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Abstract
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scores. It was concentrated in the South and Islands region, and it tended to favor
female and immigrant students. Finally, the correlation patterns between the amount
of manipulation and the number of missing answers suggests that teachers were more
responsible for the manipulation than students.

Keywords: Cheating Correction, Copula, Discrimination, Gender, Nonlinear Panel
Data, Test Scores Manipulation

JEL classification: C23, C25, I21, I28, J24
∗Banca d’Italia, Via Nazionale 91, 00184 Roma, Italy. This paper was previously circulated with the name

A New Method for the Correction of Test Scores Manipulation. I would like to thank Alessandro Belmonte,
Stéphane Bonhomme, Giulia Bovini, Nicola Curci, Domenico Depalo, Patrizia Falzetti, Raquel Fernández,
Iván Fernández-Val, Guzmán González-Torres, Caroline Hoxby, Andrea Ichino, Claudio Michelacci, Marco
Savegnago, Paolo Sestito, Martino Tasso, Jeffrey Wooldridge, Paolo Zacchia, Stefania Zotteri, two associate
editors, two anonymous referees, and seminar participants at Banca d’Italia, EUI, IMT Lucca, Universidad de
Alicante, Universidad de Cantabria and the 2nd IAAE for helpful comments and suggestions. All remaining
errors are my own. The views presented in this paper do not necessarily reflect those of the Banca d’Italia.
I can be reached via email at santiago.pereda@.bancaditalia.it.

1



1 Introduction

A policy-maker interested in evaluating the education system requires a comparable measure

of academic achievement across students. Standardized tests permit the comparison of

students’ performance, and are often used to evaluate teachers (Hanushek, 1971; Rockoff,

2004; Aaronson et al., 2007) and principals (Grissom et al., 2014), although the reliability of

these estimates has been called into question (Rothstein, 2010, 2017; Chetty et al., 2014).

A major threat to the comparability of these tests is the manipulation of the scores, which

alters students’ recorded performance.1 There is ample evidence that tests are susceptible of

being manipulated, either by teachers grading unfairly (Jacob and Levitt, 2003; Dee et al.,

2011; Battistin et al., 2016; Diamond and Persson, 2016), by students copying each other

(Levitt and Lin, 2015), or even by principals who alter the pool of students who take the

exam (Figlio, 2006; Cullen and Reback, 2006; Hussain, 2015).

Ideally, one would like to correct the test scores to reverse the manipulation. This is

challenging, since manipulation of an individual test is not observed and it can be confounded

with good performance. However, if the amount of manipulation varies with the class’ and

students’ characteristics, it becomes possible to identify which groups of students benefit

most from the manipulation.

In this paper, I study the extent of test scores manipulation, taking advantage of a natural

experiment in the Italian education system that randomly assigned external monitors to

proctor some tests. In particular, I make the following contributions. First, I propose

a new methodology to identify which demographic groups benefited the most from the

manipulation. On top of already known results, I find that the manipulation systematically

favored female over male students, and immigrants over natives. Second, I propose a method

to detect and correct manipulated test scores based on how likely the observed results would

be if they were not manipulated.
1Throughout this paper I refer to test score manipulation or cheating as any action taken by the students

or the teachers that results in a variation of the test scores, usually an increase. This could take place before
the test (alteration of the pool of students), during the test (students copying from one another, teachers
turning a blind eye or telling the answers), or after the test (unfair grading, including leniency).
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Studies on education often rely on raw test scores as a measure of students’ achievement

and are frequently standardized to have zero mean and unit standard deviation. However,

the answers to every single question of the test display a richer correlation structure that can

be more informative for detecting manipulation. This correlation stems from factors that

operate in a different manner and can be classified into three main categories: individual

characteristics, which only affect a single student; class characteristics, which affect every

student in the same classroom; and question characteristics, which affect every student,

although only in each specific question. Hence, when a question is difficult, a small fraction

of students is likely to answer the question correctly, increasing the correlation of students’

answers both within and between classrooms. This lends itself to using panel data methods

that can accommodate all these types of effects.

To overcome these challenges, the method I propose compares the likelihood of the results

of two groups: one in which test scores are assumed to be fair (treatment group) and another

in which they might have been manipulated (control group), analogously to a comparison

between blind graded and non-blind graded exams (e.g., Lavy (2008) or Hinnerich et al.

(2011)). The results in the treatment group are used to estimate the probability of obtaining

the observed test scores at random without manipulation. An excessive amount of unlikely

results in the control group indicates the existence of manipulated test scores. The larger

the difference, the more widespread the manipulation.

The likelihood function accounts for all the previously mentioned effects that create

correlation patterns in students’ answers without manipulation, as well as the information

provided by the students’ observable characteristics. Under the assumption that the estimates

of the group with an external monitor are not manipulated, differences between the two sets

of estimates reflect the amount of manipulation for each demographic group and question.2

The estimates from the treatment group are subsequently used to calculate the probability

of obtaining the observed results without manipulation. This constitutes the basis for the

correction method, which estimates the expected amount of manipulation conditional on
2This does not imply that the test scores of every student in the control group were manipulated or that

the manipulation was of the same magnitude for students with the same characteristics.
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how likely the results would have been in the absence of manipulation.

There are two types of misclassification when one attempts to detect manipulated test

scores: mistaking fair tests for manipulated (false positives), and mistaking manipulated

tests for fair (false negatives). Methods that try to detect cheating are more frequently

focused on reducing the number of false negatives. Furthermore, they are often based on the

value of some test score statistics that are similar for scores of high-achieving students and

manipulated scores. For example, they are both likely to have high class means, or correlated

test scores, which could merely reflect effective teaching practices, potentially yielding an

excessive amount of false positives. Hence, both potential sources of misclassification should

be taken into consideration.

The data I use stem from a set of low stakes standardized tests in the Italian education

system. Students in primary, lower secondary, and upper secondary education take two

tests in mathematics and Italian language in their own schools, proctored by a teacher from

their own school. They are responsible for grading, transcribing the test scores, and sending

them back to the National Institute for the Evaluation of the Education System (INVALSI).

However, a set of randomly selected classrooms has an external monitor who is responsible

for the same tasks, but had no prior connection to the school. This constitutes a large scale

natural experiment to study test score manipulation in the absence of an external monitor.

Previous work used the results from preceding years of the primary and lower secondary

tests.3 They found that having an internal monitor is associated with higher, more correlated

test scores (Bertoni et al., 2013), which could be the result of students’ interactions (Lucifora

and Tonello, 2015) or of teachers’ shirking at grading (Battistin et al., 2016). Moreover, the

amount of manipulation is much larger in the South & Islands of Italy, which is greatly

correlated with other measures of social capital (Paccagnella and Sestito, 2014).

I find substantial manipulation in the test scores that is heterogeneous across various

dimensions. Apart from the already known geographical patterns, I find that female and
3In particular, Bertoni et al. (2013) focused on grades 2 and 5 for the 2010 tests, Battistin et al. (2016)

and Battistin et al. (2017) on grades 2 and 5 for the 2010-12 tests, and Lucifora and Tonello (2015) on grade
6 for the 2010 tests.
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immigrant students benefited from this manipulation more than their male and native peers.

Specifically, the manipulation was up to 1.7% of the maximum score higher for females

relative to males in mathematics exams, whereas in Italian exams, it was at most 0.4%.

Regarding differences between different ethnic groups, I find that immigrant students in

Italy tend to be favored relative to natives, mostly in Italian language exams, in which it

can be up to 1.8% of the maximum score.

If students had been responsible for the manipulation, the correlation in their answers

would have increased. However, after controlling for the mean scores, this correlation is

roughly the same for students in the same classroom, regardless of the monitor type. On the

other hand, the correlation is larger for students in the same classroom than for students in

different classrooms. Hence, rather than manipulation, the correlation reflects a combination

of teacher quality, peer effects, and sorting of students. Also, open-ended questions were more

manipulated, and the amount of manipulation was negatively correlated to the fractions of

missing open-ended questions relative to multiple choice questions. These patterns are the

opposite of what would have arisen if students had copied each other during the exam.

Even though these exams had no formal consequences to teachers (e.g., their wages are

not linked to the results), they may have had incentives to manipulate the results if they

perceived that they could be evaluated in the future, e.g., if they were to be paid based

on the performance of their students, or if principals used the results internally.4 Hence,

manipulation could be a means to invalidate the comparability of the results to prevent their

students’ test scores from being used to evaluate them.

The rest of the paper is organized as follows. The institutional details of the test and some

descriptive statistics are presented in Section 2. The empirical strategy and the correction

methods are explained in Section 3. Section 4 shows the results of the estimation, while

Section 5 shows the class-level correction in practice. In Section 6 I analyze the possible

mechanism behind the results and assess the consequences of the manipulation. Section 7
4These concerns, among others, have led to important boycotts of the 2014-15 and 2015-16

tests: in some of the exams, up to 10% of the students did not participate. See http://www.
invalsi.it/invalsi/doc_evidenza/2015/Comunicato_stampa_Prove_INVALSI_2015_07_05.pdf http:
//www.invalsi.it/invalsi/doc_evidenza/2016/Com_Stampa_INVALSI_II_SEC_SEC_GRADO.pdf.
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relates the results to what was previously found in the literature and Section 8 concludes.

2 Italian National Evaluation Test

INVALSI is the institute responsible for the design and administration of standardized tests

in Italy. Since the academic year 2008-09, all students enrolled in certain grades are required

to take one test in mathematics and another in Italian language. Although the Italian

Ministry of Education stated the necessity of establishing a system of evaluation of teachers

and schools based on students’ performance, the tests have been low stakes for all grades,

with the exception of the 8th (III media). The latter coincides with the end of the compulsory

secondary education, and the results of the test account for a sixth of their final marks.

The exams are taken in classrooms, and students are proctored by either an internal

or an external monitor who is also responsible for grading, transcribing the result of each

student to a sheet and sending it to INVALSI. Internal monitors are teachers from the same

school who were not the students’ teacher during the academic year of the test. On the other

hand, external monitors are teachers and principals who had not worked in the town of the

school they are assigned to for at least two years before the test, while internal monitors are

teachers from the same school who were not the teachers of the students taking the test.5

External monitors are randomly assigned to classes with the same selection mechanism

used by the IEA-TIMSS survey. In a first stage, a fixed number of schools from each region is

selected at random. In a second stage, the external monitors are assigned to either one or two

classrooms selected at random by INVALSI, depending on the total number of classrooms

in the school.6 Students in these classes constitute the treatment group.

Teachers, unlike external monitors, may have incentives to manipulate test scores. Even

though the exams are low stakes for both students and teachers, they may perceive that
5Some external monitors are retired teachers, while others are precari, i.e. teachers with no tenured

position. They are paid between 100 and 200 EUR for the job, and can be asked in the subsequent years to
monitor more exams, giving them incentives to grade fairly.

