIP3 and ENSEMBLES) and the historical 302 

simulations (CMIP5). Dots in the WTs indicate agreement on the sign of the bias for more than 303 

80% of the models. Small bias has been estimated on GCMs over all WTs, indicating a good 304 

ability of the models to reproduce common synoptic situations, i.e. mean climatologies. CMIP5 305 

simulations show a general better agreement than CMIP3. Some discrepancies, however, are found 306 

on unusual events associated to deep low pressures centered over different areas of the North 307 

Atlantic (right hand side of the figure) and relatively stable atmospheric states (WTs at the bottom 308 

of the figure). The former are over-estimated, whilst the latter tend to be slightly underestimated. 309 

Note that the overestimated WTs might be associated to extreme storm events during intense 310 
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Northern Annular Mode (NAM).  This overestimation is in agreement with previous studies. For 311 

instance, Gerber et al. (2008) found that climate models vaguely capture the NAM variability, 312 

over-estimating persistence on sub-seasonal and seasonal timescales. 313 

The performance of individual GCMs has been measured using the SI and RE indices. The results 314 

are summarized in Figure 6 for 20C3M simulations and in Figure 7 for historical simulations. In 315 

both figures the models have been sorted according to their SI and the number of simulations 316 

analyzed for each model is shown between brackets. The SI score of the models with only one 317 

simulation is represented by the small vertical black lines. When several simulations are available 318 

these vertical black lines represent the mean value of the SI while the horizontal ones represent the 319 

range between the minimum and the maximum SI. The mean RE is represented by a black dot. The 320 

SI and RE scores have also been obtained for the reanalyses ERA-40 (SI=0.16, RE=0.10) and 321 

20CR (SI=0.26, RE=0.14) during the reference period. 20CR has also been analyzed in 1901-1930 322 

(SI=0.30, RE=0.18) and in 1931-1960 (SI=0.30, RE=0.19). The similar scores for different 323 

periods of the twentieth century support the use of the same synoptic classification in the twenty-324 

first century. These values provide an indicator of SI and RE values which better represent the 325 

performance of GCMs. The SI scores of the reanalyses have been represented in the figures by 326 

vertical dotted lines. It can be observed that ERA-40 is very similar to NNR whereas 20CR present 327 

larger differences. This was expected since 20CR only assimilates surface pressure data.  328 

The models that best reproduce the occurrence rate of synoptic climatology for 20C3M 329 

simulations with SI lower than 0.5 and RE lower than 0.3, are: UKMO-HadGEM2 (SI=0.37, 330 

RE=0.22), ECHAM5/MPI-OM (SI=0.46, RE=0.26) and MIROC32HIRES (SI=0.49, RE=0.28). 331 

Alternatively, the five models which have SI larger than 1 and, therefore, have a lower simulation 332 

performance with regard to the frequency of the different synoptic situations, are: CCSM3, GISS-333 

ER, FGOALS-g1.0, CNRM-CM3 and CNRM-CM33. For CMIP5 models, there are nine models 334 

with SI lower than 0.5. Three of them: ACCESS1.0 (SI=0.33, RE=0.19), EC-EARTH (SI=0.36, 335 

RE=0.21) and HadGEM2-CC (SI=0.37, RE=0.21) have both SI and RE lower than the best model 336 

for 20C3M simulations. The other six: HadGEM2-ES, MPI-ESM-P, CMCC-CM, GFDL-CM3, 337 

MPI-ESM-LR and CMCC-CMS have SI slightly larger but RE is still lower than 0.3. Note that, 338 

only two CMIP5 models: IPSL-CM5B-LR (SI=1.03, RE=0.57) and FGOALS-g2 (SI=1.17, 339 

RE=0.60) show SI larger than one.  340 

The differences between runs of a single model are one order of magnitude lower than the 341 

differences between models. This shows that the internal variability is well taken into account by 342 

using a 30-year period. Moreover, results are qualitatively similar for the two indicators (RE and 343 

SI) that have been used to analyze the representation of the synoptic situations, indicating that the 344 

model performance is consistent across the two performance measures. Both indexes reveal an 345 

improvement in CMIP5 models with respect to the analyzed set of models from CMIP3 and 346 

ENSEMBLES. In addition, the values of RE are smaller for CMIP5 models than for CMIP3 347 

models with similar values of SI, indicating that CMIP5 models have improved their capacity to 348 

detect synoptic situations with low relative frequency. 349 
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4.2 Skill of GCMs to perform climate variability 350 

