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Abstract
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1 Introduction

Some empirical questions involve the outcomes of several individuals. In a panel data setting,

this requires the estimation of the joint distribution of the unobserved heterogeneity. For

example, the probability of a woman being employed conditional on the employment status

of her husband, which is larger for married women. Part of this difference can be accounted

by differences in the observed characteristics. However, the remaining fraction could be due

to correlation in the unobservables.

This paper addresses the estimation of a binary choice panel data model when the

unobserved heterogeneity is correlated across individuals in the same cluster (group). In

this setting, available binary choice panel data estimators either ignore the correlation or

do not account for the distribution of individual effects: in the first case the estimated

probability is biased, and in the second case they only estimate some of its components, so

it is not possible to estimate such probabilities.

There are three main contributions in this paper. First, I present the Copula-Based

Random Effects estimator (CBRE) for clustered data. It is a binary choice panel data

estimator that acknowledges the correlation of the unobservables for individuals in the same

cluster and can consistently estimate the probability of joint and conditional events when

there is such correlation. Second, I propose an algorithm for the numerical approximation of

high-dimensional integrals with Archimedean copulas. Simulation results indicate that, for

a similar precision level, it is faster than alternative simulation methods. Third, I estimate

the correlation of the unobserved propensity to work of married couples in several countries

in Europe, finding that this correlation and the covariates have a similar explanatory power.

I consider a setup in which outcomes are correlated for individuals in the same cluster,

but they are independent across them. Clusters are present in many real world situations

because agents often share the same environment. For example, test scores are correlated

within classroom (Hanushek, 1971), which reflects the unobserved teacher’s quality.

I model the marginal distributions and the copula of the random effects separately, which
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together characterize their joint distribution. This constitutes a flexible way of modeling the

correlation, as it allows the combination of different copulas and marginals. Moreover, there

is no loss of generality, as any continuous multivariate distribution can be expressed in terms

of a multivariate copula and the marginals (Sklar, 1959). In fact, the standard Random

Effects (RE) estimator is a particular case of the CBRE when the copula is independent.

I present the main results using a parametric copula. Because modeling the correlation

of the unobserved heterogeneity is important, I adapt Schennach and Wilhelm (2017) test

to this framework to select the most appropriate copula. This test compares the value of the

likelihood with any two parametric copulas, and it can establish if one of them is statistically

better than the other at fitting the data, even if neither is the true one. I also present a test

of independence of the copula when the parameter lies at the boundary of the parameter

space under the null hypothesis, which is the case for several parametric copulas.

This paper builds on the literature of binary choice panel data models (Chamberlain,

1984; Arellano and Bonhomme, 2011). The early focus was on the identification of the slope

parameter when the unobserved heterogeneity is unrestricted. Prominent examples include

the Conditional Fixed Effects Logit (Chamberlain, 1980), the Maximum Score Estimator

(Manski, 1975, 1987), or variations of it (Lee, 1999). These estimators rely on parametric

assumptions on the error term or that some regressors have unbounded support (Chamberlain,

2010). However, such estimators ignore the unobserved heterogeneity, so they cannot estimate

joint probabilities on their own. An alternative approach would be to correct the bias arising

from the incidental parameter problem (Hahn and Newey, 2004; Fernández-Val, 2009), which

is feasible when the number of periods grows to infinity.

Finally, the random effects approach assumes that the unobserved heterogeneity has

a known parametric distribution, frequently a probit with normally distributed individual

effects (Butler and Moffitt, 1982). This approach has the advantage of jointly estimating

the slope parameters and the distribution of the unobserved heterogeneity, allowing for the

estimation of functions that depend on both, such as joint probabilities.
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Regarding the second contribution, RE estimators need to numerically approximate an

integral with respect to the distribution of the individual effects. If they are independent

across individuals as in standard RE estimators, the integral is one-dimensional. However,

when they are dependent the dimension of the integral equals the number of individuals

in each cluster, making the estimator subject to the curse of dimensionality. Thus, much

of the empirical analysis has been constrained to the usage of quadrature methods (Butler

and Moffitt, 1982) for the integration when the latent variable has a low dimension (up to

4), or simulation-based methods (Geweke, 1989; Hajivassiliou et al., 1996), which are often

restricted to the multivariate normal distribution. I propose an algorithm to approximate

high-dimensional integrals numerically when the copula is Archimedean, and it can also be

adapted to elliptical copulas. I compare the performance of the algorithm to that of Monte

Carlo integration, and show that this algorithm overcomes the curse of dimensionality for

the type of approximations considered.

To illustrate the applicability of the estimator, I estimate the correlation in the individual

propensity to work of married couples for several European countries. There is evidence that

people tend to marry to others with similar observed characteristics (Bruze, 2011; Charles

et al., 2013), and I find that there is also a moderate degree of correlation in the unobservables

that is heterogeneous across countries.

I decompose the difference in the probability of being employed for women married

to either employed or unemployed husbands, into an endowment and a homophily effect.

Both effects are statistically significant for every country, and the unobserved correlation

that determines the homophily effect accounts for a larger share of the difference than the

endowment effect in about half of them. In particular, it tends to be larger in Southern

European countries and smaller in Northern ones. Moreover, I compute some counterfactual

probabilities, finding that ignoring this correlation produces biases in the estimation of the

probability that at least one member of the couple is employed in each period.

The rest of the paper is organized as follows. In Section 2 I describe the econometric

4



framework and present the estimator, along with the specification tests. In Section 3 I discuss

the efficiency of the CBRE estimator relative to alternative methods. Section 4 describes

the algorithm used for the approximation of the multidimensional integral. In Section 5

I conduct a Monte Carlo analysis, and the study on labor supply in couples is shown in

Section 6. Finally, Section 7 concludes. All proofs are shown in Appendix A.

2 Framework and Estimation

Consider the following binary panel data setup:

yigt = 1
(
y∗igt ≥ 0

)
(1)

y∗igt = ηig + x′igtβ0 + εigt

where the econometrician observes the dependent variable yigt and the covariates xigt for

agent i = 1, ..., Ng in cluster g = 1, ..., G at time t = 1, ..., T , and 1 (·) denotes the indicator

function. Relative to the iid data framework, there exist clusters of sizeNg and the individual

effects ηig can be correlated within clusters. Using the taxonomy in Manski (1993), they are

correlated effects.

Equation 1 is modeled as a random effects model, so the distributions of the unobservables

are parametric. Denote the distribution of εigt by Fε and the marginal distribution of the

individual effects by Fη (ηig|xig;σ0), where xig ≡ (xig1, ..., xigT )′, and xg ≡
(
x1g, ..., xNgg

)′
.

Moreover, denote the ranks of the individual effects by uig ≡ Fη (ηig|xig;σ0), such that

ug ≡
(
u1g, ..., uNgg

)′
. To stress the relation between the individual effects and the ranks, I

henceforth denote the former by η (uig|xig;σ0). The correlation of the individual effects is

modeled with the copula C (ug|xg; ρ0) which, together with the marginals, characterizes their

joint distribution. σ0 and ρ0 respectively denote the parameters of the marginal distribution

and the copula of the individual effects. The latter determines the amount of correlation of

these effects and typically nests the independence copula.
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The cluster structure may also be reflected on the distribution of the covariates, which

could be correlated across time and within clusters, but not across clusters. Formally,

Assumption 1. ug is iid for all g = 1, ..., G, xg are iid ∀g = 1, ..., G, and εigt are iid for all

i = 1, ..., Ng, g = 1, ..., G, t = 1, ..., T .

Hence, I consider a static model in which there could be sorting on observables and

unobservables, both of which would determine the outcome variable. On the other hand,

I am ruling out time-varying individual effects and dynamic effects of both the dependent

variable and the covariates. Note however, that it would be possible to consider a richer

model that combines the within cluster dependence with individual serial correlation.

As usual in discrete choice models, the variance of εigt is fixed, and the slope parameters

and the variance of the random effects reflect this normalization. Moreover, if xigt includes

the constant term or a set of dummies for every period, the mean of the random effect is

normalized to zero. To keep notation compact, define CX (ug; ρ0) ≡ C (ug|xg; ρ0). If the

covariates are discrete, it is possible to use a different copula for each distinct value of the

covariates, and if they are continuous, one could parameterize it. E.g., for the Gaussian

copula, one could let ρ (x) = exp (x′ρ)− 1/exp (x′ρ) + 1.

Let θ ≡ (β′, σ′, ρ′)′ and zigt ≡
(
yigt, x

′
igt

)′
. Denote vectors of stacked individual variables

by the ig subscript, and vectors of stacked cluster-individual variables by the g subscript.

The log-likelihood function is given by

L (θ) =
G∑
g=1

log (`g (zg; θ)) ≡
G∑
g=1

log
ˆ

[0,1]Ng

Ng∏
i=1

Pig (zig, uig;µ) dCX (ug; ρ)
 (2)

where Pig (zig, uig;µ) is the individual contribution to the likelihood, i.e. Pig (zig, uig;µ) ≡∏T
t=1

[
1− Fε

(
−
(
η (uig|xig;σ) + x′igtβ

))]yigt

Fε
(
−
(
η (uig|xig;σ) + x′igtβ

))1−yigt . The CBRE

estimator is given by θ̂ = arg maxθ∈Θ L (θ), and it requires the integration of a product over

a potentially large dimensional space. Nonparametric identification of all the components

of Equation 2 cannot be attained under weak assumptions. This lack of identification is
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formally addressed in Appendix S1. The asymptotic distribution of the CBRE estimator

is shown in Appendix S2. Relative to standard RE estimators, it requires the number of

individuals in a cluster to be finite and some regularity conditions on the copula.

A particular case of this model was considered by Antweiler (2001), who modeled the

unobserved heterogeneity as the sum of a group and an individual effect. Also, a series of

papers assumed that all individuals in the same group had the same unobserved effect. Lin

and Ng (2012) and Bonhomme and Manresa (2015) considered a linear panel data framework

in which group membership is unknown, and they proposed estimators that account for it.

Moreover, the latter allows the group effect to be time-varying. On the other hand, Bester

and Hansen (2016) considered the estimation with group-effects in a nonlinear panel data

framework with known group membership. These estimators require that the number of

periods and individuals grow to infinity, either at the same or a different rate. This contrasts

with the current setting, in which the number of periods is small and fixed, which limits the

amount of unobserved heterogeneity that can be identified.

2.1 Estimation of Joint and Conditional Events

Let S denote the set of permutations of yg ≡
(
y1g1, ..., y1gT , ..., yNggT

)
in which an event of

interest occurs. In the labor supply example, such event could be that at least one of the

two partners is employed in every period, i.e. S = {yg : y1gt + y2gt ≥ 1∀t}, where yigt = 1 if

individual i is employed at time t. The probability of such an event is given by

P (yg ∈ S|xg) =
∑
b∈S

P (yg = b|xg) =
∑
b∈S

ˆ
[0,1]Ng

Ng∏
i=1

T∏
t=1

P (bgt|xigt, uig) dCX (ug; ρ0) (3)

where P (bgt|xigt, uig) =
[
1− Fε

(
−
(
η (uig|xig;σ) + x′igtβ0

))]bgt

Fε
(
−
(
η (uig|xig;σ) + x′igtβ0

))1−bgt .

To estimate the probability that the event of interest occurs, replace θ0 by θ̂ and approximate

the integral as shown in Section 4. The computation of a conditional event is straightforward

given the estimates of the joint and marginal events: the probability of an event A given B
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equals their joint probability divided by the marginal of the event B.

2.2 Choice of Copula and Specification Tests

CBRE can be implemented with any copula, including flexible ones such as mixture copulas

(Trivedi et al., 2007) or Bernstein copulas (Sancetta and Satchell, 2004; see Appendix S7 for

further details). However, such options are practical as long as the dimension of the clusters

is small, and even then they may be slow to compute. This restricts the class of copulas to

those that are computationally feasible, but in principle it is unknown which of them is the

most appropriate. One possibility is to select the copula with a test.

Testing a parametric copula against another

Vuong (1989) proposed a test to choose between two parametric models by comparing

their estimated likelihood. This test can be used to compare any pair of copulas and

determine if either provides a statistically better fit than the other, even if neither is the

true copula. However, it requires a pretest to determine if the variance of the difference of

the likelihood is zero, i.e. if the test is in the degenerate. This can occur when both models

are observationally equivalent, which could be the case in this paper, since the copula is not

nonparametrically identified. To overcome this issue, Shi (2015) and Schennach and Wilhelm

(2017) proposed each a test that is non degenerate and does not require pretesting. I use

the latter, and I describe in Appendix S5 how it is adapted to the present setup. Because

the copula models a vector of latent variables, existing nonparametric tests for copulas (e.g.,

Prokhorov et al., 2019) cannot be used, since they require the variables to be observed.

Given the estimates with several copulas, one would choose the one that attains the

maximum likelihood, and test it against any of the other copulas to determine if it is

statistically better. Note that this test can also be used to test the marginal distribution of

the individual effects (e.g., normal versus Laplace distribution), or the distribution of the

time-varying unobserved heterogeneity (e.g., probit versus logit).

Testing for independence of the copula
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The researcher may want to test the hypothesis of independence of the copula to justify

using the standard RE estimator (e.g., if the estimand of interest does not depend on the

copula). For most parametric copulas, the independence case is a particular value of ρ,

denoted by ρind, so testing for independence amounts to testing H0 : ρ = ρind. If ρind lies

in the interior of the parameter space (e.g., for the bivariate Gaussian copula, H0 : ρ = 0,

where ρ ∈ [−1, 1]), it is easy to test the null hypothesis using standard tests, such as a t-test.

A more complicated situation arises if ρind lies on the boundary of the parameter space,

e.g., Clayton (0), Gumbel (1), or Frank (0). Self and Liang (1987) showed that in this case,

the maximum likelihood estimator is still consistent, but not asymptotically normal. For

expositional clarity, I focus on the case in which ρ is univariate. Let W ∼ N (0, σ2
W ), where

σ2
W is the element of the inverse of the information matrix that corresponds to ρ. The limiting

distribution of
√
G
(
ρ̂− ρind

)
is given by W1 (W > 0). Hence, the asymptotic distribution

of a Wald test of independence is a 50:50 mixture of a degenerate distribution at 0 and a χ2
1

under the null hypothesis. Then, one would not accept the null hypothesis of independence

if ρ̂ is greater than the 95th percentile of this mixture distribution.

An important aspect to take into consideration in all cases is the possible error in

the estimation of the asymptotic variance caused by the numerical approximation. If the

estimated standard errors are excessively small, it would lead to a low rejection rate of the

null hypothesis. The simulations in Skrainka and Judd (2011) indicate that this problem is

particularly severe for simulation-based approximations.

3 Efficiency

Denote the vector of marginal parameters by µ ≡ (β′, σ′)′. The RE estimator, denoted by

µ̃, is the maximizer of the following function:

L̃ (µ) =
G∑
g=1

Ng∑
i=1

log (`ig (zig;µ)) ≡
G∑
g=1

Ng∑
i=1

log
ˆ 1

0

Ng∏
i=1

Pig (zig, uig;µ) duig

 (4)
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Under the correct parametric assumptions and suitable regularity conditions, which are

discussed in Appendix S2, RE and CBRE are consistent estimators of µ and asymptotically

normal. If one is only interested in µ or functions that depend on it, such as Average Partial

Effects (APE; see Appendix S3 for further details), one could use either estimator. RE is

faster to implement, making it more appealing from a computational standpoint.