6The 2013 tests were the first in which INVALSI did the assignment by public procedure. Previously, it
was done internally by the selected schools. The recent changes in the assignment of external monitors have
allowed reducing the number of classrooms with an external monitor.
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they are evaluated based on the test results. To understand this, notice that INVALSI

sends the results to principals, who can make them public to entice parents to enroll their

children in their school. Furthermore, anecdotal evidence suggests that the results are often

discussed in front of all teachers, which could have an effect on them, such as the assignment

of troublesome students. This, coupled with the possibility that principals might be able to

pay teachers based on their students’ performance in the future, may give them incentives

to manipulate test scores.7

2.1 Data and Descriptive Statistics

As shown in Table 1, over 2.3 million students were tested during the academic year 2012-13.

Over 143,000 of them were assigned an external monitor, and the mean number of correct

answers of those students was smaller than for those whose monitor was internal. This

difference was larger in mathematics exams, but there was a lot of variability across grades.

Table 1: Size of the groups, academic year 2012-13
2nd grade 5th grade 6th grade 8th grade 10th grade

EX IN EX IN EX IN EX IN EX IN
N 25070 437479 24773 424046 27504 410332 28153 360528 38273 270262
C 1424 25346 1426 25559 1457 21756 1464 19041 2203 15339
S 737 6451 736 6422 732 5143 1416 4537 1094 3276

% Correct 53.87 61.20 54.79 59.52 44.53 45.25 50.83 52.48 42.09 45.13
(Math) (20.68) (21.58) (18.87) (19.25) (16.80) (16.70) (18.98) (19.02) (17.72) (18.39)

% Correct 59.90 64.76 74.36 76.82 64.25 64.40 72.44 73.12 64.20 65.92
(Ita) (17.39) (17.84) (16.12) (15.52) (16.74) (16.87) (14.96) (14.78) (16.20) (17.00)

Notes: N, C and S respectively denote the number of students, classrooms and schools, and EX and IN respectively denote the
groups with the external and the internal monitor. Classes with an internal monitor in schools that had at least one class with an
external monitor are excluded. Standard deviations in parentheses.

Table 2 shows the mean and standard deviation of the covariates I use in this paper.

As in previous years, some of the variables were not perfectly balanced across the two

groups. In particular, the mean class size was slightly larger in classrooms with an external

monitor in the majority of the exams, which also had a slightly higher presence of male and
7Two hundred million euros have been assigned to principals to distribute among their teachers. The

criteria to distribute this money includes teaching quality, which could be measured by the results of the
INVALSI tests. See https://labuonascuola.gov.it/documenti/LA_BUONA_SCUOLA_SINTESI_SCHEDE.
pdf?v=0b45ec8.
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immigrant students in the upper secondary tests. Also, the geographic stratification led to

an over-representation of students from regions in which test scores were more manipulated

in previous years (Bertoni et al., 2013).8

Table 2: Mean and standard deviation of covariates
2nd grade 5th grade 6th grade 8th grade 10th grade
EX IN EX IN EX IN EX IN EX IN

Class size 17.61* 17.26 17.37* 16.59 18.88 18.86 19.23* 18.93 17.37 17.62
(4.69) (5.22) (4.75) (5.04) (4.20) (4.54) (4.49) (4.54) (5.49) (5.97)

Male 0.51 0.51 0.50 0.50 0.51 0.51 0.51 0.50 0.51* 0.49
(0.50) (0.50) (0.50) (0.50) (0.50) (0.50) (0.50) (0.50) (0.50) (0.50)

Native 0.95 0.95 0.94 0.94 0.92 0.92 0.91* 0.92 0.90* 0.91
(0.21) (0.21) (0.24) (0.24) (0.26) (0.26) (0.28) (0.27) (0.29) (0.28)

North 0.39* 0.46 0.38* 0.44 0.43* 0.45 0.41* 0.43 0.41* 0.45
(0.49) (0.50) (0.49) (0.50) (0.49) (0.50) (0.49) (0.50) (0.49) (0.50)

Center 0.19* 0.18 0.19* 0.18 0.19* 0.17 0.20* 0.18 0.18* 0.16
(0.40) (0.39) (0.39) (0.38) (0.39) (0.38) (0.40) (0.38) (0.39) (0.37)

South & Isles 0.42* 0.36 0.43* 0.38 0.38 0.39 0.39 0.39 0.40* 0.38
(0.49) (0.48) (0.50) (0.48) (0.49) (0.49) (0.49) (0.49) (0.49) (0.49)

Notes: EX and IN respectively denote the groups with the external and the internal monitor. Standard deviations in
parentheses. The asterisk denotes that difference between the two groups is significantly different from zero at the 95%
confidence level.

For expositional brevity, I focus the analysis on the 10th graders’ mathematics exam:

10th graders’ constitute the largest treatment group, and the difference in the percentage of

correct answers between the two groups is larger in the mathematics exam.9 In all, 38,273

students in 2,203 classes were assigned an external monitor, whereas 270,262 students in

15,339 classrooms were assigned an internal monitor in schools without external monitors.10

There were 50 questions in the 10th graders’ mathematics test. The left graph in Figure 1

shows the proportion of students who answered each question correctly. Students proctored

by external monitors had lower scores in all but three of the questions. The difference between

the two groups is slightly larger in difficult questions, i.e. questions in which the proportion
8Italy is split into three macro regions: North (Emilia Romagna, Friuli-Venezia Giulia, Liguria,

Lombardia, Piemonte, Trentino-Alto Adige, Valle d’Aosta, and Veneto), Center (Lazio, Marche, Toscana,
and Umbria), and South and Islands (Abruzzo, Basilicata, Calabria, Campania, Molise, Puglia, Sardegna,
and Sicilia).

9Because the amount of manipulation substantially varied by exam, pooling all the exams together to
detect cheating patterns would be counter-productive, because it would cover several manipulation patterns.
Regardless, the regressions for all exams are shown in Appendix S1, and the results that are different across
exams are also highlighted in the paper.

10Since Bertoni et al. (2013) found that the manipulation was less severe in non-treated classrooms in
treated schools, I exclude them from the main analysis.
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of correct answers for the treatment group is small, although in some exams there is no

correlation between the amount of manipulation and difficulty. Similarly, the distribution

of the total number of correct answers is different for both groups (right graph), and the

mean, the median, and the mode are smaller for the group with the external monitor. The

difference is larger around the center of the distribution, and it is much smaller at the tails.

Since this is a low stakes exam, there are no jumps at a cut-off grade and the change is quite

smooth.

Figure 1: 10th grade mathematics exam results
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The left graph depicts the proportion of correct answers by question (questions are sorted by how frequently
they were correctly answered by students proctored by an external monitor); the right graph depicts the
students’ distribution of test scores. EX, IN, DIF, and r respectively denote the groups with the external
and the internal monitor, the difference between them, and the number of correct answers.

Some correction methods use the correlation in the answers to identify manipulation of

the scores (Jacob and Levitt, 2003; Quintano et al., 2009). However, if the two groups have

different mean test scores, the correlation in the answers will be different by construction,

even in the absence of manipulation.11 This poses a comparability problem that requires

appropriately controlling for the mean test scores.

To illustrate this point, consider an alternative statistic to the within-class correlation of
11For example, if every student in a class got the maximum grade, then the correlation in the answers

would be one. On the other hand, if every student answered one half of the answers correctly, the correlation
could be equal to one, but also equal to zero.
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the answers: the mean number of correct answers in common between two students, denoted

by E (s), where s is the correct number of answers in common. This mean depends on the

distribution of the number of correct answers, which is different for students in the treatment

and the control groups. Formally, if the first student got r questions correct, and the second

student got r questions correct, E (s) =
∑Q

r=0

∑Q
r=0 E (s|r, r)P (r, r). Because P (r, r) differs

for each group, the mean number of correct answers in common is not comparable between

the two groups. Instead, define the following counterfactual conditional mean:

Ecfj,h (s) ≡
Q∑
r=0

Q∑
r=0

Ej (s|r, r)Ph (r)Ph (r) (1)

where j, h = {EX, IN} and Ph (r) is the unconditional distribution of the total number

of correct answers for students in group h. The first term of Equation 1 captures the raw

difference in correlation between the two groups, regardless of the distribution of correct

answers in the overall population. When j = h, the second and third terms differ for each

group, preventing a fair comparison, but if both groups use the same probability weights,

then it is possible to assess the effect of cheating on the correlation in answers.

Table 3 shows the counterfactual values for each exam in percentage terms (to make

them comparable across exams). When each group uses its own distribution (top two rows),

the difference between the two groups in the 10th graders’ mathematics exam equals 3%

of the total number of answers. However, the difference shrinks to 0.3% if one uses the

overall distribution (third and fourth rows). This result holds in all exams, and the largest

reduction is attained in the 2nd graders’ mathematics exam, in which the original difference

of 8% completely vanishes after controlling for the mean test scores.

However, the counterfactuals show the existence of some excess within-class correlation.

If one uses the conditional mean for students in different classrooms, observe that the

percentage of correct answers in common is smaller than for students in the same classroom.

Hence, the correlation in students’ answers mostly reflects factors other than manipulation,

such as teacher effects (Hanushek, 1971).

10



Table 3: Percentage of correct answers in common
2nd grade 5th grade 6th grade 8th grade 10th grade
M I M I M I M I M I

DIF EX 32.3 38.2 33.7 57.3 24.0 45.1 28.6 55.4 22.9 44.4
DIST IN 40.7 44.2 39.3 60.9 24.7 45.2 30.5 56.4 25.9 46.7
SAME EX 40.2 43.8 38.7 60.7 24.6 45.3 30.2 56.3 25.3 46.1
DIST IN 40.2 43.9 38.9 60.7 24.6 45.2 30.4 56.3 25.6 46.4

IND 39.3 43.2 37.8 60.2 24.0 44.6 29.0 55.6 24.3 45.5

Notes: EX, IN and IND respectively denote the mean number of correct answers in common of two
students with r and r correct answers (Equation 1) when they are in the same class and the examiner
is external, in the same class and the examiner is internal, or in different classes in either group. DIF
DIST and SAME DIST respectively denote that the weighting function Ph (r) was each group’s own
distribution, or the overall distribution. I and M respectively denote the Italian and mathematics
exams.

3 Empirical Methodology

Let yicq equal one if student i in classroom c answered question q correctly, and zero otherwise.

This variable can be modeled with a latent variable, y∗icq, that depends on three effects: a

student-class effect, ηic, a question effect, ξq, and a specific student-class-question iid shock,

εicq. The student-class effects measures the ability of a student, whereas the question effects

measure the difficulty of each particular question. 12 Formally,

yicq = 1
(
y∗icq ≥ 0

)
(2)

y∗icq = x′icβ + ηic + ξq + εicq (3)

where, from an econometric standpoint, the number of questions (Q) is fixed, the number of

classrooms (C) is large, and the number of students per classroom (Nc) is small but not fixed.

Because of the incidental parameter problem, it is impossible to obtain consistent estimates

of the student-class effects, but it is possible to consistently estimate the question effects.13

The latter are parameters in the regression, while the former are treated as random effects.

