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Alfonso de la Vega∗, Diego Garćıa-Saiz, Marta Zorrilla, Pablo Sánchez

Software Engineering and Real-Time (ISTR), University of Cantabria
Avda. Los Castros s/n, 39005 Santander, Cantabria, Spain

Abstract

Input data of a data mining algorithm must conform to a very specific tabular

format. Data scientists arrange data into that format by creating long and

complex scripts, where different low-level operations are performed, and which

can be a time-consuming and error-prone process. To alleviate this situation,

we present Lavoisier, a declarative language for data selection and formatting

in a data mining context. Using Lavoisier, script size for data preparation can

be reduced by ∼40% on average, and by up to 80% in some cases. Additionally,

accidental complexity present in state-of-the-art technologies is considerably

mitigated.

Keywords: Data Selection, Data Formatting, Domain-Specific Languages,

Data Mining

1. Introduction

We live in a time where data analysis techniques are becoming very pop-

ular, as they have demonstrated to be beneficial for the success of an organi-

sation or project. Examples exist in multiple domains, such as agriculture [1],

(bio)medical areas [2, 3], system security [4], or solid-state materials research [5].

Despite this extended usage, executing data mining processes still requires per-

forming a lot of low-level technical tasks, where an explicit and fine-grained
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management of multiple details is mandatory [6]. As a result, the level of ab-

straction at which data scientists typically work is very low, which hinders their

productivity.

Among these technical tasks, the most time-consuming one is typically the

selection and preparation of data for an analysis [7]. Most data mining algo-

rithms, such as those found in the Weka [8], KNIME [9] or scikit-learn [10] li-

braries, require their input data to be arranged in a very specific two-dimensional

tabular format, where all the information related to each entity under analysis

must be placed in a single row. For example, if we were analysing businesses

by using information about sales, business providers and customers satisfaction,

all this information, for each business, would have to be placed into cells of a

single row of the table providing input data. This means that these algorithms

cannot work with hierarchical or linked data such as JSON or XML files, or re-

lational tables connected by means of foreign keys, which are common examples

of representations in which information is typically made available. Therefore,

to execute a data mining algorithm, we first need to transform data stored in

these representations into the specific tabular format that these algorithms can

process.

Data scientists perform this data transformation process by creating long and

complex scripts, written in data management languages such as SQL (Structured

Query Language) [11], R [12], or Pandas [13] (i.e. a well-known Python data

manipulation library). These scripts extract data from the available sources

and, through a set of low-level operations, such as joins [14] or pivots [15, 16],

arrange these data as a tabular dataset that fulfils the one entity, one row

constraint previously commented. The elaboration of these scripts, which is

a crucial step for the outcome of any analysis [17], can be a tedious, time-

consuming and error-prone process.

To alleviate this situation, we present Lavoisier, a language that aims to

automate some of the data management tasks that data scientists need to per-

form when building datasets. To automate these tasks, Lavoisier provides a set

of declarative constructs that focus on specifying what information, among the

2Jo
ur

na
l P

re
-p

ro
of

Journal Pre-proof



available in a certain domain, should be included in a concrete analysis. These

constructs are automatically processed by the language interpreter through dif-

ferent chains of data transformation operations, such as joins and pivots. There-

fore, using Lavoisier, data scientists can focus on specifying what data must be

selected for a certain analysis, and forget about the details of how the selected

data must be transformed to conform a dataset, which contributes to increase

their productivity.

For instance, let A and B be entities of a domain, where instances of A can

refer to several B instances through a bs relationship (A
bs−→ B), and each B in-

stance has a b id identifier attribute. To generate a properly formatted dataset

of A instances, including the information of bs, the expression in Lavoisier would

be mainclass A include bs by b id. On the contrary, to achieve the

same result using SQL or Pandas, a 2-to-3 times longer and more complex ex-

pression would be required. Precisely, we would need to perform a left join

between A and B, followed by a pivot. Moreover, some extra fine-grained oper-

ations to, for instance, avoid name collisions between attributes of the combined

entities, might also be required. This scenario is detailed in Section 3.4, using

concrete entities from a business reviews domain.

The expressiveness and effectiveness of Lavoisier were assessed by a compar-

ison against the two technologies mentioned in the previous paragraph, which

are currently very popular for data manipulation: SQL [11] and Pandas [13]. In

the comparison, a comprehensive set of data selection and preparation scenarios

were initially devised, using two different case studies for this purpose. Then,

for each scenario, we compared the corresponding Lavoisier specification with

its SQL and Pandas’ counterparts. As a result of this comparison, we concluded

that Lavoisier’s dataset specifications are more compact, less verbose and allow

working at a higher abstraction level. In general, script size can be reduced on

average due to the use of Lavoisier by 60% and 40% with respect to SQL and

Pandas, and by up to 80% in some cases. This script size reduction is mainly

caused by Lavoisier’s dataset specifications requiring 40% fewer operations on

average, and 70% less parameters than SQL and Pandas’ counterparts.
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This paper updates and extends a previous contribution presented at the 9th

International Conference on Model and Data Engineering (MEDI) [18]. Over

this contribution, we include:

• a more detailed context and problem statement in Section 2,

• a revised and extended description by example of the language in Section 3,

• a description of the implementation, which was not included in the con-

ference version of this paper, and which presents the internal structure of

Lavoisier in Section 4, and

• an extended and more rigorous evaluation of our work in Section 5, where

more extraction scenarios and an additional case study have been included.

After the evaluation, Section 6 comments on related work and, finally, Sec-

tion 7 summarises this article and outlines future work.

2. Case Study and Problem Statement

This section describes with more detail the motivation behind this work. To

illustrate it, we use the Yelp Dataset Challenge, which is introduced next.

2.1. Running Example: The Yelp Dataset Challenges

Yelp is a company that provides an online business review service. Using

this service, owners can describe and advertise their businesses and customers

can write their opinions about these businesses. Yelp periodically collects and

makes available bundles of data for academic usage in the form of data anal-

ysis challenges1. We will use these data and challenges as running example

throughout this article.

Yelp provides their data as a bundle of interconnected JSON (JavaScript

Object Notation) files. To help visualise these files, we inferred the conceptual

1https://www.yelp.com/dataset/challenge
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Business

b_id : String
name : String
stars : float
isOpen : boolean

User

u_id : String
name : String

Location

address : String
city : String
state : String
postalCode : String Review

r_id : String
date : Date
stars : float
text : string

Tip

text : String
date : Date
 
 

Category

name : String
 

Feature

name : String
 
 
 

ValuedFeature

value : String

AvailableFeature

available : boolean
 

Group

name : String
 
 

GroupedFeature

 
 
 
 
 

Vote

 
 

CoolVote

 

FunnyVote

 

UsefulVote

 friends [0..*]

fans [0..*]

location [1..1]

reviews [0..*]

user [1..1]

business [1..1]

reviews [0..*]

tips [0..*]

user [1..1]

business [1..1]

tips [0..*]

categories [0..*]

features [0..*]

group [1..1]

votes [0..*]

user [1..1]

votes [0..*]

review [1..1]

Figure 1: Conceptual Model of the Yelp Dataset Challenge.

object-oriented model to which these files would conform to. This model is

depicted in Figure 1.

For each registered business, Yelp provides information about its location;

the different features it offers, such as the availability of Wi-Fi or a smoking

area; and the categories which best describes it, e.g., Cafes, Restaurant, Italian,

Gluten-Free, and so on. Users can review these businesses, rate them and write

a text describing their experience. Additionally, users can write tips, which are

small pieces of advice about a business, such as do not miss its salmon! Yelp

also provides some social network capabilities, so users can have friends or fans.

Users can also receive votes in their reviews in case other users found these

reviews funny, useful or cool.

Using these data, Yelp raises some questions to be solved by executing anal-

ysis tasks, such as identifying reasons behind a business becoming successful.

In the following section, we explain how to execute data mining processes that

aim to provide answers to these questions, detailing all the steps that need to

be accomplished.
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Results to 
Validate & Interpret

Algorithm
 Selection

Business
 Questions

Sources
 Selection

Widok
-model: Model
+ustawModel(model: Model)
+wyświetl()
+dodaj(widok: Widok)
+usuń(widok: Widok)
+pobierz(i: int): Widok

WidokLiść
+wyświetl()
+dodaj(widok: Widok)
+usuń(widok: Widok)
+pobierz(i: int): Widok

WidokKompozyt
+wyświetl()
+dodaj(widok: Widok)
+usuń(widok: Widok)
+pobierz(i: int): Widok

       1

0..n

Kontroler
-widok: Widok
-model: Model
+ustawModel(model: Model)
+ustawWidok(widok: Widok)
+akcjaUzytkownika1()
+akcjaUzytkownika2()
+akcjaUzytkownika3()

KonkretnyKontroler1
+akcjaUzytkownika1()
+akcjaUzytkownika2()
+akcjaUzytkownika3()

KonkretnyKontroler2
+akcjaUzytkownika1()
+akcjaUzytkownika2()
+akcjaUzytkownika3()

Model
-obserwatorzy: Widok[]
+dodajObserwatora(widok: Widok)
+usuńObserwatora(widok: Widok)
+powiadom()
+operacjaModelu()

KonkretnyModel1
+operacjaModelu()

KonkretnyModel1
+operacjaModelu()

10..n

1 1
posiada

   1

 1
posiada

1

   1

posiada

Kontroler

Widok Model

Intermediate 
Domain Model

Data
 Reshaping

Data
 Preparation

Algorithm
 Execution

1 2 3

4 5

6 7

Figure 2: Detailed data mining process.

2.2. Data Mining Processes

To describe the steps that comprise a data mining process, we use as reference

the KDD (Knowledge Discovery in Databases) process [19]. Some steps of this

process have been split into several sub-stages, in order to clarify better some

important issues related to the work described in this paper.

Any data mining process is created to answer business questions (Figure 2,

Step 1). These questions are derived from the business or domain experts needs.

For instance, in the case of Yelp, data mining processes are elaborated to try

to answer the questions raised in their challenges, such as finding reasons that

make a business successful.

Once the questions from the domain are identified, we need to decide what

data sources will be used to answer them (Figure 2, Step 2). These sources are

also selected with the help of the domain experts. We might use several data

sources. For instance, Yelp challenges’ data include information from different

subsystems, such as the review system or its social network.

When the data to analyse are not trivial and have (complex) relationships

between them, it might be worth to construct a domain model that abstracts

from the low-level representation of these bundles and helps visualise and un-
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derstand them [20] (Figure 2, Step 3). This domain model might be specifically

helpful in the cases where several data sources are used, each one following a

different data representation. In these cases, the domain model can be used to

provide an unified view of the data available in the domain. As an additional

benefit, the existence of such an abstracted view could help ease the partici-

pation of business experts in the definition of the mining process [21]. In the

case of Yelp, they extracted data from different subsystems, unified them and

provided to researchers as a set of interconnected JSON files. To improve un-

derstanding of these data, we abstracted these JSON files into the conceptual

data model depicted in Figure 1.