However, RE is generally inefficient. The Infeasible CBRE (ICBRE) estimator, which

maximizes Equation 2 when the copula is fully known, is at least as efficient as RE. Moreover,

combining the scores of RE and CBRE and using the optimal weighting matrix would yield

a more efficient and feasible GMM estimator: the Augmented CBRE (ACBRE) estimator.

The following Proposition establishes their relative efficiency:

Proposition 1. Denote the asymptotic variances of RE, CBRE, ACBRE, and ICBRE by

ΣRE
µ = DRE,−1

µµ ΩRE
µ DRE,−1

µµ (5)

ΣCBRE
θ = DCBRE,−1

θθ (6)

ΣACBRE
θ =


DCBRE

θθ

DRE
µθ


′  ΩCBRE

θ ΩCBRE,RE
θ

ΩRE,CBRE
θ ΩRE

µ


−1 DCBRE

θθ

DRE
µθ



−1

(7)

ΣICBRE
µ = DCBRE,−1

µµ (8)

where DRE
µµ , DRE

µθ , DCBRE
θθ , ΩRE

µ , ΩCBRE
θ , ΩCBRE,RE

θ and ΩRE,CBRE
θ are defined in Appendix A.

1. ACBRE is no less efficient than CBRE for the estimation of θ, and no less efficient

than RE for the estimation of µ.

2. ICBRE is no less efficient than either CBRE or RE for the estimation of µ.

3. If DRE
µµ = ΩCBRE,RE

µ , ACBRE and CBRE are equally efficient for the estimation of θ.

4. If the copula is independent, ICBRE, ACBRE and RE are equally efficient for the

estimation of µ.
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5. If DCBRE
µρ = 0, CBRE and ICBRE are equally efficient for the estimation of µ.

Because L̃ is a particular case of L, ICBRE is generally more efficient than RE. Thus,

the precision of the estimates of the marginal parameters can be improved thanks to the

information provided by the copula, as is the case for ACBRE. Similarly, the efficiency of

CBRE can be improved by adding the scores of the RE estimator, unless they are redundant,

which also happens under independence. On the other hand, CBRE requires the estimation

of ρ, so it is not always more efficient than RE. The simulation evidence in Section 5 suggests

that the extra information coming from the copula is usually dominant, making CBRE

slightly more efficient than RE, except when the copula is nearly independent.

Another estimator more efficient than RE would use the scores with respect to µ for each

group member separately. This requires that all groups have the same size and it follows

because the individual scores could be correlated: using their sum is less efficient than using

all of them individually, akin to the QMLE and IQMLE estimators considered by Prokhorov

and Schmidt (2009). The following proposition formalizes this argument:

Proposition 2. Denote the set of individual marginal scores by

sg (µ) ≡


∇µ log (`1g (z1g;µ))

...

∇µ log
(
`Ng

(
zNg;µ

))

 (9)

for g = 1, ..., G. Define the Improved RE (IRE) estimator as the GMM estimator based on

E [sg (µ0)] = 0 that uses the optimal weighting matrix. IRE is no less efficient than RE, and

under independence they are equally efficient.

4 Implementation Algorithm

Typically, integrals like those in Equation 2 do not have a closed form solution. Thus,

solving for θ̂ in Equation 2 requires the numerical evaluation of the score and the Hessian
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(see Appendix S4). Simulation methods like Monte Carlo tend to perform slowly when the

dimension of the integrals is large, and have been outperformed by some recent advances in

high dimensional numerical integration methods (Heiss and Winschel, 2008; Skrainka and

Judd, 2011), although they are still subject to the curse of dimensionality. I propose an

algorithm to numerically approximate a class of integrals when the copula is Archimedean.

By Corollary 2.2 in Marshall and Olkin (1988), an Archimedean copula is given by

C (u) =
ˆ
RN

+

exp
(
−

N∑
i=1

ζiφ
−1
i (ui)

)
dB (ζ) (10)

where B is the cdf of ζ, and φi is the Laplace transform of the marginal distributions of

B. For some of the most common Archimedean copulas, ζ is unidimensional and φi = φ∀i.

Consider the following integral:

I =
ˆ

[0,1]N

N∏
i=1

`i (ui) dC (u) =
ˆ
R+

N∏
i=1

[ˆ 1

0
`i (ui) dF ζ (ui)

]
dB (ζ) (11)

where F ζ (ui) = exp (−ζφ−1 (ui)). The N -dimensional integral can be expressed as the

integral of the product of N independent integrals, reducing the dimensionality from N to

2. Intuitively, the condition that ζ is unidimensional and φi = φ∀i implies that the elements

of the copula are exchangeable, i.e. C (u1, u2) = C (u2, u1), and therefore the correlation

between any two elements of the copula is always the same. This seems reasonable in a

context in which all individuals within a cluster are affected by a common factor, e.g., all

students in a classroom are affected by teacher’s quality. This condition is more likely to

hold when one conditions on the covariates. To see this, consider the following example. Let

y∗i = xi + εi for i = 1, 2, where the marginal distribution of xi is FX , the copula between x1

and x2 is given by CX , the marginal distribution of εi is Fε, and ε1 and ε2 are independent.

Then, P (Y ∗1 ≤ y∗1, Y
∗

2 ≤ y∗2|x1, x2) = Fε (y∗1 − x1)Fε (y∗2 − x2), so the copula between Y ∗1 and

Y ∗2 conditional on X1 and X2 is exchangeable. On the other hand, P (Y ∗1 ≤ y∗1, Y
∗

2 ≤ y∗2) =
´
CX (FX (y∗1 − ε1) , FX (y∗2 − ε2)) dFε (ε1) dFε (ε2). If CX is not exchangeable, then neither
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is the copula between Y ∗1 and Y ∗2 . Taking this into consideration, the proposed algorithm to

approximate the integral is given by

1. Compute a grid of values of ζ, given by ζj = B−1
(

j
N1+1

)
, ∀j = 1, ..., N1.

2. Compute a grid of values of u ∀j, given by ujh = φ
(
− 1
ζj

log
(

h
N2+1

))
, ∀h = 1, ..., N2.

3. Approximate the integral by Î = 1
N1

∑N1
j=1

∏N
i=1

[
1
N2

∑N2
h=1 `i (ujh)

]
.

To understand how the algorithm works, consider the integration of a function m with

respect to a distribution F :
´
m (x) dF (x). This integral is approximated by evaluating the

functionm atQ evenly spaced quantiles and taking the average across them: 1
Q+1

∑Q
q=1m (xq),

where xq = F−1
(

q
Q+1

)
is the qth quantile of the function F .

The algorithm uses this approximation twice, and Figure 1 shows how the selection of the

points used for integration is done in practice. For a fixed value of ζ, there are N2 different

values for each ui as shown in the upper graphs. These points split the unit interval into

N2 + 1 intervals that have the same probability of occurring, conditional on ζ. Hence, the

inner integral of each dimension j is approximated by 1
N2

∑N2
h=1 `i (ujh). The symmetry of the

copula means that the points ujh are indeed the same for each dimension, so there is no need

to compute a different number of points of support for each dimension. Then, to approximate

the outer integral, repeat the previous operation for the N1 values of ζj and calculate the

average across them. This reasoning can also be applied to approximate integrals with

Elliptical copulas, and a variation of this algorithm is presented in Appendix S6.

Graphically, the number of squares increases as one moves from the upper to the lower

graphs (Figure 1). As N1, N2 → ∞, the unit square is covered by more points and Î → I.

For higher dimensions the intuition remains the same, and for each value of ζj there is a

hypercube composed of Nd
2 points.

This algorithm can be used for the joint maximization of L (θ) with respect to all

parameters. However, if the number of parameters is large, the algorithm could be combined

with other strategies to obtain the CBRE estimator or an approximation of it. For example,
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Figure 1: Algorithm grid to approximate the integral

one could maximize L (θ) with respect to µ and ρ iteratively until convergence is achieved;

alternatively one could estimate µ by RE, and maximize L (µ̂RE, ρ) with respect to ρ. The

latter could be also used as the initial condition for the CBRE estimator.

I compare the performance in terms of speed and precision of the algorithm relative to

Monte Carlo simulation, by approximating the integral I ≡
´

[0,1]d
∏d
j=1
√
ujdC (u1, ..., ud; ρ)

with a Clayton (4) copula and dimension d = {2, 3}, which has no closed form solution. The

number of draws of the Monte Carlo equals N1N
d
2 , i.e. the total number of points evaluated

by the algorithm. The results are shown in Table 1.

Even when d = 2, the algorithm proposed in this paper is several orders of magnitude

faster than the traditional Monte Carlo. Moreover, for a given number of points, their

performance is similar, and the approximation is within two standard deviations of the

Monte Carlo. The algorithm consistently reports a number inferior to the mean across

repetitions of the Monte Carlo. However, increasing the number of points at which the

integral is evaluated is not as costly as for the Monte Carlo, resulting in a more accurate

approximation for a given amount of computational time. When d = 3, the algorithm loses

some accuracy with respect to the Monte Carlo, but time gains are large enough to allow

for an increase in the number of integration points of the algorithm and still outperform the
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Table 1: Implementation algorithm & Monte Carlo comparison
N1 = N2 9 19 49 99

d = 2

Î Algorithm 0.4933 0.4934 0.4936 0.4937
Monte Carlo 0.4942 0.4944 0.4940 0.4940

S.D. Algorithm - - - -
Monte Carlo 0.0112 0.0033 0.0008 0.0003

Time Algorithm 0.0001 0.0003 0.0011 0.0032
Monte Carlo 0.0027 0.0036 0.0569 0.4776

d = 3

Î Algorithm 0.3786 0.3827 0.3854 0.3863
Monte Carlo 0.3868 0.3873 0.3873 0.3873

S.D. Algorithm - - - -
Monte Carlo 0.0039 0.0007 0.0001 0.0000

Time Algorithm 0.0001 0.0003 0.0011 0.0035
Monte Carlo 0.0252 0.0828 3.3281 58.8875

Notes: Î is the approximated value of the integral for the proposed
algorithm, and the mean value across repetitions for the Monte Carlo
simulations. The sampling algorithm for the Monte Carlo is the one
proposed by Marshall and Olkin (1988). The true value I has no
closed-form expression.

Monte Carlo. Note that the consistency of the estimator requires increasing the number of

grid points as the sample size increases. This is common to simulation methods, although

the approximation error is more severe for the latter (Skrainka and Judd, 2011).

Table 2 shows the performance of the algorithm in high dimensions: its accuracy decreases

with the dimensionality of the problem, as reflected in the changes in the approximation when

the number of points used to evaluate the integral is increased. However, for given N1 and

N2, computational time remains unchanged despite the increase of the dimensionality. This

suggests that for applications with moderately large clusters, values of N1 and N2 between 20

and 50 should suffice. Moreover, the simulations in Section 5 suggest that keeping N1 = N2

is crucial to obtain consistent estimates of the copula parameters.
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Table 2: Performance in high dimensions
N1 = N2 9 19 49 99 199

d = 2
Î 0.4933 0.4934 0.4936 0.4937 0.4938

Time 0.0001 0.0003 0.0011 0.0032 0.0108
d = 3

Î 0.3786 0.3827 0.3854 0.3863 0.3868
Time 0.0001 0.0003 0.0011 0.0035 0.0107

d = 5
Î 0.2452 0.2534 0.2584 0.2602 0.2610

Time 0.0001 0.0003 0.0011 0.0035 0.0109
d = 10

Î 0.1076 0.1176 0.1238 0.1260 0.1271
Time 0.0001 0.0003 0.0011 0.0033 0.0109

d = 50
Î 0.0017 0.0033 0.0049 0.0057 0.0062

Time 0.0001 0.0003 0.0011 0.0033 0.0108

Notes: Î is the approximated value of the integral for the
proposed algorithm. The true value I has no closed-form
expression.

5 Monte Carlo

The finite sample performance of the estimator is shown in a Monte Carlo exercise with

the following data generating process: yigt = 1
(
ηig + γt + x′igtβ + εigt > 0

)
, where εigt is

logistically distributed, ηig ∼ N (0, σ2
0), ug ∼ Clayton (ρ0), γ0 = (−1.5,−1,−0.5, 0)′, xigt ∼

U (0, 1), β0 = 1, σ0 = 3, and ρ0 = 8 for t = 1, 2, 3, 4, i = 1, ..., 10, g = 1, ..., G, where

G = 100, 200, 500.

Table 3 shows the estimates of the parameters. As argued in Section 3, both CBRE

and RE consistently estimate the time effects and β. The CBRE estimates of σ have a

slightly upward approximation bias that decreases as the number of points used for the

approximation increases, though it is of the same magnitude regardless of the sample size.

RE is implemented using Gaussian quadrature, greatly reducing the approximation bias.

Setting N1 6= N2 results in a substantial bias of the correlation parameter: if N1 > N2, then
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the parameter is downward biased, whereas if N1 < N2, the bias is positive. In terms of

efficiency, CBRE displays a slightly smaller variance.

Table 3 also shows the estimates of the joint probability that y1gt = y2gt = 1 (P1), and

the conditional probabilities that y1gt = 1 conditional on either y2gt = 1 or y2gt = 0 (P2

and P3, respectively). CBRE estimates the three probabilities consistently, but RE is biased

because it does not account for the correlation in the unobserved heterogeneity. Notice also

that the approximation bias of is small CBRE displays little sensitivity to the choice of N1

and N2. On the other hand, both CBRE and RE consistently estimate the unconditional

probability that y1gt equals 1 (P4), although the latter is less efficient.

The standard errors of CBRE and the cluster-robust ones of RE correctly estimate the

asymptotic variance of the estimator across repetitions (Table 4). This is true both when the

individual effects are correlated and when they are independent. The only exception is the

standard error of the copula parameter in the independence case, which follows because it lies

at the boundary of the parameter space, making the asymptotic distribution non-normal.

On the other hand, the naive standard errors of RE are biased when the copula shows

dependence. Table 4 also shows that the efficiency gain on the marginal parameters of

CBRE vanishes when the copula is independent.

Finally, Table 5 shows the performance of the estimator under misspecification. In

particular, I consider a logit with a Frank copula, and a probit with a Clayton copula.