Denote by yc ≡ (y1c1, ..., y1cQ, ..., yNccQ) the vector with the results of all students in classroom

c. Assume that the distribution of the unobservables is given by εicq ∼ Logistic (0, 1) and
12The question effect may also capture the location of the question in the exam. There were several

versions of each exam, the only difference among them being the order of the questions. Unfortunately, the
version assigned to each student is not recorded in the dataset.

13The setup is similar to those considered in Item Response Theory: they model the result to each
question using an individual latent trait that is constant across questions, and questions are allowed to vary
in difficulty. See Bacci et al. (2014) for an example applied to the INVALSI tests.
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ηic ∼ N
(
0, σ2

η

)
, and let θ ≡

(
ξ′, σ2

η

)′. If the student-class effects were independent of each

other, the system 2-3 would be a random effects logit with normally distributed random

effects. Its likelihood is given by

L (θ) =
C∑
c=1

Nc∑
i=1

log

ˆ
R

exp
(∑Q

q=1 yicq (x′icβ + ηic + ξq)
)

∏Q
q=1 (1 + exp (x′icβ + ηic + ξq))

dΦ

(
ηic
ση

) (4)

The evidence found in Section 2.1 does not support the independence of the student-class

effect. Still, Equation 4 can be used to consistently estimate the vector of parameters θ,

although not efficiently (Pereda-Fernández, 2017). However, it is necessary to estimate the

correlation of the student-class effects to consistently estimate joint events. A convenient

way to model the correlation of the student-class effects is using a copula, i.e. a multivariate

function that captures the correlation structure of a vector of random variables.14 Copulas

depend on the ranks of the individual effects, uic ≡ Φ
(
ηic
ση

)
, which are invariant to the

parameters of the marginal distribution of ηic.15

Denote by ηc and uc the Nc-dimensional vectors of the individual effects and their ranks

in class c. I model their correlation with a Clayton copula, denoted by C (uc; ρ), where ρ

is the parameter that models the correlation intensity. The Copula-Based Random Effects

(CBRE, Pereda-Fernández, 2017) estimator maximizes the following likelihood function:

L (θ) =
C∑
c=1

log

ˆ
[0,1]Nc

exp
(∑Nc

i=1

∑Q
q=1 yicq (x′icβ + ηic + ξq)

)
∏Nc

i=1

∏Q
q=1 (1 + exp (x′icβ + ηic + ξq))

dC (uc; ρ)

 (5)

Remark 1: In principle, it would be possible to use a different copula and select the

one that has the best fit. However, simulation results in Pereda-Fernández (2017) suggest

that the largest improvement in fit comes from using a copula, and estimated probabilities

are roughly the same regardless of the exact parametric copula. Among these, the Clayton

copula is convenient from a computational standpoint.

Remark 2: The covariates used in this paper have finite support. Hence, neither the

marginal distribution nor the copula of student-class effects is nonparametrically identified
14As proved by Sklar (1959), any multivariate cdf can be written as a copula the arguments of which are

the marginal distributions, i.e. P (X1 ≤ x1, ..., Xd ≤ xd) = C (F1 (x1) , ..., FNc (xNc)). See Nelsen (2006) for
an introduction to copulas.

15Equation 4 implicitly assumes that the copula of the individual effects for students in the same classroom
is independent, i.e. C

(
Φ
(
η1c
ση

)
, ...,Φ

(
ηNcc
ση

))
=
∏Nc
j=1 Φ

(
ηic
ση

)
.
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(Chernozhukov et al., 2013; Pereda-Fernández, 2017). There exist estimators that do not

impose distributional assumptions, but because they do not estimate the distribution of

these effects (Chamberlain, 1980; Manski, 1975), they cannot be used to estimate joint

probabilities.

Remark 3: I am ruling out class-question effects, which would matter if some teachers

were better able to teach the material relevant for some of the questions. A way to avoid

this issue would be to run the regression using a single student per classroom. This analysis

is reported in Appendix S3, and the results indicate that there is no substantial bias by not

considering them.

Remark 4: Equations 4 and 5 denote the likelihood conditional on xic. Using the

appropriate covariates in the estimation can help improve the detection of manipulated

test scores, whereas adding redundant ones increases the risk of overfitting the model and

hinders the detection of manipulated test scores. Hence, the selection of the covariates to

use in the estimation is important to limit the number of misclassified tests. To address this

point, the covariates were chosen using k-fold cross-validated forward selection. This method

selects variables iteratively, and by using cross-validation, only those variables that improve

the out-of-sample fit are selected. Alternative methods exist to select covariates (see, e.g.,

Friedman et al., 2001), but given the large number of observations and limited number of

covariates, this method has a relatively limited cost in terms of computational time.16 The

exact algorithm is described in Appendix B.

3.1 Cheating Correction

Using the estimates of the treatment group, it is possible to compute the likelihood of

observing the results of a single classroom. In the absence of manipulation, very high test

scores would be infrequent, but with manipulation, there would be an excessive number of

them. The correction I propose is based on this idea, and it consists of two steps: first,
16Subset selection methods such as forward selection are relatively fast to implement when the number of

covariates is small relative to the number of observations. For the case in which the number of covariates is
relatively large, alternative methods such as LASSO are faster to compute.

13



the distribution of the likelihood of the test scores of the group with the internal monitor

is shifted to match the distribution of the group with the external monitor; and second, I

compute the expected mean fair score conditional on the likelihood and the observed test

score. The correction equals the difference between the actual score and the expectation.

Formally, let the students’ total number of correct answers in classroom c be given by rc ≡

(r1c, ..., rNcc). The probability of getting at least rc correct answers at random, denoted by

P (R ≥ rc), is computed using the CBRE estimates for the group with the external monitor:17

l̂c =

 ∑
b1∈Br1c

...
∑

bNcc∈BrNc

ˆ
[0,1]Nc

exp
(∑Nc

i=1

∑Q
q=1 biq

(
x′icβ̂ + ηic + ξ̂q

))
∏Nc

i=1

∏Q
q=1

(
1 + exp

(
x′icβ̂ + ηic + ξ̂q

))dC (uc; ρ̂)


1
Nc

(6)

where Bric ≡
{
biq :

∑Q
q=1 biq ≥ ric

}
, i.e. all the possible combinations of correct answers

that would yield a test score of at least ric. This probability takes into account that some

results are less likely to occur in the absence of manipulation, even if the within-class mean

test score is the same. For example, assume female students perform worse than male

students in mathematics in the presence of an external monitor. Then, for two classrooms

with identical test scores, if in the first one female students have higher scores, and in

the second one they have lower scores, the probability of observing the result in the first

classroom would be smaller than in the second one. Similarly, if students’ answers displayed

too much or too little correlation relative to what would be expected, the probability of

observing those results would be small.

For the first step, denote by FL,EX (l) and FL,IN (l) the cdf of the likelihood for the

treatment and control groups, respectively. The corrected likelihood is given by ľc ≡

F−1
L,EX

(
FL,IN

(
l̂c

))
. By construction, the cdf of the corrected likelihood of the classes with

an internal monitor equals the cdf of the classes with an external monitor. For the second

step, I use the following assumption.

Assumption 1. Distribution of test scores manipulation

Let r∗c denote the observed mean test score of classroom c with an internal monitor. This
17Since this probability is mechanically different depending on the class size, to make the comparison fair,

I compute the geometric mean of this probability. See Appendix A for the details on the computation of the
sum of all possible permutations.
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score is decomposed into the sum of the score without manipulation, rc, and the manipulation,

αc. These two components are mutually independent, and the distribution of the manipulation

is given by an exponential(λ) distribution.

With this assumption, it is possible to estimate the corrected test score, which equals the

expected fair test score, conditional on the observed test score and the corrected likelihood,

i.e. E
[
r|r∗, ľ

]
.18 The idea is similar to Wei and Carroll (2009), whose estimator of quantile

regression with measurement error is adapted to the current framework:

E
[
r|r∗, ľ

]
=

´ r∗
0
rf
(
ľ|r
)
λ exp (−λ (r∗ − r)) dF (r)´ r∗

0
f
(
ľ|r
)
λ exp (−λ (r∗ − r)) dF (r)

(7)

where the equality follows by Bayes’ theorem. Equation 7 suggests the following sample

analogue to estimate the corrected test scores:

r̃ ≡
1∑C0

c=1 1(rc≤r∗)

∑C0

c=1 rcf̂
(
ľ|rc
)
λ̂ exp

(
−λ̂ (r∗ − rc)

)
1∑C0

c=1 1(rc≤r∗)

∑C0

c=1 f̂
(
ľ|rc
)
λ̂ exp

(
−λ̂ (r∗ − rc)

) (8)

where f̂
(
ľ|r
)

=
∑K

k=1
τk+1−τk

Q̂L(τk|r)−Q̂L(τk+1|r)
1
(
Q̂L (τk|r) < ľ ≤ Q̂L (τk+1|r)

)
, λ̂ is estimated using

the method of moments, and Q̂L (τ |r) is estimated using linear quantile regression on a

polynomial of r and applying Chernozhukov et al. (2010) rearrangement.

Assumption 1 is not likely to hold in practice if manipulation of the test scores has a

strategic component and if some test scores in the control group are not manipulated. If this

assumption was relaxed, one would still need to make an assumption on the distribution of

the amount of manipulation conditional on the fair test score. Nevertheless, it allows the

correction to be expressed in closed form with the desirable property that the smaller the

likelihood of the results and the higher the mean test scores, the higher the correction.

This approach efficiently uses the information from the answers to every question, including

its difficulty. However, as with any other correction measure, it is subject to misclassification.

Relative to existing alternatives, this approach acknowledges the existence of effective teachers

and students in classrooms with internal monitors, reducing the correction applied to high-achieving

students. Moreover, students’ characteristics are only used to calculate ľ, so if two students in
18Using a parametric distribution with positive support, such as the exponential distribution, ensures that

the correction does not result in an increase of the test scores.
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the same classroom got the same scores, they would be corrected by the same amount. Still,

this correction could have some unintended side effects. As far as I know, the only paper that

studies the effects of correcting test scores on students’ psychological well-being is Lucifora

and Tonello (2016), who considered the effects of Quintano et al. (2009) correction, but did

not find any evidence that it hurt students’ psychological well-being.

4 Results

Figure 2 shows the RE logit estimates (Equation 4) of the question effects without covariates.

The results show that for 38 out of the 50 questions, the coefficient for the control group is

significantly larger than for the treatment group, and for half of the remaining 12, they are

not significantly different. Ignoring unobserved heterogeneity results in significantly biased

estimates, as Table 10 in Appendix S1 shows.

Figure 2: RE logit estimates, 10th grade mathematics exam
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RE logit estimates of the question effects (ξq in Equation 4) for the group with an external monitor (EX),
the group with an internal monitor (IN), and the difference between them (DIF). They are reported along
with the 95% confidence intervals, and sorted by how frequently they were correctly answered by students
proctored by an external monitor.

