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Multivariable prediction of functional outcome after
first-episode psychosis: a crossover validation approach in
EUFEST and PSYSCAN
Margot I. E. Slot 1,54✉, Maria F. Urquijo Castro2,54, Inge Winter - van Rossum1,3,4, Hendrika H. van Hell1, Dominic Dwyer 5,6,
Paola Dazzan7, Arija Maat1, Lieuwe De Haan8, Benedicto Crespo-Facorro9,10, Birte Y. Glenthøj 11,12, Stephen M. Lawrie 13,
Colm McDonald 14, Oliver Gruber15, Thérèse van Amelsvoort16, Celso Arango 17, Tilo Kircher18, Barnaby Nelson5,6,
Silvana Galderisi 19, Mark Weiser 20,21, Gabriele Sachs22, Matthias Kirschner 23,24, the PSYSCAN Consortium*,
W. Wolfgang Fleischhacker25, Philip McGuire 4, Nikolaos Koutsouleris 2,26,27,55 and René S. Kahn 1,3,55✉

Several multivariate prognostic models have been published to predict outcomes in patients with first episode psychosis (FEP), but
it remains unclear whether those predictions generalize to independent populations. Using a subset of demographic and clinical
baseline predictors, we aimed to develop and externally validate different models predicting functional outcome after a FEP in the
context of a schizophrenia-spectrum disorder (FES), based on a previously published cross-validation and machine learning
pipeline. A crossover validation approach was adopted in two large, international cohorts (EUFEST, n= 338, and the PSYSCAN FES
cohort, n= 226). Scores on the Global Assessment of Functioning scale (GAF) at 12 month follow-up were dichotomized to
differentiate between poor (GAF current < 65) and good outcome (GAF current ≥ 65). Pooled non-linear support vector machine
(SVM) classifiers trained on the separate cohorts identified patients with a poor outcome with cross-validated balanced accuracies
(BAC) of 65-66%, but BAC dropped substantially when the models were applied to patients from a different FES cohort
(BAC= 50–56%). A leave-site-out analysis on the merged sample yielded better performance (BAC= 72%), highlighting the effect
of combining data from different study designs to overcome calibration issues and improve model transportability. In conclusion,
our results indicate that validation of prediction models in an independent sample is essential in assessing the true value of the
model. Future external validation studies, as well as attempts to harmonize data collection across studies, are recommended.
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INTRODUCTION
Given the large variability in disease trajectories and functional
outcomes after experiencing a first episode of psychosis (FEP)1–4,
research has focused on developing tools to predict functional
outcomes in order to guide clinical decision-making. Machine
learning techniques are increasingly being used in psychiatric
research1–14 and can capture patient heterogeneity to make
individual outcome predictions15, by learning complex associa-
tions from multivariate data16,17.

Functional outcome measures, such as the Global Assessment
of Functioning (GAF) scale18, offer a holistic view of a patient’s
ability to function in daily life, encompassing social, occupational,
and psychological domains. Unlike more narrowly defined criteria
like symptom remission, functional assessments prioritize the
impact of the disorder on the patient’s life, aligning with a patient-
centered approach. The GAF is a quick and easily administered
measure which requires minimal training18. Additionally, GAF
scores may serve as proxies for estimating other meaningful
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patient outcomes, including hospital readmission rates, treatment
adherence, quality of life and occupational ability11,19. The
integration of the GAF with other routinely collected variables
such as sociodemographic characteristics, symptom severity, and
comorbid disorders has demonstrated robust clinical relevance
and predictive power for individual functional outcomes1,11,20–23.
Several multivariate prognostic models have been published to

predict functional outcomes in patients with a FEP, using
demographic and clinical variables at baseline. Koutsouleris
et al.11 developed a Support Vector Machine (SVM) model to
predict 1-year functional treatment outcome in a large cohort of
FEP patients (in the context of a schizophrenia spectrum disorder,
broadly defined as first-episode schizophrenia spectrum disorder;
FES) participating in a pragmatic randomized controlled trial11.
Cross-validated results were able to predict functional outcome
with 73.8% balanced accuracy (BAC). Geographical generalizability
of the models was tested using a leave-site-out approach, i.e. by
iteratively validating the models in one study site which was
completely left out from the training sample used to develop the
models (the remaining sites). This yielded a BAC of 71.1%
(including all selected variables) to 67.7% (model including the
10% of top-ranked variables only). Additional studies from
Leighton et al.5 and De Nijs et al.10 followed, reporting models
to predict individual symptomatic and functional outcomes at
one-, three- and six-year follow-up in FEP patients and patients
with a schizophrenia-spectrum disorder respectively. To date, only
few studies have attempted to validate such models in large,
independent samples; external validation of these models is
essential, since a high-performing model in one sample may have
limited predictive value when applied to other patients24.
Leighton and colleagues assessed the prediction of 1-year