The results of the diagnosis in each season are shown in Figures 8 and 9, with the models and 351 

simulations analyzed as in Figures 6 and 7, respectively. The SI scores for ERA40 and 20CR are 352 

very similar in fall (0.34 vs. 0.35, respectively) and winter (0.34 vs. 0.39), being the differences 353 

slightly larger in spring (0.30 vs. 0.40). The largest differences can be found in summer (0.31 vs. 354 

0.59). The RE scores cannot be included because several WTs have zero occurrences in some 355 

seasons.  356 

For CMIP3 and ENSEMBLES models (Figure 8) the diagnosis in spring and fall is analogous to 357 

the annual one except for minor differences. In both seasons, most models show very similar 358 

performance with SI between 0.5 and 1. Only three models in spring and seven models in fall show 359 

noticeably larger SI. On the contrary, in winter and summer the differences are larger. In winter 360 

some ENSEMBLES models: EGMAM (SI=0.76), EGMAM2 (SI=0.71) and UKMO-HADCM3C 361 

(SI=0.80) perform as well as the best models. FGOALS-g1.0 shows results of lower quality 362 

(SI=3.70) in summer and hence performs poorly on the annual scale. On the other hand, CCSM3 363 

and PCM only show low SI in summer, and perform with lower quality in the rest of the seasons. 364 

A similar observation occurs with models from Commonwealth Scientific and Industrial Research 365 

Organisation (CSIRO), with the SI of CSIROmk35 and CSIROmk30, the first and third lowest on 366 

this season. For CMIP5 models (Figure 9) the seasons that show larger discrepancies with respect 367 

to the global evaluation shown in Figure 7 are also winter and summer, with the diagnosis in 368 

spring and fall similar to the global evaluation. Interestingly, the CMIP5 models which provide the 369 

worst diagnostic in winter (SI larger than 1.4), namely CCSM4, CESM1(BGC), 370 

CESM1(FASTCHEM), BNU-ESM and BCC-CSM1.1(m) are some of the best models in summer. 371 

Note that the SI in summer of CCSM4 is 0.62, only slightly larger than the one of 20CR. On the 372 

contrary IPSL-CM5B-LR and FGOALS-g2 are the poorest performing models at the annual scale 373 

and during summer season but they perform well in winter. Curiously, the model with the third 374 

largest SI in summer INM-CM4 is one of the best models in the other seasons. The seasonal 375 

analysis show that the performance of the models depends on the season, especially in summer and 376 

winter, indicating that, in some cases, the most adequate models depend on the purposes.  377 

The interannual variability analysis has been based on the stdSI score described in section 3.2. As 378 

shown in figures 10 and 11, in which the order of GCMs of the previous figures has been kept, the 379 

stdSI scores for ERA-40 (stdSI=0.17) and 20CR (stdSI=0.21) are more similar than their SI. The 380 

results for 20C3M simulations (Figure 10), show that UKMO-HadGEM2 (stdSI=0.24) and 381 

ECHAM5/MPI-OM (stdSI=0.27) provide the highest quality results, with stdSI lower than 0.3, 382 

while CNCM33 and GISS-ER are the ones that provide results of lower quality with stdSI larger 383 

than 0.6. For the historical simulations of the CMIP5 models (Figure 11) the values of stdSI are 384 

slightly better than the ones for 20C3M simulations. Five models ACCESS1.0, MPI-ESM-P, EC-385 

EARTH, HadGEM2-CC and HadGEM2-ES have stdSI lower than 0.3. Furthermore, there are no 386 

models with stdSI larger than 0.6 and only two models: IPSL-CM5B-LR and FGOALS-g2 exceed 387 

0.5. Results obtained for interannual variability confirm those obtained from the similarity of 388 

synoptic situations, with the models with the highest and lowest performance the same for both 389 

analyses. 390 
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4.3 Consistency of future projections 391 

Analysis of future projections is made in a different way to the analysis of past climate. Historical 392 

simulations can be compared with reanalysis data, but the future projections can only be compared 393 

to each other. The analysis of future projections can be used to detect models with anomalous 394 

behavior but not to determine which models are best. The results of the consistency of future 395 

projections have been synthesized in Figure 12 for the three SRES scenarios considered (B1, A1B 396 

and A2) and figure 13 for the four RCP (RCP2.6, RCP4.5, RCP6.0 and RCP8.5). For each 397 

scenario, the magnitudes of change of the frequency of the synoptic situations and the magnitudes 398 

of change in the interannual variability are shown for three future time periods. On each box, the 399 

central mark is the median, the edges of the box are the lower and upper quartiles and the whiskers 400 

extend to the most extreme magnitudes of change within the range defined by Q1 - 1.5(IQR) and 401 