Table 4 shows the Average Partial Effects (APE) of the different covariates and the

estimates of the parameters of the distribution of individual effects: (ση, ρ). The covariates
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and interactions were selected as reported in Section 3.19 The CBRE coefficients for the

group with an external monitor (column 4) show that students from the Center and South

& Islands regions respectively scored on average 7% and 14% less correct answers than

students from the North. Female students also scored lower than their male counterparts

(around 6% less), whereas native Italians outperformed immigrant students (around 4.5%

more). The number of classrooms in the school played a minor role, and an extra classroom

is correlated with an increase of 0.05% of correct answers. Similarly, students in small

classrooms scored worse than those in large classrooms, and increasing class size by one

student is correlated with an increase of less than 1.5% correct answers.20 The estimate of

the copula correlation parameter indicates substantial within-classroom correlation in the

unobserved individual-class effect.21

The amount of manipulation and how much it benefited each demographic group can be

measured by looking at the difference between the coefficients of the two groups (column

6). Students from the Center and South & Islands had an average of almost 7% extra

correct answers than their northern counterparts. Similarly, female and immigrant students’

answers were more manipulated. For each group, 1.7% and 0.3% extra correct answers can

be attributed to manipulation, respectively. The manipulation was also slightly larger in

schools with more classrooms and in smaller classrooms. Adding an extra classroom or an

extra student per classroom increased the amount of manipulation by about 0.2% and 0.4%,

respectively. Finally, the copula correlation coefficient was smaller in the control group,

indicating that the correlation in the unobserved effects did not increase because of the

manipulation.

Many of the results apply to most exams in the sample. Table 5 summarizes the

differences in performance between students with an internal and an external monitor for
19The APE reflect the overall effect of increasing each variable, which affects also the interactions between

that variables and other selected variables. Consequently, even though the number of chosen terms in the
specification is large, Table 4 reports the APE with respect to the main variables, the interpretation of which
is more transparent.

20Small classrooms are defined as those whose size is smaller than the median class size.
21ρ is not interpreted as the linear correlation coefficient. Using the relation between the Clayton and

Gaussian copulas with Kendall’s τ statistic, the linear correlation for this group is approximately 0.77.
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Table 4: RE & CBRE logit estimates, 10th grade mathematics exam
RE CBRE

External Internal Difference External Internal Difference
(1) (2) (3) (4) (5) (6)

ξ̂ -6.73 -7.88 1.15 -4.08 -4.42 0.34
(1.86) (1.39) (2.32) (1.02) (1.07) (1.48)

FEMALE -6.08 -5.62 -0.46 -5.77 -4.11 -1.66
(0.18) (0.07) (0.20) (0.06) (0.03) (0.07)

CENTER -7.72 -0.69 -7.02 -7.34 -0.63 -6.71
(0.40) (0.31) (0.51) (0.22) (0.27) (0.35)

SOUTH & ISLANDS -14.24 -4.55 -9.70 -13.69 -7.03 -6.66
(0.37) (0.46) (0.59) (0.22) (0.34) (0.41)

ITALIAN STUDENT 5.17 6.37 -1.20 4.51 4.16 0.35
(0.25) (0.11) (0.28) (0.09) (0.05) (0.10)

NUMBER OF CLASSES 0.19 0.24 -0.05 0.05 0.26 -0.21
(0.03) (0.01) (0.03) (0.02) (0.00) (0.02)

CLASS SIZE 1.02 0.97 0.06 1.38 1.01 0.37
(0.02) (0.01) (0.02) (0.01) (0.00) (0.01)

σ̂η 0.85 0.92 -0.08 0.75 0.88 -0.14
(0.01) (0.00) (0.01) (0.00) (0.00) (0.00)

ρ̂ - - - 2.55 1.56 1.00
(0.02) (0.00) (0.02)

Notes: ξ̂ denotes the APE of the question effects, σ̂η denotes the standard deviation of the individual effects
distribution, and ρ̂ the parameter of its Clayton copula. Columns 1-3 show the APE of the covariates and the
estimates of ση with the RE logit estimator (Equation 4); columns 4-6 show the same estimates and those of ρ with
the CBRE estimator (Equation 5).

all exams, and it represents the percentage of manipulation in favor of each demographic

group. The single most important variable is the dummy for the South & Islands region,

which is significantly negative in all exams. Thus, it was in this region that the largest

amount of manipulation took place, an average of 5.6% extra correct answers. There was

also more manipulation in the Center than in the North in most exams, and the difference

was significant in seven of them. On average, 3.5% extra correct answers could be attributed

to manipulation in this region.

Test scores of female students were more manipulated than their male counterparts,

both in mathematics (1% on average) and Italian exams (0.2% on average). This means

that manipulation favored female students more in those exams in which male students

consistently outperform them. The existence of persistent differences in academic performance

by gender is well documented (Machin and Pekkarinen, 2008; Lavy and Sand, 2015). Consistently

with the results of this paper, Lavy (2008) found that male students face discrimination with
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Table 5: Summary CBRE logit estimates
2nd grade 5th grade 6th grade 8th grade 10th grade
M I M I M I M I M I

FE -1.2** -0.4* -1.1** -0.3** -0.4** 0.0 -0.9** 0.0 -1.7** -0.3**
CE -2.9** -0.1 -3.8** -1.7** -2.0* -1.2** -0.9 0.2** -6.7** -15.7**
SI -8.7** -3.1** -7.1** -3.6** -3.4** -1.0** -3.3** -0.7** -6.7** -19.0**
IT 1.4** 1.8** 0.0 0.7** 0.7** 1.1** 1.2** 1.5** 0.3** 0.1*
NC 0.4** 0.2** 0.2** 0.1** 0.1 0.2** 0.0 0.0 -0.2** 0.0*
CS 0.5** 0.0 0.2** 0.0 0.0 -0.1** 0.2** 0.0** 0.4** 0.2**

Notes: FE, CE, SI, IT, NC and CS refer to the difference between externally and internally monitored students
of the APE for females, Center region, South & Islands region, natives, number of classes in the school, and
class size, as reported in column 6 from Tables 4 and 11 to 19, expressed in %. I and M respectively denote
the Italian and mathematics exams. *, and ** respectively denote statistical significance at the 95, and 99%
confidence level.

respect to females in every subject. In contrast, Diamond and Persson (2016) found that

teachers’ grading leniency was not different for male and female students.

Similarly, test scores of immigrant students were more manipulated in most exams, with

an average of 0.9% extra correct answers. This difference was larger in the Italian exams,

which could mean that teachers were trying to compensate for the handicap immigrants face

by having to learn the local language. These results contrast with Diamond and Persson

(2016), who found no discrimination between natives and immigrants, Sprietsma (2013),

who found that German teachers discriminate against students with Turkish names, and

Hanna and Linden (2012), who found that Indian teachers discriminate against lower caste

students.

Manipulation was slightly larger in schools with many classrooms, albeit by a small

margin, and this difference was significantly positive in six of the exams. Finally, the exams

were more manipulated in small classrooms, although this result is not homogeneous, and

in the sixth grade Italian exam, the manipulation was larger in large classrooms.

5 Cheating Correction

The distribution of the estimated likelihood from Equation 6, based on the estimates of

column (6) from Table 4, is shown in Figure 3. As expected, the two do not coincide: there

is approximately the same proportion of classes with likely results, i.e. those on the right
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tail. However, the left tail of the distribution of the group with internal monitors has more

mass probability, which indicates that there is an excessive number of unlikely results relative

to the amount there would have been without manipulation.22

Figure 3: Distribution of the likelihood, 10th grade mathematics exam
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Distribution of the estimated likelihood of the class scores (Equation 6). EX and IN respectively denote the
groups with the external and the internal monitor.

Given the large regional differences in test scores manipulation, the correction method

proposed in Section 3.1 is applied to each class using only data from that region.23 Each

dot in Figure 4 represents the correction applied to a single class and relates it to their

uncorrected test scores and estimated likelihood (Equation 6). The correction is higher

for more unlikely, higher test scores. Since the majority of the test scores with unlikely

results are located in the South & Islands region, the correction is higher there (Figure 5).

Consequently, the class and regional rankings are changed once the correction is applied.

22Consistently with the estimation results, the difference between the two distributions is largely explained
by the difference in the South & Islands. See Appendix S1.

23To measure the sensitivity of these estimates, I allow the correction to be applied only to those classes
with a difference between the corrected likelihood, ˜̀

c, and its estimated counterpart, ˆ̀
c, that is greater or

equal than a threshold. These results are shown in Figure 10 in Appendix S1.
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Figure 4: Correction for cheating, test scores, and likelihood, 10th grade mathematics exam

The left and right graphs respectively show the scatter plot of the mean correction to the classes with an
internal monitor, with the class mean test scores and with the estimated likelihood of the test scores of each
class (Equation 6).

21



Figure 5: Correction for cheating, provincial variation, 10th grade mathematics exam
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6 Discussion

The results presented thus far do not identify the mechanism behind manipulation. However,

INVALSI tests are comprised of two types of questions: multiple choice and open-ended.24

Multiple choice questions require minimal effort to grade and transcribe, and students would

find it easier to copy the answer from one another. Open-ended questions may involve an

elaborate answer that takes more time to grade and students may find it harder to copy.

Table 6 shows that open-ended questions were more manipulated than multiple choice.

However, the pattern for missing answers was the opposite (Figure 6): for the control group,

the proportion of missing answers decreased more for the open-ended questions than for

the multiple choice questions. If students had copied each other during the exam, it would

have produced the opposite result. Moreover, another reason why students were less likely

to be responsible for the manipulation is the fact that there were several versions of each

exam with the same questions but in a different order. Hence, this evidence supports the

hypothesis that teachers were more responsible than students for the manipulation of the

test scores.

Table 6: Multiple choice versus open-ended questions
2nd grade 5th grade 6th grade 8th grade 10th grade
M I M I M I M I M I

∆Y,MC -6.72 -4.07 -3.72 -2.24 -4.45 0.30 -1.48 -0.83 -2.11 -0.85
∆Y,OE -8.19 -8.12 -8.05 -3.57 -5.15 -2.00 -1.61 -0.87 -5.14 -3.83
DID 1.47 4.05 4.33 1.33 0.70 2.30 0.13 0.04 3.03 2.97

∆M,MC 1.19 1.07 0.22 0.52 -0.11 -0.08 0.24 -0.04 -0.11 -0.29
∆M,OE 2.21 3.34 0.84 1.00 -0.37 -0.58 0.28 -0.12 2.50 0.29
DID -1.02 -2.27 -0.63 -0.48 0.26 0.50 -0.05 0.08 -2.61 -0.58

Notes: ∆APE,MC and ∆APE,OE respectively denote the mean difference between the treatment and
control groups of the mean question APE of the CBRE logit estimates (first row of Table 4) for open
ended and multiple choice questions; DIDAPE denotes the difference between these two; ∆M,MC and
∆M,OE respectively denote the mean difference between the treatment and control groups percentage
of missing answers for open ended and multiple choice questions; DIDM denotes the difference between
these two. All numbers are reported as %.