Subsequently, we must select the data mining technique that we consider

most adequate for answering each business question (Figure 2, Step 4). For

instance, clustering techniques [6] might be employed to group Yelp businesses

according to the similarity of their characteristics. This might give indications

of what commonalities are shared among successful and unsuccessful businesses.

For each data mining technique, such as clustering, association rules or

classification, there is a plethora of algorithms available in the literature. Each

one of these algorithms is designed to perform better than the others depending

on certain characteristics of the input data. Therefore, we are also in charge

of selecting the algorithm that best fits with the nature of our input data.

For instance, to analyse data from Yelp, a density-based clustering algorithm

like DBSCAN [22] might perform better than a centroids-based one, such as

k-means [23].

Once a data mining algorithm has been selected, we would need to feed this

algorithm with input data. Most data mining algorithms can only accept as

input data arranged in a very specific tabular format. Data scientists often

refer to bundles of data arranged in this format as datasets. Therefore, as next

step of a data mining process, we need to reshape the available data to create

datasets that can be digested by data mining algorithms (Figure 2, Step 5).

The work presented in this paper focuses on this specific step, which will be

explained more in detail in the next section.
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In addition to this reshaping, each algorithm might impose other extra con-

straints to their input data. For instance, some distance-based algorithms re-

quire data to be normalised into the range [0, 1]. Therefore, we would need to

perform some extra data transformations in order to ensure these constraints

are satisfied. These transformations can take place after a dataset has been

produced or at the same time it is generated (Figure 2, Step 6).

Finally, we execute the selected data mining algorithms with the generated

datasets (Figure 2, Step 7) and we obtain the output results. These results

must be analysed to asses their quality and reliability. Then, curated results

can be passed to the business or domain experts (Figure 2, Step 8), who would

interpret them to extract some conclusions and make some decisions. As an

example, after performing an analysis over data from a Yelp challenge, the

obtained results might provide interesting advice for an entrepreneur before

starting a new venture.

Next section details the stage of this data mining process in which this work

focuses: the creation of tabular datasets from non-tabular information, such as

linked or hierarchical data.

2.3. The Data Formatting Problem

As previously commented, data mining algorithms only accept input data

in a specific tabular format, where all the information about each instance of

the domain entity being analysed is placed in a single row. The problem of

achieving this format is described in this section.

To illustrate this problem, let us suppose that, in the context of the Yelp

challenge, we want to identify business features, or combinations of features, that

might lead a business to have a high stars rating. We decide to use as information

for the analysis the businesses id and name, so business can be easily identified;

their stars rating as a measure of success; and their set of available features2.

Figure 3 (a) shows the fragment of the original domain model that contains this

2The Features inheritance of Figure 1 has been omitted from this initial example.
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features*

a) Domain Model

Business

b_id : String
name : String
stars : float

Feature

name : String
available : boolean

b) Model Instances

[ {“b_id” : “B1”, “name” : “Pete’s Pizza”, “stars” : 4.5,
“features” : [

{“name” : “WiFi”, “available” : true},
{“name” : “Parking”, “available” : true}]},

{“b_id” : “B2”, “name” : “Sushi & Go”, “stars” : 3.8,
“features” : [

{“name” : “WiFi”, “available” : false},
{“name” : “Parking”, “available” : true}]},

{“b_id” : “B3”, “name” : “Wine Heaven”, “stars” : 4.0,
“features” : [

{“name” : “WiFi”, “available” : true}]} ]

Figure 3: (a) Yelp model fragment; (b) JSON data conforming to (a).

B id BName Stars WiFi Parking

B1 Pete’s Pizza 4.5 true true

B2 Sushi & Go 3.8 false true

B3 Wine Heaven 4.0 true

Figure 4: A tabular dataset of businesses’ data.

information, whereas Figure 3 (b) shows some data, in JSON format, conforming

to this model fragment. According to the model, each business might have

several nested features, making this information hierarchical. Therefore, we

would need to find a mechanism to convert the hierarchical information of each

business into a flat vector of data that can be placed in single dataset row, such

as depicted in Figure 4.

To address this formatting problem, data scientists currently rely on data

management languages or libraries, such as SQL [11] or Pandas [13]. Using these

technologies, data scientists create scripts that, by means of several operations,

such as filters, joins, pivots or aggregations, are able to convert hierarchical and

linked information into tabular datasets. In the following, we refer to these

operations as low-level ones for the purpose of building datasets, because they

can be used to select and transform data, but they are not specifically designed

for producing tabular data that satisfies the one row, one entity constraint.

Consequently, data scientists usually have to combine several of these operations
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Listing 1: SQL flattening operation using aggregation queries and the case operator.

1 select b.b_id, b.name, b.stars,

2 max(case features.name when ’Parking’

3 then available end) as feature_parking,

4 max(case features.name when ’WiFi’

5 then available end) as feature_wifi,

6 max(case features.name when ’Smoking’

7 then available end) as feature_smoking

8 from business as b

9 left join features on b.b_id = features.b_id

10 group by b.b_id, b.name, b.stars

to ensure this constraint. Therefore, data scientists need to care both about

what data they want to select, and how the selected data must be transformed

to produce a dataset that can be digested by data mining algorithms. On the

other hand, we refer to an operation as high-level when this operation allows

data scientists to just focus on the selection of data, skipping over any details of

how these data should be arranged in a tabular format to satisfy the one row,

one entity constraint.

As an example, Listing 1 shows an SQL script where, by employing a CASE

operator in an aggregation query, the tabular representation of Figure 4 can

be obtained from a set of relational tables conforming to the domain model

fragment of Figure 3 (a). At a first glimpse, this script is quite complex when

compared to the data model size, that is composed of two small classes. Different

operations are used, such as a join of the features and business tables in line

9, or a combination of aggregations with a group by expression to apply a

reformatting operation similar to a pivot in lines 2-7 and 10 (more details on

the pivot operation are given in Sections 3.4 and 5.2). In addition, it should

be noticed that this SQL query would require an update if the features that

businesses can offer change, since a new aggregation query needs to be included
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each time a new feature is added to the system. This might be a problem if

these values change very often, or when there is a high number of these values.

Some data management languages, such as Pandas [13], provide a more ro-

bust implementation of the pivot operator where business features would not

need to be explicitly listed, as they would be automatically calculated. Nev-

ertheless, we would still need to concatenate several operations to select and

transform data, as again these languages provide just operations to handle data,

but not specific or dedicated ones for selecting data and automatically arrang-

ing them into a tabular format satisfying the one entity, one row constraint. A

detailed Pandas script for a data selection scenario can be found in Section 5.2.

Therefore, the operations provided by these languages, according to the given

definitions at the start of this section, can be considered low-level, because they

are used to select the data of interest (i.e. business and features information),

and to explicitly transform the structure of the selected data to arrange them

in the required format.

To alleviate this situation, we studied how to create a language to provide:

(1) a set of high-level primitives to specify which data, among the available in

a domain, should be included in a specific dataset; and (2) an interpreter that

processes these primitives to automatically execute the low-level data transfor-

mation operations that are required to generate the desired dataset.

With such a language, data scientists would not have to create complex,

time-consuming and error-prone data reformatting scripts by hand, which should

contribute to increase their productivity. Therefore, in this context, the reasons

behind defining this new language can be related to the task automation DSL

decision pattern [24]. This is, we are creating a DSL for automating some data

selection and transformation tasks. This language, which we called Lavoisier, is

described in the next section.
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3. Lavoisier: Dataset Extraction Language

Since Lavoisier aims to be a language for selecting a subset of all data avail-

able in a domain, we need a mechanism to describe these data. This mechanism

should be a high-level notation, such as conceptual modelling notation, that

allows us to focus on domain data and their relationships, and avoids technical

issues about how these data are stored. From the different candidate notations,

we selected object-oriented models, such as the one in Figure 1, since this tech-

nique is widely used nowadays to define domain models [25], and the use of

domain models has been previously proposed as a way to relate domain knowl-

edge with data mining and machine learning solutions [20]. Therefore, Lavoisier

can be more rigorously defined as a high-level language to create datasets from

object-oriented models describing domain data.

With respect to the type of primitives that are contained in the language,

Lavoisier’s syntax allows users to select what parts of an object-oriented model

are to be processed and included in an output dataset. However, users do

not need to worry about how those parts would be processed and merged into

the appropriate dataset format, as that process is transparently performed by

Lavoisier in the background.

To determine what primitives to include in Lavoisier, we analysed the differ-

ent structural elements that might appear in an object-oriented model. Then,

we studied how each one of these elements might be transformed into a tabular

dataset according to different scenarios. We formalised each one of these trans-

formation scenarios by means of a flattening operator. Finally, we created a set

of primitives to process these scenarios, trying both to maintain a low number

of total primitives in Lavoisier, and to make these as simple to use as possible

by reducing the information that needs to be specified by the end user.

In the remaining of this section, we describe Lavoisier by example, show-

ing how the language can deal with data transformation scenarios of increasing

complexity. We focus on describing how a data scientist can select data from

an object-oriented model using Lavoisier, while abstracting from the low-level
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transformations that would be performed in each transformation scenario. How-

ever, as previously commented, each one of these transformations is formally

specified by means of a flattening operator, which provides a more precise se-

mantic definition of the Lavoisier primitives. Since the focus of this paper is to

describe Lavoisier from a high-level point of view, and for the sake of brevity, we

have left the definition of such an operator outside of the scope of this paper. A

preliminary version on this operator can be found in [26], whereas a more com-

plete and definitive version is provided in [27]. We refer the interested reader

to these works.

3.1. Single Class Selection

An example of the most basic Lavoisier snippet that can be expressed is

shown in Listing 2. In Lavoisier, data selection processes are performed by

defining dataset specifications, which are declared with the dataset keyword

followed by a name for the dataset to be created (for instance, yelp reviews

in Listing 2), and a body block surrounded by braces (lines 1-3). A dataset

specification must always declare a main class (line 2), which is the class whose

instances would be placed in the rows of the output dataset. In this case, the

main class is Review.

Listing 2: Lavoisier’s simplest dataset specification.

1 dataset yelp_reviews {

2 mainclass Review

3 }

By default, if we do not provide any further information, Lavoisier considers

that all attributes of the selected class must be included in the output dataset,

whereas references to other classes are excluded. Taking into account these con-

siderations, Lavoisier generates a dataset from the specification of Listing 2 as

follows: first, a table with a column for each attribute contained in the Review

class is generated. Then, each instance of the Review class is processed, generat-

ing a new row where the instance attributes are assigned to their corresponding

columns. Figure 5 shows an example of this output.
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r id date stars text

5559 2020/02/06 4 It was a great ...