outcome in terms of symptomatic remission and employment,
education or training (EET) status in a naturalistic cohort of FEP
patients5 and externally validated their models in a different FEP
cohort, both cohorts originating from Scotland. This yielded a
Receiver Operating Characteristic Area Under the Curve (ROC-AUC)
of 0.88 for EET status, and non-significant ROC-AUC values ranging
from 0.63 to 0.65 for symptomatic remission, possibly due to a
small sample size. In a second study from Leighton, Upthegrove
et al.6, prognostic models were developed to predict various
outcomes, including symptom remission, social recovery, voca-
tional recovery and quality of life at 1 year after a first episode of
psychosis. The models were developed in a large, naturalistic
cohort of FEP patients treated at Early Intervention Services in the
UK (EDEN sample, n= 102725) and validated in two external
longitudinal FEP cohorts in Scotland (which formed the basis for
the Leighton study described above; n= 1625,26), as well as in a
randomized controlled study cohort of FEP patients receiving early
intervention versus standard treatment in Denmark (OPUS sample
(NCT00157313), n= 57827). The trained models identified patients
with poor versus good symptomatic and functional outcomes
significantly better than chance, with AUCs ranging from 0.703 to
0.736 (all p < 0.0001). External validation in the independent
Scottish samples provided a mixed picture of the discriminative
ability of the model with AUCs ranging from 0.679 to 0.867 (p-
values ranging from <0.05 to <0.0001), while external validation in
the Danish RCT yielded low AUCs ranging from 0.556 to .660 (three
out of four AUCs reaching significance). More recently, Chekroud
and colleagues 28, reported on an elaborate prediction model
validation effort; the authors used five international, multisite
randomized controlled treatment trials in patients with schizo-
phrenia, resulting in heterogeneous patient samples ranging from
pediatric to older adult patients, and chronically ill versus first
episode patients. Machine learning methods were applied using
baseline data, to predict clinically significant symptom improve-
ment over a 4-week treatment period within each of the individual
trials. These models were then cross-validated (within that same
trial) as well as externally validated in the other study samples. The

authors report that these models predicted patient outcomes with
high accuracy within the trial in which the model was developed;
however, they performed no better than chance when applied in
the other trial samples. Aggregating data across trials to predict
outcomes in the trial left out did not improve performance.
If we are to eventually use prediction tools in clinical practice, it

is crucial to know how robust these models are when applied
across different, potentially highly diverging patient populations.
Given the relative importance and impact of treatment decisions
in the early phase of schizophrenia, we focus specifically on the
FES phase. In this subgroup of patients, external validation studies
are scarce and the existing literature on external validation of
prognostic models for 1-year treatment outcome in first episode
patients has been mostly restricted to small samples or single-
country study cohorts. With the few validation studies yielding
low to moderate predictive strength, it is doubtful that this
performance translates into clinical applicability. Hence, validation
in large scale, naturalistic samples is required to further explore
the generalizability of these models to more representative, real-
world patient cohorts.
To respond to this need, the present work aimed to develop

and externally validate prognostic models predicting functional
outcome in FES, using a crossover approach on the EUFEST and
PSYSCAN cohorts, two large scale samples from the European
continent and Israel. Extending existing research in this field, our
models are based on the machine learning models published by
Koutsouleris et al.11. In view of its clinical applicability, easy to
obtain demographic and clinical baseline predictors were used for
model development. To evaluate geographical generalizability of
the models, we applied additional strategies, such as data pooling
and leave-site-out cross-validation.

METHODS
Participants and study design
The present work used data from EUFEST (ISRCTN68736636) as well
as the FES cohort from the PSYSCAN study (HEALTH.2013.2.2.1-2-
FEP). EUFEST is a multicenter, pragmatic, open randomized
controlled trial comparing the effectiveness of second-generation
antipsychotic drugs with that of a low dose of haloperidol in
patients with first-episode schizophrenia spectrum disorder.
Patients were randomized to treatment with haloperidol 1–4mg,
amisulpride 200–800mg, olanzapine 5–20mg, quetiapine
200–750mg, or ziprasidone 40–160mg daily, and followed for a
period of 1 year. PSYSCAN is an international, multicenter, long-
itudinal study on the early stages of psychosis. Patients with first
episode psychosis as defined by a DSM-IV diagnosis of schizo-
phrenia, schizoaffective disorder (depressive type) or schizophreni-
form disorder were followed for a period of 1 year in a naturalistic,
prospective design. All participants, or their legal representatives,
provided written informed consent. Both studies were approved by
the relevant ethics committees of the participating centers, and
conducted in accordance with the Declaration of Helsinki (2013). A
detailed description of the study design and inclusion and exclusion
criteria has been provided elsewhere39–41. A summary of key
differences between the studies is included in Supplementary Table
1. A subset of data was used; First, overlapping variables between
the two studies were selected (see Table 1; a more elaborate
description of the predictive features including an overview of the
possible data values is included in Supplementary Table 2). After
variable selection, only patients with equal to or less than 20%
missing predictive variables and for whom a GAF score at month 12
was available, were included in the analyses. This led to a total of
338 subjects from the EUFEST cohort (slightly different from the
334 subjects in Koutsouleris et al.11) and 226 subjects from
PSYSCAN. An overview of the sample size per site and study is
provided in Supplementary Table 3.
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Predictors and outcome measure
The primary outcome measure was functional outcome after
12months of follow-up, assessed with the current score of the Global
Assessment of Functioning (GAF) scale42. Early changes in GAF scores
have been observed as a simple but effective predictor of various
long-term symptomatic and functional outcomes43. GAF scores were
dichotomized to differentiate patients with a so-called poor outcome