If teachers graded their own students, it would make sense to increase their test scores

to improve the perception of the teachers’ ability. However, this is not the case. A possible
24The proportion of open-ended questions ranged between 21% and 50%, depending on the exam.
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Figure 6: Multiple choice versus open-ended questions
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The horizontal axis represents the difference between open ended and multiple choice questions of the
difference between the two groups of the mean APE; the vertical axis represents the mean difference between
the two types of questions of the difference between the two groups of the proportion of missing questions.

explanation would be grading leniency: even though INVALSI provides a correction grid,

open-ended questions may leave more room for interpretation, so some teachers may be less

strict in determining when an answer is correct. In contrast, multiple choice questions leave

no room for teachers’ discretion in grading. However, this does not explain the marked

decrease in missing answers when the monitor is internal, nor why the manipulation favored

some demographic groups more than others. All of these suggests an active behavior behind

the manipulation.

Unfortunately, the dataset has no information on teachers that can be used to uncover

the mechanism behind the manipulation. Given that the manipulation was larger in those

regions that scored lower in the presence of an external monitor, a plausible conjecture would

be that manipulation is a means to prevent linking students’ performance to teachers pay

by making the results not comparable across schools or regions.

Another important matter is the consequences of cheating on the accumulation of human

capital. To access university, Italian students need to pass the final high school state exam

(esame di maturità). If admission to the university depended only on this exam and it
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was subject to similar manipulation patterns, it would create a problem of misallocation

of human capital: many students whose actual performance should not warrant access to

university would have the opportunity to do so, while others whose test scores were not

manipulated might not get this opportunity when they should. To mitigate this problem,

many universities have their own entry tests for students who want to enroll in certain

degrees. Another potential consequence is the allocation of scholarships during the first year

at the university, which in Italy is determined by family income. Finally, some public exams

for civil servants take into consideration the final score at the end of secondary education to

rank all candidates, so it could have some direct effects on employment.

This raises the question of how should the policy maker use the correction. INVALSI

implemented a sanctioning program aimed at discouraging cheating by focusing on schools’

reputation. Specifically, two thresholds were pre-specified. If the correction proposed by

Quintano et al. (2009) was smaller than both, the results would not be corrected, if it was

between them, they would be corrected, and if it was larger than both, the results would

not be returned. Lucifora and Tonello (2016) studied the consequences of this program

and found a small and not statistically significant effect on cheating in the following year’s

tests. An alternative use of the correction would be to base the assignment of monitors

on the amount of manipulation found in previous years: if schools with higher amount of

manipulation were more likely to be assigned external monitors, it would reduce the overall

incidence of cheating.

7 Comparison with Previous Studies

Bertoni et al. (2013) found that the presence of an external monitor had a negative impact

on test scores of students who were proctored by this monitor and also those proctored by

an internal monitor in the same school. Using the estimates from Section 4, I compute the

expected scores for the three groups: those with an external monitor, those with an internal

monitor in a school that had an external monitor in another class, and those in a school with
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only internal monitors.25 The direct effect can be then computed as the difference between

the expected scores of the first and the second groups, whereas the indirect effect is the

difference between the second and the third groups.

Table 7: Direct and indirect effect of external monitoring
2nd grade 5th grade 6th grade 8th grade 10th grade
M I M I M I M I M I

INDIRECT 4.6 2.6 3.1 1.8 0.6 -0.1 1.2 0.6 1.9 -0.2
DIRECT 3.0 2.4 1.8 0.7 0.5 0.5 0.6 0.3 1.1 1.5
OVERALL 7.7 5.1 4.8 2.5 1.1 0.4 1.8 1.0 3.0 1.3

The results shown in Table 7 largely support the findings in Bertoni et al. (2013), and

the external monitors have an effect both on the test scores of students proctored by them,

and the other students in the school. Both effects are important, and only in two Italian

exams was the indirect effect negligible. However, in contrast with their findings, the indirect

effect dominates in these data: the average direct and indirect effects equal 1.3 and 1.6%,

respectively, whereas in Bertoni et al. (2013) they amounted to 2.8 and 0.8%. This difference

could be attributed to the change in the assignment of external monitors. Before the 2012-13

academic year, principals had some degree of ability to assign the external monitor to the

class they preferred, whereas this choice was made by public procedure afterwards. Hence,

if principals assigned the external monitors to low-performing classes, that would bias the

estimates of the direct and indirect effects.

The results in this paper are only partially the same as those found in Battistin et al.

(2016): as shown in Table 5, manipulation was positively correlated with class size in only

six of the exams, and in one of them the opposite was true. Moreover, this effect was

stronger in the South & Islands region only for 2nd graders.26 These differences can be

partly explained because they focused on 2nd and 5th graders, which displayed the first and

third largest amount of manipulation in small classrooms of all exams. However, the change

in the assignment of the external monitor could also explain these differences.
25Because the characteristics were not the same across the three groups, I compute the expected value for

each student using the three sets of estimates, and average them over the whole sample.
26Results available upon request.
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The method currently used by INVALSI to correct for cheating is based on the approach

proposed by Quintano et al. (2009). It is based on a fuzzy clustering approach that depends

on four statistics: within class mean test scores, within class standard deviation of test

scores, within class average percentage of missing answers, and within class index of answer

homogeneity. Thus, if the mean test scores of a classroom are high relative to those found

in the treatment group, which are assumed to be free of manipulation, they are more likely

to be classified as manipulated. Similarly, the probability of being classified as manipulated

increases if their standard deviation, the average percentage of missing answers, or the index

of answer homogeneity is low.27

While manipulation can be reflected in those four statistics, this method suffers from two

problems: comparability and the existence of confounders. To see the first problem, notice

that the distributions of these statistics, and even their support, depend on the number of

questions and students in the class. Therefore, the same within class standard deviation

conveys different information if the classrooms are of different sizes, or if the tests have a

different number of questions.28

The correction proposed by Quintano et al. (2009) is positively correlated to the one

proposed in this paper (the linear correlation coefficient equals 0.52). Figure 7 shows their

distribution: the one proposed in this paper only leaves almost 20% of the test scores

unchanged, and a correction of less than 3 points (out of a maximum of 50) is applied

to nearly 90% of them. On average, the correction equals 1.4 points. In contrast, Quintano

et al. (2009) correction does not correct about twice as many test scores, but the average

correction for the remaining ones is much larger: more than 10% of the test scores have a

correction of at least 10 points, and the average correction equals 4 points.

Finally, Figure 8 compares the mean correction applied in each region by each correction

method and relates it to the actual change in mean test scores between the two groups,
27The index of answer homogeneity takes a value of zero when every student’s answers coincide, and takes

higher values, the more heterogeneous they are.
28For example, if the number of questions equals 2, and the number of students equals 2, the variance of

the test scores can take values {0, 1/4, 1}, but if the number of students equals 3, then it can take values
{0, 2/9, 6/9, 8/9}.
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Figure 7: Distribution of correction for cheating, 10th grade mathematics exam
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α̂ and Quintano et al. respectively denote the empirical cdf of the correction methods presented in this paper
and the one proposed by Quintano et al. (2009).

rIN − rEX . Both corrections lead to a change in the regional rankings, and regions where

the test scores were more manipulated are those in which the correction was the highest.

However, they greatly differ in their fit: the correction proposed by Quintano et al. (2009)

consistently overestimates the rIN − rEX , resulting in a larger reduction of the mean test

scores for students with an internal monitor. Conversely, the correction proposed in this

paper matches the mean difference between the two groups by region better.

8 Conclusion

In this paper, I propose a novel approach to detect test score manipulation and correct for it,

based on the comparison of a group of test scores suspected of having been manipulated with

a group of test scores that are assumed to be fair. Taking advantage of a natural experiment

in the Italian education system, I apply nonlinear panel data regression methods to describe

patterns in test score manipulation, and based on these estimates, I calculate the corrected

test scores.

The manipulation was limited in the North of Italy, frequent in the Center and widespread
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Figure 8: Correction for cheating, regional variation, 10th grade mathematics exam
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For each region, rIN − rEX denotes the mean difference in test scores between students with an internal and
an external monitor, α̂ denotes the mean correction of the method presented in this paper, and Quintano et
al. denotes the mean correction of the method proposed by Quintano et al. (2009).

in the South & Islands. Moreover, it tended to favor female and immigrant students.

Unobserved heterogeneity accounted for an important share of the total variation, and it

exhibited a substantial level of correlation within classrooms, reflecting a combination of

teacher effects, sorting of students, and peer effects. These findings are consistent with the

conjecture that teachers were responsible for the manipulation. In particular, the difference

between open-ended and multiple choice questions between the amount of manipulation and

the decrease of missing answers are negatively correlated. However, the exact mechanism

behind remains unknown. Future work should investigate why some groups benefit more

than others, the geographic patterns and the correlation between missing answers and

manipulation.

The correction method I propose allows the results of a classroom to be well or highly

correlated because of factors unrelated to manipulation, such as effective teachers or able

students. The correction then depends on how likely the observed result are to occur without

manipulation, and the higher and more unlikely the results are, the higher the correction.

For the majority of the classrooms the correction is quite modest or even zero, and it displays
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a large regional variation.
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Appendix

A Some linear algebra results

Let z be a vector of dimension T , Z the matrix whose main diagonal are the elements of vector

z, and the off diagonal elements all equal zero, ιT a vector of ones of dimension T , and G be a

T ×T matrix whose (i, j) element equals 1 (i < j), i.e. the elements below the main diagonal

equal one, and the remaining elements equal zero. Then, the sum of the permutations of

r ≤ T distinct elements from z is given by 0 for r = 0, and
∑K−r+1

k1=1 ...
∑T

kr=kr−1+1

∏r
j=1 zkj =

ι′T (ZG)r−1 ZιT for 1 ≤ r ≤ T . Now consider Equation 5. The probability of observing a

particular result, (b1, ..., bNc), can be written as

P (b) =

ˆ
[0,1]Nc

exp
(∑Nc

i=1

∑Q
q=1 biq (ηic + ξq)

)
∏Nc

i=1

∏Q
q=1 (1 + exp (ηic + ξq))

dC (uc; ρ)

To compute P (R1 ≥ r1, ..., RNc ≥ rNc), i.e. the probability that each student in class

c gets at least at many correct answers as they actually got, the preceding trick can be

combined with the numerical approximation of the integral with respect to the copula to

obtain an estimate of the aforementioned probability, which would be exact if not for the

integral. Formally,

P (R1 ≥ r1, ..., RNc ≥ rNc) =
∑
b1∈Br1

...
∑

bNc∈BrNc

ˆ
[0,1]Nc

exp
(∑Nc

i=1

∑Q
q=1 biq (ηic + ξq)

)
∏Nc

i=1

∏Q
q=1 (1 + exp (ηic + ξq))

dC (uc; ρ)

=

ˆ
[0,1]Nc

Nc∏
i=1

∑Q
s=ric

ι′Q (ZicG)s−1 ZicιQ∏Q
q=1 (1 + exp (ηic + ξq))

dC (uc; ρ)

≈ 1

N1

N1∑
j=1

Nc∏
i=1

[
1

N2

N2∑
h=2

∑Q
s=ric

ι′Q (ZicjhG)s−1 ZicjhιQ∏Q
q=1 (1 + exp (ηjh + ξq))

]
where Zic and Zicjh are the diagonal matrices whose (q, q) element equal exp (ηic + ξq) and

exp (ηjh + ξq), respectively.29 The approximation in the last row uses the algorithm presented

in Pereda-Fernández (2017), which evaluates the integral at a set of points that depend on
29Inclusion of covariates is straightforward and is achieved by letting zq = exp

(
η + ξq + x′1icβ + x′2icqζq

)
,

and substituting the denominator by
∏Q
q=1 exp

(
η + ξq + x′1icβ + x′2icqζq

)
.
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N1 and N2.