5560 2020/02/07 2 Not really ...

· · · · · · · · · · · ·

Figure 5: Output dataset example for Listing 2.

This default behaviour is not enough for most cases, since we might be in-

terested in excluding attributes like text, or including other related information,

such as the author of the review. Next sections describe how to carry out these

and other actions.

3.2. Attributes and Instances Filtering

If we do not want to include all attributes of a class in the resulting dataset,

we can specify those of our interest as a list after the class name, between

brackets, such as illustrated in Listing 3. In this example, just the r id and

stars attributes would be selected. The resulting dataset is created following

the process of the previous subsection, but this time only columns for those

attributes specified in the list between brackets would be generated.

Listing 3: Limiting the list of extracted attributes to r id and stars.

1 dataset yelp_reviews {

2 mainclass Review [r_id, stars]

3 }

Also, it might be the case that we are not interested in including all in-

stances of a class in a particular dataset. For these cases, Lavoisier provides

filters. A filter is specified after a class name using the where keyword, and it

must contain a predicate that is evaluated for each class instance. If the predi-

cate evaluates to true, then the instance is processed; otherwise it is discarded.

If any attribute included in the predicate had null as value, the whole predicate

evaluates to false. Listing 4 shows a filter example for considering just reviews

belonging to businesses placed in Edinburgh (line 3). The current prototype

of the language allows performing typical boolean operations such as equality
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or inequality comparisons, and a combination of these with {and, or} boolean

conjunctions. For future versions, we plan to include support for more sophisti-

cated operations usually present in data processing languages, such as functions

for managing dates or strings.

Listing 4: Selecting Review instances from Edinburgh businesses only.

1 dataset yelp_reviews {

2 mainclass Review [r_id, stars]

3 where business.location.city = "Edinburgh"

4 }

3.3. Single-Bounded Reference Inclusion

When analysing a main class, we might be also interested in including infor-

mation of a secondary entity that can be accessed through a reference of that

class. For instance, when analysing reviews, we might want to add information

about the author of a review. In this case, author data can be retrieved by

navigating the user reference of the Review class.

Incorporating references is more challenging than including attributes be-

cause of two main reasons: (1) referenced types might have their own attributes

and nested references that, in turn, we might want to include or exclude; and (2)

data of the referenced class must be merged with data of the main class in order

to create a single table. The complexity of this data merging process depends

on the cardinality of the included reference, with two cases being distinguish-

able: (1) references with 1 as upper bound, which we denote as single-bounded

references; and (2) references with an upper bound greater than 1, to which we

refer as multi-bounded references.

In Lavoisier, single-bounded references can be incorporated to a dataset with

the include primitive. For example, in Listing 5, line 3, the user reference of

the Review class is included in the dataset through the include user statement.

As in the previous section, if no extra information is given, all attributes of the

included class (e.g. User in this case) would be placed in the output dataset,

and its references would be excluded.
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r id date stars text user u id user name

5559 2020/02/06 4 It was a great ... 7777 John

5560 2020/02/07 2 Not really ... 8998 Mary

· · · · · · · · · · · · · · · · · ·

Figure 6: Example Output Dataset for Listing 5

Listing 5: Reviews data with some attribute and reference selections.

1 dataset yelp_reviews {

2 mainclass Review

3 include user

4 }

The data merging process in the case of single-bounded references is rather

simple. First, a new column is added to the output table per each simple

attribute contained in the referenced class. In the case of Listing 5, the u id

and name attributes of the User class would be added to the output table. To

avoid name collisions, the name of these new columns is formed by concatenating

the reference name with the attribute being included. So, in the example, the

columns would be formed by prepending the user reference name, resulting

in user u id and user name. When processing an instance of the main class,

the associated instance of the referenced class is accessed, and their attributes

placed in their corresponding columns. For example, when processing a specific

review, its author would be retrieved by Lavoisier, and the values for their u id

and name attributes placed in the appropriate columns. Conceptually, this

is equivalent to performing a left outer join between the main class and the

referenced class, and then transforming the resulting class to a table.

3.4. Multi-Bounded Reference Inclusion

To illustrate the main problem when processing references with upper bounds

greater than one, let us consider the example of Figure 3 (a). In this case, we

want to analyse businesses and include in the analysis information about each

business features. Since the features reference has upper bound greater than

16Jo
ur

na
l P

re
-p

ro
of

Journal Pre-proof



(a) After join: business information ends in several rows.

B id BName Stars Feature Available

B1 Pete’s Pizza 4.5 WiFi true

B1 Pete’s Pizza 4.5 Parking true

B2 Sushi & Go 3.8 WiFi false

B2 Sushi & Go 3.8 Parking true

B3 Wine Heaven 4.0 Wifi true

(b) After join and pivot: Information of each business placed in a single row.

B id BName Stars WiFi available Parking available

B1 Pete’s Pizza 4.5 true true

B2 Sushi & Go 3.8 false true

B3 Wine Heaven 4.0 true

Figure 7: Data merging by combining join and pivot operations.

one, each instance of a Business might be related with several instances of the

Feature class. It should be noticed that, in addition, the set of features asso-

ciated to a business might have a variable size. Therefore, we need to find a

mechanism to transform these nested data with a variable size into fixed-length

data vectors, so that these vectors can be used as rows for an output table defin-

ing a dataset. That is, for each business, we need to distribute the information

about each one of their features over a well-defined set of columns. This im-

plies that each potential business feature must have associated a set of columns

where its information can be placed. Therefore, we would need to create a set

of columns for the WiFi feature, so that when a business has WiFi, information

about this feature can be placed in those columns.

To achieve this goal, a data scientist might chain two low-level operations: a

join between both classes, and then, a pivot. These operations are described in

the following, with the help of Figure 7, and using as example the classes and

data of Figure 3.

The first operation, the join, is a typical left outer join that produces as

output a table like illustrated in Figure 7 (a). After performing this join, the
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resulting table contains several rows referring to the same business, which vio-

lates the one entity, one row constraint. For instance, the first two rows refer

to the Pete’s Pizza business, showing the availability of the WiFi and Parking

features. However, the information of these two rows should be contained in a

single one. To solve this issue, a data scientist might execute a pivot. A pivot

is an operation that accepts three parameters: a set of static properties, a set

of pivoting properties, and a set of pivoted properties. To achieve our desired

result, in our case, the static properties always correspond to all the properties

of the main class; the pivoting properties are the set of properties of the ref-

erenced class that can identify their instances; and, as pivoted properties, the

remaining properties of the referenced class are used. For the concrete example

of Figure 7, we use as pivoting property the name of the feature, so available

becomes the pivoted property.

With these parameters, the pivot would work as follows in this case. Firstly,

the structure of the output table is determined. To do it, all static properties,

which would be B id, BName and Stars in our example, are added as columns

to the output table. Then, all distinct tuples of the pivoting properties are

calculated. In the example, these tuples would be (WiFi) and (Parking). They

represent and identify the set of all potential features that might be associated

to a business. Then, each one of these tuples is combined with the pivoted

properties to conform the new set of columns that should be created. In our

case, the WiFi available and Parking available columns would be added to the

output table. As a result of this process, columns to hold the values of each

potential business feature are created.

Once the table structure is created, it is populated with data. First, each

distinct tuple for the static properties is added as a new row to the output table.

In our example, the tuples (B1, Pete’s Pizza, 4.5), (B2, Sushi & Go, 3.8), and

(B3, Wine Heaven, 4.0) would be initially placed in the output table. This way,

rows are compacted into just one row per entity.

However, these rows are incomplete, as the newly created columns, i.e.,

WiFi available and Parking available, are not filled yet. To provide values for
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these columns, the pivot operator checks, for each row and each group of columns

corresponding to a pivoting value, whether the input table contains a row with

the static values of that row plus the corresponding pivoting value. For instance,

continuing with our example, to calculate the value of the WiFi column for the

(B1, Pete’s Pizza, 4.5) row, the pivot operator checks if the input table has a

row containing the values (B1, Pete’s Pizza, 4.5, WiFi). If such a row is found,

the pivot operator copies the value of their pivoted columns below the columns

corresponding to the value of the pivoting properties being checked. In our case,

the value of the available column for the (B1, Pete’s Pizza, 4.5, WiFi) row is

copied into the cell corresponding to the WiFi available column. If such a row

were not found, the corresponding cells would be filled with a null or blank. For

instance, in our example, there is no row in the input table including the values

(B3, Wine Heaven, 4.0, Parking), so the Parking available cell for the (Wine

Heaven, 4.0) row is left blank.

So, summarising, when two classes are related by a multi-bounded reference,

we can get the desired tabular representation by pivoting the result of the left

outer join between both classes. Therefore, to ease carrying out this task, we

added a primitive to Lavoisier that abstracts the described chain of operations

for processing multi-bounded references. This primitive is also called include, for

the sake of consistency. However, there is an element on this chain of low-level

operations that this primitive cannot calculate by itself and, therefore, needs

to be provided by the language users. This element is the set of properties

of the referenced class that will be used to identify the pivoted columns. So,

the include keyword, when applied to multi-bounded references and oppositely

to single-bounded ones, must be mandatorily followed by the by keyword and

a set of properties of the referenced class that can be used to identify their

instances. Listing 6 provides an example of Lavoisier specification for including

the multi-bounded reference used as example throughout this subsection.

19Jo
ur

na
l P

re
-p

ro
of

Journal Pre-proof



Listing 6: Businesses data with information about their location and offered features.

1 dataset yelp_businesses {

2 mainclass Business

3 include location

4 include features by name

5 }

Finally, it is worth to mention that Lavoisier allows selecting several refer-

ences at the same time, by simply using individual include primitives for each

reference, like shown in Listing 6 (lines 3-4). In those cases, each reference would

be processed independently by using the appropriate transformation (e.g. single

or multi-bounded).

3.5. Aggregated Values

It could also be the case that we are not interested in analysing individually

each instance of a multi-bounded reference, but in summarising the information

contained in these instances by means of some metrics. For example, combining

data of each review along with business data would not have too much sense from

a data analysis point of view. This is, when creating a dataset with Business as

main class, if we use an inclusion clause like include reviews by r id, we would

get a very big and sparse table as output. In this table, a new group of columns

would be created for each individual review, and these columns would only be

filled at one row, being null for the other businesses, since each review is about

just one business.

Therefore, in this case, it would be more appropriate to summarise the main

aspects of these reviews by means of some indicators. For example, we might

be interested in knowing the values for metrics such as the number of reviews a

business has received, or the number of these reviews that are positive, consid-

ering as positive those ones that at least granted a 4-stars rating.

For this purpose, Lavoisier provides the calculate primitive and some pre-

built aggregation functions. Listing 7 shows an example where this primitive

is used for computing the two previously described metrics. In this example,
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Listing 7: Lavoisier’s calculate construct to perform aggregations.