(GAF score <65) from patients with a good outcome (GAF score≥ 65),
as previously defined by Koutsouleris et al.11. This cutoff was chosen
since it is the cutoff used by the original study; scores between 51 and
70 have been suggested to distinguish between mild functional
problems and moderate to severe functional impairment44, as
thresholds between at-risk and disease states45, and cutoffs of 60
and 65 specifically have been used to define functional remission or

Table 1. Baseline variables from the EUFEST and PSYSCAN databases selected for analysis.

Sociodemographic variables Diagnostic interview

1 Sex 42 Schizoaffective disorder Current

2 Age 43 Schizoaffective disorder Lifetime

3 Years of educationa 44 Schizophreniform disorder Current

4 Weight 45 Schizophreniform disorder Lifetime

5 Body Mass Index (BMI) 46 Substance induced psychotic disorder Lifetime

6 Diastolic blood pressure Clinician-rated scales

7 Systolic blood pressure 47 Clinical Global Impression (CGI)

8 Marital status patient: married 48 Global Assessment of Functioning (GAF)

9 Current occupation patient Positive and Negative Syndrome Scale (PANSS)

10 Highest educational degree patient 49 PANSS P1 Delusions

11 Educational problems 50 PANSS P2 Conceptual disorganization

12 Education father 51 PANSS P3 Hallucinations

13 Education mother 52 PANSS P4 Hyperactivity

14 Living alone 53 PANSS P5 Grandiosity

15 Living environment 54 PANSS P6 Suspiciousness/persecution

Antipsychotic medication 55 PANSS P7 Hostility

16 Haloperidol treatment 56 PANSS N1 Blunted affect

17 Olanzapine treatment 57 PANSS N2 Emotional withdrawal

18 Quetiapine treatment 58 PANSS N3 Poor rapport

19 Amisulpride treatment 59 PANSS N4 Passive/apathetic social withdrawal

20 Ziprasidone treatment 60 PANSS N5 Difficulty in abstract thinking

Diagnostic interview 61 PANSS N6 Lack of spontaneity and flow of conversation

21 Disorganized schizophrenia 62 PANSS N7 Stereotyped thinking

22 Catatonic schizophrenia 63 PANSS G1 Somatic concern

23 Paranoid schizophrenia 64 PANSS G2 Anxiety

24 Schizophreniform disorder 65 PANSS G3 Guilt feelings

25 Residual state 66 PANSS G4 Tension

26 Schizoaffective disorder 67 PANSS G5 Mannerisms and posturing

27 Undifferentiated schizophrenia 68 PANSS G6 Depression

28 MDE Currentb 69 PANSS G7 Motor retardation

29 MDE Recurrentb 70 PANSS G8 Uncooperativeness

30 Substance induced mood disorder Past 71 PANSS G9 Unusual thought content

31 MDE with melancholic features Currentb 72 PANSS G10 Disorientation

32 Dysthymia Current 73 PANSS G11 Poor attention

33 Hypomanic episode Pastc 74 PANSS G12 Lack of judgment and insight

34 Panic disorder Current past month 75 PANSS G13 Disturbance of volition

35 Panic disorder Lifetime 76 PANSS G14 Poor impulse control

36 Agoraphobia Lifetime 77 PANSS G15 Preoccupation

37 Social phobia 78 PANSS G16 Active social avoidance

38 Specific phobia 79 PANSS Positive score

39 Obsessive-compulsive disorder 80 PANSS Negative score

40 Schizophrenia Current 81 PANSS General score

41 Schizophrenia Lifetime 82 PANSS Total score

Note. a Years of education= years in school and college/university (excluding kindergarten/nursery).
b MDE = Major Depressive Episode.
c Not included in the internally cross-validated model on PSYSCAN data, due to >20% missing values.
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recovery in previous naturalistic, longitudinal FEP studies6,46–48. To
approach the models from the original paper as closely as possible,
features available in both studies were identified, resulting in a total
number of 82 overlapping demographic and clinical predictors
selected for analysis (see Table 1). Schizophrenia spectrum disorders
and comorbid DSM-IV diagnoses were confirmed using the MINI
international neuropsychiatric interview plus (MINI plus; EUFEST)49 or
the Structured Clinical Interview for DSM-IV Disorders (SCID-I;
PSYSCAN)50.