B Variable Selection

The following algorithm is used to select the covariates for each exam individually:

1. Estimate the RE estimator with all considered covariates, and select those with a

t-statistic of at least 1.96.

2. For the remaining covariates do forward selection with 5-fold cross validation using the

following algorithm:

(a) Split the sample into 5 groups of equal size.

(b) For each group, compute the estimate using the remaining 4 groups.

(c) Compute the likelihood of the selected group using this estimate.

(d) Sum the likelihood from the five groups, obtaining the cross-validated likelihood

(CVL).

(e) Select the variable that increases the CVL the most and repeat until there is no

CVL improvement.

3. Repeat steps 1-2 for the control group.

4. The variables selected for either the treatment or the control group conform the vector

xict to be used both for the RE and CBRE estimators.

Standard k-fold cross validation is computationally slow given the large dataset used in

this study. Consequently, the proposed algorithm is modified to reduce the required amount

of time to select the covariates. In particular, step 1 reduces the number of regressions

required in standard forward selection, which begins from the specification without regressors

and adds subsequent regressors one at a time. Moreover, in step 3 I randomly select a total

number of classrooms in the control group equal to the number of classrooms in the treatment
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group. On the other hand, in the regressions presented in the text I interact female dummies

with question effects, since the analysis in Appendix S2 suggests that there are non-trivial

difference between the two genders across questions. Finally, some variables could be good

predictors of students’ performance in either the treatment or control group, but not on

the other. Pooling both groups together could result in these variables not being selected,

especially if their relative sample sizes are markedly different. Thus, step 4 increases the

likelihood that this type of variables being selected.

The initial pool of covariates to choose from is the following: regional dummies, female

dummy, native Italian dummy, small class size (i.e. smaller than the median class size) a

quadratic polynomial of class size, number of classes in school, and interactions between

regional dummies and class size, and between regional dummies and number of classes in

school.
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Supplementary Material

S1 Full Results

Table 8: RE logit estimates
2nd grade 5th grade 6th grade 8th grade 10th grade
M I M I M I M I M I

ξ̂EX > ξ̂IN 0 0 4 0 29 5 2 9 3 0
ξ̂EX < ξ̂IN 32 39 37 82 10 54 36 37 40 88
ξ̂EX = ξ̂IN 0 0 6 0 9 12 7 32 7 0

Notes: EX and IN respectively denote the groups with the external and the internal monitor.
A coefficient is considered as larger than the other if it is significantly larger at the 95%
confidence level, and equal if none is statistically larger than the other.

Table 9: Correlation between RE logit and conditional FE logit estimates
2nd grade 5th grade 6th grade 8th grade 10th grade
M I M I M I M I M I

EX 1.00 0.87 1.00 0.98 1.00 0.97 0.97 1.00 1.00 0.95
IN 0.99 1.00 0.98 0.95 1.00 1.00 1.00 1.00 0.99 1.00
∆ 0.98 0.07 0.33 0.62 0.94 0.38 -0.91 -0.51 0.98 0.03

Notes: EX and IN respectively denote the groups with the external and the internal
monitor.

Table 10: Comparison between RE logit and logit estimates
2nd grade 5th grade 6th grade 8th grade 10th grade
M I M I M I M I M I

EX,6= 30 35 40 78 33 70 37 74 43 83
EX,= 2 4 7 4 15 1 8 4 7 5
IN,6= 32 39 46 82 45 71 45 77 47 88
IN,= 0 0 1 0 3 0 0 1 3 0

Notes: EX and IN respectively denote the groups with the external and the internal
monitor; = and 6= respectively denote that the coefficients are significantly equal
or different at the 95% level of confidence. The quantities represent the number of
questions that fit into each category for each exam.
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Table 11: RE & CBRE logit estimates, 2nd grade mathematics exam
RE CBRE

External Internal Difference External Internal Difference
(1) (2) (3) (4) (5) (6)

ξ̂ 10.99 19.97 -8.98 9.96 23.32 -13.35
(2.34) (0.57) (2.41) (2.48) (0.31) (2.50)

FEMALE -2.07 -0.94 -1.13 -1.83 -0.67 -1.16
(0.27) (0.06) (0.28) (0.10) (0.03) (0.11)

CENTER -1.91 2.63 -4.53 -2.27 0.63 -2.90
(0.54) (0.45) (0.70) (0.54) (0.18) (0.57)

SOUTH & ISLANDS -4.69 5.14 -9.83 -5.05 3.63 -8.68
(0.52) (0.45) (0.69) (0.53) (0.23) (0.58)

ITALIAN STUDENT 9.33 7.77 1.57 9.19 7.78 1.41
(0.59) (0.15) (0.61) (0.24) (0.07) (0.25)

NUMBER OF CLASSES 0.10 -0.34 0.44 -0.03 -0.40 0.38
(0.07) (0.02) (0.07) (0.07) (0.01) (0.07)

CLASS SIZE 0.30 0.06 0.24 0.59 0.07 0.53
(0.04) (0.01) (0.04) (0.04) (0.01) (0.04)

σ̂η 1.03 1.16 -0.14 1.05 1.06 -0.01
(0.01) (0.00) (0.01) (0.02) (0.00) (0.02)

ρ̂ - - - 1.62 0.85 0.77
(0.11) (0.00) (0.11)

Notes: ξ̂ denotes the APE of the question effects, σ̂η denotes the standard deviation of the individual effects
distribution, and ρ̂ the parameter of its Clayton copula. Columns 1-3 show the APE of the covariates and the
estimates of ση with the RE logit estimator (Equation 4); columns 4-6 show the same estimates and those of ρ with
the CBRE estimator (Equation 5).
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Table 12: RE & CBRE logit estimates, 5th grade mathematics exam
RE CBRE

External Internal Difference External Internal Difference
(1) (2) (3) (4) (5) (6)

ξ̂ -2.41 4.88 -7.30 -12.19 2.28 -14.47
(2.12) (0.54) (2.19) (1.34) (0.35) (1.38)

FEMALE -3.50 -2.66 -0.84 -3.61 -2.52 -1.09
(0.25) (0.06) (0.26) (0.07) (0.02) (0.07)

CENTER -2.04 0.04 -2.09 -1.80 1.95 -3.75
(0.48) (0.38) (0.61) (0.25) (0.42) (0.49)

SOUTH & ISLANDS -5.72 -1.31 -4.41 -6.19 0.90 -7.09
(0.46) (0.39) (0.60) (0.26) (0.44) (0.51)

ITALIAN STUDENT 8.17 8.38 -0.21 8.33 8.38 -0.05
(0.46) (0.11) (0.47) (0.14) (0.04) (0.14)

NUMBER OF CLASSES 0.23 -0.04 0.28 0.19 -0.02 0.22
(0.06) (0.01) (0.06) (0.03) (0.01) (0.04)

CLASS SIZE 0.19 0.12 0.07 0.69 0.47 0.22
(0.03) (0.01) (0.03) (0.02) (0.00) (0.02)

σ̂η 0.91 0.99 -0.08 0.91 0.92 -0.01
(0.01) (0.00) (0.01) (0.01) (0.00) (0.01)

ρ̂ - - - 2.14 1.46 0.68
(0.10) (0.01) (0.10)

Notes: ξ̂ denotes the APE of the question effects, σ̂η denotes the standard deviation of the individual effects
distribution, and ρ̂ the parameter of its Clayton copula. Columns 1-3 show the APE of the covariates and the
estimates of ση with the RE logit estimator (Equation 4); columns 4-6 show the same estimates and those of ρ with
the CBRE estimator (Equation 5).
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Table 13: RE & CBRE logit estimates, 6th grade mathematics exam
RE CBRE

External Internal Difference External Internal Difference
(1) (2) (3) (4) (5) (6)

ξ̂ -17.43 -6.28 -11.15 -24.89 -5.75 -19.14
(2.26) (0.77) (2.39) (2.99) (1.02) (3.16)

FEMALE -2.94 -2.49 -0.45 -2.89 -2.50 -0.38
(0.23) (0.06) (0.23) (0.09) (0.02) (0.09)

CENTER -2.72 -2.79 0.07 -4.13 -2.09 -2.04
(0.41) (0.33) (0.53) (0.75) (0.71) (1.04)

SOUTH & ISLANDS -8.34 -7.11 -1.23 -10.16 -6.81 -3.35
(0.38) (0.35) (0.51) (0.70) (0.76) (1.03)

ITALIAN STUDENT 9.14 8.42 0.72 9.01 8.35 0.66
(0.33) (0.09) (0.34) (0.14) (0.04) (0.15)

NUMBER OF CLASSES 0.08 0.07 0.01 0.12 0.02 0.10
(0.04) (0.01) (0.04) (0.08) (0.01) (0.08)

CLASS SIZE 0.25 0.32 -0.08 0.57 0.53 0.03
(0.03) (0.01) (0.03) (0.05) (0.01) (0.05)

σ̂η 0.79 0.78 0.01 0.82 0.78 0.04
(0.01) (0.00) (0.01) (0.01) (0.00) (0.01)

ρ̂ - - - 1.38 1.34 0.03
(0.06) (0.02) (0.06)

Notes: ξ̂ denotes the APE of the question effects, σ̂η denotes the standard deviation of the individual effects
distribution, and ρ̂ the parameter of its Clayton copula. Columns 1-3 show the APE of the covariates and the
estimates of ση with the RE logit estimator (Equation 4); columns 4-6 show the same estimates and those of ρ with
the CBRE estimator (Equation 5).
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Table 14: RE & CBRE logit estimates, 8th grade mathematics exam
RE CBRE

External Internal Difference External Internal Difference
(1) (2) (3) (4) (5) (6)

ξ̂ -4.45 -5.22 0.77 -6.29 -7.99 1.69
(2.12) (0.63) (2.21) (1.91) (0.54) (1.98)

FEMALE -4.23 -3.38 -0.85 -3.98 -3.12 -0.86
(0.24) (0.07) (0.25) (0.09) (0.02) (0.09)

CENTER -0.68 1.26 -1.94 -1.14 -0.29 -0.86
(0.35) (0.26) (0.44) (0.40) (0.27) (0.49)