1 dataset yelp_businesses {

2 mainclass Business[name, stars]

3 calculate numReviews

4 as count(reviews)

5 calculate numPositiveReviews

6 as count(reviews) where stars >= 4

7 }

together with the business name and stars, two columns, named numReviews

and numPositiveReviews, are added to the output dataset. The first column

uses the predefined count function to compute the number of reviews received by

each business, whereas the second ones combines this predefined function with

a filter to figure out the number of positive reviews for each business. Apart

from count, the current version of the language includes the sum, avg, max and

min aggregation functions, and we plan to include more of these functions as

part of our future work.

3.6. Nested References

As previously commented, when including a reference, the default behaviour

involves appending all attributes of the referenced class in the output dataset,

whereas references are ignored. Nevertheless, we might be interested in cus-

tomising which information of a reference is included to, for instance, omit

certain target class’ attributes, or to include some nested reference to another

class.

To perform attribute selection in a reference, we can specify the concrete set

of attributes to extract between brackets, just as it is done with the main class

(see Section 3.2). For the purposes of including nested references, we can add a

block to the include construct. Inside this block, we can use the same modifiers

as in the main class to include references of references. These include blocks

can be consecutively used to select references up to the required nesting level
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Listing 8: Reviews data with some attribute and reference selections.

1 dataset yelp_reviews {

2 mainclass Review [r_id, stars]

3 include user

4 include business {

5 include location[address, postalCode]

6 include categories by name

7 }

8 }

for the extraction. Combining attribute selection and reference nesting, we can

specify datasets with only the precise information coming from those references

that we consider relevant for each concrete analysis.

In Listing 8, inside the business inclusion block, the location and categories

references, belonging to the Business class, are included (lines 5 and 6). From

the location reference, just the address and postal code attributes are selected.

If the Location or Category classes had references of their own, we could also

select them by using new inclusion blocks.

3.7. Inheritance Management

When a class C, like Feature in Figure 3, that appears in a Lavoisier speci-

fication is included in an inheritance hierarchy, Lavoisier presents the following

default behaviour.

First of all, it is considered that all attributes and references of the super-

classes of C are also attributes and references of such a class C, as it is usual in

the object-oriented world. So, Lavoisier manages these just as regular attributes

and references of the class C : simple attributes coming from superclasses are

added by default, whereas references are left out if they are not explicitly added

using an include statement.

Secondly, the attributes of the subclasses might also be of interest for some

analysis scenarios. Similarly, we might wish to know to which specific subclass of
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Listing 9: Selection of only two subclasses from the inheritance for the reduction.

1 dataset yelp_businesses {

2 mainclass Business[name, stars]

3 include features by name {

4 only as GroupedFeature {

5 include group

6 }

7 }

8 }

C each instance of this class belongs to. Because of these two reasons, Lavoisier

also adds by default all attributes belonging to subclasses of a class C to the

output dataset, as well as a new column to specify the concrete type of each

instance of C. This strategy is similar to the Single Table Pattern used by

Object-Relational Mappers (ORMs) [28].

In Lavoisier, this default behaviour can be modified, using the as and only as

primitives, with three different purposes: (1) include information about just

some subclasses in the resulting dataset, excluding the other ones; (2) include

some references of subclasses; or (3) select just a subset of attributes from certain

subclasses, excluding the other ones.

Listing 9 shows a dataset specification example where the only as construct

is used. In this example, features (Line 3) is a reference from Business to the

Feature class, which belongs to an inheritance hierarchy. To specify that we

only want to include information coming from the GroupedFeature subclass, we

indicate it using the only as keyword inside an inclusion block (Line 4). Once

a subclass is added to the inclusion block, we can customise it as in the case

of the main class or a reference. For instance, in Listing 9, the include clause

is used to specify that the group reference of the GroupedFeature class must be

also added to the output dataset (Line 5).

If we were interested in customising a subclass without excluding other sub-
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classes from the output dataset, we should use the as keyword, instead of

only as. For example, in Listing 9, if we had used as instead of only as in

line 4, both the ValuedFeature and AvailableFeature subclasses instances would

be also included in the output dataset. So, using the as keyword, we can include

references of a subclass, or exclude some of their attributes, without affecting

the other subclasses.

4. Implementation

Here we include the relevant aspects with respect to the implementation of

Lavoisier. Precisely, we describe the main language components, and the steps

through which a Lavoisier script is processed to generate output datasets. This

implementation has been open-sourced in an external repository3.

We defined and implemented Lavoisier from scratch, instead of opting for

extending any existing language. The reasoning behind this decision is the

fact that we wanted to develop a language with primitives abstracted from the

operations that are typically used when processing data. In our humble opinion,

the extension of an existing data processing language, such as SQL, did not

offer any clear advantage over the freedom provided by defining an in-house

one. Moreover, typical data processing languages, such as SQL, are not able

to handle high-level conceptual data representations, such as object-oriented

models, which were the formalism we selected to represent data available in a

domain. This issue guided us more into preferring to develop a new language,

instead of extending or modifying an existing one.

4.1. Language Components

Figure 8 shows an overview of the main components that conform the lan-

guage infrastructure. Lavoisier has been designed following a metamodelling

approach [29, 30]. According to this approach, the abstract syntax of the DSL

must be firstly defined by means of a metamodel (Figure 8, label 1). Figure 9

3https://github.com/alfonsodelavega/lavoisier
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(metamodel)
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Figure 8: Main components of the Lavoisier implementation.

shows the Lavoisier metamodel, which was defined using Ecore [31]. Based on

this metamodel, a Lavoisier script can include several Dataset specifications,

each of which is defined around a MainClass element. From a main class, we

can customise the resulting output by filtering instances with a boolean ex-

pression; selecting attributes through an AttributeFilter ; and/or adding a set of

IncludedReferences. Depending on the selected reference and the desired pro-

cessing, there are two types of IncludedReferences: SimpleReference for single-

and multi-bounded references (described in Sections 3.3 and 3.4, respectively),

and AggregatedReference for those references that are summarised with an ag-

gregation function (see Section 3.5). Finally, any inheritance hierarchy present

in the domain model can be treated by using a TypeFilter, either to complete

a type (TypeCompletion), or to limit the extraction to a subset of the existing

types in the inheritance (TypeSelection). Section 3.7 includes some examples of

how these two type filters can be applied.

After defining the abstract syntax of our DSL, we need to provide a concrete

syntax, which can be either a graphical or a textual one, or even a combination

of both (Figure 8, label 2). In the case of Lavoisier, we opted for creating

a textual syntax because we believe that, in this dataset extraction context,

writing plain text is faster than drag and drop boxes and arrows. Moreover, we

also believe that, again for this context, textual specifications can be more easily

understood, and might feel more familiar for end users (i.e. data scientists) than

graphical ones. Nevertheless, these beliefs must be empirically checked, which

will be part of our future work.
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Dataset

name : String
 
 
 

Datasets

 
 

MainClass

name : String
 
 
 

IncludedReference

name : String
 
 
 

SimpleReference

 
 

AggregatedReference

aggFunction : String
 

BooleanExpression

 
 
 

AttributeFilter

attributes : String[]
 
 

Path

jumps : String[]
 
 

TypeFilter

 
 
 
 

TypeCompletion

 

TypeSelection

 
 
 
 

TypeCustomization

 
 
 
 

* mainClass [1..1]

refs [0..*]

refs [0..*]

instancesFilter [0..1]

insFilter [0..1]

[0..1]

attrFilter [0..1]

pivotId [0..1]

aggValue [1..1]

typeFilter [0..1]

typeFilter [0..1]

customizations [1..*]

attrFilter [0..1]

*

Figure 9: Abstract syntax of the Lavoisier language.

The concrete textual syntax of Lavoisier, detailed in Section 3, has been

specified with a grammar in the Xtext framework [32]. Xtext is able to au-

tomatically generate, from a grammar specification linked to a metamodel, a

full-fledged editor plus a parser for that grammar (Figure 8, label 3). The gen-

erated editor offers a smooth inclusion of facilities for the users, such as syntax

highlighting, auto-completion, or validation during the composition of dataset

specifications. For the interested reader, the current concrete syntax of Lavoisier

can be consulted in the external repository of the language4.

Using the Lavoisier editor generated by Xtext, data scientists can write data

selection scripts, that would be processed by the grammar parser to represent

these scripts as models conforming to the abstract syntax metamodel (Figure 8,

label 4). These models are used as input for the language interpreter, which

receives other two additional inputs: a domain model and the domain data. The

domain model (Figure 8, label 5) is an object-oriented model describing data

available in a domain. This domain model is also defined using Ecore. Domain

data (Figure 8, label 6) are the actual data existing in a domain, which must

conform to the domain model. The domain data is composed of instances of

Ecore (meta)classes belonging to the domain model.

4https://github.com/alfonsodelavega/lavoisier/blob/master/es.unican.

lavoisier/src/es/unican/lavoisier/Lavoisier.xtext
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instance 1

column 1 column 2 ... column n

instance 2

...

instance m

v1,1
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... ... ... ...

...

...

...

vm,1

v1,1

v2,2

vm,2

v1,n

v2,n

vm,n

Figure 10: Structure of a ColumnSet object.

With these three inputs, the Lavoisier interpreter (Figure 8, label 7) gen-

erates output datasets based on the specifications contained in the Lavoisier

script. The interpreter uses the domain model to know which attributes each

domain entity has, and how these entities relate. This is required mainly to

create the structure of the datasets. Moreover, the interpreter uses the domain

data for populating the resulting datasets and, in those cases where a pivot

operation is required, to determine part of the structure of the output dataset.

The output dataset (Figure 8, label 8) is generated conforming to the CSV

(Comma-Separated Values) format, which is a de facto standard to provide

inputs for data mining algorithms.

4.2. Execution Strategy

The execution of a Lavoisier script generates a CSV file for each dataset

specification. The steps followed by the language interpreter to process a dataset

specification are described in the following.

First, the instances of the selected main class that are to be included in the

output dataset are gathered. Depending on the specification being processed,

different tasks might take place in this step, such as filtering the instances based

on a provided predicate (see Section 3.2); or taking into account an inheritance

hierarchy (see Section 3.7).
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01 dataset yelp_reviews {
02   mainClass Review 
03     where business.location.city = "York"
04   include user
05   include business {
06     include location[address, postalCode]
07     include features by name {
08       as GroupedFeature {
09         include group
10       }
11     }
12     calculate numPosReviews
13       as count(business.reviews)
14       where stars >= 4
15   }
16 }

mainClass Review

include user include business

include
location

include
features

calculate
numPosReviews

Figure 11: Left: dataset specification where information about York businesses’ reviews is

gathered; right: hierarchy of ColumnSets obtained from the dataset specification.