When the true copula is a Clayton, RE tends to have a worse fit than the correctly specified

estimators, as reflected by the independence tests. Using a misspecified copula results in a

slightly worse fit, but in most cases their fit is statistically equivalent. Changing the logit

to a probit does not reduce the fit by much, in line with previous results in the literature

(Chambers and Cox, 1967; Amemiya, 1981). Indeed, when there is positive correlation, the

specification tests tend to accept the null of equal fit for probit with the correctly specified

copula more often than for the logit with the incorrect copula. Hence, the test has little

power against the false hypothesis of equal fit unless the sample size is large. In all cases
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Table 3: Monte Carlo Results
N 1000 2000 5000

CBRE RE CBRE RE CBRE RE θ0
N1 10 10 50 50 10 10 50 50 10 10 50 50
N2 10 50 10 50 10 50 10 50 10 50 10 50
γ1 -1.48 -1.52 -1.47 -1.50 -1.51 -1.47 -1.51 -1.45 -1.49 -1.50 -1.47 -1.50 -1.45 -1.48 -1.50 -1.5

(0.32) (0.32) (0.33) (0.33) (0.34) (0.22) (0.22) (0.23) (0.23) (0.24) (0.14) (0.14) (0.14) (0.14) (0.15)
γ2 -0.98 -1.02 -0.96 -1.00 -1.00 -0.97 -1.01 -0.96 -0.99 -1.01 -0.97 -1.00 -0.95 -0.98 -1.00 -1

(0.32) (0.32) (0.33) (0.33) (0.34) (0.22) (0.22) (0.23) (0.23) (0.24) (0.14) (0.14) (0.14) (0.14) (0.15)
γ3 -0.47 -0.51 -0.46 -0.49 -0.50 -0.47 -0.51 -0.46 -0.49 -0.50 -0.47 -0.50 -0.45 -0.49 -0.50 -0.5

(0.33) (0.32) (0.33) (0.33) (0.34) (0.22) (0.22) (0.23) (0.23) (0.24) (0.14) (0.14) (0.14) (0.14) (0.15)
γ4 0.03 -0.01 0.04 0.01 0.00 0.03 -0.01 0.04 0.01 0.00 0.03 0.00 0.05 0.01 0.00 0

(0.32) (0.32) (0.33) (0.32) (0.33) (0.22) (0.22) (0.23) (0.23) (0.24) (0.14) (0.14) (0.14) (0.14) (0.15)
β 0.99 0.99 0.99 0.99 0.99 1.00 1.00 1.00 1.00 1.00 1.01 1.01 1.01 1.01 1.00 1

(0.18) (0.18) (0.17) (0.17) (0.19) (0.13) (0.13) (0.13) (0.13) (0.13) (0.08) (0.08) (0.08) (0.08) (0.09)
σ 3.56 3.52 3.17 3.12 3.00 3.55 3.51 3.16 3.12 2.99 3.55 3.51 3.17 3.12 2.99 3

(0.26) (0.26) (0.24) (0.24) (0.27) (0.19) (0.19) (0.18) (0.18) (0.20) (0.12) (0.12) (0.11) (0.11) (0.12)
ρ 7.61 9.21 6.57 8.00 - 6.96 8.53 6.20 7.63 - 6.88 8.43 6.12 7.53 - 8

(13.03) (12.86) (6.83) (5.55) (1.01) (1.20) (0.94) (1.13) (0.60) (0.72) (0.56) (0.67)
L -1658 -1658 -1658 -1658 -2137 -3327 -3327 -3327 -3326 -4287 -8324 -8323 -8323 -8322 -10729
P1 0.269 0.267 0.266 0.265 0.150 0.270 0.269 0.267 0.266 0.150 0.271 0.269 0.268 0.267 0.151 0.264

(0.03) (0.03) (0.03) (0.03) (0.03) (0.02) (0.02) (0.02) (0.02) (0.02) (0.01) (0.01) (0.01) (0.01) (0.01)
P2 0.692 0.691 0.685 0.685 0.386 0.693 0.692 0.687 0.686 0.387 0.694 0.693 0.688 0.687 0.388 0.684

(0.03) (0.03) (0.03) (0.03) (0.04) (0.02) (0.02) (0.02) (0.02) (0.03) (0.01) (0.01) (0.01) (0.01) (0.02)
P3 0.196 0.195 0.199 0.199 0.386 0.197 0.196 0.200 0.199 0.387 0.196 0.196 0.200 0.199 0.388 0.199

(0.02) (0.02) (0.02) (0.02) (0.04) (0.01) (0.01) (0.01) (0.01) (0.03) (0.01) (0.01) (0.01) (0.01) (0.02)
P4 0.389 0.387 0.388 0.388 0.386 0.390 0.389 0.390 0.390 0.387 0.391 0.389 0.391 0.391 0.388 0.386

(0.03) (0.03) (0.03) (0.03) (0.04) (0.02) (0.02) (0.02) (0.02) (0.03) (0.01) (0.01) (0.01) (0.01) (0.02)
Notes: Mean estimates of the parameters across 1000 repetitions, standard deviations across repetitions in parentheses, L denotes the maximized
value of the likelihood function, and θ0 the true value of the parameters. P1 denotes the average probability across periods that y1gt = y2gt = 1,
P2 denotes the average probability across periods that y1gt = 1, conditional on y2gt = 1, P3 denotes the average probability across periods that
y1gt = 1, conditional on y2gt = 0, and P4 denotes the average probability across periods that y1gt = 1. The RE estimates were calculated by
approximating the integral with a Gauss-Hermite quadrature with 20 points.
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Table 4: Monte Carlo Results
Positive correlation

N 1000 2000 5000
CBRE RE CBRE RE CBRE RE

se
(
θ̂
)

V ar
(
θ̂
)

se
(
θ̂
)

V ar
(
θ̂
)

se
(
θ̂
)

V ar
(
θ̂
)

se
(
θ̂
)

V ar
(
θ̂
)

se
(
θ̂
)

V ar
(
θ̂
)

se
(
θ̂
)

V ar
(
θ̂
)

γ1 0.326 0.322 0.173 0.335 0.229 0.222 0.122 0.235 0.144 0.143 0.077 0.145
[0.335] [0.237] [0.150]

γ2 0.325 0.325 0.169 0.339 0.228 0.224 0.119 0.239 0.143 0.143 0.075 0.145
[0.335] [0.236] [0.150]

γ3 0.324 0.315 0.166 0.329 0.227 0.221 0.117 0.238 0.143 0.143 0.074 0.146
[0.334] [0.236] [0.149]

γ4 0.324 0.322 0.165 0.333 0.227 0.224 0.116 0.235 0.143 0.141 0.073 0.143
[0.331] [0.234] [0.148]

β 0.182 0.173 0.188 0.184 0.125 0.127 0.133 0.137 0.078 0.081 0.084 0.087
[0.186] [0.132] [0.084]

σ 0.249 0.257 0.147 0.282 0.174 0.181 0.104 0.202 0.109 0.107 0.066 0.122
[0.280] [0.198] [0.125]

ρ 1.692 1.754 - - 1.107 1.146 - - 0.669 0.681 - -
Independence

N 1000 2000 5000
CBRE RE CBRE RE CBRE RE

se
(
θ̂
)

V ar
(
θ̂
)

se
(
θ̂
)

V ar
(
θ̂
)

se
(
θ̂
)

V ar
(
θ̂
)

se
(
θ̂
)

V ar
(
θ̂
)

se
(
θ̂
)

V ar
(
θ̂
)

se
(
θ̂
)

V ar
(
θ̂
)

γ1 0.185 0.178 0.173 0.178 0.127 0.123 0.122 0.122 0.079 0.075 0.077 0.075
[0.172] [0.122] [0.077]

γ2 0.180 0.173 0.169 0.173 0.123 0.119 0.119 0.119 0.077 0.073 0.075 0.073
[0.169] [0.120] [0.076]

γ3 0.177 0.169 0.166 0.168 0.122 0.119 0.117 0.119 0.076 0.075 0.074 0.075
[0.166] [0.118] [0.074]

γ4 0.176 0.169 0.165 0.169 0.121 0.121 0.116 0.120 0.075 0.071 0.073 0.071
[0.165] [0.117] [0.074]

β 0.196 0.192 0.189 0.191 0.136 0.134 0.133 0.134 0.084 0.083 0.084 0.083
[0.186] [0.132] [0.084]

σ 0.160 0.158 0.148 0.151 0.111 0.110 0.104 0.104 0.069 0.069 0.066 0.066
[0.147] [0.104] [0.066]

ρ 0.033 0.017 - - 0.022 0.012 - - 0.013 0.007 - -
Notes: V ar

(
θ̂
)

and se
(
θ̂
)

respectively denote the variance of the estimates and their mean standard errors across 1000
repetitions. Cluster-robust standard errors of the RE estimates in brackets; RE estimates were calculated by approximating the
integral with a Gauss-Hermite quadrature with 20 points.
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the APE is correctly estimated, and the bias on the estimated probabilities is large only for

the RE estimator. When the true copula is independent, all three estimators have a similar

performance, and the specification tests tend to accept the null hypothesis of equal fit.

6 Labor Supply in Married Couples

I apply the presented methodology to study how assortative mating affects labor supply in

married couples. I use the 2012 wave of the EU-SILC (European Union Statistics on Income

and Living Conditions) dataset, which follows 279,115 individuals during the 2009-2012

period. I keep the sub-population of married couples, in which both individuals were aged

21-65 during the whole period, totaling 28,246 individuals.

I estimate six different specifications combining the logit and the probit with three

different parametric copulas: Clayton, Frank, and Gaussian. For each of these specifications,

I compute the CBRE estimator with correlated random effects, reporting the one with

the lowest Akaike Information Criterion (AIC). To relax the parametric assumption of the

copula, I also compute CBRE with a Bernstein copula of orders 2-4. These estimators are

then compared to RE. Additionally, I also consider all the preceding estimators with standard

random effects. The estimates with the Bernstein copula and the RE estimates are presented

in Appendix S8, both with standard and correlated random effects. Additionally, I report

the Bayesian Information Criterion (BIC) and the 10-fold cross validated likelihood.

All three parametric copulas, as well as the Bernstein copula of order 2 satisfy the

exchangeability condition. On the other hand, Bernstein copulas of higher order are not

necessarily symmetric. In all specifications, the marginal distribution of the random effects

is normal. The dependent variable takes value one if agent i worked during year t and zero

otherwise. The covariates included are gender, number of children smaller than 5 years old,

age, level of education, and total household non-labor income, along with yearly dummies.

The estimates are qualitatively similar in all countries (Table 6): married females work
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Table 5: Monte Carlo Tests
Positive correlation

N 1000 2000 5000 True value
CBRE RE CBRE RE CBRE RE

Logit Logit Probit Logit Logit Logit Probit Logit Logit Logit Probit Logit
Clayton Frank Clayton - Clayton Frank Clayton - Clayton Frank Clayton -

APE 0.19 0.20 0.20 0.20 0.19 0.20 0.20 0.20 0.19 0.20 0.20 0.20 0.20
(0.03) (0.04) (0.04) (0.04) (0.03) (0.03) (0.03) (0.03) (0.02) (0.02) (0.02) (0.02)

P1 0.27 0.25 0.26 0.15 0.27 0.25 0.26 0.15 0.27 0.25 0.27 0.15 0.29
P2 0.69 0.68 0.68 0.39 0.69 0.68 0.68 0.39 0.69 0.68 0.68 0.39 0.77
P3 0.20 0.19 0.20 0.39 0.20 0.19 0.20 0.39 0.20 0.19 0.20 0.39 0.14
H0 - 92.8 94.1 0.1 - 89.2 92.5 0.0 - 77.0 86.4 0.0
H1 - 6.8 4.7 99.9 - 10.5 6.6 100.0 - 22.9 13.4 100.0
H2 - 0.4 1.2 - - 0.3 0.9 - - 0.1 0.2 -

Independence
N 1000 2000 5000 True value

CBRE RE CBRE RE CBRE RE
Logit Logit Probit Logit Logit Logit Probit Logit Logit Logit Probit Logit

Clayton Frank Clayton - Clayton Frank Clayton - Clayton Frank Clayton -
APE 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20

(0.03) (0.03) (0.04) (0.04) (0.03) (0.03) (0.03) (0.03) (0.02) (0.02) (0.02) (0.02)
P1 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.14
P2 0.39 0.39 0.39 0.39 0.39 0.39 0.39 0.39 0.39 0.39 0.39 0.39 0.37
P3 0.39 0.39 0.39 0.39 0.39 0.39 0.39 0.39 0.39 0.39 0.39 0.39 0.37
H0 - 99.7 94.4 98.1 - 99.8 93.8 97.5 - 100.0 94.0 97.0
H1 - 0.1 3.5 1.9 - 0.0 4.6 2.5 - 0.0 4.7 3.0
H2 - 0.2 2.1 - - 0.2 1.6 - - 0.0 1.3 -

Notes: Mean estimates of the average partial effects (APE) across 1000 repetitions, standard deviations across repetitions in parentheses.
P1 denotes the average probability across periods that y1gt = y2gt = 1, P2 denotes the average probability across periods that y1gt = 1,
conditional on y2gt = 1, and P3 denotes the average probability across periods that y1gt = 1, conditional on y2gt = 0. For the independence
test, H0 denotes the percentage of cases in which the null hypothesis of independence was accepted, and H1 denotes the percentage of
cases in which it was rejected. For the specification tests, H0 denotes the percentage of cases in which the null hypothesis of equal fit
was accepted, H1 denotes the percentage of cases in which the alternative hypothesis that the Clayton-logit estimator provides a better
fit was accepted, and H2 denotes the percentage of cases in which the alternative hypothesis that the alternative estimator provides a
better fit was accepted. For all tests, the confidence level is 95%. The RE estimates were calculated by approximating the integral with
a Gauss-Hermite quadrature with 20 points.
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with a smaller probability than their husbands, the probability to work decreases with age,

and increasing the level of education is correlated with an increase in the probability to work

(with the exceptions of Greece and the United Kingdom, where workers with primary or no

education have a larger probability of working than those with secondary education, although

it is not statistically significant). The number of children smaller than 5 years old typically

has a negative effect, particularly on women. However, this effect is not always significantly

different from zero. In some countries the effect is positive, though never significant. On the

other hand, the coefficient of non-labor income is not significant in all countries.

The standard deviation of the distribution of the time-invariant unobserved propensity

to work, ηic, is substantially large and significant in all countries, highlighting its relevance

to explain the probability of being employed. Moreover, the estimated copula is statistically

different from the independence copula at the 95% confidence level in all countries in the

sample, despite the moderate sample size in some of them. The correlation of the individual

effects, measured by the Kendall’s τ correlation coefficient, is smaller in Northern European

countries (Norway, Finland or Poland), with the exception of Denmark; it is larger in

Southern European ones (Belgium, Spain or Portugal), with the exception of Italy.