SOUTH & ISLANDS -1.96 0.61 -2.57 -2.81 0.52 -3.33
(0.22) (0.14) (0.26) (0.20) (0.14) (0.25)

ITALIAN STUDENT 9.96 8.80 1.17 9.48 8.25 1.23
(0.39) (0.11) (0.40) (0.15) (0.04) (0.15)

NUMBER OF CLASSES 0.17 0.12 0.06 0.01 0.04 -0.03
(0.04) (0.01) (0.04) (0.04) (0.01) (0.04)

CLASS SIZE 0.37 0.38 -0.01 0.98 0.79 0.20
(0.03) (0.01) (0.03) (0.04) (0.01) (0.04)

σ̂η 0.85 0.86 -0.01 0.79 0.80 -0.01
(0.01) (0.00) (0.01) (0.00) (0.00) (0.00)

ρ̂ - - - 1.37 1.42 -0.06
(0.02) (0.01) (0.03)

Notes: ξ̂ denotes the APE of the question effects, σ̂η denotes the standard deviation of the individual effects
distribution, and ρ̂ the parameter of its Clayton copula. Columns 1-3 show the APE of the covariates and the
estimates of ση with the RE logit estimator (Equation 4); columns 4-6 show the same estimates and those of ρ with
the CBRE estimator (Equation 5).
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Table 15: RE & CBRE logit estimates, 2nd grade Italian exam
RE CBRE

External Internal Difference External Internal Difference
(1) (2) (3) (4) (5) (6)

ξ̂ 3.86 13.93 -10.07 4.83 15.06 -10.23
(1.78) (0.53) (1.86) (1.29) (0.33) (1.33)

FEMALE 1.42 1.84 -0.41 1.38 1.74 -0.35
(0.24) (0.06) (0.25) (0.17) (0.04) (0.18)

CENTER -0.15 0.09 -0.23 -1.02 -0.89 -0.13
(0.39) (0.24) (0.46) (0.43) (0.10) (0.44)

SOUTH & ISLANDS -1.39 1.84 -3.23 -1.73 1.38 -3.10
(0.33) (0.23) (0.40) (0.33) (0.11) (0.35)

ITALIAN STUDENT 9.13 7.03 2.10 8.65 6.89 1.76
(0.51) (0.13) (0.52) (0.37) (0.07) (0.38)

NUMBER OF CLASSES 0.00 -0.26 0.26 -0.03 -0.27 0.24
(0.06) (0.01) (0.06) (0.06) (0.01) (0.06)

CLASS SIZE 0.17 0.10 0.07 0.13 0.10 0.03
(0.03) (0.01) (0.03) (0.04) (0.00) (0.04)

σ̂η 0.79 0.88 -0.09 0.76 0.85 -0.08
(0.01) (0.00) (0.01) (0.00) (0.00) (0.00)

ρ̂ - - - 0.19 0.51 -0.32
(0.01) (0.00) (0.01)

Notes: ξ̂ denotes the APE of the question effects, σ̂η denotes the standard deviation of the individual effects
distribution, and ρ̂ the parameter of its Clayton copula. Columns 1-3 show the APE of the covariates and the
estimates of ση with the RE logit estimator (Equation 4); columns 4-6 show the same estimates and those of ρ with
the CBRE estimator (Equation 5).

41



Table 16: RE & CBRE logit estimates, 5th grade Italian exam
RE CBRE

External Internal Difference External Internal Difference
(1) (2) (3) (4) (5) (6)

ξ̂ 6.99 11.14 -4.15 4.43 9.55 -5.12
(1.30) (0.38) (1.35) (0.54) (0.17) (0.57)

FEMALE 2.57 2.89 -0.32 2.57 2.90 -0.33
(0.14) (0.03) (0.14) (0.03) (0.01) (0.03)

CENTER 1.15 2.73 -1.59 1.21 2.86 -1.66
(0.27) (0.17) (0.32) (0.09) (0.08) (0.12)

SOUTH & ISLANDS -2.92 0.53 -3.45 -2.89 0.66 -3.55
(0.27) (0.19) (0.33) (0.09) (0.08) (0.12)

ITALIAN STUDENT 9.77 9.10 0.67 9.86 9.12 0.74
(0.27) (0.06) (0.27) (0.05) (0.01) (0.05)

NUMBER OF CLASSES 0.02 -0.12 0.14 0.02 -0.13 0.15
(0.04) (0.01) (0.04) (0.01) (0.00) (0.01)

CLASS SIZE 0.14 0.14 -0.01 0.17 0.18 -0.01
(0.02) (0.00) (0.02) (0.01) (0.00) (0.01)

σ̂η 0.93 0.95 -0.02 0.91 0.93 -0.03
(0.01) (0.00) (0.01) (0.01) (0.00) (0.01)

ρ̂ - - - 3.95 2.83 1.12
(0.03) (0.01) (0.03)

Notes: ξ̂ denotes the APE of the question effects, σ̂η denotes the standard deviation of the individual effects
distribution, and ρ̂ the parameter of its Clayton copula. Columns 1-3 show the APE of the covariates and the
estimates of ση with the RE logit estimator (Equation 4); columns 4-6 show the same estimates and those of ρ with
the CBRE estimator (Equation 5).
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Table 17: RE & CBRE logit estimates, 6th grade Italian exam
RE CBRE

External Internal Difference External Internal Difference
(1) (2) (3) (4) (5) (6)

ξ̂ -9.76 2.69 -12.45 -13.94 0.75 -14.69
(1.84) (0.72) (1.97) (0.70) (0.30) (0.76)

FEMALE 3.64 3.67 -0.02 3.68 3.67 0.01
(0.18) (0.05) (0.19) (0.04) (0.01) (0.04)

CENTER -0.98 0.24 -1.22 -0.82 0.34 -1.15
(0.37) (0.30) (0.48) (0.13) (0.12) (0.18)

SOUTH & ISLANDS -5.17 -4.03 -1.13 -4.97 -3.99 -0.98
(0.37) (0.32) (0.49) (0.13) (0.13) (0.18)

ITALIAN STUDENT 13.40 12.36 1.04 13.56 12.42 1.14
(0.29) (0.08) (0.30) (0.06) (0.02) (0.06)

NUMBER OF CLASSES 0.21 0.04 0.16 0.22 0.04 0.18
(0.03) (0.01) (0.04) (0.01) (0.00) (0.01)

CLASS SIZE 0.25 0.36 -0.11 0.34 0.41 -0.07
(0.02) (0.01) (0.03) (0.01) (0.00) (0.01)

σ̂η 0.87 0.87 0.00 0.84 0.85 -0.01
(0.01) (0.00) (0.01) (0.01) (0.00) (0.01)

ρ̂ - - - 3.64 2.77 0.86
(0.12) (0.01) (0.12)

Notes: ξ̂ denotes the APE of the question effects, σ̂η denotes the standard deviation of the individual effects
distribution, and ρ̂ the parameter of its Clayton copula. Columns 1-3 show the APE of the covariates and the
estimates of ση with the RE logit estimator (Equation 4); columns 4-6 show the same estimates and those of ρ with
the CBRE estimator (Equation 5).
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Table 18: RE & CBRE logit estimates, 8th grade Italian exam
RE CBRE

External Internal Difference External Internal Difference
(1) (2) (3) (4) (5) (6)

ξ̂ 5.87 7.16 -1.28 3.57 5.06 -1.49
(1.71) (0.48) (1.77) (0.82) (0.23) (0.85)

FEMALE 3.16 3.12 0.04 3.15 3.11 0.05
(0.15) (0.04) (0.16) (0.03) (0.01) (0.03)

CENTER 0.02 -0.14 0.16 0.04 -0.14 0.18
(0.14) (0.09) (0.17) (0.05) (0.04) (0.06)

SOUTH & ISLANDS -1.70 -1.14 -0.57 -1.71 -1.06 -0.65
(0.14) (0.05) (0.15) (0.05) (0.02) (0.06)

ITALIAN STUDENT 11.54 10.11 1.43 11.60 10.09 1.51
(0.26) (0.07) (0.27) (0.05) (0.02) (0.06)

NUMBER OF CLASSES 0.11 0.10 0.00 0.10 0.11 0.00
(0.03) (0.01) (0.03) (0.01) (0.00) (0.01)

CLASS SIZE 0.36 0.33 0.04 0.41 0.37 0.03
(0.02) (0.00) (0.02) (0.01) (0.00) (0.01)

σ̂η 0.86 0.87 -0.01 0.84 0.85 -0.01
(0.01) (0.00) (0.01) (0.01) (0.00) (0.01)

ρ̂ - - - 3.85 2.77 1.08
(0.09) (0.01) (0.09)

Notes: ξ̂ denotes the APE of the question effects, σ̂η denotes the standard deviation of the individual effects
distribution, and ρ̂ the parameter of its Clayton copula. Columns 1-3 show the APE of the covariates and the
estimates of ση with the RE logit estimator (Equation 4); columns 4-6 show the same estimates and those of ρ with
the CBRE estimator (Equation 5).

44



Table 19: RE & CBRE logit estimates, 10th grade Italian exam
RE CBRE

External Internal Difference External Internal Difference
(1) (2) (3) (4) (5) (6)

ξ̂ 6.07 -6.91 12.98 4.40 -7.95 12.35
(1.56) (0.98) (1.84) (0.76) (0.37) (0.85)

FEMALE 2.30 2.88 -0.57 2.22 2.56 -0.34
(0.14) (0.05) (0.15) (0.04) (0.02) (0.04)

CENTER -5.00 9.63 -14.63 -4.95 10.73 -15.68
(0.37) (0.28) (0.46) (0.18) (0.20) (0.27)

SOUTH & ISLANDS -10.35 8.09 -18.44 -10.44 8.55 -18.99
(0.38) (0.33) (0.50) (0.19) (0.30) (0.35)

ITALIAN STUDENT 8.12 8.51 -0.39 8.04 7.93 0.11
(0.21) (0.08) (0.22) (0.05) (0.02) (0.06)

NUMBER OF CLASSES 0.16 0.16 0.00 0.17 0.14 0.03
(0.02) (0.01) (0.02) (0.01) (0.00) (0.01)

CLASS SIZE 0.98 0.90 0.08 1.02 0.86 0.16
(0.01) (0.00) (0.01) (0.01) (0.00) (0.01)

σ̂η 0.76 0.83 -0.07 0.74 0.80 -0.06
(0.00) (0.00) (0.00) (0.00) (0.00) (0.00)

ρ̂ - - - 3.77 2.02 1.76
(0.02) (0.00) (0.02)

Notes: ξ̂ denotes the APE of the question effects, σ̂η denotes the standard deviation of the individual effects
distribution, and ρ̂ the parameter of its Clayton copula. Columns 1-3 show the APE of the covariates and the
estimates of ση with the RE logit estimator (Equation 4); columns 4-6 show the same estimates and those of ρ with
the CBRE estimator (Equation 5).