Once we have the selected set of instances, the output columns are calculated,

and the dataset is populated. There are different sources of columns in a dataset

specification. For instance, the attributes of the main class, or an included

reference, are two sources of columns. Each one of these sources, when processed,

generates what we denoted as a ColumnSet object, whose structure is shown in

Figure 10. A ColumnSet is simply a two-dimensional matrix, where the rows are

indexed by the selected instances from the main class, and the columns are the

ones resulting from processing the associated source of columns. This structure,

which resembles the one used inside a Pandas DataFrame object [13], allows for

a seamless combination of the different ColumSets of a dataset specification up

to the point of having a single ColumnSet, which would become the resulting

dataset. As all the ColumnSets are indexed by the same main class instances,

the process of combining two of these ColumnSets involves simply joining the

rows by their index value. This structure also facilitates the extensibility of

Lavoisier, as in most cases supporting a new primitive would only involve its

inclusion in the syntax, and the processing of a new type of ColumnSet object.

As an example, Figure 11, left shows a dataset specification where different

information about business reviews in the York city is extracted. Namely, apart

from the basic Review attributes (line 02), this specification includes data about

the user performing the review (line 04), and about the reviewed business (lines
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05-15). In addition to the Business attributes, the specification also includes

its location (line 06), the business’ features (lines 07-11), and the number of

positive reviews received by the business (lines 12-15).

When such a dataset specification is processed, the tree of ColumnSets

that is obtained is depicted in Figure 11, right. Starting from the main class

ColumnSet, there are two nested ones, one corresponding to the user reference,

and another one for the business one. In turn, the business ColumnSet has three

nested ones, related to the location, features and numPosReviews inclusions.

The ColumnSet tree is processed in a pre-order fashion, i.e., starting from the

root, the parent node is the first one, and then the children are processed from

left to right, respecting the same pre-ordering if these children have their own

descendants. Once the ColumnSets are processed, they are combined following

the same pre-order arrangement.

In the example, the “mainClass Review” ColumnSet would be the first,

generating the columns {r id, date, stars, text}, according to Yelp’s conceptual

model of Figure 1. The attributes of the Review instances would be consulted

to populate this ColumnSet. Then, the “include user” ColumnSet would be

next, which results in the columns {user u id, and user name}. To populate

this ColumnSet, the user reference of the Review class would be navigated

for each instance, and the u id and name attribute values would be obtained.

The process would continue for the rest of the ColumnSets. When finished,

these ColumnSets would be combined. For instance, when combining the two

ColumnSets described above, a single ColumnSet with the columns {r id, date,

stars, text, user u id, user name} would be obtained.

5. Evaluation

Lavoisier aims to increase the abstraction level at which data scientists work

when creating datasets. To achieve this goal, Lavoisier provides different high-

level primitives that, when processed, automatically execute a set of low-level

operations that rearrange domain data into a tabular form that data mining
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algorithms can process. This provides two main advantages: (1) data scientists

do not have to write by hand boilerplate code containing long chains of data

transformation operations; and (2) data scientists can get rid of the accidental

complexity associated to these low-level operations. Therefore, data scientists

can focus on the data to be selected, and forget about how these data will be

eventually transformed.

In this section, we evaluate more systematically and objectively how much

boilerplate code and accidental complexity can be reduced thanks to the use of

Lavoisier. We describe first our evaluation procedure, detailing how boilerplate

and accidental complexity reductions were measured. Then, we comment and

discuss on the gathered results, pointing out evidences about how Lavoisier

achieves its goals. Finally, threats to the validity of our conclusions are indicated

and analysed.

5.1. Evaluation Method

To measure the actual benefits provided by Lavoisier, we compared it against

current state-of-the-art technologies for data selection and preparation. As com-

mented in Section 2.3, data scientists mainly use two different kinds of tools to

carry out these tasks: data-management languages, and/or specialised libraries

belonging to general-purpose languages. Therefore, we selected a representative

of each category to be compared against Lavoisier. We chose the SQL lan-

guage [11] as representative of data-management languages, and Python Pan-

das [13] as data-management library.

To perform the comparison, we created scripts, using Lavoisier, SQL and

Pandas, for a comprehensive set of dataset extraction scenarios. Then, for each

scenario, we firstly measured script size. This should provide a first and quick

indicator on the Lavoisier effectiveness for reducing boilerplate code in these

scripts. However, script size might be not a reliable indicator for assessing ab-

stractness and effectiveness of Lavoisier. Size reduction could be due just to a

more compact and, in some cases, more counter-intuitive syntax. A typical ex-

ample would be the use of the conditional ternary operator (i.e. condition?
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codeForTrue : codeForFalse) instead of opting for classical if state-

ments (i.e. if (condition) codeForTrue else codeForFalse). The

former is more compact, but it is debatable whether it can be more easily un-

derstood, or is more high-level, than the latter.

Therefore, to assess more rigorously whether the lower script size in Lavoisier

is a consequence of using more abstract and powerful primitives, and less boil-

erplate code, we also calculated a set of complexity metrics. These metrics aim

to measure the amount of boilerplate code and accidental complexity in a data

selection script. In the following, we describe how these measures were taken,

and how we designed the set of scenarios for the comparison.

5.1.1. Comparison Metrics

When measuring script size, and to prevent differences in the coding style of

each language from affecting the results, we counted characters of the scripts,

but ignoring any kind of whitespace and line breaks. Moreover, in the case of

SQL and Pandas, we just focused on the generation of a table that contains

the desired dataset, not computing all the code that would be required to store

this table in a CSV file. To measure accidental complexity, we calculated the

metrics described in Table 1 for each one of the developed scripts.

The rationale behind these metrics is as follows: NumOps is a way to mea-

sure how powerful the operations of each language are. If Lavoisier required

less operations than other languages to perform the same task, it might be a

symptom than Lavoisier operations can do more work per operation than the

other alternatives. In this line, NumDiffOps tries to detect if, when using a

language that requires a greater number of operations than Lavoisier, this num-

ber is caused by a need to perform a large quantity of different operations or,

instead, we need to repeat the same small set of operations several times, which

might indicate the presence of boilerplate code. NumPar and AvgParOp aim to

quantify how complex it is to specify operations in each language. If, to perform

the same task, the operations of a language require more parameters than the

ones from other languages, it might mean that some parameters of the former
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Table 1: Script complexity metrics.

Name Description

NumOps Number of operations

NumDiffOps Number of distinct operations

NumPar Number of parameters

AvgParOp Average number of parameters per operation

NumKw Number of keywords

NumDiffKw Number of distinct keywords

one might be omitted and inferred by the operations themselves in the latter

alternatives. Finally, NumKw is also a mechanism to measure how powerful are

the abstractions of a language. As before, if a language requires fewer keywords

than other to perform the same task, it might be an indicator of these keywords

being more powerful and abstract. Complementary, NumDiffKw is a measure

of the vocabulary or concepts size that a data scientist needs to manage to carry

out a dataset extraction.

5.1.2. Design of the Set of Comparison Scenarios

The extraction scenarios used for performing the comparisons were carefully

designed to cover a wide range of potential situations. These scenarios were

designed over two different case studies: the Yelp running example, described

in Section 2.1 and used throughout this paper; and an extra case study based

on an online video game platform. Using a second case study allows specifying

more examples to better cover some concrete cases that cannot be described

using the Yelp case study. Moreover, the use of a second case study also helped

provide some evidences of Lavoisier primitives not being constrained to a single

case study or domain. In the following, we refer to this second example as the

VideoGames case.

Figure 12 shows the conceptual object-oriented model for the VideoGames

case-study. This model represents the different elements of a video game plat-
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Group

name : String
createdAt : Date

User

username : String
 
 

UnlockedAchievement

completedAt : Date
 

Purchase

purchaseId : String
purchaseDate : Date
 
 

PurchaseLine

price : double
 
 
 

Achievement

achievementId : String
name : String
description : String

VideoGame

name : String
launchDate : Date
price : double
 
 

Language

name : String
 
 

Tag

name : String
 
 
Publisher

name : String
 
 

friends [0..*]

groups [0..*]

user [1..1]

purchases [0..*]

purchaseLines [0..*]

achievement [1..1]

videoGame [1..1]

videoGames [0..*]

achievements [0..*]

videoGame [1..1]

voiceLanguages [0..*]

textLanguages [1..*]

tags [0..*]

publisher [1..1]

Figure 12: Conceptual model of the VideoGames case study.

form, and it is inspired in existing platforms such as Steam5. In the platform,

a User owns a collection of VideoGames. Users can belong to Groups, and

maintain a list of friends. In addition, users have access to their video game

Purchases. For each VideoGame, data are stored about its Publisher company,

the received Tags (e.g. strategy, multiplayer), which in-game textual and voice

Languages are available, and the list of Achievements that users can complete

while playing.

Using the Yelp and VideoGames case studies, the concrete set of scenarios

described in Table 2 was finally selected to perform the comparisons. These sce-

narios, as already commented, focus on discovering how the different structures

that can be found in an object-oriented model are managed by each language.

Each scenario was labelled with a code, composed of a single character plus

a number. The character indicates the kind of transformation pattern being

analysed: a refers to the trivial single class case, described in Section 3.1; b

are those cases where a single-bounded reference is included in the main class,

while c cases do the same for multi-bounded references (see Sections 3.3 and 3.4,

5https://store.steampowered.com/
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respectively); d refers to those cases involving inheritance (see Section 3.7); and

e tests the capabilities to process several references at the same time, or to deal

with nested references (see Section 3.6). Besides each scenario, a description

of the classes to be included in each dataset is provided. For instance, in sce-

nario c1, the main class would be Business, and the multi-bounded reference

categories would be included.

Finally, it is worth to mention that Lavoisier is able to directly perform

dataset extractions over conceptual models. However, SQL and Pandas need

to work at the relational or table-level. Therefore, we derived the relational

models associated to the conceptual models of the Yelp and VideoGame case

studies. This transformation process was straightforward, except for the cases

where inheritance was present. Inheritances can be transformed into a relational

model using typically three strategies, known as Single Table, Concrete Table,

and Class Table (also known as Joined Mapping) [28]. Therefore, for those

scenarios that tackle inheritance, we created three different relational models,

each one following a different inheritance mapping strategy; and we performed

the comparison against each one of these alternatives.

5.2. Dataset Extraction Example

Before commenting on the obtained results, we detail here the scripts for a

concrete dataset extraction scenario. The goal of this section is to provide the

reader with a more clear vision of how the scripts we used for the evaluation work

in Lavoisier, SQL and Pandas. For this purpose, we will use the d5 scenario (see

Table 2), where a dataset of businesses is generated including the information

about their features. Figure 13 shows the domain model fragment that needs to

be retrieved by Lavoisier on the left, and the relational counterpart processed

by SQL and Pandas on the right.