The selected model varies by country. To test whether they are statistically better than

the alternatives, I report pairwise Schennach and Wilhelm tests in the first six rows of

Table 7. With the exception of the UK, the logit provided a better fit than the probit, and

only in four countries the logit is significantly better than the probit when the copula is the

same (Denmark, France, the Netherlands and Norway). Regarding the copula, the best fit is

achieved with the Clayton in four countries (Denmark, Finland, Hungary and Norway), the

Gaussian in another four countries (Greece, the Netherlands, Portugal and Spain) and the

Frank in the rest. The test accepts the hypothesis that the selected copula is statistically

better than one of the alternative copulas only in one country, France. Hence, for this sample

size, CBRE improves the fit of RE from a statistical standpoint, but the copula choice is a

secondary concern in most cases.
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Table 6: Parametric copula CBRE estimates
AT BE BG CZ DK EL ES FI FR HU IT NL NO PL PT UK

FE -1.86 -3.40 -0.86 -1.62 -1.04 -4.99 -4.26 -0.70 -1.62 -0.58 -4.07 -5.24 -1.99 -2.51 -2.88 -0.61
(0.53) (0.85) (0.48) (0.36) (0.37) (0.62) (0.33) (0.41) (0.32) (0.33) (0.31) (0.70) (0.35) (0.40) (0.53) (0.29)

C5 -0.77 0.11 -3.67 0.12 -0.60 1.01 0.48 -2.10 -0.31 -0.19 0.87 0.30 -1.23 0.69 -0.07 0.87
(0.91) (0.78) (2.98) (1.73) (1.15) (0.67) (0.38) (0.67) (0.55) (0.51) (0.46) (3.58) (0.64) (0.51) (1.32) (1.22)

C5*FE -0.83 -0.41 2.77 -4.21 0.67 -1.27 -1.41 -0.46 -1.27 -2.57 -1.90 -1.72 0.53 -1.81 0.01 -2.36
(1.17) (1.35) (4.18) (1.85) (1.68) (0.92) (0.54) (0.89) (0.67) (0.54) (0.59) (3.66) (0.75) (0.61) (1.55) (1.32)

AGE -0.27 -0.45 -0.18 -0.28 -0.10 -0.22 -0.13 -0.18 -0.43 -0.21 -0.20 -0.39 -0.10 -0.35 -0.27 -0.06
(0.04) (0.07) (0.03) (0.03) (0.03) (0.03) (0.02) (0.03) (0.02) (0.02) (0.02) (0.05) (0.02) (0.03) (0.03) (0.02)

SE 0.94 1.39 1.68 2.53 0.30 -0.09 2.03 1.84 1.19 1.69 2.51 2.16 1.99 2.21 1.68 -0.03
(0.41) (0.45) (0.61) (0.59) (0.43) (0.30) (0.29) (0.51) (0.26) (0.29) (0.29) (0.64) (0.39) (0.67) (0.48) (0.21)

TE 1.82 2.51 4.40 4.46 1.92 3.86 3.86 2.71 4.15 3.65 4.74 4.32 3.27 5.89 4.32 0.45
(0.61) (0.48) (0.80) (0.78) (0.50) (0.55) (0.31) (0.58) (0.39) (0.42) (0.46) (0.63) (0.42) (0.79) (0.81) (0.24)

IN 0.00 -0.01 0.10 0.04 0.00 0.03 -0.01 0.00 0.00 -0.01 0.00 0.03 0.00 -0.01 0.04 0.00
(0.01) (0.01) (0.66) (0.05) (0.01) (0.05) (0.03) (0.02) (0.00) (0.10) (0.02) (0.02) (0.01) (0.18) (0.11) (0.02)

C5 -1.42 -3.78 4.11 -1.50 -1.48 -1.21 -1.21 0.27 -2.46 1.23 -0.20 -3.06 0.58 -1.99 -0.60 -0.76
(1.49) (2.36) (3.43) (1.87) (1.55) (1.31) (0.74) (1.22) (0.89) (1.13) (0.79) (4.14) (1.15) (1.09) (1.96) (1.32)

C5 ∗ FE -4.21 -3.15 -9.09 -5.61 0.07 -1.39 0.98 -5.74 -4.98 -7.65 -1.93 -1.28 -2.73 -4.98 -2.49 0.14
(1.69) (2.37) (4.78) (2.10) (1.94) (1.46) (0.87) (1.50) (1.09) (1.35) (0.93) (4.12) (1.24) (1.22) (2.15) (1.44)

IN 0.04 -0.01 -0.58 0.04 -0.01 -0.04 0.09 -0.01 0.01 0.09 0.11 -0.03 0.00 -0.03 0.12 -0.06
(0.02) (0.06) (1.41) (0.15) (0.01) (0.08) (0.07) (0.05) (0.01) (0.62) (0.04) (0.03) (0.01) (0.09) (0.22) (0.05)

σ̂ 4.65 7.20 5.13 4.67 3.46 5.76 4.76 4.09 6.45 5.01 4.77 6.64 4.10 6.10 5.53 2.50
(0.36) (0.79) (0.43) (0.28) (0.29) (0.41) (0.21) (0.31) (0.26) (0.26) (0.21) (0.49) (0.26) (0.32) (0.40) (0.22)

ρ̂ 1.80 2.29 1.39 2.01 0.55 0.35 0.42 0.26 1.47 0.41 0.79 0.33 0.19 0.78 0.48 1.24
[0.00] [0.00] [0.02] [0.00] [0.00] [0.00] [0.00] [0.01] [0.00] [0.00] [0.00] [0.01] [0.01] [0.00] [0.00] [0.03]

Model Log Log Log Log Log Log Log Log Log Log Log Log Log Log Log Pro
Copula Fra Fra Fra Fra Cla Gau Gau Cla Fra Cla Fra Gau Cla Fra Gau Fra
τ 0.19 0.24 0.15 0.21 0.22 0.23 0.27 0.11 0.16 0.17 0.09 0.21 0.09 0.09 0.32 0.14
N 764 604 780 1404 696 930 1906 882 3370 1422 2186 1360 1364 1848 814 640

Notes: Standard errors in parentheses for all coefficients except for ρ̂, for which I report the p-values in square brackets. FE, C5, AGE, SE, TE,
and IN respectively denote female, number of children smaller than 5 years old, age, secondary education, tertiary education, and non-labor income
(expressed in thousands of euros); the · symbol is used to denote the coefficient of the correlated random effect; Model denotes the best fitting binary
choice model: logit (Log) or probit (Pro); Copula denotes the best fitting copula: Clayton (Cla), Frank (Fra), or Gaussian (Gau); τ denotes Kendall’s
τ correlation coefficient; the contour plots of the copula estimates are shown in Figure 3; N is the sample size of each country. The estimates shown
are those of Austria, Belgium, Bulgaria, Czech Republic, Denmark, Greece, Spain, Finland, Hungary, Italy, Netherlands, Norway, Poland, Portugal,
and the United Kingdom. The estimates of the remaining countries (Cyprus, Estonia, Iceland, Lithuania, Luxemburg, Latvia, Malta, and Slovenia)
are available upon request.
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Table 7: Tests and counterfactuals
AT BE BG CZ DK EL ES FI FR HU IT NL NO PL PT UK

SW1 79.3 54.8 9.7 6.5 - 23.0 30.6 - 1.3 - 6.6 24.4 - 36.1 19.5 6.7
SW2 - - - - 39.3 27.7 28.8 70.0 - 19.0 - 31.2 48.5 - 15.4 21.9
SW3 76.5 50.1 9.7 8.1 38.9 - - 52.8 4.2 20.8 13.8 - 47.1 65.3 - 10.5
SW4 62.7 53.0 3.4 6.7 1.0 22.0 7.3 46.9 0.2 8.6 1.8 1.5 1.3 80.8 9.2 6.1
SW5 15.0 75.6 5.0 11.6 19.3 33.1 5.9 60.6 1.1 14.4 4.6 2.7 9.4 80.4 6.0 -
SW6 39.6 55.1 2.0 8.3 8.7 40.0 5.3 42.8 0.4 14.1 2.3 1.4 3.4 83.4 10.5 9.1
PWρ 72.9 67.4 77.1 74.5 86.7 53.1 55.3 76.4 73.3 65.0 54.5 77.3 82.9 63.8 65.0 77.6

(1.8) (3.1) (1.8) (2.5) (1.4) (1.9) (1.3) (1.6) (0.9) (1.4) (1.3) (1.3) (1.2) (1.4) (1.9) (2.0)
CP1ρ 76.6 74.7 81.0 77.1 89.0 56.9 58.6 79.0 78.9 70.7 58.6 78.7 84.2 68.7 70.3 79.1

(1.7) (2.6) (1.6) (2.1) (1.3) (2.0) (1.3) (1.6) (0.8) (1.4) (1.3) (1.3) (1.1) (1.3) (1.8) (1.9)
CP0ρ 51.8 39.7 61.7 54.2 66.6 38.9 40.7 63.0 49.9 49.4 37.8 59.6 67.3 47.7 45.8 67.7

(2.9) (3.4) (2.6) (3.6) (2.5) (2.2) (1.4) (2.2) (1.3) (1.7) (1.4) (2.1) (1.7) (1.7) (2.3) (2.6)
∆p
(
y2ct|xg; θ̂CBRE

)
24.9 35.0 19.3 22.9 22.4 17.9 17.9 16.0 29.0 21.3 20.7 19.1 16.8 21.0 24.5 11.4
(2.0) (1.4) (1.4) (2.1) (1.7) (1.5) (0.5) (1.4) (0.8) (1.2) (0.9) (1.4) (1.0) (1.0) (1.2) (1.5)

Endowment effect 12.1 13.1 8.8 8.2 3.6 12.5 9.4 7.3 19.5 8.3 14.5 14.6 6.7 16.1 13.6 1.8
(3.8) (1.1) (1.9) (1.8) (0.7) (1.2) (0.9) (2.6) (1.1) (1.7) (1.1) (1.1) (1.3) (1.0) (1.0) (0.8)

Homophily effect 12.8 21.9 10.5 14.7 18.8 5.4 8.5 8.7 9.5 13.1 6.2 4.5 10.1 4.9 10.9 9.5
(4.3) (1.8) (2.4) (2.7) (1.8) (1.9) (1.1) (3.0) (1.4) (2.1) (1.4) (1.8) (1.7) (1.4) (1.5) (1.6)

Pρ 79.9 70.3 77.5 84.8 89.8 65.3 69.0 82.9 75.8 67.9 67.3 90.6 92.2 67.5 69.3 85.6
(5.4) (2.8) (3.8) (1.6) (1.7) (2.4) (1.5) (1.8) (2.4) (1.6) (4.5) (1.2) (1.2) (4.6) (2.1) (5.2)

PI 83.7 72.9 81.0 87.8 93.7 65.4 69.4 85.0 78.1 68.6 68.6 91.4 94.2 68.8 69.9 89.1
(1.9) (3.9) (2.1) (2.5) (1.5) (2.6) (1.6) (1.7) (1.0) (1.8) (1.7) (1.0) (0.9) (1.7) (2.3) (2.3)

∆P -3.7 -2.7 -3.5 -3.0 -3.9 -0.1 -0.4 -2.1 -2.4 -0.7 -1.3 -0.8 -1.9 -1.4 -0.7 -3.5
(5.0) (1.4) (4.0) (3.3) (0.7) (0.2) (0.2) (0.6) (2.1) (0.3) (3.5) (0.6) (0.7) (3.6) (0.3) (5.1)

N 764 604 780 1404 696 930 1906 882 3370 1422 2186 1360 1364 1848 814 640
Notes: SWi denotes the p-value (in %) of the ith Schennach and Wilhelm test of the best fitting model against the remaining alternatives
considered: logit (tests 1-3), probit (tests 4-6), Clayton copula (tests 1 and 4), Frank copula (tests 2 and 5), and Gaussian copula (tests 3 and
6). Standard errors of the estimated probabilities were computed using the delta method. PWρ denotes the unconditional probability that
a wife is employed, CP1ρ and CP0ρ respectively denote the probability that a wife is employed conditional on her husband being employed,
and conditional on her husband being unemployed; ∆p

(
y2gt|xg; θ̂CBRE

)
and the homophily and endowment effects are defined in the text; Pρ

and PI respectively denote the probability (in %) that at least one member of the couple was employed in every period when the parameter
of the copula is the estimated one and when the copula is independent, and ∆P denotes the difference between the two; N is the sample size
of each country. The estimates shown are those of Austria, Belgium, Bulgaria, Czech Republic, Denmark, Greece, Spain, Finland, Hungary,
Italy, Netherlands, Norway, Poland, Portugal, and the United Kingdom. The estimates of the remaining countries (Cyprus, Estonia, Iceland,
Lithuania, Luxemburg, Latvia, Malta, and Slovenia) are available upon request.
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To get a sense of the importance of this correlation, I use both CBRE and RE to predict

the mean probability of a female being employed conditional on the employment status of

their husband. The fit provided by RE to the actual proportions observed in the data is much

worse than the fit of CBRE (Figure 2), both when the copula used is parametric and when

it uses the more flexible Bernstein copula. These two probabilities may differ because of

assortative mating in couples. On the one hand, the observed characteristics of both groups

of women are different (endowment effect): those married to employed husbands are on

average younger, have more young children, and a higher probability of having a university

degree. On the other hand, it is also possible that their unobserved individual effects are

larger than those of women whose husbands are unemployed (homophily effect): employed

men have a higher than average unobserved propensity to work, which is positively correlated

with the propensity of their wives. CBRE can account for both types of differences, whereas

RE only takes differences in the observed characteristics into account.

A policy maker interested in increasing the employability of women could benefit from

knowing the size of these two effects. For example, a way to reduce inequality across

households would be to increase the proportion of employed women whose husbands are

unemployed. The introduction of a monetary incentive to work for women with a low level

of education, given that there is a larger proportion among those married to an unemployed

husband, would be more effective if the endowment effect is large. However, if the homophily

effect dominates, the effect of such policy would be limited. Moreover, to model female labor

supply, it is important to model the participation, which is substantially different depending

on which effect is dominant. Formally, the aforementioned difference in probability, given

the observed covariates xc and the parameter vector θ, can be written as

∆p (y2gt|xg; θ) ≡
1∑G

g=1 1 (y1gt = 1)

G∑
g=1

1 (y1gt = 1)P (y2gt = 1|y1gt = 1, xg; θ)

− 1∑G
g=1 1 (y1gt = 0)

G∑
g=1

1 (y1gt = 0)P (y2gt = 1|y1gt = 0, xg; θ)
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Figure 2: Conditional probability of being employed for females

Pj, PjCBRE , PjBERN , and PjRE respectively denote the observed percentage of women who are employed,
and the estimated analogue using CBRE with a parametric copula, CBRE with a Bernstein copula, and RE,
conditional on the employment status of their husbands (j = 1 if employed, j = 0 if unemployed).

The decomposition is given by:

∆p
(
y2gt|xg; θ̂CBRE

)
= ∆p

(
y2gt|xg; θ̂CBRE

)
−∆p

(
y2gt|xg; θ̂RE

)
+ ∆p

(
y2gt|xg; θ̂RE

)
(12)

The first term in Equation 12 is the homophily effect, and is expressed as the difference

in the probability of changing the CBRE estimates by the RE estimates. On the other

hand, the second term is the endowment effect. The results show a large difference in the

estimated probability of a woman being employed depending on the employment status of

her husband: in some countries the difference is small because the probability is low for

both groups (Greece, Italy and Spain); in others it is small because the probability is always

relatively high (Bulgaria, Finland, Norway, the Netherlands, and the UK), and in a third
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group of countries it is large because the probability is relatively low when the husband is

unemployed, and relatively high when he is employed (Austria, Belgium, Czech Republic,

Denmark, France, Hungary, Poland, and Portugal).