Model development
Model development and validation followed the Transparent
Reporting of a Multivariable Prediction Model for Individual
Prognosis or Diagnosis (TRIPOD) guidelines51. The open-source
pattern recognition tool NeuroMiner version 1.152 in Matlab (release:
R2021b; https://nl.mathworks.com/products/matlab.html) was used
to rebuild the original prognostic classification models, i.e. based on
the cross-validation and machine learning pipeline from Koutsouleris
et al.11 but only including those variables available in both studies.
We used a repeated nested cross-validation (CV) framework with 20
folds at the outer level (CV2) and 5 folds and 4 permutations at the
inner cycle (CV1). In the preprocessing phase, variables were first
scaled to a range of [0–1], and missing values were imputed using a
5-nearest neighbor approach based on the Euclidean distance.
Wrapper-based, greedy forward feature selection, using a non-linear
support vector machine algorithm with a Radial Basis Function (RBF
or Gaussian) kernel, identified a subset of most predictive variables.
A number of steps similar to those used in Koutsouleris et al.11 were
implemented to prevent overfitting and increase generalizability
and clinical utility of the model (see ‘Machine Learning pipeline’ in
the Supplements). Subjects with a positive or negative mean
decision score were classified as patients having a poor or good
outcome, respectively. Higher absolute values of decision scores
indicate a higher certainty of the patient belonging to either group.
Significance of the prognostic model was determined using
permutation analysis at α= 0.0153; the classification performance
of the model in terms of Balanced Accuracy (BAC) was compared
with a null distribution of the out-of-training classification perfor-
mance (BAC) of 500 random permutations of the outcome labels.

Cross-over validation
To determine the prognostic performance of the models beyond the
discovery sample, a cross-over validation approach was adopted; a
model was trained and cross-validated using data from one study
(EUFEST) and then applied on to the external dataset (PSYSCAN), and
vice versa. Following Steyerberg and Harrell’s (2016) recommenda-
tions54, we evaluated the geographical transportability of the models
based on a leave-site-out cross-validation approach: we first pooled
the data in the inner cycle (CV1) while data in the outer cycle (CV2)
were split by site (see ‘Machine learning pipeline’ in the Supple-
ments). Given the systematic decision score differences between the
two study cohorts, all analyses were repeated after calibrating the
data using the correction method described in Koutsouleris et al.12,
where group differences between study cohorts were corrected by
(1) centering the variables to their global mean and (2) subtracting
the difference between cohort-specific means and the global mean.
Supplementary Table 4 lists results without mean offset correction.

Other analyses
Descriptive statistics and follow-up analyses were performed in SPSS
version 29.055. All statistical tests were two-sided. The significance
level was set at α= 0.05, unless otherwise indicated. Between-group
comparisons of sociodemographic and clinical characteristics at
baseline were performed using t-tests and Chi-Square tests. To assess
the importance of each predictive feature for classification
performance, we used the sign-based consistency as a measure of

feature significance and the cross-validation ratio as a measure of
feature reliability (see ‘Importance of predictive features’ in the
Supplements)38,56. Predictive features were ranked for each classifier
based on their sign-based consistency resulting from the inner cross-
validation cycles. Features consistently selected as the most
important predictors across the inner cross-validation cycles (i.e.,
those with a significant sign-based consistency value) were
compared between the different classification models (EUFEST
classifier, PSYSCAN classifier and leave-site-out classifier). To deter-
mine whether the overlapping features contributed to the prediction
of the poor versus good outcome label, the cross-validation ratio was
used. In a final step, Spearman and point-biserial correlation
coefficients were calculated between the overlapping, significant
predictive baseline features and the mean predicted decision scores
resulting from the validation of the classifiers. The type of correlation
analysis (Spearman’s rho or point-biserial correlation coefficient) was
selected according to the scale of the variables concerned. These
correlation analyses provided insight into the direction of the
associations, i.e. on whether a feature (e.g. PANSS total) was
positively or negatively associated with the predicted outcome
(regardless of whether this corresponds to the actual outcome).

RESULTS
Sociodemographic data and clinical characteristics at baseline,
including results of between-sample comparisons, are presented
in Table 2. After a year of follow-up, 78 patients from the EUFEST
sample (23.1%) presented with a poor outcome (defined as
GAF < 65) as compared to 113 patients (50.0%) in PSYSCAN, χ2