Q3 + 1.5(IQR). The numbered red dots represent models with magnitudes of change outside this 402 

range.  403 

For SRES scenarios (Figure 12) only the mid-term and long-term periods are shown because few 404 

simulations cover the short term period. For these scenarios, INM-CM3 (19), GISS-ER (23) and 405 

CNRM-CM3 (25) show magnitudes of change notably high in particular combinations of scenario, 406 

indicator and time-period. For CMIP5 (Figure 13) short-term, mid-term and long-term can be 407 

shown because information for the full twenty-first century is available. In this case there are two 408 

different groups of models with anomalous magnitudes of change. HadGEM2-AO (03), GFDL-409 

CM3 (08), IPSL-CM5A-MR (28), IPSL-CM5A-LR (35), MIROC-ESM-CHEM (38), FGOALS-s2 410 

(39) and FGOALS-g2 (42), show in several cases high magnitudes of change whereas MPI-ESM-411 

MR (15), INM-CM4 (20), MRI-CGCM3 (31) and BCC-CSM1.1(m) (40) show in some cases low 412 

magnitudes of change. Results indicate that the magnitudes of change and their spread are larger in 413 

the long-term period than in the short-term period and for high-emissions scenarios, e.g., A2 and 414 

RCP8.5, than for low-emission scenarios. It is interesting to note the connection between the 415 

ability of models to reproduce the present climate (the higher the number, the worse the 416 

performance) and the consistency of their future simulations. The models with anomalous 417 

magnitudes of change mostly belong to the group of models with low skill in the reference period. 418 

However, some of the models with anomalous magnitudes of change perform reasonably well in 419 

the recent past. It may indicate that these models are unable simulate the climate variability 420 

associated to larger changes in the forcings during the twenty-first century. 421 

5 CONCLUSIONS 422 

A methodology to analyze the performance of GCMs based on weather types (WTs) and statistical 423 

metrics has been developed. The method analyzes the ability of the models to reproduce three 424 

characteristics: the historical synoptic climatologies, the interannual variations and the consistency 425 

of future projections. The use of statistic metrics based on the scatter index and the relative entropy 426 

allow a quantitative estimation of the GCMs performance.  427 

The method has been applied to the Northeast Atlantic region. The three models that best simulate 428 

the recent past climate conditions from the CMIP3 and ENSEMBLES datasets are: UKMO-429 
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HadGEM2, ECHAM5/MPI-OM and MIROC3.2 (hires). Furthermore, these models are consistent 430 

during the twenty-first century for the SRES simulations analyzed. For CMIP5, seven models 431 

perform above the rest during the twentieth century: ACCESS1.0, EC-EARTH, HadGEM2-AO, 432 

HadGEM2-CC, HadGEM2-ES, MPI-ESM-P and CMCC-CM. During the twenty-first century five 433 

of them are consistent but two of them are not. HadGEM-AO overestimates the changes for 434 

RCP45 in the short term and there are no future simulations for MPI-ESM-P. 435 

These results are consistent with other studies of SLP in the Northern Hemisphere. For example, 436 

Walsh et al. (2008) evaluated 15 GCMs of CMIP3 over the Northern extratropical domains 437 

focusing in Greenland and Alaska. They found that ECHAM5/MPI-OM is one of the top-438 

performing models. Errasti et al. (2011) found ECHAM5/MPI-OM and MIROC3.2 (hires) as the 439 

best CMIP3 model in the Iberian peninsula. Brands et al. (2011) found similar results within 440 

ENSEMBLES models in the Northeast Atlantic region for the two best models (UKMO-441 

HadGEM2 and ECHAM5/MPI-OM) and they also concluded that the two worst performing 442 

models are CNRM-CM3 and CNRM-CM33. Brands et al. (2013) also obtained HadGEM2-ES 443 

outperforming the remaining models in a group of seven CMIP5 models.  444 

It is important to highlight that an evaluation of the quality of the GCMs depends on the study area 445 

and the considered predictor, showing different results to those obtained for other variables or 446 

regions. Note that the performance of the GCMs also varies depending on the analyzed season. 447 