Both effects explain an important share of the difference in every country shown in

Table 7. In particular, the endowment effect explains more than half of the difference in

seven countries (France, Greece, Italy, the Netherlands, Poland, Portugal, and Spain), most

of which have small female employment rates when the husband is unemployed. Excluding

the Netherlands, the homophily effect is dominant in the second group of countries, as well

as in many of the third group. In other words, there is a strong correlation between the

probability of women being employed, conditional on the husband being employed, with the

relative size of the homophily effect.

Finally, I compute the probability that at least one member of the couple was employed

in every period, to which I refer as a working household, and then I change the estimated

copula by the independence copula, obtaining the counterfactual probability when there is no

homophily. The estimates are shown in Table 7, and consistently with the large differences

in the labor market across countries, the probability of observing a working household has a

lot of variation: countries with a low unemployment rate, such as Denmark, the Netherlands,

or Norway, have a high probability, whereas countries with high unemployment rate, such

as Greece, Spain, or Portugal, have a low probability.

In the counterfactual scenario, this probability would be statistically larger in six countries,

reducing the proportion of non-working households. Notice that in those countries in which

the selected copula was Frank, the estimates were not significant, whereas when the selected

copula was either Clayton or Gaussian, the estimates were significant. Moreover, with the

Bernstein copula, the estimates were significant in 14 countries. This evidence suggests

that the Frank copula is not accurately estimated. However, this increase is larger in those

countries with an already high probability: the largest one would be in Denmark, followed

by Austria and Bulgaria. On the other hand, countries with a relatively low probability of
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having working households (Greece and Spain) would only have a slightly higher probability

in the counterfactual scenario. Lastly, the probability change would also be small in the

Netherlands, which has the highest probability of having working households.

Some remarks are in order. These results cannot be extrapolated to the whole population,

as the characteristics of married couples in working age, both observable and unobservable,

differ from those of singles. Moreover, the coefficient ρ does not have a causal interpretation

in this example: marrying someone with a higher propensity to work does not imply that

the own propensity is changed in any direction, nor marrying people at random would lead

to the counterfactual scenario if there are such spillovers inside the marriage. The goal of

this exercise is to isolate the contribution of the correlation in the unobserved propensity to

work inside couples to the probability of having working households.

7 Conclusion

In this paper I present the CBRE estimator, a random effects estimator for binary choice

panel data in which the unobserved heterogeneity of individuals in the same cluster is

correlated, and can be used to consistently estimate the probability of joint and conditional

events. I study the efficiency of this estimator relative to RE and I consider two types

of hypothesis tests: a specification test to select the most appropriate copula, and an

independence test when the correlation parameter lies on the boundary of the parameter

space.

This paper focuses on a fixed T panel, in which the distribution of individual effects is not

nonparametrically identified. Increasing the number of periods would allow to tighten the

identification result, and if T grew to infinity at the same rate as the sample size, it would

be possible to use bias-correcting methods to jointly estimate the slope parameters and the

individual effects, along the lines of Fernández-Val (2009). Future research could investigate

the properties of such estimators when the individual effects have the correlation structure
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considered in this paper, although these methods would require a moderate to large number

of time periods.

The computation of the estimator requires the numerical approximation of potentially

high-dimensional integrals. To overcome this issue, I propose an algorithm that approximates

such integrals for Archimedean copulas. This algorithm does not suffer from the curse of

dimensionality, unlike traditional simulation methods such as Monte Carlo integration.

I illustrate the use of the estimator with an empirical application of labor supply of

married couples. The results indicate that the unobserved propensity to be employed between

the two members of a couple is positively correlated. I use these estimates to decompose

the difference in the probability of being employed for women married to either employed or

unemployed husbands, into an endowment effect and a homophily effect. Both effects have

an explanatory power of similar magnitude, and ignoring the unobserved correlation leads

to a substantial underestimation of the impact of assortative mating on the labor supply

of married women. Finally, the endowment effect tends to dominate in Southern European

countries, while the opposite is true for Northern European ones.
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Appendix

A Mathematical proofs

A.1 Proof to Proposition 1

Define

DRE
µµ ≡ −E

∇µµ

Ng∑
i=1

log (`ig (zig;µ0))


DRE
µθ ≡

[
DRE
µµ , 0

]
DCBRE
θθ ≡ −E [∇θθ log (`g (zg;µ0))]

ΩRE
µ ≡ E

∇µ

Ng∑
i=1

log (`ig (zig;µ0))∇µ

Ng∑
i=1

log (`ig (zig;µ0))′


ΩCBRE
θ ≡ E

[
∇θ log (`g (zg;µ0))∇θ log (`g (zg;µ0))′

]
ΩCBRE,RE
θ ≡ E

∇θ log (`g (zg;µ0))∇µ

Ng∑
i=1

log (`ig (zig;µ0))′


ΩRE,CBRE
θ ≡ ΩCBRE,RE′

θ

Result 1 is a well known result, so its proof is omitted.

For result 2, note that by the optimality property of MLE, and since RE is a particular

case of ICBRE when the copula is independent, the asymptotic variance of RE cannot be

smaller than that of ICBRE. Regarding CBRE, note that the asymptotic variance of µ

is given by ΣCBRE
µ =

(
DCBRE
µµ −DCBRE

µρ DCBRE,−1
ρρ DCBRE

ρµ

)−1
. ΣICBRE,−1

µ − ΣCBRE,−1
µ =

DCBRE
µρ DCBRE,−1

ρρ DCBRE
ρµ is a positive semidefinite quadratic form. Therefore, ΣCBRE

µ −

ΣICBRE
µ is positive semidefinite and the result follows.

By Theorem 1 in Breusch et al. (1999), the scores from RE are redundant for the

estimation of θ if there exists some matrix A such that DCBRE
θθ = ΩCBRE

θ A and DRE
µθ =

ΩRE,CBRE
θ A. By the information equality, DCBRE

θθ = ΩCBRE
θ , so A is the identity matrix.

Therefore, if DRE
µµ = ΩRE,CBRE

µ , result 3 follows.
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To show result 4, note that under independence,

DRE,−1
µµ = DCBRE,−1

µµ

⇔ E

∇µµ

Ng∑
i=1

log (`ig (zig;µ0))−∇µµ log (`g (zg;µ0))
 = 0

⇔ E
[ˆ (

∇µµPg (zg, ug;µ0)−∇µPg (zg, ug;µ0)∇µPg (zg, ug;µ0)′
)
· 1´

Pg (zg, ug;µ0)∏Ng

j=1 dujg
− cX (ug; ρ0)´

Pg (zg, ug;µ0) cX (ug; ρ0)∏Ng

j=1 dujg

 Ng∏
i=1

duig

 = 0

⇔ cX (ug; ρ0) = 1

⇔ CX (ug; ρ0) =
Ng∏
i=1

uig

where Pg (zg, ug;µ0) ≡ ∏Ng

i=1 Pig (zig, uig;µ0). Moreover, DRE
µµ = ΩRE

µ , so ΣRE
µ = DRE,−1

µµ =

ΣICBRE
µ . Moreover, by Theorem 8 in Breusch et al. (1999), the scores of CBRE are partially

redundant for µ if there exists some matrix R such that DCBRE
θµ − ΩCBRE,RE

θ ΩRE,−1
µ DRE

µµ =

DCBRE
θρ R. Under independence, DRE

µµ = ΩRE
µ , DCBRE

µµ = ΩCBRE,RE
µ = DRE

µµ , and DCBRE
ρµ =

ΩCBRE,RE
ρ , so DCBRE

θρ R = 0, which is satisfied if R = 0. Hence, the asymptotic variance of

ACBRE and RE is the same.

Finally, for result 5, if DCBRE
µρ = 0, then ΣCBRE

µ = DCBRE,−1
µµ = ΣICBRE

µ .

A.2 Proof to Proposition 2

Define DIRE
µ ≡ −E [sg (µ0)] and ΩIRE

µ ≡ [sg (µ0) sg (µ0)]. The asymptotic variances of IRE

and RE are given by ΣIRE
µ =

(
DIRE
µµ ΩIRE,−1

µ DIRE′
µµ

)−1
and ΣRE

µ =
(
ADIRE

µµ

(
AΩIRE

µ A′
)−1

DIRE′
µµ A′

)−1
,

where A = ι′
N
⊗ Ik, ιN is an N dimensional vector of ones, Ik is the identity matrix of

dimension k, and k = dim (µ). This setup is equivalent to the case considered in Theorem

1 in Prokhorov and Schmidt (2009), so the first result of the Proposition follows.

Under independence, ΩIRE
µ is a block diagonal matrix in which the ith block equals

E
[
∇µ log (`ig (zig;µ0))∇µ log (`ig (zig;µ0))′

]
. This, together with the information inequality

implies ΣIRE
µ =

(
DRE
µµ ΩRE,−1

µ DRE′
µµ

)−1
= DRE,−1

µµ = ΣRE
µ .
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Supplementary Material

S1 Partial Identification

As pointed out by Arellano (2003), identification in a binary choice panel setup is fragile, and

it usually hinges on assumptions that are either not satisfied or impossible to verify. Such as

when the model is a logit (Chamberlain, 1984, 2010), if a regressor has unbounded support,

in which case β0 is point-identified (Manski, 1987), or if the support of this distribution is

finite (Bonhomme, 2012). Chernozhukov et al. (2013) showed that when the covariates have

discrete support, the marginal distribution of the individual effects is not identified. The

following lemma extends this result to the lack of identification of their copula:

Lemma 1. Assume that the distribution of Xigt is discrete with finite support, and let

P (Yg|Xg) =
´
Y Pg (ug;µ) dCX (ug; ρ), where Pg (ug;µ) is defined as in the main text and

is a measurable function of ug for each µ ∈ M , and Y denotes the support of η (ug|xg;σ0).

Then, for each β, every marginal distribution Fη (ηig|xig;σ) on the support of ηig, and every

copula C (ug; ρ) on [0, 1]N , there exists a discrete distribution F k,N,T
η with no more than 2NT

support points such that
´
Y Pg (zg, ug;µ) dCX (ug; ρ) =

´
Y Pg (zg, ug;µ) dF k,N,T

η (ηg).

Proof. By the definition of the copula, there exists a multivariate distribution F̃η such that

CX (ug; ρ) = F̃η (ug|xg;σ, ρ). For each k = 1, ..., K of the possible values that the vector

(X11, ..., XNT ) can take, there are J = 2NT distinct values that the vector (Y11, ..., YNT ) can

take. Apply lemma 7 in Chernozhukov et al. (2013) to
´
Y Pg (zg, ηg; β) dF̃η (ηg;σ, ρ) to obtain

the desired result.

S2 Asymptotic Distribution

To derive the asymptotic properties of the estimator, I consider the following assumptions:

Assumption 2. θ 6= θ0 ⇒ `g (zg; θ) 6= `g (zg; θ0).

Assumption 3. θ ∈ intΘ, where Θ is compact.
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Assumption 4. `ig (zig;µ) is continuous for all θ ∈ Θ.

Assumption 5. E [supθ∈Θ |log (`ig (zig;µ))|] <∞.

Assumption 6. `ig (zig;µ) is twice continuously differentiable with respect to θ; `ig (zig;µ) >

0 in a neighborhood N of θ0.

Assumption 7.
´

supθ∈N ‖∇µ`ig (zig;µ)‖ dzig <∞,
´

supθ∈N ‖∇µµ`ig (zig;µ)‖ dzig <∞.

Assumption 8. ΣCBRE
θ ≡ E

[
∇θ log (`g (zg; θ))∇θ log (`g (zg; θ))′

]
exists and is nonsingular.

Assumption 9. E [supθ∈N ‖∇θθ log (`g (zg; θ))‖] <∞.

Assumption 10. The copula has pdf cX (ug; ρ) which is twice continuously differentiable in

ρ. Moreover,
´

[0,1]Ng |∇ρcX (ug; ρ)|∏Ng

i=1 duig <∞ and
´

[0,1]Ng |∇ρρcX (ug; ρ)|∏Ng

i=1 duig <∞.

Assumption 11.
´

supθ∈N
∥∥∥∇ρ

´
[0,1]Ng cX (ug; ρ)∏Ng

i=1 duig
∥∥∥ dzg <∞ and

´
supθ∈N

∥∥∥´[0,1]Ng ∇ρρcX (ug; ρ)∏Ng

i=1 duig
∥∥∥ dzg <∞.

Assumption 12. Cluster size is either predetermined, or it is drawn from a distribution

with bounded support, independently of all other variables: Ng ∼ FN (n) n ∈
{

1, ..., N
}
, for

some N ∈ N.

Assumption 2 is the identification condition. It is hard to verify, and a necessary

condition is that the number of parameters of the distribution of the random effects (σ, ρ)

is not too large relative to the number of time periods and individuals in a cluster. To

be more specific, and assuming that the results are conditional on X = x, there are 2NgT

distinct results of the outcome variable. This implies that there are 2NgT − 1 probabilities

that vary freely. Consider the matrix in which each column contains the derivatives of

these probabilities with respect to each parameter of the distribution of random effects.

Assumption 2 is satisfied when the rank of this matrix equals the number of parameters, so

it cannot be larger than 2NgT − 1. Moreover, if the probabilities satisfy an exchangeability

condition, i.e. if P (Y1 = y1, Y0 = y0) = P (Y1 = y0, Y0 = y1) and similarly when the cluster

dimension is higher, then the number of probabilities that vary freely is smaller. Specifically,
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it would be equal to ∑1
i1,1=0 ...

∑1
iNg,T =0 1

(
i1,1 ≤ i1,2 ≤ ... ≤ i1,T ≤ ... ≤ iNg ,1 ≤ ... ≤ iNg ,T

)
.

Consequently, the maximum number of parameters is at most this number.

Assumptions 1 to 9 mimic the assumptions in theorems 2.5 and 3.3 in Newey and

McFadden (1994). With some small modifications, these assumptions work for standard

RE estimators. In other words, they allow us to extend any RE estimator to have the cluster

dependence described in Section 2. It would be possible to relax some of these assumptions,

but it could result in non-standard properties. For example, if Assumption 3 allowed the

true value of the parameter lies at the boundary of the parameter space, the asymptotic

distribution of θ̂ could be a mixture.

Assumptions 10 and 11 impose smoothness restrictions on the copula, as well as bounds

on some functionals of its derivative with respect to the copula parameter. It covers the

independence case in which its density equals one everywhere, but not the perfect correlation

case in which the copula has no proper density. Assumption 12 limits cluster size to N , ruling

out the possibility that the size of a group grows to infinity as the sample size grows. This

assumption is required to bound the likelihood function, and it should be satisfied in most

applications. Regarding its independence with respect to all other variables, it could be

relaxed at the cost of complicating the analysis.

The following proposition establishes the asymptotic distribution of the CBRE estimator:

Proposition 3. Under Assumptions 1 to 12, the CBRE estimator θ̂ is a consistent estimator

for θ0 and its asymptotic distribution is given by
√
G
(
θ̂ − θ0

)
d→ N

(
0,ΣCBRE

θ

)
.