Table 20: Linear correlation equivalent of the copula estimates, all exams
2nd grade 5th grade 6th grade 8th grade 10th grade
M I M I M I M I M I

EX 0.65 0.14 0.73 0.86 0.60 0.85 0.60 0.86 0.77 0.86
IN 0.45 0.31 0.62 0.80 0.59 0.79 0.61 0.79 0.63 0.71

Notes: EX and IN respectively denote the groups with the external and the internal
monitor. The coefficients equal the linear correlation of a Gaussian copula that yields the
same value of the Kendall’s τ statistic as the estimates of the Clayton copula parameter.
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Figure 9: Distribution of the likelihood by regions, 10th grade mathematics exam
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groups with the external and the internal monitor.

Figure 10: Sensitivity of the corrected test scores to the minimum probability of
manipulation, 10th grade mathematics exam
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Figure 11: Correction for cheating, provincial variation, 2nd grade mathematics exam
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Figure 12: Correction for cheating, provincial variation, 5th grade mathematics exam
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Figure 13: Correction for cheating, provincial variation, 6th grade mathematics exam
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Figure 14: Correction for cheating, provincial variation, 8th grade mathematics exam
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Figure 15: Correction for cheating, provincial variation, 2nd grade Italian exam
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Figure 16: Correction for cheating, provincial variation, 5th grade Italian exam
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Figure 17: Correction for cheating, provincial variation, 6th grade Italian exam
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Figure 18: Correction for cheating, provincial variation, 8th grade Italian exam
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Figure 19: Correction for cheating, provincial variation, 10th grade Italian exam
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S2 Conditional Fixed Effects Approach

Consider the model given by 3. If εicq is logistically distributed, one can follow Chamberlain

(1980) to overcome the incidental parameter problem, obtaining estimates of the question

fixed effects.30. Notice however, that because of multicollinearity, it is necessary to exclude

one of the question effects for each group. Then, the interpretation of the remaining Q− 1

question effects is the difficulty of question q relative to the excluded question. In other

words, I normalize the excluded question, q̃, to have ξq̃ = 0.

Let Br be defined as the set of permutations of y such that the total number of correct

answers is r, i.e. Br ≡
{
b :
∑Q

q=1 bq = r
}
.31 Under the assumption of no cheating, once the

student-class effects are accounted for, the answers of two students are independent. Hence,

the log-likelihood function is given by

L (ξ) =
C∑
c=1

Nc∑
i=1

log [P (yic|ric)] =
C∑
c=1

Nc∑
i=1

y′icξ −
C∑
c=1

Nc∑
i=1

log

 ∑
b∈Bric

exp (b′ξ)

 (9)

S2.1 Results

Figure 20 shows the estimates of ξ for the mathematics exam of 10th graders.32 Similarly

to Figure 1, there is a weak pattern, as more difficult questions tend to have slightly larger

differences between the treatment and control groups estimates. Further, the estimates

of ξq are significantly different for the treatment and the control groups for 34 out of 49

questions, of which 29 show that the coefficient for the treatment group is significantly

smaller. Moreover, although the coefficients are not directly comparable to the estimates

shown in Figure 2, the relation between the two of them is almost linear, with a correlation

coefficient of approximately one for this exam, suggesting that the parametric assumption
30As usual in this kind of setups, the identification relies on a parametric assumption of an unobservable

variable that is not verifiable. As recently showed by Bonhomme (2012), it is possible to estimate the
question fixed effects even if the parametric distribution of εicq is not logistic. However, given the large size
of the data set, both in terms of number of students and of number of questions in an exam, assuming a
distribution other than the logistic is computationally impractical.

31The total number of permutations equals
(
Q
r

)
.

32Since I had to exclude one of the questions to avoid multicollinearity, and in order to make them as
interpretable as possible, I excluded the question that was more frequently correctly answered.

56



does not play a big role in determining the value of the coefficients. These results are robust

to most exams, as shown in Table 21.

Figure 20: Conditional FE logit estimates, 10th grade mathematics exam
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and the group with an internal monitor (IN). They are reported along with the 95% confidence intervals,
and sorted by how frequently they were correctly answered by students proctored by an external monitor.

Table 21: Conditional FE logit estimates
2nd grade 5th grade 6th grade 8th grade 10th grade
M I M I M I M I M I

ξ̂EX > ξ̂IN 4 3 1 2 0 2 2 1 6 4
ξ̂EX < ξ̂IN 6 18 32 18 39 8 6 37 29 13
ξ̂EX = ξ̂IN 21 17 13 61 8 60 36 39 14 70

Notes: EX and IN respectively denote the groups with the external and the internal monitor.
I and M respectively denote the Italian and mathematics exams. A coefficient is considered
as larger than the other if it is significantly larger at the 95% confidence level, and equal if
none is statistically larger than the other.

Another alternative is to consider the estimation of the same coefficients for different

demographic groups, such as gender. The comparison between the treatment and control

groups for each of the genders is very similar to that of the whole population. However, even

in the absence of manipulation, there are remarkable gender differences in performance (first

three rows in Table 22), with male students performing relatively better than females in 17

questions, and the other way around in 16 questions. For the control group these differences

are increased (26 and 19, respectively), which could reflect both the manipulation of the test
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scores and the increase in the precision of the estimates derived from the increased sample

size.

Table 22: Conditional FE logit estimates by gender
2nd grade 5th grade 6th grade 8th grade 10th grade
M I M I M I M I M I

ξ̂EX,MA > ξ̂EX,FE 5 25 24 16 14 12 18 39 17 13
ξ̂EX,MA < ξ̂EX,FE 12 1 0 1 17 5 5 0 16 55
ξ̂EX,MA = ξ̂EX,FE 14 12 22 64 16 53 21 38 16 19
ξ̂IN,MA > ξ̂IN,FE 6 38 26 50 19 32 28 40 26 18
ξ̂IN,MA < ξ̂IN,FE 16 0 8 12 25 20 11 18 17 62
ξ̂IN,MA = ξ̂IN,FE 9 0 12 19 3 18 5 19 6 7

Notes: EX and IN respectively denote the groups with the external and the internal monitor,
whereas MA and FE denote male and female students. I and M respectively denote the Italian and
mathematics exams. A coefficient is considered as larger than the other if it is significantly larger
at the 95% confidence level, and equal if none is statistically larger than the other.

This result is robust to all exams, but not to all possible categories, as shown in Tables 23

and 24. In particular, splitting the sample by class size leads to almost no differences in the

estimates in the treatment group, but significant differences in the control group for most

exams. Focusing on the three macro regions of Italy, there are large differences between the

estimates for the control groups in the North and South & Islands regions.

Table 23: Conditional FE logit estimates by class size
2nd grade 5th grade 6th grade 8th grade 10th grade
M I M I M I M I M I

ξ̂EX,SM > ξ̂EX,LA 0 3 15 0 2 0 4 0 15 11
ξ̂EX,SM < ξ̂EX,LA 5 0 0 0 0 0 2 0 6 32
ξ̂EX,SM = ξ̂EX,LA 26 35 41 81 45 70 38 77 28 44
ξ̂IN,SM > ξ̂IN,LA 14 26 22 64 20 5 31 16 28 21
ξ̂IN,SM < ξ̂IN,LA 4 2 1 0 9 22 5 3 6 48
ξ̂IN,SM = ξ̂IN,LA 13 10 23 17 18 43 8 58 15 18

Notes: EX and IN respectively denote the groups with the external and the internal monitor,
whereas SM and LA denote that the students were in classrooms of size smaller or equal to the
median, and larger. I and M respectively denote the Italian and mathematics exams. A coefficient
is considered as larger than the other if it is significantly larger at the 95% confidence level, and
equal if none is statistically larger than the other.
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Table 24: Conditional FE logit estimates by region
2nd grade 5th grade 6th grade 8th grade 10th grade
M I M I M I M I M I

ξ̂EX,NO > ξ̂EX,SI 1 1 1 0 1 0 1 0 0 0
ξ̂EX,NO < ξ̂EX,SI 1 3 0 16 6 2 14 10 14 30
ξ̂EX,NO = ξ̂EX,SI 29 34 44 65 40 68 29 67 35 57
ξ̂IN,NO > ξ̂IN,SI 7 8 1 0 1 5 0 0 3 2
ξ̂IN,NO < ξ̂IN,SI 16 12 35 76 38 20 43 65 39 71
ξ̂IN,NO = ξ̂IN,SI 8 18 10 5 8 45 1 12 7 14

Notes: EX and IN respectively denote the groups with the external and the internal monitor,
whereas NO and SI denote that the students were from the North and South & Islands regions.
I and M respectively denote the Italian and mathematics exams. A coefficient is considered as
larger than the other if it is significantly larger at the 95% confidence level, and equal if none is
statistically larger than the other.

S3 Heterogeneous Question Fixed Effects

Equation 4 is based on the assumption that once the combined student-class effects are

controlled for, there is no correlation in students’ answers, i.e. the question effects are

homogeneous across all students. This assumption could be violated if teachers are more

skilled to teach some particular topics than others, which would create correlation in the

question effects among students within classrooms, even without manipulation. A way to

overcome this would be to use the observations of a randomly chosen student from each

classroom. Since the correlation is caused by the teacher, then students from different

classrooms would be affected by a set of independent effects. Moreover, I avoid making

any distributional assumption of the individual effects, for which I use the conditional fixed

effects logit estimator, whose likelihood function is given by

L (β) =
C∑
c=1

log
(
P
(
yi(c)c|ri(c)c

))
=

C∑
c=1

yi(c)cξ −
C∑
c=1

log

 ∑
b∈Bri(c)c

exp (bξ)

 (10)

where i (c) denotes a randomly chosen student from class c. This strategy, unlike the

precedent, does not provide a unique estimator, since there are as many as permutations

of students:
∏C

c=1 Nc. Given the large number of possible estimates, I randomly select one

student from each classroom M = 1000 times and then report the median estimate across

repetitions. Regarding the confidence intervals, I use the 2.5 and 97.5 percentiles. The

results are shown in Table 25. For the treatment group, they are roughly the same as the
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ones obtained by using all the students in each classroom, and only for one of the questions in

the 10th grade Italian exam the estimates are significantly different. For the control group

this is not always the case, and in two of the exams (8th and 10th grade Italian exams)

the coefficients for the majority of the questions were significantly different. This reflects

the manipulation, as well as the larger sample size for the control group, which tightens the

confidence intervals. However, since the correction is based on the estimates with an external

monitor, the possibility of having heterogeneous question fixed effects would have a modest

impact on its reliability.

Table 25: Conditional FE logit estimates, one student per classroom
2nd grade 5th grade 6th grade 8th grade 10th grade
M I M I M I M I M I

EX, 6= 0 0 0 0 0 0 0 0 0 1
EX,= 31 46 47 44 49 38 81 70 77 86
IN, 6= 7 7 0 6 12 12 2 37 1 70
IN,= 24 39 47 38 37 26 79 33 76 17

Notes: EX and IN respectively denote the groups with the external and the internal
monitor, = and 6= respectively denote the number of coefficients whose 95% confidence
intervals overlapped or did not overlap.
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