Therefore, the choice of the most adequate models depends on the specific purposes (e.g. studies 448 

focus on extreme wave heights during winter or ice melting during summer). On the contrary, 449 

from the analysis carried out the importance of the atmospheric resolution is not clear. The models 450 

with the highest performance are not always performing the best. 451 

The small differences in the skill indexes among runs of the same model indicate that the 452 

methodology is robust because it is not considerably affected by the natural variability of climate. 453 

In spite of this, notable differences can be observed in future simulations, even among the best 454 

rated models. Therefore, the use of ensembles or multi-model groups is recommended since it 455 

diminishes the effects of individual simulations allowing us to have greater confidence on the 456 

results. 457 
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Fig. 1 Flowchart representing the methodology.  
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Fig. 2 Spatial domain of the study area 
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Fig. 3 The 100 weather types represented by the SLP fields (mbar). Right panels show the most 

frequently occurring weather types in winter and summer. 
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Fig. 4 Relative frequency of the 100 weather types in the reference period for NCEP-NCAR 

reanalysis (quasi-observations) and four GCMs. The darker blue colors being weather types with 

high frequency and the lighter blue the less frequent weather types. 
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Fig. 5 Bias of 20C3M (left) and historical (right) ensembles. The small dots indicate agreement on 

the sign for more than 80% of the models. 
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Fig. 6 GCMs of CMIP3 and ENSEMBLES sorted out by performance to model synoptic situations 

(the higher performance, the lower SI) 
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Fig. 7 GCMs of CMIP5 sorted out by performance to model synoptic situations (the higher 

performance, the lower SI) 
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Fig. 8 GCMs of CMIP3 and ENSEMBLES performance to model synoptic situations on each 

season 1) UKMO-HadGEM2; 2) ECHAM5/MPI-OM; 3) MIROC3.2(hires); 4) MRI-CGCM2.3.2; 

5) ECHAM5C/MPI-OM; 6) CGCM3.1(T63); 7) INGV-SXG; 8) CSIRO-Mk3.5; 9) CGCM31T47; 

10) CSIRO-Mk3.0; 11) ECHO-G; 12) EGMAM; 13) GFDL-CM2.0; 14) GISS-AOM; 15) IPSL-

CM4; 16) EGMAM2; 17) UKMO-HadCM3C; 18) IPSL-CM4v2; 19) INM-CM3.0; 20) PCM; 21) 

BCCR-BCM2.0; 22) CCSM3; 23) GISS-ER; 24) FGOALS-g1.0; 25) CNRM-CM3; 26) CNRM-

CM33 
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Fig. 9 GCMs of CMIP5 performance to model synoptic situations on each season 1) ACCESS1.0; 

2) EC-EARTH; 3) HadGEM2-AO; 4) HadGEM2-CC; 5) HadGEM2-ES; 6) MPI-ESM-P; 7) 

CMCC-CM; 8) GFDL-CM3; 9) MPI-ESM-LR; 10) CMCC-CMS; 11) CESM1(CAM5); 12) 

MIROC4h; 13) CSIRO-Mk3.6.0; 14) GFDL-ESM2M; 15) MPI-ESM-MR; 16) HadCM3; 17) 

GFDL-ESM2G; 18) CNRM-CM5; 19) ACCESS1.3; 20) INM-CM4; 21) CanESM2; 22) CanCM4; 

23) NorESM1-M; 24) CMCC-CESM; 25) GISS-E2-R; 26) MRI-ESM1; 27) GISS-E2-H; 28) 

IPSL-CM5A-MR; 29) BCC-CSM1.1; 30) CCSM4; 31) MRI-CGCM3; 32) CESM1(BGC); 33) 

CESM1(FASTCHEM); 34) MIROC5; 35) IPSL-CM5A-LR; 36) BNU-ESM; 37) MIROC-ESM; 

38) MIROC-ESM-CHEM; 39) FGOALS-s2; 40) BCC-CSM1.1(m); 41) IPSL-CM5B-LR; 42) 

FGOALS-g2 

 

  



10 

 

 

 

Fig. 10 GCMs of CMIP3 and ENSEMBLES performance to simulate interannual variability (the 

higher performance, the lower SI) 
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Fig. 11 GCMs of CMIP5 performance to simulate interannual variability (the higher performance, 

the lower SI) 
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Fig. 12 Box plots of the two indicators of consistency for scenarios B1, A1B and A2. Numbering 

in accordance with figure 8. 
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Fig. 13 Box plots of the two indicators of consistency for scenarios RCP2.6, RCP4.5, RCP6.0 and 

RCP8.5. Numbering in accordance with figure 9. 
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Table 1 caption. Analyzed CMIP3 and ENSEMBLES GCMs names, institutions, countries, 

atmospheric resolutions and runs. 