Proof. The proposition is shown by checking that Assumptions 1 to 12 satisfy the assumptions

in theorems 2.5 and 3.3 in Newey and McFadden (1994). Rather than considering the data

iid at the individual level, I do it at the cluster level. Begin with the consistency result.

By Assumptions 10 and 12,

`g (zg; θ) =
ˆ

[0,1]Ng

Ng∏
i=1

Pig (zig, uig;µ) dCX (ug; ρ) <
ˆ

[0,1]Ng

dCX (ug; ρ) = 1

So `g (zig; θ) is well defined and finite. By Assumptions 4 and 10, for any sequence
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θn : θn → θ, ∏Ng

i=1 Pig (zig, uig;µn) cX (ug; ρn)→ ∏Ng

i=1 Pig (zig, uig;µ) cX (ug; ρ) for almost every

ug. Thus, by the dominated convergence theorem, `g (zg; θn) → `g (zg; θ), so `g (zg; θ) is

continuous with respect to θ. By a similar argument, −∞ < log (`g (zg; θ)) < 0. To get

the lower bound, notice that `g (zg; θ) > 0 ⇔ ∃ug : ∏Ng

i=1 Pig (zig, uig;µ) cX (ug; ρ) > 0. By

Assumption 5, ∃uig be such that Pig
(
zig, u

∗
ig

)
> 0∀i. By Assumption 10, the marginals

must integrate to 1, and the copula is continuous, so it has a proper pdf. Hence, ∃u∗1c :

cX
(
u∗1g, u2g, ..., uNgg

)
> 0∀u2g, ..., uNgg. Therefore, E [supθ∈Θ |log (`g (zg; θ))|] < ∞. These

two results, together with Assumptions 1 to 3, verify the conditions in theorem 2.5 in Newey

and McFadden (1994) and hence θ̂ P→ θ0.

By Assumptions 10, and 12,

∇µ`g (zg; θ) =
Ng∑
i=1

ˆ
[0,1]Ng

∇µPig (zig, uig;µ)
∏
j 6=i

Pjg (zjg, ujg;µ) dCX (ug; ρ)

=
Ng∑
i=1

ˆ 1

0
∇µPig (zig, uig;µ)

ˆ
[0,1]Ng−1

∏
j 6=i

Pjg (zjg, ujg;µ) dCX (u−ig|uig; ρ)
 duig

for all θ ∈ N , where u−ig denotes the set {ujg}j 6=i. Note that the term in square brackets is

a probability, and hence it takes values on the unit interval. Hence, by Assumption 7,

ˆ
sup
θ∈N
‖∇µ`g (zg; θ)‖ dzg < N max

i=1,...,Ng

ˆ
sup
θ∈N
‖∇µ`ig (zig;µ)‖ dzig <∞

By Assumptions 10 and 12

∇ρ`g (zg; θ) =
ˆ

[0,1]Ng

Ng∏
i=1

Pig (zig, uig;µ)∇ρcX (ug; ρ) duig

≤
ˆ

[0,1]Ng

Ng∏
i=1

Pig (zig, uig;µ) |∇ρcX (ug; ρ)| duig

≤
ˆ

[0,1]Ng

|∇ρcX (ug; ρ)|
Ng∏
i=1

duig <∞

This, together with assumption 11 implies
´

supθ∈N ‖∇ρ`g (zg; θ)‖ dzg <∞.

By a parallel argument, the second derivatives can be bounded. Consequently, it follows
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that
´

supθ∈N ‖∇θ`g (zg; θ)‖ dzg < ∞ and
´

supθ∈N ‖∇θθ`g (zg; θ)‖ dzg < ∞. Taking this

result, together with Assumptions 1, 3, 6, and 8, and 9, the conditions in Theorem 3.3 in

Newey and McFadden (1994) are verified and
√
G
(
θ̂ − θ0

)
d→ N

(
0,ΣCBRE

θ

)
.

S3 Estimation of Average Partial Effects

Frequently, the researcher is interested in the estimation of the APE rather than the slope

coefficients. The APE is defined as the marginal effect that increasing the jth regressor xigt,j

would have on the probability of the dependent variable being equal to one, averaged over

the whole population. Mathematically,

APE (xigt,j) ≡
ˆ
R

∂

∂xigt,j
P (yigt = 1|xigt, ηig) dFη (ηig|xig;σ0) (13)

Since it just depends on the marginal distribution of ηig, there is no need to know the copula

to identify them, and it can be computed using the sample analogue of Equation 13. It is

worth highlighting that the APE depend on the parametric assumptions. See, for instance,

Graham and Powell (2012), Chernozhukov et al. (2013), Fernández-Val and Lee (2013), or

Escanciano (2016) for discussions on the identification and estimation of APE in this and

other related frameworks.

S4 Score and Hessian

Let Figt and figt be shorthand for Fε
(
−
(
η (uig|xig;σ) + x′igtβ

))
and fε

(
−
(
η (uig|xig;σ) + x′igtβ

))
,

denote the quantile function of η (uig|xig;σ) by Qη (u|x;σ) ≡ F−1
η (u|x;σ) and by qη (u|x;σ)
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its derivative with respect to σ. Then, the score is given by

∂L (θ)
∂β

=
G∑
g=1

´
[0,1]Ng Pg (zg, ug;µ)∑Ng

i=1
∑T
t=1

figt

Figt(1−Figt) (yigt − (1− Figt))xigtdCX (ug; ρ)´
[0,1]Ng Pg (zg, ug;µ) dCX (ug; ρ)

(14)

∂L (θ)
∂σ

=
G∑
g=1

´
[0,1]Ng Pg (zg, ug;µ)∑Ng

i=1
∑T
t=1

figt

Figt(1−Figt) (yigt − (1− Figt)) qη (uig|xig;σ) dCX (ug; ρ)´
[0,1]Ng Pg (zg, ug;µ) dCX (ug; ρ)

(15)

∂L (θ)
∂ρ

=
G∑
g=1

´
[0,1]Ng Pg (zg, ug;µ) ∂cX(ug ;ρ)

∂ρ

∏Ng

i=1 duig´
[0,1]Ng Pg (zg, ug;µ) dCX (ug; ρ) (16)

Note that if η belongs to a scale family of distributions, i.e. if η = ση̃ig, where η̃ig ∼ Fη (1),

then Qη (uig) = ση̃ig, and thus qη (uig;σ) = η̃ig. It is immediate to approximate Equations 14

and 15 using the proposed algorithm presented in this paper. Regarding Equation 16, it is

more convenient to numerically evaluate the derivative, i.e. ∂L(θ)
∂ρ
≈ L(µ,ρ+ε)−L(µ,ρ)

ε
. Finally,

the Hessian is estimated by

Ĥ
(
θ̂
)

= 1
G

G∑
g=1

∂ log
(

ˆ̀
g

(
zg; θ̂

))
∂θ

∂ log
(

ˆ̀
g

(
zg; θ̂

))
∂θ′

S5 Schennach and Wilhelm Test for Copulas

Consider two different parametric copulas, CX,1 (ug; ρ1) and CX,2 (ug; ρ2), where both ρ1

and ρ2 belong to the interior of their respective parameter spaces. Denote their respective

likelihoods by `1,g (zg; θ1) and `2,g (zg; θ2), where θ1 ≡ (µ′, ρ′1)′ and θ2 ≡ (µ′, ρ′2)′ and let
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ωg (ε̂g) = 1 + ε̂G1 (g is even). ε̂G is chosen as suggested in Schennach and Wilhelm (2017):

ε̂G =
(
ĈSD

Ĉ∗PL

)1/3

N−
1/6 (ln lnN)1/3

where the constants ĈSD and Ĉ∗PL are defined in Schennach and Wilhelm (2017). Note that

the choice of ε̂G faces a trade-off between the power and the size of the test, depending on

the true model. Then, the test statistic is given by:

t̃G = 1√
Gˆ̃σ

G∑
g=1

ωg (ε̂G) log
(
`1,g

(
zg; θ̂1

))
− ωg (ε̂G) log

(
`2,g

(
zg; θ̂2

))

where

ˆ̃σ2 ≡ 1
G

G∑
g=1

[
ωg (ε̂G) log

(
`1,g

(
zg; θ̂1

))
− ωg (ε̂G) log

(
`2,g

(
zg; θ̂2

))]2

−

 1
G

G∑
g=1

ωg (ε̂G) log
(
`1,g

(
zg; θ̂1

))
− ωg (ε̂G) log

(
`2,g

(
zg; θ̂2

))2

This test has a limiting normal distribution, uniformly over the subset of distributions

that satisfy the null hypothesis of equal fit (Theorem 2 in Schennach and Wilhelm (2017)).

Given a size α for the test, the null hypothesis is not rejected if the test is between the α/2

and 1− α/2 quantiles of the normal distribution, whereas the alternative hypothesis that C1

is better than C2 and the other way around are not rejected if the test is below the α/2 or

above the 1− α/2 quantiles, respectively

S6 Elliptical Copulas

Elliptical copulas (Cambanis et al., 1981) constitute one of the major parametric families

of copulas, including two of the most widely used copulas, the Gaussian and the t. The

algorithm proposed in Section 4 cannot be adapted to these copulas if some restrictions on

the correlation structure are imposed.
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Let R denote the correlation matrix of a d-variate normal distribution and ΦR its cdf.

The Gaussian copula with correlation R is given by C (u;R) = ΦR (Φ−1 (u1) , ...,Φ−1 (ud)). If

R is positive definite, then it is possible to obtain the Cholesky decomposition, denoted by A.

It is possible to express the Gaussian copula in terms of d independent normal distributions

and the coefficients of A (Embrechts et al., 2001), where the (i, j) element is denoted by aij.

Hence, it is possible to rewrite the integral that is required to evaluate the likelihood as

I =
ˆ

[0,1]d

d∏
i=1

`i (ui) dC (u;R) =
ˆ

[0,1]d

d∏
i=1

`i

Φ
 i∑
j=1

ajiΦ−1 (vj)
 d∏

j=1
dvj

The likelihood can be decomposed into d independent random variables. However, the

dimensionality of the integral is not reduced as it was the case with the Archimedean copulas.

A similar reformulation of the integral for the t (or any other elliptical) copula is possible:

denote by tν,R the cdf of the d-variate t distribution with ν degrees of freedom and correlation

matrix R, then the t copula is given by C (u; ν,R) = tν,R (t−1
ν (u1) , ..., t−1

ν (ud)). Again, if

R is positive definite, and following Embrechts et al. (2001), the copula can be written in

terms of d independent normal variables and a χ2 with ν degrees of freedom, and its cdf is

denoted by Fν . The integral I is then given by

I =
ˆ

[0,1]d

d∏
i=1

`i (ui) dC (u; ν,R) =
ˆ

[0,1]d+1

d∏
i=1

`i

tν
 √

ν√
F−1
ν (w)

i∑
j=1

ajiΦ−1 (vj)
 d∏

j=1
dvjdw

With respect to the Gaussian copula, the only remarkable difference is the inclusion of

the χ2, which results in an increase of the dimension of the integral from d to d+ 1.

If one is willing to adopt a symmetric correlation among the elements of the copula, i.e

if all the off-diagonal elements of R were equal to ρ, then it would be possible to obtain a

reduction of the dimensionality of the integral similar to the one attained for the Archimedean

copulas. To see this, notice that by the properties of the normal distribution, it is possible

to obtain a d-variate normal distribution with covariance function R = (1− ρ) Id + ριdι
′
d,

where ιd is a vector of ones. Each element is the sum of two independent random normals,
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one specific to each dimension, and one common to all, with weights
√

1− ρ and √ρ. Hence,

when the copula is Gaussian, the integral I can be rewritten as

I =
ˆ 1

0

d∏
i=1

[ˆ 1

0
`i
(
Φ
(√

ρΦ−1 (z) +
√

1− ρΦ−1 (vi)
))
dvi

]
dz

For the t copula a similar decomposition is feasible, but the dimensionality of the resulting

integral is 3, because of the χ2 distribution:

I =
ˆ

[0,1]2

d∏
i=1

ˆ 1

0
`i

tν
 √

ν√
F−1
ν (w)

(√
ρΦ−1 (z) +

√
1− ρΦ−1 (vi)

) dvi
 dzdw

S7 Bernstein Copulas

Bernstein copulas are a family of multivariate copulas introduced by Sancetta and Satchell

(2004). The M -th degree Bernstein polynomial is given by Pv,M (u) =
(
M
v

)
uv (1− u)M−v for

0 ≤ v ≤M ∈ N and u ∈ [0, 1]. Define the map CB : [0, 1]d → [0, 1] as

CB (u1, ..., ud) =
M1∑
v1=0

...
Md∑
vd=0

α
(
v1

M1
, ...,

vd
Md

)
Pv1,M1 (u1) ...Pvd,Md

(ud)

where α
(
v1
M1
, ..., vd

Md

)
are some constants ∀vj = 0, ...,Mj, j = 1, ..., d. CB is a Bernstein

copula if it satisfies (Theorem 1 in Sancetta and Satchell (2004))

1∑
l1=0

...
1∑

ld=0
(−1)l1+...+ld α

(
v1 + l1
M1

, ...,
vd + ld
Md

)
≥ 0

min
(

0, v1

M1
+ ...+ vd

Md

− (d− 1)
)
≤ α

(
v1

M1
, ...,

vd
Md

)
≤ min

(
v1

M1
, ...,

vd
Md

)

Moreover, the α parameters have to satisfy the doubly stochastic matrix condition, i.e.∑M
v1 Mβ

(
v1
M
, ..., vd

M

)
= 1∀j = 1, ..., d, where β

(
v1
M
, ..., vd

M

)
≡ (M + 1)d ∆1,...,mα

(
v1

M+1 , ...,
vd

M+1

)
.

This copula has a well-defined density that can be expressed in terms of Bernstein
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polynomials. Its coefficients are a function of the α coefficients. It is well-known that

Bernstein polynomials can uniformly approximate any continuous function on [0, 1]d if the

degree of the polynomial is high enough. Consequently, one can use the Bernstein copula

to approximate any continuous multivariate copula. Sancetta and Satchell (2004) showed

that the Bernstein copula and its approximand converge to an arbitrary limit at a different

speed. Hence, although it can capture increasing dependence as one moves to the tails, it is

not the appropriate choice to model copulas with extreme tail behavior.

The total number of parameters to estimate a d-variate Bernstein copula with polynomials

of degree M equals Md, and hence is subject to the curse of dimensionality, making it

impractical to work with it when the dimension of the data is large. However, implementation

when the dimension is small is relatively straightforward, since it just depends on a finite

and small number of parameters. This, coupled with the flexibility of the copula makes it

an attractive choice when the underlying copula is unknown.