In the d5 case, the inheritance hierarchy of the domain model is translated to

the relational model using the Concrete Table Inheritance mapping pattern [28].

When following this pattern, a table is generated for each non-abstract class in

the inheritance tree. In this case, three tables are generated: AvailableFeature,
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Business

b_id : String
name : String
stars : float
isOpen : boolean

Feature

name : String
 
 
 
ValuedFeature

value : String
 
 

AvailableFeature

available : boolean
 

Group

name : String
 
 

GroupedFeature

 
 
 

AvailableFeature

b_id (PK, FK)
name (PK)
available

Business

b_id (PK)
name
stars
isOpen

ValuedFeature

b_id (PK, FK)
name (PK)
value

GroupedFeature

b_id (PK, FK)
name (PK)
available
groupId (FK)

Group

id (PK)
name

features [0..*]

group [1..1]

Figure 13: Left: domain model fragment queried by Lavoisier in the d5 case; right: equivalent

relational database queried by SQL and Pandas.

ValuedFeature, and GroupedFeature. The feature name, which belongs to the

abstract class, is included in each one of these tables. Moreover, these tables

have foreign key references to the business they belong to, since the multi-

bounded reference between the Business and Feature classes must be preserved.

This mapping is equivalent to replacing the features reference in the domain

model with three new references, each one from the Business class to a different

Feature subclass. In addition, the GroupedFeature table has a foreign key to the

Group table.

Listing 10: Lavoisier script to process the domain model of Figure 13, left.

1 dataset businessAndFeat {

2 mainclass Business

3 include features by name {

4 as GroupedFeature {

5 include group

6 }

7 }

8 }
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First, Listing 10 shows the Lavoisier script for this scenario. This script spec-

ifies that the attributes of the Business class must be included in the dataset,

as well as the features reference (lines 2 and 3). Since this is a multi-bounded

reference, instances of the Feature class are spread over columns using the name

attribute to distinguish between these instances (see Section 3.4). Moreover, as

part of the features inheritance, the group reference of the GroupedFeature sub-

class is also included (lines 4-6). As it can be noticed, a data scientist writing

this script would focus on the data to be selected, and no information about

how these data should be rearranged, except for the feature name attribute,

needs to be provided.

Listing 11: Pandas script to process the relational database of Figure 13, right.

1 gfs = (groupedFeatures

2 .merge(fGroups.rename(columns={"name" : "group_name"}),

3 left_on="groupId", right_on="id")

4 .drop("groupId", axis=1)

5 .pivot(index="b_id", columns="name",

6 values=["available", "group_name"]))

7 gfs.columns = [’_’.join(col[::-1]).strip() for col in gfs.columns.values]

8

9 (businesses.merge(availableFeatures.pivot(index="b_id",

10 columns="name",

11 values="available"),

12 left_on="id", right_on="b_id", how="left")

13 .merge(valuedFeatures.pivot(index="b_id",

14 columns="name",

15 values="value"),

16 left_on="id", right_on="b_id", how="left")

17 .merge(gfs, left_on="id", right_on="b_id", how="left"))

Second, we analyse the Pandas script for this scenario, which is shown in

Listing 10. Pandas loads each relational table in a tabular data structure de-

noted as dataframe. In Listing 10, each table is already loaded in a different

dataframe. In lines 1-3, the dataframes holding the GroupedFeature and Group

instances are combined by means of a merge operation, which is the Pandas

equivalent of a join in SQL. Before performing this operation, we need to re-

name the name attribute of the Group table, loaded in the fGroups dataframe,

to avoid collisions with the name attribute of the GroupedFeature table. More-
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over, in Pandas, when joining two tables, or dataframes, all columns of the

joined tables are combined. So, any unwanted column needs to be manually

dropped after the merge. This can be seen in line 4, where the groupId column

of the GroupedFeature table is dropped after the merge of lines 2-3.

After combining each GroupedFeature with its Group, we would need to

combine each business with its set of features. This is, we need to process

the multi-bounded references (in this relational example, one-to-many foreign

keys) existing between the Business table and each Feature table. According

to Section 3.4, to process these references we need to combine a join with a

pivot operation. So, we pivot each feature table using as pivoting attribute the

feature name (lines 5-6, 9-12 and 13-16) to spread features belonging to the same

business over columns. Then, each pivoted table is merged with the Business

table (lines 9, 13 and 17), which is hold in the businesses data frame.

The first noticeable difference with Lavoisier is that each subclass of the

Feature class needs to be processed individually, as they are placed in separated

tables. On the contrary, in Lavoisier we only need to include the reference

to the superclass, and all the child classes are automatically included. This

can be advantageous in cases where a class has a high number of subclasses.

However, it is true that if the subclasses have references that might be included

in the dataset, we would need to handle these references individually with both

languages.

A second difference is that, in Lavoisier, references are just included and the

language takes care of performing the required data transformations transpar-

ently to the data scientist. On the other hand, in Pandas we need to transform

the data manually, by means of combining joins and pivot operations. More-

over, these operations need some extra parameters that in Lavoisier are not

required. For instance, merge operations require the specification of the iden-

tifier columns of each table to be merged, and the kind of merge to be applied

(e.g. inner, left). The pivot operation needs the explicit specification of the

static, pivoting and pivoted sets of columns. In Lavoisier, many of these param-

eters are automatically inferred. For instance, static and pivoted columns are
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automatically calculated using the attributes of the class and the set of pivot-

ing columns. So, data scientists need to deal with less parameters when using

Lavoisier.

Furthermore, data scientists must pay attention to some picky details when

using Pandas, such as renaming attributes to avoid name collisions. These small

issues are also automatically handled by the Lavoisier interpreter, so the data

scientist does not need to care about them.

Listing 12: SQL script to process the relational database of Figure 13, right.

1 select * from business b

2 left join

3 (select af.b_id,

4 max(case af.name when ’Parking’ then available end) as feat_parking,

5 max(case af.name when ’WiFi’ then available end) as feat_wifi

6 from availableFeature af

7 group by af.b_id) afs on b.id = afs.b_id

8

9 left join

10 (select vf.b_id,

11 max(case vf.name when ’Smoking’ then value end) as feat_smoking,

12 max(case vf.name when ’AgesAllowed’ then value end) as feat_agesAllowed

13 from valuedFeature vf

14 group by vf.b_id) vfs on b.id = vfs.b_id

15

16 left join

17 (select gf.b_id,

18 max(case gf.name when ’Breakfast’ then available end) as

feat_breakfast_available,

19 max(case gf.name when ’Breakfast’ then g.name end) as

feat_breakfast_groupName

20 from groupedFeature gf

21 inner join Group g on gf.groupId = g.id

22 group by gf.b_id, g.name) gfs on b.id = gfs.b_id;

Lastly, we show the SQL script for this scenario in Listing 13. As in the

Pandas case, we need to process each feature table individually, and combine

them with the Business table using joins and pivots. However, the SQL standard

does not include a version of the pivot operator, although it can be found in

some SQL dialects. Therefore, to simulate pivots in SQL, we decided to use

the workaround already described in Section 2.3, because it can be used in any
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Listing 13: SQL Server’s pivot operation example.

1 select bName, stars, "Wifi", "Parking"

2 from (

3 select b.name as bName, b.stars,

4 f.name as fName, f.available

5 from Business b, Feature f

6 where f.business = b.id

7 ) as p

8 pivot (

9 max(p.available)

10 for p.fName in ("Wifi","Parking")

11 ) as pivotTable;

flavour of the SQL language. When using this workaround, we need to create

the pivoted columns manually, and then, using an aggregation function plus a

case statement in the context of a group by clause, calculate the value for each

pivoted column. This means we need to know, at the time of writing the script,

all possible values that the pivoting columns might hold.

For this scenario, we have considered that businesses might have Parking

and WiFi as available features, Smoking and AgesAllowed as valued features,

and Breakfast as grouped feature. Lines 4 and 5 show how the pivoted columns

feat parking and feat wifi are manually created when pivoting the Available

Feature table. Similar columns are added for the Valued Feature and Grouped

Features tables in lines 11-12 and 18-19, respectively. As it can be seen, script

complexity increases in the SQL case when compared to Pandas.

It is worth to mention that, even in the lucky cases where a SQL dialect

provides an implementation of the pivot operator, this often comes with some

limitations. For example, SQL Server extends the SQL standard with a pro-

prietary version of the pivot operator [16], where the structure of the output

table is not calculated by the operator itself, but instead it has to be manually

specified. Listing 13 illustrates how a single multi-bounded reference can be
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Business

b_id : String
name : String
stars : float
isOpen : boolean

ValuedFeature

name : String
value : String

AvailableFeature

name : String
available : boolean

Group

name : String
 

GroupedFeature

name : String
available : String
 
 
 
 

valuedFeatures [0..*]

availableFeatures [0..*]

groupedFeatures [0..*]

group [1..1]

Figure 14: Alternative domain model of business and features, without using inheritance.

managed in SQL Server by pivoting the result of a join between two tables,

which in this case would be the Business and Available Feature tables. As it

can be seen, in the pivot operation (lines 8-11), we must explicitly specify the

values of the pivoting properties for which new columns would be generated

(Line 10). It must be noticed that, if new feature values are added to the sys-

tem, we must update this script to deal with them, which is a less maintainable

solution as compared to other implementations of the pivot operator, such as

the one provided by Pandas, where these values are automatically calculated.

This solution, where values of pivoting columns must be explicitly listed, might

be also problematic when the number of these values is too high.

Finally, it could be argued that this dataset extraction scenario benefits

Lavoisier particularly, as it can handle the inheritance hierarchy transparently,

whereas Pandas and SQL need to deal with three separated tables. First, we con-

sider the ability to work against a higher level data representation (i.e. object-

oriented domain models) one of Lavoisier’s main advantages. Nonetheless, to

see how Lavoisier would cope with this scenario if there were not any inheri-

tance tree, we analysed an alternative domain model illustrated in Figure 14.

In this model, there is no Feature abstract class, and the Business class has a

multi-bounded reference to each feature kind. Listing 14 contains the Lavoisier

script required to process this new domain model.

As with SQL and Pandas, in this case Lavoisier needs to include references

to each feature class individually (lines 3-7). However, this selection only takes
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Listing 14: Lavoisier script to process the domain model of Figure 14

1 dataset businessAndFeat {

2 mainclass Business

3 include availableFeatures by name

4 include valuedFeatures by name

5 include groupedFeatures by name {

6 include group

7 }

8 }

one line for the AvailableFeature and ValuedFeature classes (lines 3 and 4, re-

spectively), and three lines for the GroupedFeature one (lines 5-7), as the group

reference also needs to be selected. Oppositely to Pandas and SQL, data scien-

tists would not need to care about pivoting and joining these references, since

these operations are automatically executed by the language interpreter when

processing the include primitive. Similarly, data scientists do not need to care

about name collisions. Moreover, each Lavoisier inclusion is independent, i.e.,

when including a reference in Lavoisier we do not need to care about the previ-

ous or subsequent inclusions (see Section 3.4, last paragraph). On the contrary,

when using SQL and Pandas every new data bundle (e.g. a query over a table)

needs to be joined with the previously selected data, which is tedious and might

lead to errors.