  

Model Institution Country Atmospheric 

resolution 

(lat x lon,  number of 

layers) 

Runs         

B1-

A1B-

A2 

BCCR-BCM2.0 Bjerknes Centre for Climate Research Norway 1.9º x 1.9º, L31 1-1-1 

CCSM3 National Center for Atmospheric Research USA 1.4º x 1.4º, L26 2-2-2 

CGCM3.1(T47)  Canadian Centre for Climate Modelling and Analysis Canada 2.8º x 2.8º, L31 0-3-0 

CGCM3.1(T63)  Canadian Centre for Climate Modelling and Analysis Canada 1.9º x 1.9º, L31 1-1-0 

CNRM-CM3 Centre National de Recherches Météorologiques France 2.8º x 2.8º, L45 1-1-1 

CNRM-CM33 Centre National de Recherches Météorologiques France 1.9º x 1.9º, L19 0-1-0 

CSIRO-MK3.0 CSIRO Atmospheric Research Australia 1.9º x 1.9º, L18 1-1-1 

CSIRO-MK3.5 CSIRO Atmospheric Research Australia 1.9º x 1.9º, L18 1-1-1 

ECHAM5/MPI-OM Max-Planck-Institute for Meteorology Germany 1.9º x 1.9º, L31 3-4-3 

ECHAM5C/MPI-OM Max-Planck-Institute for Meteorology Germany 3.75º x 3.75º, L19 0-3-0 

ECHO-G University of Bonn Germany 3.9º x 3.9º, L19 1-1-1 

EGMAM Freie Universitaet Berlin, Institute for Meteorology Germany 3.75º x 3.75º, L39 3-3-3 

EGMAM2 Freie Universitaet Berlin, Institute for Meteorology Germany 3.75º x 3.75º, L39 0-1-0 

FGOALS-g1.0 Institute of Atmospheric Physics China 2.8º x 2.8º, L26 3-3-0 

GFDL-CM2.0 Geophysical Fluid Dynamics Laboratory USA 2º x 2.5º, L24 1-1-1 

GISS-AOM Goddard Institute for Space Studies USA 3º x 4º, L12 1-1-0 

GISS-ER Goddard Institute for Space Studies USA 4º x 5º, L20 1-1-1 

INGV-SXG Istituto Nazionale di Geofisica e Vulcanologia Italy 1.12º x 1.12º, L19 0-1-0 

INM-CM3.0 Institute of Numerical Mathematics Russia 4º x 5º, L21 1-1-1 

IPSL-CM4 Institut Pierre Simon Laplace France 2.5º x 3.75º, L19 1-1-1 

IPSL-CM4v2 Institut Pierre Simon Laplace France 2.5º x 3.75º, L19 0-3-0 

MIROC3.2 (hires) Center for Climate System Research, NIES and RCGC Japan 1.12º x 1.12º, L56 1-1-0 

MRI-CGCM2.3.2 Meteorological Research Institute Japan 2.8º x 2.8º, L30 1-1-1 

PCM National Center for Atmospheric Research USA 2.8º x 2.8º, L18 2-0-1 

UKMO-HadCM3C Met Office Hadley Centre UK 2.5º x 3.75º, L38 0-2-0 

UKMO-HadGEM2 Met Office Hadley Centre UK 1.25º x 1.9º, L38 0-3-0 

Table
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Model Institution Country Atmospheric 

resolution 

(lat x lon,  number of 

layers) 

Runs  

RCP2.6- 

RCP4.5 - 

RCP6.0- 

RCP8.5- 

 

ACCESS1.0 CSIRO-BOM Australia 1.25º x 1.9º, L38 0-1-0-1 

ACCESS1.3 CSIRO-BOM Australia 1.25º x 1.9º, L38 0-1-0-1 

BCC-CSM1.1 Beijing Climate Center China 2.8º x 2.8º, L26 1-1-1-1 

BCC-CSM1.1(m) Beijing Climate Center China 1.12º x 1.12º, L26 1-1-1-1 

BNU-ESM College of Global Change and Earth System Science China 2.8º x 2.8º, L26 1-1-0-1 

CanCM4 Canadian Centre for Climate Modelling and Analysis Canada 2.8º x 2.8º, L35 0-10-0-0 

CanESM2 Canadian Centre for Climate Modelling and Analysis Canada 2.8º x 2.8º, L35 5-5-0-5 