(1)= 44.15, p < 0.001. The pooled non-linear SVM classifier trained
on EUFEST data correctly identified patients with a poor outcome
with a cross-validated BAC of 66.1%, p < 0.002 (Table 3). The
decision scores of this adjusted model correlated strongly with the
original model from Koutsouleris (ρ= 0.751, p < 0.001)11,29. The
prognostic model trained on PSYSCAN participants achieved a
slightly lower BAC of 64.6%, p < 0.002. When applying the models
onto the study cohort not included in the discovery and cross-
validation phase, classification performance substantially
decreased, as reflected in BAC losses of 9.9% and 14.6%,
respectively.
The drop in classification performance is also reflected in the

imbalance between sensitivity and specificity emerging from the
external validation analyses. Results of the internal cross-validation
analyses indicate that 60.3% of the EUFEST and 69.9% of the
PSYSCAN patients with a poor functional outcome were correctly
classified as patients having a poor outcome at month 12
(sensitivity). A total of 71.9% of the good outcome patients in
the EUFEST cohort and 59.3% of the good outcome patients in the
PSYSCAN cohort were correctly classified as patients having a
good outcome (specificity). Validation of the models in the
external cohort resulted in a shift in sensitivity/specificity balance,
as evidenced in sensitivity levels of 82.3% and 100.0%, and
specificity levels of 30.1% and 0.0%, respectively. In other words, a
41.8–59.3% drop in specificity was observed when applying the
models to the external test cohort. Despite these decreases in BAC
and specificity performance when validating the EUFEST classifier
in the PSYSCAN dataset and vice versa, the area under the receiver
operating curve (AUC) was still within a range of 0.62-0.64.
The leave-site-out, inner pooled cross-validation analysis (LSO)

on the combined dataset produced a significant BAC of 72.4%,
p < 0.002, with an AUC of 0.79. The sensitivity (70.1%) and
specificity (74.7%) of the leave-site-out classifier were within a
similar range. Further inspection reveals a difference between the
positive and negative likelihood ratios; the positive likelihood ratio
(the probability that a poor outcome label is expected in a poor
outcome patient, divided by the probability that a poor outcome
label is expected in a patient with a good outcome30) is higher
than the negative likelihood ratio (the probability of a patient with
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a poor outcome receiving the good outcome label, divided by the
probability of a patient with a good outcome being classified as
such30). Repeating the leave-site-out analyses on the EUFEST and
PSYSCAN sample separately resulted in a similar result in EUFEST
(BAC= 70.6%, p < 0.002) but a performance decrease in PSYSCAN

data (BAC= 58.6%, p= 0.086), suggesting that the enhanced
performance of the leave-site-out model on the merged dataset is
not just a consequence of an increase in power. Details on the
prediction performance per site are provided in Supplementary
Figs. 1 and 2. Results of additional analyses comparing the

Table 2. Sociodemographics and baseline clinical characteristics of the EUFEST sample and the PSYSCAN FES cohort.

Sociodemographics EUFEST (n= 338) PSYSCAN (n= 226) Statistic p-value

Age in years 25.6 (5.7) 24.7 (5.7) t(562)= 1.79 p= 0.073

Male sex 190 (56.2%) 155 (68.6%) χ2 (1)= 8.73 p= 0.003

GAF current 40.6 (13.5) 55.6 (20.0) t(359.41)= -9.87 p < 0.001

GAF < 65 320/338 (94.7%) 146/225 (64.9%) χ2 (1)= 84.04 p < 0.001

Living status: independently 40/336 (11.9%) 42 (18.6%) χ 2 (1)= 4.84 p= 0.028

Relationship status: married 44 (13.0%) 8 (3.5%) χ 2 (1)= 14.54 p < 0.001

Educational yearsa 12.6 (2.9) 14.1 (3.2) t (561)= -5.79 p < 0.001

Education level

University (finished) 28/337 (8.3%) 26 (11.5%) χ 2 (6)= 28.88 p < 0.001

University (unfinished) 65/337 (19.3%) 47 (20.8%)

Professional training (finished) 49/337 (14.5%) 25 (11.1%)

Professional training (unfinished) 16/337 (4.7%) 29 (12.8%)

High school (finished) 68/337 (20.2%) 56 (24.8%)

High school (unfinished) 61/337 (18.1%) 32 (14.2%)

Less than high school 50/337 (14.8%) 11 (4.9%)

Employment status: employed 158 (46.7%) 65 (28.8%) χ2 (1)= 18.33 p < 0.001

Baseline clinical characteristics

Duration of illness < 2 yearsb 337 (99.7%) 173 (76.9%) χ2 (1)= 82.45 p < 0.001

Schizophrenia spectrum diagnosis χ2 (2)= 9.78 p= 0.008

Schizophrenia 177/336 (52.7%) 145 (64.2%)

Schizophreniform disorder 133/336 (39.6%) 74 (32.7%)

Schizoaffective disorder 26/336 (7.7%) 7 (3.1%)