S8 Extra Results
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Figure 3: Copula contour of Table 6 ρ̂ estimates
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Table 8: Difference in the covariates between women married to employed and unemployed husbands
AT BE BG CZ DK EL ES FI FR HU IT NL NO PL PT UK

C5 0.12 0.12 0.03 0.16 0.01 0.17 0.08 0.06 0.15 0.13 0.18 0.15 0.08 0.15 0.10 0.13
(0.03) (0.03) (0.02) (0.02) (0.04) (0.03) (0.02) (0.03) (0.01) (0.02) (0.02) (0.03) (0.03) (0.02) (0.02) (0.04)

AGE -8.19 -7.69 -5.60 -9.68 -3.50 -8.36 -3.31 -5.65 -9.30 -7.46 -7.42 -8.63 -4.49 -8.97 -6.90 -5.54
(0.77) (0.82) (0.69) (0.62) (0.95) (0.62) (0.50) (0.73) (0.34) (0.51) (0.42) (0.78) (0.82) (0.44) (0.64) (1.02)

SE 0.07 0.07 -0.06 0.05 -0.07 0.05 0.08 -0.02 0.02 0.08 0.13 0.00 -0.11 -0.07 0.04 -0.12
(0.04) (0.04) (0.04) (0.03) (0.06) (0.04) (0.02) (0.04) (0.02) (0.03) (0.02) (0.05) (0.04) (0.02) (0.03) (0.05)

TE 0.09 0.20 0.17 0.11 0.09 0.09 0.17 0.20 0.25 0.15 0.12 0.09 0.30 0.14 0.11 0.11
(0.03) (0.05) (0.03) (0.02) (0.05) (0.03) (0.02) (0.04) (0.02) (0.02) (0.01) (0.04) (0.04) (0.02) (0.02) (0.05)

IN 0.87 -1.11 -0.05 0.18 0.49 0.48 0.15 0.92 1.86 -0.03 0.27 0.84 3.40 0.19 0.18 -0.49
(0.69) (1.23) (0.05) (0.07) (2.20) (0.36) (0.16) (0.92) (1.30) (0.04) (0.21) (0.46) (1.61) (0.09) (0.15) (0.68)

Notes: Standard errors in parentheses. C5, AGE, SE, TE, and IN respectively denote female, number of children smaller than 5 years old, age,
secondary education, tertiary education, and non-labor income (expressed in thousands of euros). The estimates shown are those of Austria,
Belgium, Bulgaria, Czech Republic, Denmark, Greece, Spain, Finland, Hungary, Italy, Netherlands, Norway, Poland, Portugal, and the United
Kingdom. The estimates of the remaining countries (Cyprus, Estonia, Iceland, Lithuania, Luxemburg, Latvia, Malta, and Slovenia) are available
upon request.
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Table 9: RE estimates
AT BE BG CZ DK EL ES FI FR HU IT NL NO PL PT UK

FE -1.63 -1.51 -0.96 -1.63 -0.98 -4.36 -4.41 -0.82 -2.35 -0.46 -4.03 -5.07 -2.09 -2.33 -3.40 -0.42
(0.60) (0.50) (0.60) (0.65) (0.32) (0.44) (0.53) (0.43) (0.43) (0.64) (0.29) (0.44) (0.39) (0.34) (0.84) (0.42)

C5 -0.79 -0.20 -3.65 0.45 -0.68 0.98 0.49 -2.18 -0.29 -0.19 0.87 0.23 -1.23 0.70 -0.15 0.80
(1.00) (1.59) (1.87) (0.71) (1.10) (0.94) (0.47) (0.91) (0.48) (0.68) (0.58) (0.43) (0.82) (0.62) (1.10) (0.49)

C5*FE -0.78 -0.13 2.50 -4.50 0.79 -1.27 -1.42 -0.39 -1.23 -2.49 -1.89 -1.79 0.52 -1.88 0.19 -2.27
(1.48) (2.15) (1.74) (2.81) (1.62) (1.02) (0.56) (2.23) (0.73) (1.44) (0.72) (1.42) (1.01) (1.03) (1.36) (0.62)

AGE -0.29 -0.33 -0.17 -0.27 -0.11 -0.20 -0.15 -0.19 -0.42 -0.21 -0.20 -0.36 -0.10 -0.36 -0.26 -0.07
(0.05) (0.03) (0.05) (0.03) (0.03) (0.03) (0.04) (0.06) (0.03) (0.04) (0.02) (0.03) (0.03) (0.02) (0.07) (0.04)

SE 1.16 1.51 1.71 2.68 0.50 -0.45 1.69 2.00 1.34 2.11 2.48 2.39 2.08 2.08 1.52 0.03
(0.61) (0.46) (0.55) (1.24) (0.67) (0.51) (0.47) (0.96) (0.36) (0.40) (0.32) (0.55) (0.60) (0.43) (0.60) (0.29)

TE 2.33 3.14 4.81 4.54 2.36 3.58 3.62 3.04 4.05 4.11 4.69 4.38 3.42 6.02 4.80 0.57
(1.16) (0.68) (0.67) (1.47) (0.78) (0.43) (0.59) (0.90) (0.39) (1.26) (0.34) (0.76) (0.65) (0.84) (3.15) (0.35)

IN 0.00 -0.01 0.04 0.05 0.00 0.03 -0.01 0.00 0.00 -0.01 0.00 0.03 0.00 -0.01 0.03 0.00
(0.01) (0.01) (0.16) (0.07) (0.00) (0.05) (0.03) (0.01) (0.00) (0.09) (0.02) (0.01) (0.00) (0.02) (0.40) (0.01)

C5 -2.09 -0.88 4.21 -1.42 -1.76 -0.28 -1.64 0.50 -3.38 0.45 -0.42 -0.09 0.82 -2.61 -1.71 -1.09
(1.83) (1.77) (2.42) (1.36) (1.94) (1.09) (0.95) (2.27) (0.87) (0.88) (1.18) (1.58) (1.19) (1.26) (1.72) (2.02)

C5 ∗ FE -4.01 -4.35 -7.08 -5.56 -0.25 -0.32 1.53 -5.70 -3.92 -6.51 -1.81 -2.61 -3.00 -4.48 -0.87 0.10
(2.09) (2.38) (2.11) (2.94) (3.09) (1.30) (0.93) (2.80) (1.01) (2.19) (1.20) (2.06) (1.40) (1.85) (3.42) (2.42)

IN 0.04 0.01 -0.47 0.05 -0.01 0.00 0.12 0.00 0.01 -0.02 0.12 -0.02 0.00 0.01 -0.02 -0.07
(0.01) (0.02) (0.39) (0.26) (0.01) (0.05) (0.23) (0.03) (0.00) (0.28) (0.04) (0.01) (0.00) (0.04) (0.97) (0.04)

σ̂ 4.25 6.95 4.98 4.16 3.31 5.50 4.46 3.81 5.56 4.52 4.48 6.00 3.89 5.40 5.10 2.52
(0.53) (0.68) (0.48) (0.32) (0.33) (0.40) (0.23) (0.49) (0.22) (0.63) (0.21) (0.42) (0.33) (0.31) (0.86) (0.21)

PW 73.5 66.9 76.9 74.7 86.6 55.7 55.8 76.0 71.8 64.7 55.0 76.3 81.8 64.9 65.5 78.2
(2.4) (1.6) (1.5) (1.3) (1.8) (1.6) (3.7) (1.6) (1.2) (1.7) (1.2) (1.2) (1.2) (1.4) (2.3) (3.4)

CP1 75.4 69.6 78.8 75.7 87.0 58.3 57.5 77.2 75.7 66.9 57.7 77.4 82.3 68.7 68.4 78.4
(2.3) (1.6) (1.5) (1.3) (1.7) (1.6) (3.6) (1.5) (1.2) (1.9) (1.2) (1.2) (1.2) (1.4) (2.3) (3.4)

CP0 63.4 56.6 70.0 67.5 83.4 45.8 48.1 70.0 56.2 58.6 43.3 62.8 75.6 52.5 54.8 76.6
(4.7) (1.7) (2.2) (2.1) (2.1) (1.9) (4.2) (2.9) (1.7) (2.0) (1.4) (1.6) (2.0) (1.6) (2.4) (3.4)

N 764 604 780 1404 696 930 1906 882 3370 1422 2186 1360 1364 1848 814 640
Notes: Standard errors in parentheses. FE, C5, AGE, SE, TE, and IN respectively denote female, number of children smaller than 5 years old, age,
secondary education, tertiary education, and non-labor income (expressed in thousands of euros); the symbol is used to denote the coefficient of the
correlated random effect; PW denotes the unconditional probability that a wife is employed, CP1 and CP0 respectively denote the probability that a
wife is employed conditional on her husband being employed, and conditional on her husband being unemployed; the selected model (logit/probit) for
each country is the same as in 6; N is the sample size of each country. The estimates shown are those of Austria, Belgium, Bulgaria, Czech Republic,
Denmark, Greece, Spain, Finland, Hungary, Italy, Netherlands, Norway, Poland, Portugal, and the United Kingdom. The estimates of the remaining
countries (Cyprus, Estonia, Iceland, Lithuania, Luxemburg, Latvia, Malta, and Slovenia) are available upon request.
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Table 10: Bernstein copula CBRE estimates
AT BE BG CZ DK EL ES FI FR HU IT NL NO PL PT UK

FE -1.97 -3.42 -0.93 -1.56 -1.20 -4.96 -4.36 -0.76 -1.74 -0.50 -4.14 -5.33 -2.09 -2.57 -2.95 -1.10
(0.55) (0.90) (0.48) (0.37) (0.44) (0.61) (0.33) (0.43) (0.33) (0.33) (0.31) (0.69) (0.37) (0.40) (0.54) (0.52)

C5 -0.79 0.11 -3.65 0.36 -0.68 1.00 0.49 -2.13 -0.35 -0.20 0.89 0.49 -1.22 0.71 -0.10 1.52
(0.92) (0.79) (2.94) (1.77) (1.16) (0.67) (0.38) (0.67) (0.55) (0.51) (0.46) (3.81) (0.64) (0.51) (1.32) (2.21)

C5*FE -0.84 -0.39 2.57 -4.54 0.83 -1.25 -1.42 -0.47 -1.24 -2.58 -1.90 -1.93 0.51 -1.84 0.05 -4.21
(1.17) (1.35) (4.11) (1.88) (1.70) (0.91) (0.54) (0.89) (0.67) (0.54) (0.59) (3.88) (0.76) (0.61) (1.55) (2.40)

AGE -0.30 -0.47 -0.20 -0.28 -0.14 -0.25 -0.15 -0.21 -0.43 -0.23 -0.21 -0.41 -0.12 -0.36 -0.29 -0.12
(0.04) (0.07) (0.03) (0.02) (0.03) (0.03) (0.02) (0.02) (0.02) (0.02) (0.02) (0.05) (0.02) (0.03) (0.03) (0.04)

SE 0.95 1.38 1.73 2.67 0.44 -0.16 2.02 1.88 1.18 1.85 2.54 2.18 2.00 2.25 1.71 -0.04
(0.41) (0.45) (0.61) (0.63) (0.43) (0.31) (0.29) (0.53) (0.26) (0.28) (0.29) (0.65) (0.40) (0.69) (0.49) (0.38)

TE 1.87 2.52 4.46 4.77 2.25 3.85 3.87 2.73 4.00 3.85 4.79 4.33 3.33 5.86 4.46 0.83
(0.62) (0.48) (0.80) (0.81) (0.50) (0.55) (0.31) (0.60) (0.39) (0.42) (0.46) (0.64) (0.43) (0.80) (0.83) (0.43)

IN 0.00 -0.01 0.04 0.04 0.00 0.03 -0.01 0.00 0.00 -0.01 0.00 0.03 0.00 -0.01 0.03 0.00
(0.01) (0.01) (0.65) (0.05) (0.01) (0.05) (0.03) (0.02) (0.00) (0.10) (0.02) (0.02) (0.01) (0.18) (0.11) (0.04)

C5 -1.58 -3.94 3.60 -2.49 -2.13 -1.27 -1.53 -0.07 -2.67 1.29 -0.50 -3.46 0.06 -2.29 -0.98 -1.41
(1.52) (2.36) (3.46) (1.85) (1.61) (1.31) (0.74) (1.17) (0.83) (1.16) (0.79) (4.34) (1.13) (1.07) (1.96) (2.40)

C5 ∗ FE -4.50 -3.26 -8.63 -4.98 -0.06 -1.43 0.99 -5.90 -4.64 -8.07 -1.88 -1.25 -2.73 -4.96 -2.46 0.09
(1.74) (2.48) (4.82) (2.13) (2.04) (1.46) (0.88) (1.51) (1.07) (1.41) (0.93) (4.37) (1.25) (1.20) (2.18) (2.63)

IN 0.05 0.00 -0.48 0.01 0.00 -0.03 0.10 0.00 0.01 0.07 0.12 -0.03 0.00 -0.05 0.11 -0.11
(0.03) (0.06) (1.41) (0.13) (0.01) (0.08) (0.07) (0.05) (0.01) (0.58) (0.04) (0.03) (0.01) (0.12) (0.22) (0.09)

σ̂ 4.82 7.40 5.22 4.92 3.57 5.76 4.78 4.19 6.69 4.98 4.82 6.81 4.15 6.24 5.55 4.57
(0.36) (0.78) (0.38) (0.29) (0.29) (0.41) (0.21) (0.31) (0.26) (0.25) (0.20) (0.50) (0.25) (0.32) (0.39) (0.40)

Model Log Log Log Log Log Log Log Log Log Log Log Log Log Log Log Log
Order 2 2 2 2 2 3 2 2 2 2 2 2 2 2 2 2
τ 0.21 0.22 0.16 0.21 0.22 0.16 0.11 0.16 0.17 0.20 0.10 0.08 0.16 0.11 0.14 0.17
N 764 604 780 1404 696 930 1906 882 3370 1422 2186 1360 1364 1848 814 640

Notes: Standard errors in parentheses. FE, C5, AGE, SE, TE, and IN respectively denote female, number of children smaller than 5 years old, age,
secondary education, tertiary education, and non-labor income (expressed in thousands of euros); the symbol is used to denote the coefficient of the
correlated random effect; the contour plots of the copula estimates are shown in Figure 4; Model denotes the best fitting binary choice model: logit
(Log) or probit (Pro); N is the sample size of each country. The estimates shown are those of Austria, Belgium, Bulgaria, Czech Republic, Denmark,
Greece, Spain, Finland, Hungary, Italy, Netherlands, Norway, Poland, Portugal, and the United Kingdom. The estimates of the remaining countries
(Cyprus, Estonia, Iceland, Lithuania, Luxemburg, Latvia, Malta, and Slovenia) are available upon request.
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Figure 4: Contour of estimated Bernstein copulas
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Table 11: Counterfactuals with Bernstein copulas
AT BE BG CZ DK EL ES FI FR HU IT NL NO PL PT UK

PWρ 72.6 67.0 76.9 74.3 86.4 54.2 55.3 75.9 72.8 65.1 54.6 77.2 82.7 63.7 65.0 77.8
(1.9) (2.3) (1.8) (1.3) (1.4) (1.9) (1.3) (1.6) (0.9) (1.4) (1.2) (1.3) (1.2) (1.3) (1.9) (2.0)