CCSM4 National Center for Atmospheric Research USA 0.94º x 1.25º, L26 3-3-3-3 

CESM1(BGC) Community Earth System Model Contributors USA 0.94º x 1.25º, L26 0-1-0-1 

CESM1(CAM5) Community Earth System Model Contributors USA 0.94º x 1.25º, L26 1-1-1-1 

CESM1(FASTCHEM) Community Earth System Model Contributors USA 0.94º x 1.25º, L26 0-0-0-0 

CMCC-CESM Centro Euro-Mediterraneo per I Cambiamenti Climatici Italy 3.71º x 3.75º, L39 0-0-0-1 

CMCC-CM Centro Euro-Mediterraneo per I Cambiamenti Climatici Italy 0.75º x 0.75º, L31 0-1-0-1 

CMCC-CMS Centro Euro-Mediterraneo per I Cambiamenti Climatici Italy 1.9º x 1.9º, L95 0-1-0-1 

CNRM-CM5 Centre National de Recherches Météorologiques France 1.4º x 1.4º, L31 1-1-1-1 

CSIRO-Mk3.6.0 CSIRO-QCCCE Australia 1.9º x 1.9º, L18 10-10-10-
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EC-EARTH EC-EARTH consortium Various 1.1º x 1.1º, L62 1-5-0-5 

FGOALS-g2 LASG-CESS China 2.8º x 2.8º, L26 1-1-0-1 

FGOALS-s2 LASG-CESS China 1.7º x 2.8º, L26 1-0-1-3 

GFDL-CM3 NOAA Geophysical Fluid Dynamics Laboratory USA 2º x 2.5º, L48 1-0-1-1 

GFDL-ESM2G NOAA Geophysical Fluid Dynamics Laboratory USA 2º x 2.5º, L48 1-1-1-1 

GFDL-ESM2M NOAA Geophysical Fluid Dynamics Laboratory USA 2º x 2.5º, L48 1-1-1-1 

GISS-E2-H NASA Goddard Institute for Space Studies USA 2º x 2.5º, L40 0-0-0-0 

GISS-E2-R NASA Goddard Institute for Space Studies USA 2º x 2.5º, L40 0-2-0-0 

HadCM3 Met Office Hadley Centre UK 2.5º x 3.75º, L19 0-10-0-0 

HadGEM2-AO Met Office Hadley Centre UK 1.25º x 1.9º, L38 1-1-1-0 

HadGEM2-CC Met Office Hadley Centre UK 1.25º x 1.9º, L60 0-1-0-3 

HadGEM2-ES Met Office Hadley Centre UK 1.25º x 1.9º, L38 4-4-4-3 

INM-CM4 Institute for Numerical Mathematics Russia 1.5º x 2º, L21 0-1-0-1 

IPSL-CM5A-LR Institut Pierre-Simon Laplace France 1.9º x 3.75º, L39 4-4-1-4 

IPSL-CM5A-MR Institut Pierre-Simon Laplace France 1.25º x 2.5º, L39 1-1-1-1 

IPSL-CM5B-LR Institut Pierre-Simon Laplace France 1.9º x 3.75º, L39 0-1-0-1 

MIROC-ESM MIROC Japan 2.8º x 2.8º, L80 1-1-1-1 

MIROC-ESM-CHEM MIROC Japan 2.8º x 2.8º, L80 1-1-1-1 

MIROC4h MIROC Japan 0.56º x 0.56º, L56 0-3-0-0 

MIROC5 MIROC Japan 1.4º x 1.4º, L40 3-3-1-3 

MPI-ESM-LR Max-Planck-Institut für Meteorologie Germany 1.9º x 1.9º, L47 3-3-0-3 

MPI-ESM-MR Max-Planck-Institut für Meteorologie Germany 1.9º x 1.9º, L95 1-1-0-0 

MPI-ESM-P Max-Planck-Institut für Meteorologie Germany 1.9º x 1.9º, L47 0-0-0-0 

MRI-CGCM3 Meteorological Research Institute Japan 1.1º x 1.1º, L48 0-0-0-0 

MRI-ESM1 Meteorological Research Institute Japan 1.1º x 1.1º, L48 0-0-0-0 

NorESM1-M Norwegian Climate Centre Norway 1.9º x 2.5º, L26 0-0-0-0 

 

Table 2 Analyzed CMIP5 GCMs names, institutions, countries, atmospheric resolutions and runs. 