Comorbid psychiatric diagnoses

Major depressive episode current 29 (8.6%) 18 (8.1%) χ2 (1)= 0.04 p= 0.844

Major depressive disorder recurrent 26 (7.7%) 13 (5.8%) χ2 (1)= 0.77 p= 0.373

Antipsychotic medication

Haloperidol 68 (20.1%) 8/223 (3.6%) χ2 (1)= 31.35 p < 0.001

Olanzapine 81 (24.0%) 42/223 (18.8%) χ2 (1)= 2.07 p= 0.151

Amisulpride 69 (20.4%) 10/223 (4.5%) χ2 (1)= 28.18 p < 0.001

Quetiapine 68 (20.1%) 23/223 (10.3%) χ2 (1)= 9.50 p= 0.002

Ziprasidone 52 (15.4%) 0/223 (0.0%) χ2 (1)= 37.81 p < 0.001

Clozapine 0 (0.0%) 23/226 (10.2%) χ2 (1)= 35.86 p < 0.001

Aripiprazole 0 (0.0%) 56/226 (24.8%) χ2 (1)= 92.99 p < 0.001

Paliperidone 0 (0.0%) 8/226 (3.5%) χ2 (1)= 12.14 p < 0.001

CGI 4.9 (0.8) 3.4 (1.4) t(316.67)= 14.43 p < 0.001

PANSS total 89.1 (20.7) 55.7 (27.3) t(518.79)= 20.55 p < 0.001

PANSS positive 23.4 (6.2) 13.2 (5.6) t(553)= 19.73 p < 0.001

PANSS negative 21.2 (7.7) 14.6 (6.7) t(508.67)= 10.56 p < 0.001

PANSS general 44.5 (10.7) 27.9 (8.4) t(533.87)= 20.46 p < 0.001

HAM-D sum score (Mdn, IQR) 5.0 (7.0)

CDSS sum score (Mdn, IQR) 4.0 (7.0)

Symbol Substitution Test, raw score (WAIS) 50.7 (18.5) 62.9 (17.5) t(533)= -7.64 p < 0.001

Note. Data are mean (SD), n (%), or n/N (%), unless otherwise indicated. Denominators change because of incomplete data. GAF Global Assessment of
Functioning. CGI Clinical Global Impression. PANSS Positive and Negative Syndrome Scale. WAIS Wechsler Adult Intelligence Scale. HAM-D Hamilton Depression
Rating Scale. Scores range from 0 to 50. Higher scores indicate more severe depressive symptoms. CDSS Calgary Depression Scale for Schizophrenia. Scores
range from 0 to 27. Higher scores indicate more severe depressive symptoms. Some baseline variables were omitted from the analyses due to the violation of
assumptions of minimum cell frequencies (e.g., PTSD).
a Years of education= years in school and college/university (excluding kindergarten/nursery).
b Duration of illness is defined as the time between the onset of frank psychosis and study entry.
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accuracy versus error rates of the classification models for the
different treatments arms in EUFEST are also provided in the
Supplements (Supplementary Fig. 3).
Using the sign-based consistency method, a total of 27

overlapping, significant predictive baseline features were
identified (Fig. 1). CV ratios indicated that illness severity
(CGI), current and recurrent depressive episodes, obsessive-
compulsive disorder and education problems consistently
emerged as important predictors for classifying poor outcome
(Fig. 2). The baseline GAF score and systolic blood pressure

were observed as important predictors for classifying good
outcome. For the leave-site-out classifier in particular, the
baseline GAF score had a strong impact on the decision to
assign a patient to the good outcome group. Treatment with
amisulpride was also informative for the classification of good
outcome, but for the EUFEST and leave-site-out classifier only.
Correlations between the top predictive baseline features
overlapping across the models and the mean predicted
decision scores of the cross-validated models are presented in
Supplementary Table 5.

Fig. 1 A comparison of the most important predictive baseline variables per classifier based on the sign-based consistency resulting
from the inner cross-validation cycles. Significant predictors overlapping across the models are presented only. Variables with a sign-based
consistency * Pfdr log10 ≥ 1.36 are considered significant (dotted line reflects the significance threshold). EUFEST classifier= pooled non-linear
cross-validated SVM model on EUFEST cohort. PSYSCAN classifier= pooled non-linear cross-validated SVM model on PSYSCAN cohort. Leave-site-
out classifier= leave site-out inner pooled cross-validated SVMmodel on the merged dataset (sites that included < 10 participants were excluded).

Table 3. Prediction performance of the trained models on classifying 52 week outcome.

N subjects N sites TP TN FP FN Sens (%) Spec (%) PPV NPV PSI LR+ LR- BAC AUC p-value

Pooled CV classifier EUFEST 338 46 47 187 73 31 60.3 71.9 39.2 85.8 24.9 2.1 0.6 66.1 0.75 <0.002

Validation EUFEST classifier in
PSYSCAN sample

226 15 93 34 79 20 82.3 30.1 54.1 63.0 17.0 1.2 0.6 56.2 0.64 –

Pooled CV classifier PSYSCAN 226 15 79 67 46 34 69.9 59.3 63.2 66.3 29.5 1.7 0.5 64.6 0.70 <0.002