5.3. Results and Discussion

Figure 15 shows the character-size of the scripts created with Lavoisier,

SQL and Pandas for each evaluation scenario.6. In addition, Table 3 contains

complexity metrics values for each script, and the average percentage reduction

obtained for each metric when using Lavoisier instead of the other technologies.

6These scripts are available in an external repository: https://github.com/

alfonsodelavega/lavoisier-evaluation.
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Figure 15: Script size in characters of the extractions for each approach (a: single table case;

b: unary reference; c: multi-bounded reference; d: inheritance; e: combination).

On a first glimpse to Figure 15, it can be seen that the script size for both

SQL and Pandas considerably increases as the scenario complexity grows. This

phenomenon can be clearly appreciated in scenarios d3-d6, e1 and e2. In con-

trast, Lavoisier’s script size grow is steadier across all cases. On average, using

Lavoisier grants a 60% script size reduction with respect to SQL, and a 40%

reduction when compared with Pandas.

Analysing each case more in detail, it can be noticed that in the trivial a-

coded cases, there is practically no difference between languages, being Lavoisier

a little more verbose. In SQL, this trivial case can be addressed using a simple

SELECT statement, whereas in Pandas is even simpler, as we only need to write

the name of the table, or data frame, whose data we want to get. Oppositely,

Lavoisier specifications contain additional information about the name of CSV

file to be generated, whereas this information was not computed in SQL and

Pandas.

For b-coded cases, SQL and Pandas scripts are slightly larger than those of

Lavoisier. These cases refer to the inclusion of single-bounded references, which

is achieved by using an include clause in Lavoisier, a join operation in SQL,
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and a merge operation in Pandas. The join and merge operations are a little

more complex than the include primitive of Lavoisier, as they require knowing

what columns of the tables to be joined will be used for matching rows. On the

other hand, in Lavoisier, we only need to specify the reference that should be

included in the output dataset. In addition, as we saw in the example of the

previous section, sometimes SQL and Pandas users have to manually address

the following issue: column name management. When joining two or more

tables, if a pair of these have the same name in some of their columns, users

have to manually specify an alias to differentiate them in the resulting joined

table. As another example, in the b2 scenario, the Achievement and VideoGame

entities of the VideoGames case study are joined, but both entities have a name

attribute. So, this pair of attributes must be aliased, either with the as keyword

in SQL or with the suffixes merge parameter in Pandas. Oppositely, Lavoisier’s

include construct makes implicit this renaming, preventing data scientists from

having to worry about these low-level details.

Regarding complexity metrics of the same b2 scenario, it should be noticed

that the number of operations is the same for the three cases, since we only need

to perform an additional operation in each: a reference inclusion in Lavoisier, a

join in SQL, and a merge in Pandas. However, the need to specify the columns

for matching rows in SQL and Pandas, plus the manual management of name

collisions, lead to an increase in the values of the NumPars and AvgParOp

metrics for these technologies. Moreover, the metrics related to number of

keywords suffer a greater increase in SQL and Pandas. In Pandas, following

the convention of the Python language, the parameters of the invoked functions

are named to allow specifying only the required ones, and in the order that

is preferable for the user. So, we need to add extra keywords when certain

parameters are required. In the same line, SQL employs a generous amount of

keywords to declare the operations and to, for instance, rename columns. This

verbosity in SQL is not necessarily bad, as SQL specifications might become

more readable for the non-experienced reader.

For multi-bounded references, this is, c cases, the script size for SQL and
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Pandas is noticeably worse, as shown in Figure 15. To process this kind of

references with these technologies, we need to execute a join operation, and

then a pivot (see Section 3.4). So, multiple operations need to be combined

along with their parameters to achieve the required transformation. In the case

of Lavoisier, just the name of the reference and the set of attributes to be used

as pivoting properties are required. The previous example of Section 5.2 gives

more details about joining and pivoting multi-bounded relationships in SQL and

Pandas.

Regarding complexity metrics in c cases, the number of operations is higher

in SQL and Pandas, due to the need of concatenating joins and pivots. The

number of different operations is also greater than in Lavoisier, which means

that a single Lavoisier operation does the work of several low-level operations in

SQL and Pandas. The number of parameters also increases in SQL and Pandas,

aggravated by the need of performing more operations, which usually require

more parameters than Lavoisier’s. In the SQL case, both the total and distinct

number of keywords grow noticeably too, as an effect of SQL not having a proper

implementation of the pivot operator (see Listing 1).

In the case of inheritance scenarios (d1 -d6 ), the performance of SQL and

Pandas is also clearly worse. In general, SQL and Pandas need to perform several

operations to compact the inheritance hierarchy, which adds a lot of boilerplate

code in these cases. For instance, in SQL, several joins might be required to

combine subclasses with superclasses. These operations are automatically car-

ried out by Lavoisier, so data scientists do not need to deal with them. This

obviously leads to an increase in script size, which is specially noticeable in the

d3 to d6 scenarios. These scenarios correspond to the case where we want to

process a multi-bounded reference pointing to a class that is part of an inher-

itance tree. In these cases, the inheritance hierarchy needs to be compacted

several times, once per leaf in the inheritance hierarchy, which contributes to

increase the amount of boilerplate code associated to these tasks in SQL and

Pandas. In addition, it can be observed that the script size in SQL and Pan-

das seems to be independent of the strategy used for mapping the inheritance.

46Jo
ur

na
l P

re
-p

ro
of

Journal Pre-proof



Only SQL might slightly benefit from the use of the Single Table mapping, as

there are fewer tables to combine. Section 5.2 depicted the d5 scenario, where

a Concrete Table mapping is applied.

Considering complexity metrics in d scenarios, it can be observed that the

number of operations grows noticeably, but the number of different operations

remains stable as compared to previous scenario types. This seems to indicate

the presence of boilerplate code in SQL and Pandas, as the same operation

needs to be applied several times to perform a single task, such as traversing

an inheritance hierarchy to find an attribute. As a consequence of the increase

in the number of operations, the number of parameters and keywords also aug-

ments. On the other hand, the number of different keywords is similar to the

scenarios for processing single and multi-bounded references. This is logical,

as inheritance hierarchies are represented in relational databases by means of

connecting tables through foreign keys. Therefore, they are processed with the

same operations used in the b and c cases.

Finally, we comment on the e1 and e2 scenarios, which can be considered

as combinations of simpler cases. In e1, several references are included at the

same time, which would be similar to processing two or more b and c scenarios.

The e2 case involves nested references, which can be viewed as the problem of

performing two consecutive reference inclusions.

For these scenarios, one detected benefit of Lavoisier is that reference inclu-

sions in the dataset specifications are independent one of another. For instance,

in the e1 case, data about VideoGames are extracted, along with their pub-

lisher and tags references. In Lavoisier, each reference is selected through the

use of an include construct, and neither of these two constructs needs to be

aware of the other one. Oppositely, in SQL and Pandas, one of the references

would be processed first, producing an intermediate table. Then, to handle

the second reference, we must work over this intermediate table. Therefore, we

have to pay attention to the order in which references are processed. Moreover,

if one reference is removed from the output dataset, this removal might affect

the transformations used to process the remaining ones. An extra example of
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the better support of Lavoisier when processing a combination of references is

shown in Listing 14, which processes the domain model of Figure 14. In that

model, the features inheritance has been replaced by individual types for each

concrete feature class.

In Figure 15, for e1 and e2 scenarios, script size increases clearly in the

SQL and Pandas cases, as more intermediate operations with its corresponding

boilerplate code are required; whereas script size remains stable in the Lavoisier

case. Regarding complexity metrics, as before, the number of total and differ-

ent operations increases, meaning than for each operation in Lavoisier, several

different low-level operations need to be applied repeatedly. As the number of

operations grows, the number of parameters and keywords also grows.

In summary, it can be concluded that Lavoisier contributes to increasing

the level of abstraction at which data scientists work when creating datasets,

by providing a set of high-level and powerful primitives. Each one of these

primitives do the work of several low-level data transformation operations of

alternative technologies. As a consequence, data scientists using Lavoisier need

to know how to use 18% and 24% fewer different operations to create a dataset

when compared with SQL and Pandas, respectively. Moreover, Lavoisier al-

lows data scientists to get rid of boilerplate code, such as having to avoid name

collisions or to traverse inheritance hierarchies. This, together with the higher

abstraction level of the operations, lead to a 46% and 36% reduction on the

total number of operations needed in Lavoisier. In addition, Lavoisier opera-

tions need less information to work than the low-level operations used in SQL

and Pandas. More specifically, Lavoisier specifications contain around 65-70%

fewer parameters than their corresponding SQL and Pandas versions. These

reductions translate into the previously mentioned 60% and 40% smaller script

size on average when using Lavoisier with respect to SQL and Pandas’ counter-

parts. This size reduction can be better noticed as the number of entities to be

included in a dataset grows; or when these entities are involved in inheritance

hierarchies. Therefore, it can be stated that Lavoisier helps data scientists to

write more abstract and powerful code and to avoid boilerplate code.
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Moreover, these reductions in number of operations and parameters are also

reflected in a reduction of the number of keywords required to create a dataset

by 68% and 47% over SQL and Pandas, respectively. Therefore, it can be

stated that data scientists need to care about fewer details, and deal with a

lower accidental complexity when working with Lavoisier. The lower accidental

complexity might also lead to decrease the learning curve for Lavoisier, as com-

pared with SQL or Pandas, but this hypothesis should be confirmed empirically

by means of some controlled experiments to be undoubtedly stated.

5.4. Threats to Validity

In the first place, it might be argued that results are due to the selection

of the dataset extraction scenarios, and that other selection might have lead

to different results. These scenarios were not arbitrarily selected, but with the

objective of covering all potential scenarios that we might face when creating

a dataset from hierarchical and nested data represented by a domain model.

Moreover, these scenarios were kept simple, this is, we have not created artifi-

cially complex scenarios that, according to the gathered results, would benefit

Lavoisier. For instance, we have not included any scenario containing large

chains of references, or very large inheritance hierarchies, which are cases where

Lavoisier would have played clearly better.

Secondly, it could be considered that results are biased due to the selected

case studies, and that other case studies would have returned a different out-

come. The Yelp and Videogame case studies were selected just for giving some

semantics to the data structure to be reduced, and for making them easier

to understand. Other case studies would have lead to the same results, since

Lavoisier just processes the syntactic structure of the data to be transformed,

so what a class or an attribute represents does not matter.