Validation PSYSCAN classifier in
EUFEST sample

338 46 78 0 260 0 100.0 0.0 23.1 – – 1.0 – 50.0 0.62 –

Leave-site-out / inner pooled CV
classifier merged sample†

433 25 101 216 73 43 70.1 74.7 58.0 83.4 41.4 2.8 0.4 72.4 0.79 <0.002

Leave-site-out / inner pooled CV
classifier EUFEST sample†

218 15 23 152 24 19 54.8 86.4 48.9 88.9 37.8 4.0 0.5 70.6 0.76 <0.002

Leave-site-out / inner pooled CV
classifier PSYSCAN sample†

210 12 51 73 38 48 51.5 65.8 57.3 60.3 17.6 1.5 0.7 58.6 0.65 0.086

Note. Classified poor outcomes (GAF < 65) are labeled as positive predictions and good outcomes (GAF ≥ 65) as negative predictions, i.e. sensitivity measures
the classifier’s ability to correctly identify patients with poor outcomes as such. In all models, mean offset correction was applied as an extra preprocessing
step. † Sites that included <10 participants were excluded from the analysis (see Suppl. Table 2). CV Cross-validated. TP True Positives. TN True Negatives. FP
False Positives. FN False Negatives. Sens Sensitivity. Spec Specificity. PPV Positive Predicted Value. NPV Negative Predicted Value. PSI Prognostic Summary Index.
LR+ Positive Likelihood Ratio. LR- Negative Likelihood Ratio. BAC Balanced Accuracy. AUC Area Under the Receiver Operating Characteristic Curve.
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DISCUSSION
Using clinical and sociodemographic data of one clinical trial
(EUFEST) and one naturalistic study (PSYSCAN), the present work
aimed to develop and externally validate different machine-learning
based prediction models of functional outcome in FES, following the
cross-validation and machine learning pipeline from Koutsouleris et
al.11. For validation, a crossover approach was adopted, i.e. the model
from one study was evaluated in the other and vice versa. This in
turn allowed to test the generalizability of results stemming from
inherently different study designs. Each cross-validated model
discriminated between patients with good and poor functional
outcome with balanced accuracies ranging from 65% to 66%, which
reflects a low level of prediction accuracy (defined as 50–70%
accuracy). In addition, when modelling outcome in a cross-over
fashion, BAC dropped substantially while AUC was maintained,
indicating potential residual calibration issues between the variable
spaces of the two cohorts. Better performance (BAC= 72%) was
achieved by the leave-site-out model on the merged sample,
highlighting the effect of combining data from different study
designs to overcome calibration issues and improve model
transportability; in combination with results of the leave-site-out
models on EUFEST and PSYSCAN data separately, it suggests that this
model generalizes moderately well across sites (moderate prediction
accuracy defined as 70–80%). In short, the prediction accuracy as
yielded by the validation and cross-validation analyses of the two
patient samples only reached a low level, which is far from sufficient
when considering utilization of prediction models in a clinical setting.
Discrimination performance of the pooled cross-validated

EUFEST classifier, the pooled cross-validated PSYSCAN classifier,
and leave-site-out classifier in our study falls within the perfor-
mance ranges of the pooled cross-validated (BAC= 74%) and
leave-site-out cross-validated (BAC= 68%) models from Koutsou-
leris et al.11. Previous support vector machine models predicting the
same endpoint at 3 year and 6 year follow-up yielded low internal
cross-validated balanced accuracies between 64% and 68%, and
low balanced accuracies of 57%–66% when using leave-site-out
cross-validation10. Leighton, Upthegrove et al.6 reported results of
the development and external validation of a logistic regression
model (with elastic net regularisation) for social recovery in a similar
population. Social recovery was defined as a GAF score equal or
above 65, which is identical to the operationalisation of good
functional outcome in the current study. Our model performance in
terms of AUC (0.70–0.79) matches results from the leave-site-out
social recovery model reported by Leighton et al. (AUC= 0.73),
both providing a moderate prediction quality. Discrimination
performance of our external validation analysis was slightly higher

(although still classified as low with an AUC ranging from 0.62 to
0.64) than the external validation performance of the social
recovery model on the OPUS dataset (AUC= 0.5727) as conducted
by Leighton and colleagues6. Although small, this difference may
be partly explained by the international geographic coverage of the
study cohorts used to develop the current models, or the stricter
criteria for the diagnostic subgroups included in the present work;
this may have contributed to the development of more robust
models with a better chance of generalizability to new samples.
Nevertheless, the reduced model performance of our external