Thirdly, it can be considered that the comparison between Lavoisier, SQL

and Pandas is not fair because Lavoisier works against an object-oriented do-

main model, whereas SQL and Pandas do it against a relational model. There-

fore, Lavoisier benefits of using a more high-level input model. The latter is

49Jo
ur

na
l P

re
-p

ro
of

Journal Pre-proof



true, and this is the reason why we decided to use an object-oriented concep-

tual model as input for Lavoisier.

Finally, the different metrics calculated and analysed in previous section pro-

vide some sound and objective evidences about the benefits of using Lavoisier

for performing data selection and preparation tasks. Nevertheless, these ev-

idences have not been rigorously confirmed by means of controlled empirical

experiments. Previous studies have shown that a well-performed evaluation

that includes controlled experiments with end users is one of the best ways to

demonstrate the benefits of a DSL over a GPL [33, 34]. For instance, the ob-

tained results suggest that the learning curve of Lavoisier for a new user would

be better than the one for SQL or Pandas, as there are less operations to learn

and these are simpler to use (e.g. they require less parameters), but we would

need to check this hypothesis empirically.

At the time of writing this paper, we have just performed controlled em-

pirical experiments for a framework called FLANDM [35, 27], which allows

creating DSLs for other stages of a data mining process, and that is comple-

mentary to Lavoisier, as follows. DSLs created with FLANDM automate the

execution of data mining algorithms, taking care of the fine-grained configura-

tion of these algorithms. As input for these algorithms, FLANDM might use

the datasets generated by Lavoisier. The results of the controlled experiments

using FLANDM were really good, which seems to indicate that building DSLs

for automating data mining tasks can provide actual benefits.

Nevertheless, as we could confirm during the design and execution of the

experiments for FLANDM, several difficulties arise when wanting to perform

these empirical evaluations, such as the availability of adequate participants,

or the resource-intensive preparation of the experiments. These difficulties are

noticeable in the DSL research community, given the clear lack of existing DSL

evaluation research performing empirical experiments with end users [36]. Ac-

cording to our previous experience [27], these empirical experiments can require

half a year of full time working, so this is the reason why they were left out as

part of our future work. We will try to overcome these difficulties and perform
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such empirical experiments with Lavoisier in order to empirically confirm the

benefits that can expected from the objective metrics we have gathered and

analysed.

6. Related Work

To the best of our knowledge, this is the first language designed to select

data from domain models and generate tabular datasets from them. Cur-

rently, dataset extraction processes are usually performed by using SQL-like

languages [11]; frameworks for data management that typically include their

own languages, such as the R project [12] or Julia [37]; or libraries developed for

general purpose programming languages, e.g., the Pandas library for Python [13]

or Weka for Java [8]. As we have seen in the comparison of the previous sec-

tion, using these state-of-the-art tools involves manually combining low-level

operations to produce the required tabular structures, which might become a

cumbersome and prone-to-errors process.

Apart from manual approaches, there is a research field aiming to automati-

cally reduce multi-relational data to a single-table structure that can be digested

by data mining algorithms, which is known in the community as propositional-

isation [38, 39, 40, 41]. Generally speaking, these approaches work as follows:

starting from an entity of interest, e.g., Business, an algorithm randomly gener-

ates dataset columns by applying aggregation functions, such as count, average,

max or min, over the relationships between the selected entity and other ones

in the model.

This random exploration has the potential to discover previously unknown

aggregate values that might be relevant for data analysis. On the other hand,

domain experts and data scientists cannot have a fine-grained control of which

data would be included in the output dataset. In addition, multi-bounded

references cannot be analysed at the instance level, since their information needs

always to be summarised by means of aggregation functions. This limitation

might hamper finding patterns related to values of these individual instances.
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Moreover, it should be taken into account that this random exploration might

exhibit scalability and performance problems. The exploration takes place over

an enormous search space of candidate columns, from which many of them may

not be useful at all.

Other researchers have tackled the problem from a different angle. Instead of

focusing on producing tabular datasets from linked and hierarchical data, they

have modified some data mining algorithms so that they accept data in their

original structure as input, which is known as Multi-Relational Data Mining

(MRDM) [42]. Solutions based on MRDM have been proven useful to per-

form analysis over relational datasets coming from diverse domains, such as

medicine [43], financial [44] or time-sequence analysis [45, 46]. However, at the

time of writing this work, most of these modified algorithms are not as powerful,

versatile and efficient as those data mining algorithms that work with single-

table datasets. While this is the case, we consider that a language like Lavoisier

can be helpful for assisting data scientists in the generation of tabular datasets.

Lastly, different query languages already exist that are able to query hierar-

chical structures such as the one defined in a domain model. Examples of these

are, among others, GQL7, Gremlin [47], GraphQL8, Cypher9, and XPath10.

Some similarities can be detected between the syntax of these languages and

Lavoisier. For instance, both Lavoisier and GraphQL make use of the same

brace structure in their queries to represent nesting of the queried elements (see

Section 3.6). On the flip side, a commonality of all these existing languages

is that, while they are able to query graph-like structures [48], the result of a

query is either a value/array of values, or a structure that still follows the same

graph-like structure, instead of the tabular format desired in the data selection

context of this paper. Even when some export-to-table functionality is offered11,

7https://www.gqlstandards.org/
8https://graphql.org/
9https://neo4j.com/developer/cypher-query-language/

10https://www.w3.org/TR/xpath/all/
11https://neo4j.com/docs/labs/apoc/current/export/csv/
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the resulting table does not respect the one entity, one row constraint imposed

by data mining algorithms discussed in Section 2.3. So, extra post-processing of

the retrieved table would be required. Therefore, Lavoisier provides an advan-

tage over these graph query languages in the context of a data-mining process,

which is being able to automatically generate datasets that can be digested by

data mining algorithms, without requiring any extra post-processing.

7. Summary and Future Work

This work has presented Lavoisier, a language for assisting data scientists

during the creation of datasets according to the format accepted by data min-

ing algorithms. We started by presenting the data selection and transformation

problem, which states that data mining algorithms can only receive data ar-

ranged in a specific tabular format. Therefore, before executing a data mining

algorithm, we need to select and rearrange any hierarchical and linked domain

data of interest for the analysis into the accepted format. Data scientists typ-

ically perform this task by writing scripts in a data management technology,

such as SQL or Pandas, which involves performing several low-level data trans-

formation operations manually and taking care about their details. This leads

to the creation of large and complex scripts, which is a time-consuming and

prone-to-errors task.

As a solution to alleviate this problem, we have created a language that

provides a set of high-level constructs for selecting data from object-oriented

domain models. These constructs, when processed by the language interpreter,

are transformed into a set of low-level data transformation operations that gen-

erate tabular datasets ready to be digested by data mining algorithms. Lavoisier

is able to deal with the different transformation scenarios that can be found in

an object-oriented model, such as the processing of single- or multi-bounded

references, nested structures, or inheritance hierarchies.

When compared against typical data management technologies used for

dataset creation, Lavoisier allows: (1) reducing the total number of operations
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required to generate a dataset by ∼40%; and (2) decreasing also the total num-

ber of parameters to be specified in these operations by ∼65%. As a consequence

of these and other reductions, the size of Lavoisier’s scripts decrements by 60%

and 40% with respect to the counterparts of the compared technologies (i.e. SQL

and Pandas), and of up to 80% in some cases. Moreover, by using Lavoisier in-

stead of these two technologies, data scientists need to use, on average, 18%

and 24% fewer types of operations, 68% and 47% less keywords, and ∼40% less

parameters per operation. This means that data scientists need to know fewer

primitives to write a dataset extraction script; and they need to be aware of

fewer details when using each primitive, this is, they can work at a higher level

of abstraction, and with less accidental complexity.

As future work, as already mentioned in the paper (Section 5.4), we would

like to perform some empirical experiments to assess Lavoisier’ usability, learn-

ing curve and effectiveness. In this paper, we have provided objective and sound

evidences about the effectiveness of Lavoisier for reducing boilerplate code and

accidental complexity in data selection scripts (see Section 5.3). Nevertheless,

we would like to go one step further and perform controlled empirical experi-

ments, where a heterogeneous group of data scientists complete some data ex-

traction tasks using both Lavoisier and common data management languages,

such as Pandas, R or SQL. Although Lavoisier has been welcomed by the data

scientists we have shown it, these empirical experiments would allow us: (1)

to get better insights about how different kind of data scientists interact with

Lavoisier; (2) to quantify more precisely the benefits of Lavoisier; and, (3) to

identify any flaws to be addressed as part of our future work.

Secondly, we would like to explore how Lavoisier might be extended to work

with other approaches for building conceptual data models. In this paper, we

have used object-oriented models as approach for specifying data available in

a domain, since this is a widely used and accepted approach for this task.

However, other people might prefer other alternatives, such as ontologies [49],

entity-relationship models [50], and different kinds of multidimensional models

commonly used for data warehouse design [51].
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Lastly, we would like to slightly improve the current implementation of

Lavoisier. At the time of writing this paper, Lavoisier is provided as an academic

prototype that supports the features described in this paper. Nevertheless, as

commented in Section 3.5, the current support for aggregation functions and

operators is limited. Therefore, we would like to incorporate in the near future

more of these functions to Lavoisier, as well as a richer set of operators for work-

ing with dates and strings. With some of these improvements, Lavoisier would

be more prepared for its use in real settings. We have plans for using Lavoisier

inside the Educational and Industry 4.0 domains. We have been working in the

educational data mining field for some time, so we want to check more in-depth

how Lavoisier can help us in real projects. Regarding Industry 4.0, there is a

non negligible amount of industrial engineers willing to apply data mining tech-

niques for the analysis of data coming from manufacturing processes. Therefore,

we believe that Lavoisier can help simplify the use of data mining techniques in

this specific context.
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[38] M. Boullé, C. Charnay, N. Lachiche, A scalable robust and automatic

propositionalization approach for bayesian classification of large mixed nu-

merical and categorical data, Machine Learning 108 (2) (2019) 229–266.

doi:10.1007/s10994-018-5746-9.

[39] A. J. Knobbe, M. De Haas, A. Siebes, Propositionalisation and Aggregates,

Principles of Data Mining and Knowledge Discovery 2168 (2001) 277–288.

doi:10.1007/3-540-44794-6\_23.

[40] J. M. Kanter, K. Veeramachaneni, Deep feature synthesis: Towards au-

tomating data science endeavors, in: International Conference on Data

Science and Advanced Analytics (DSAA), 2015, pp. 1–10. doi:10.1109/

DSAA.2015.7344858.

[41] M. Samorani, Automatically generate a flat mining table with data-

conda, in: 2015 IEEE International Conference on Data Mining Workshop

(ICDMW), 2015, pp. 1644–1647. doi:10.1109/ICDMW.2015.100.
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