validation analyses suggests that predictive models for functional
outcomes in schizophrenia-spectrum disorder are highly context-
dependent and have limited generalisability to new samples, even
when applied to new patients in a similar disease stage (FES). This
indicates the need to first focus on models that validate sufficiently
to other, carefully controlled clinical environments before even
considering the translation of a prediction model to daily clinical
practice. Multiple differences between the two study samples were
found at baseline. Although we tried to mitigate the impact of group
differences using univariate mean-offset correction, residual multi-
variate difference patterns may exist which were not accounted for
and could explain the drop in external validation performance
caused by systematic shifts between decision scores, i.e. calibration
problems of the respective models31,32. An important factor may be
the shorter duration of illness in EUFEST compared to PSYSCAN, as a
result of differences in the study eligibility criteria; EUFEST
participants had a maximum duration of illness of 2 years (defined
as the time interval between the onset of positive psychotic
symptoms, and study entry), compared to a maximum illness
duration of 3 years in PSYSCAN (defined as the time interval between
the initiation of treatment for psychosis (i.e. date of hospital
admission or acceptance at healthcare service for psychosis), and
study entry). Second, due to the nature of the trial, none of the
patients in EUFEST was treated with aripiprazole, clozapine or
paliperidone at baseline, whereas respectively 24.8%, 10.2% and
3.5% of the PSYSCAN participants received this treatment at baseline.
These differences in antipsychotic use may have affected the results,
e.g. knowing that clozapine has been described to be superior to
some other antipsychotics in ameliorating psychotic symptoms33

and is more likely to be prescribed in treatment-resistant patients34.
The variation in antipsychotic medication use is a good illustration of
the heterogeneity in the PSYSCAN sample, compared to the better
controlled RCT data (EUFEST), and may account for the superior
performance of the EUFEST model over the PSYSCAN model, as
observed in our leave-site-out approach. The pronounced difference
in severity of psychotic illness at baseline, possibly related to
variations in illness duration, is also worth mentioning; although this

Fig. 2 Cross-validation ratios (CVR) of the significant predictive baseline variables overlapping across the models. The green lines reflect
the 95% confidence threshold (CVR= ± 2). a EUFEST classifier= internally cross-validated SVM model on EUFEST data. b PSYSCAN
classifier= internally cross-validated SVM model on PSYSCAN data. c Leave-site-out classifier= inner pooled/outer leave-site-out cross-
validated SVM model on the merged dataset (sites that included < 10 participants were excluded). Positive CV ratios indicate that the variable
contributes to the classification of the poor outcome label, whereas negative CV ratios indicate the opposite. The absolute CV ratio values
indicate how strongly the variable affects the decision towards the outcome label (i.e., a variable with a higher absolute CV ratio drives the
decision more strongly towards the classification of the outcome label than a variable with a lower absolute CV ratio).
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aspect was covered in the set of prognostic factors used to develop
the models, in general, the EUFEST cohort was more severely ill than
the naturalistic PSYSCAN cohort, as reflected in the severity of
psychotic symptoms as well as the level of global functioning at
baseline. We tried to match the two samples on the severity of
psychotic symptoms and GAF scores at baseline to correct for these
baseline group differences, but due to the large reduction in power
as a result of excluding a large proportion of EUFEST participants, this
analysis proved inadequate. As it is likely that the differences in the
illness characteristics of the study samples reduced the prediction
accuracy of the cross-over validation analyses, this will similarly
hamper the translation of such machine learning models to the
general patient population seen in clinical practice.
Another critical factor complicating the validation and general-

izability of prediction models is the lack of consensus definitions
for functional outcomes across studies. Differences in how
functional outcomes are defined and measured may significantly
impact the results35,36. We recommend establishing standardized
definitions and outcome measures in the field, to facilitate
accurate model comparisons. In this context, future studies with
a large sample size could test a more nuanced categorization of
the GAF (e.g. by including a middle group) without compromising
statistical power. Alternatively, more objective or specific outcome
measures (e.g. employment or educational status) could be
implemented and evaluated, to explore whether this improves
the robustness and generalizability of prediction models.
This study did not include clinicians’ estimates of functional

outcomes, which could potentially enhance the predictive power
of the models without extending assessment times. Although
algorithmic predictions are generally comparable to clinicians’
estimations37, the incorporation of clinician predictions could offer
significant additional value in diagnostic and prognostic proce-
dures38. Therefore, we strongly recommend integrating clinicians’
prognostic evaluations into models of functional outcomes and
other aspects of psychiatric illness.
Overall, our results are in line with the first external validation

study of machine learning models in first episode cohorts,
conducted by Leighton and colleagues6, who also reported low
prediction accuracy when models with international patient
samples and different study designs (naturalistic versus interven-
tion studies) were externally validated, although the leave-site-out
cross-validation analyses resulted in moderate prediction accuracy
in both the current study as well as Leighton’s report.
The added value of the present work is the large geographical

spread of the FES participants (the two samples include patients
from 14 European countries, Israel and Australia). We showed that
our models based on a previously published machine learning
algorithm were able to classify patients from a new sample into
good versus poor functional outcome groups when applied in
patients from the same study and across sites. However,
classification performance dropped significantly when applied in
patients from a different FES cohort. In line with recent
observations28, our results indicate that models based on single
data sets provide limited insight into performance in future
patients; hence, external validation of prediction models in an
unrelated and carefully controlled clinical environment is essential
in assessing the true value of the model. Only then can the field
move towards applications into daily clinical practice.
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