CP1ρ 76.3 73.7 80.8 76.7 87.8 57.9 58.6 78.3 78.3 70.4 58.8 78.7 83.9 68.9 70.3 79.4
(1.9) (2.4) (1.7) (1.3) (1.4) (2.1) (1.4) (1.7) (0.9) (1.5) (1.2) (1.3) (1.2) (1.3) (2.0) (1.9)

CP0ρ 51.4 41.9 61.5 55.7 74.2 37.4 41.2 63.1 49.5 49.7 37.1 58.9 68.1 46.6 46.1 66.7
(4.3) (4.8) (3.9) (3.5) (3.9) (3.4) (2.5) (3.5) (2.0) (2.5) (2.2) (4.9) (3.8) (2.5) (3.8) (4.9)

∆p
(
y2ct|xg; θ̂CBRE

)
24.9 31.8 19.3 21.0 13.5 20.5 17.4 15.2 28.8 20.7 21.7 19.8 15.7 22.3 24.2 12.7
(4.3) (5.0) (3.9) (3.5) (3.9) (3.8) (2.6) (3.5) (2.1) (2.7) (2.3) (4.9) (3.7) (2.7) (4.0) (4.8)

Endowment effect 12.1 13.1 8.8 8.2 3.6 12.5 9.4 7.3 19.5 8.3 14.5 14.6 6.7 16.1 13.6 1.8
(3.8) (1.1) (1.9) (1.9) (0.8) (1.2) (0.9) (2.7) (1.1) (1.6) (1.0) (1.0) (1.4) (1.0) (1.0) (0.7)

Homophily effect 12.8 18.8 10.6 12.8 10.0 7.9 8.0 8.0 9.3 12.5 7.3 5.2 9.0 6.2 10.6 10.9
(5.7) (5.1) (4.3) (4.0) (4.0) (3.9) (2.8) (4.4) (2.4) (3.2) (2.5) (5.0) (4.0) (2.9) (4.1) (4.9)

Pρ 77.6 65.2 75.2 82.6 90.1 64.5 66.2 80.8 72.5 62.2 65.0 89.9 91.9 64.8 65.3 84.7
(2.6) (3.4) (2.9) (1.8) (1.7) (3.3) (1.9) (2.4) (1.4) (2.3) (1.8) (1.6) (1.2) (1.9) (2.9) (2.9)

PI 83.0 72.3 80.2 86.9 93.3 66.0 69.5 84.5 77.5 68.8 68.0 91.2 94.1 68.3 70.0 88.7
(1.9) (2.7) (2.0) (1.2) (1.0) (2.4) (1.5) (1.6) (1.0) (1.8) (1.5) (1.0) (0.7) (1.5) (2.2) (1.8)

∆P -5.4 -7.1 -5.0 -4.3 -3.2 -1.5 -3.3 -3.8 -5.0 -6.6 -2.9 -1.4 -2.2 -3.5 -4.7 -4.1
(1.6) (2.1) (1.8) (1.1) (1.3) (2.1) (1.0) (1.5) (0.8) (1.3) (0.9) (1.1) (0.9) (1.1) (1.7) (1.8)

N 764 604 780 1404 696 930 1906 882 3370 1422 2186 1360 1364 1848 814 640
Notes: Standard errors of the estimated probabilities were computed using the delta method. PWρ denotes the unconditional probability that
a wife is employed, CP1ρ and CP0ρ respectively denote the probability that a wife is employed conditional on her husband being employed,
and conditional on her husband being unemployed; ∆p

(
y2gt|xg; θ̂CBRE

)
and the homophily and endowment effects are defined in the text; Pρ

and PI respectively denote the probability (in %) that at least one member of the couple was employed in every period when the parameter
of the copula is the estimated one and when the copula is independent, and ∆P denotes the difference between the two; N is the sample size
of each country. The estimates shown are those of Austria, Belgium, Bulgaria, Czech Republic, Denmark, Greece, Spain, Finland, Hungary,
Italy, Netherlands, Norway, Poland, Portugal, and the United Kingdom. The estimates of the remaining countries (Cyprus, Estonia, Iceland,
Lithuania, Luxemburg, Latvia, Malta, and Slovenia) are available upon request.
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Table 12: Akaike Information Criterion across specifications
AT BE BG CZ DK EL ES FI FR HU IT NL NO PL PT UK

RE - Lo 1932.8 1385.0 2014.7 1278.7 3068.2 1506.7 1381.9 2629.4 5461.7 2283.3 7507.3 4096.1 707.4 6303.5 2104.4 5632.3
RE - Pr 1933.7 1388.8 2017.5 1277.3 3073.1 1510.9 1383.3 2629.2 5463.4 2286.1 7522.0 4098.7 708.8 6306.6 2102.2 5637.4

CRE - Lo 1909.5 1372.3 2012.4 1281.8 3023.1 1509.5 1378.1 2634.8 5457.4 2264.8 7418.1 4052.0 711.4 6290.9 2107.2 5611.1
CRE - Pr 1910.5 1370.9 2015.7 1280.0 3020.1 1513.6 1377.4 2634.1 5461.0 2264.9 7444.2 4049.8 712.5 6293.0 2104.4 5615.6

CBRE Cl Lo 1915.4 1365.5 2016.2 1280.2 3057.5 1483.9 1385.6 2630.8 5443.0 2278.2 7440.4 4065.8 710.6 6300.2 2109.5 5611.8
CBRE Fr Lo 1915.3 1359.7 2012.6 1281.0 3054.6 1487.6 1385.6 2629.0 5442.9 2279.8 7438.5 4066.9 709.9 6294.9 2108.8 5608.1
CBRE Ga Lo 1915.8 1361.6 2014.5 1280.6 3056.7 1485.9 1385.6 2628.4 5441.0 2280.4 7437.2 4066.9 710.1 6296.5 2109.0 5609.1
CBRE Cl Pr 1918.5 1365.9 2018.9 1280.8 3064.2 1488.2 1386.2 2631.2 5446.9 2281.4 7456.2 4069.0 710.8 6304.2 2109.4 5616.4
CBRE Fr Pr 1918.7 1360.1 2015.4 1281.3 3061.5 1492.8 1386.2 2629.2 5446.7 2283.2 7454.2 4070.3 710.0 6301.7 2108.6 5612.8
CBRE Ga Pr 1919.2 1362.0 2017.2 1281.1 3063.6 1490.4 1386.2 2628.7 5444.9 2283.7 7452.7 4070.3 710.3 6300.5 2108.9 5613.7

CBCRE Cl Lo 1896.1 1357.9 2011.1 1280.9 3014.8 1487.8 1378.0 2630.3 5444.7 2257.7 7368.4 4017.4 713.8 6288.5 2112.3 5595.2
CBCRE Fr Lo 1895.4 1352.8 2008.1 1281.4 3012.7 1491.7 1378.1 2628.6 5444.6 2258.4 7360.1 4017.7 712.9 6283.7 2111.7 5591.6
CBCRE Ga Lo 1895.7 1354.7 2009.6 1281.0 3013.7 1489.6 1378.0 2628.2 5442.8 2258.9 7363.5 4017.5 713.4 6285.1 2111.8 5592.9
CBCRE Cl Pr 1898.4 1358.3 2013.4 1281.5 3014.8 1492.0 1377.9 2630.8 5448.6 2259.0 7389.0 4018.6 714.1 6292.3 2112.3 5599.6
CBCRE Fr Pr 1898.0 1353.2 2010.2 1282.0 3013.0 1496.0 1377.9 2629.0 5448.6 2259.7 7380.2 4018.8 713.1 6287.6 2111.6 5596.5
CBCRE Ga Pr 1898.1 1355.3 2011.9 1281.6 3013.7 1493.9 1377.9 2628.6 5446.7 2260.2 7383.5 4018.6 713.6 6288.8 2111.7 5597.3
CBRE B2 Lo 1916.6 1361.6 2013.2 1280.8 3064.0 1492.9 1385.7 2627.7 5443.2 2282.4 7440.2 4069.7 709.4 6293.5 2108.9 5606.2
CBRE B3 Lo 1920.9 1365.8 2017.5 1285.9 3068.4 1495.0 1390.6 2623.8 5445.9 2283.9 7443.1 4072.2 715.1 6298.2 2113.1 5608.9
CBRE B4 Lo 1930.7 1375.4 2026.4 1295.0 3077.5 1503.3 1399.5 2632.6 5451.4 2291.3 7450.6 4080.8 724.6 6303.8 2122.4 5614.5
CBRE B2 Pr 1920.7 1362.2 2016.5 1281.3 3071.4 1498.1 1386.7 2628.5 5449.0 2287.0 7456.8 4074.1 709.8 6300.0 2109.4 5611.7
CBRE B3 Pr 1926.1 1366.3 2021.5 1286.4 3075.5 1500.5 1391.8 2624.7 5452.2 2288.5 7458.1 4076.5 715.7 6304.2 2113.9 5614.2
CBRE B4 Pr 1934.8 1375.9 2029.6 1295.8 3084.5 1509.1 1401.1 2633.7 5457.5 2295.6 7465.1 4083.3 725.2 6309.7 2123.1 5619.6

CBCRE B2 Lo 1896.7 1354.8 2008.6 1281.4 3024.4 1496.3 1378.1 2627.7 5445.2 2261.4 7364.2 4021.1 712.5 6282.7 2111.9 5590.9
CBCRE B3 Lo 1901.7 1359.6 2012.9 1286.7 3029.8 1498.5 1382.8 2624.3 5447.9 2264.4 7366.1 4023.7 718.2 6287.1 2115.9 5593.1
CBCRE B4 Lo 1911.1 1369.0 2021.8 1296.0 3038.7 1507.1 1391.6 2633.0 5453.6 2272.5 7373.9 4031.9 727.6 6292.7 2125.0 5600.7
CBCRE B2 Pr 1900.1 1355.4 2011.6 1282.2 3025.4 1501.9 1378.4 2628.8 5451.2 2264.1 7385.8 4023.6 713.2 6289.5 2112.4 5596.6
CBCRE B3 Pr 1905.6 1360.3 2016.7 1287.5 3030.9 1504.4 1383.1 2625.4 5454.5 2266.8 7388.0 4026.0 719.0 6293.3 2116.8 5598.8
CBCRE B4 Pr 1914.3 1369.7 2025.1 1297.0 3039.7 1513.1 1391.9 2634.4 5460.0 2275.1 7394.7 4034.0 728.5 6298.2 2125.8 5606.5

N 764 604 780 568 1404 696 498 930 1906 882 3370 1422 386 2186 774 2294
Notes: CBCRE and CRE respectively denote the CBRE and RE estimators with correlated random effects; Lo and Pr stand for logit and probit; Cl,
Fr, Ga, and Bx stand for independent, Clayton, Frank, Gaussian, and Bernstein copula of order x; N is the sample size of each country. The estimates
shown are those of Austria, Belgium, Bulgaria, Czech Republic, Denmark, Greece, Spain, Finland, Hungary, Italy, Netherlands, Norway, Poland,
Portugal, and the United Kingdom. The estimates of the remaining countries (Cyprus, Estonia, Iceland, Lithuania, Luxemburg, Latvia, Malta, and
Slovenia) are available upon request.
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Table 13: Bayesian Information Criterion across specifications
AT BE BG CZ DK EL ES FI FR HU IT NL NO PL PT UK

RE - Lo 2005.1 1454.5 2087.2 1347.5 3147.8 1577.8 1449.1 2704.1 5544.9 2357.3 7597.4 4175.8 771.5 6388.4 2176.9 5717.8
RE - Pr 2006.0 1458.3 2090.1 1346.1 3152.7 1582.1 1450.5 2703.9 5546.6 2360.2 7612.1 4178.4 773.0 6391.5 2174.7 5722.9

CRE - Lo 1999.9 1459.2 2103.1 1367.7 3122.6 1598.4 1462.0 2728.1 5561.5 2357.3 7530.7 4151.7 791.5 6397.1 2197.7 5718.0
CRE - Pr 2000.9 1457.8 2106.3 1365.9 3119.6 1602.6 1461.3 2727.4 5565.1 2357.4 7556.8 4149.5 792.6 6399.2 2195.0 5722.4

CBRE Cl Lo 1993.8 1440.8 2094.8 1354.6 3143.7 1561.0 1458.4 2711.7 5533.2 2358.4 7538.0 4152.2 780.0 6392.1 2188.0 5704.4
CBRE Fr Lo 1993.7 1435.0 2091.2 1355.5 3140.8 1564.7 1458.3 2709.8 5533.2 2360.0 7536.1 4153.3 779.3 6386.8 2187.3 5700.7
CBRE Ga Lo 1994.1 1436.9 2093.1 1355.1 3142.9 1563.0 1458.4 2709.3 5531.2 2360.6 7534.8 4153.3 779.6 6388.5 2187.4 5701.7
CBRE Cl Pr 1996.9 1441.2 2097.5 1355.3 3150.5 1565.3 1459.0 2712.1 5537.1 2361.5 7553.9 4155.4 780.3 6396.2 2187.9 5709.0
CBRE Fr Pr 1997.0 1435.3 2094.0 1355.8 3147.7 1569.9 1458.9 2710.1 5536.9 2363.4 7551.9 4156.7 779.4 6393.7 2187.1 5705.4
CBRE Ga Pr 1997.5 1437.2 2095.7 1355.6 3149.8 1567.5 1459.0 2709.6 5535.1 2363.9 7550.3 4156.7 779.8 6392.5 2187.4 5706.3

CBCRE Cl Lo 1992.5 1450.5 2107.8 1372.6 3120.9 1582.8 1467.6 2729.8 5555.8 2356.4 7488.5 4123.7 799.2 6401.7 2208.9 5709.2
CBCRE Fr Lo 1991.8 1445.5 2104.8 1373.0 3118.8 1586.6 1467.6 2728.1 5555.6 2357.1 7480.3 4124.0 798.4 6396.9 2208.3 5705.6
CBCRE Ga Lo 1992.1 1447.3 2106.3 1372.7 3119.8 1584.5 1467.5 2727.7 5553.8 2357.6 7483.7 4123.8 798.8 6398.3 2208.4 5706.9
CBCRE Cl Pr 1994.8 1450.9 2110.2 1373.2 3120.9 1586.9 1467.4 2730.3 5559.7 2357.7 7509.2 4124.9 799.6 6405.6 2208.9 5713.6
CBCRE Fr Pr 1994.4 1445.9 2106.9 1373.6 3119.1 1590.9 1467.4 2728.5 5559.6 2358.4 7500.3 4125.1 798.6 6400.8 2208.2 5710.5
CBCRE Ga Pr 1994.5 1448.0 2108.6 1373.3 3119.9 1588.9 1467.4 2728.2 5557.7 2358.9 7503.6 4125.0 799.1 6402.0 2208.4 5711.3
CBRE B2 Lo 1994.9 1436.9 2091.8 1355.3 3150.3 1570.0 1458.5 2708.6 5533.4 2362.6 7537.8 4156.1 778.8 6385.5 2187.4 5698.8
CBRE B3 Lo 2017.3 1458.5 2114.2 1377.5 3174.5 1589.9 1480.1 2723.3 5556.9 2382.6 7563.2 4178.6 800.6 6411.4 2209.7 5722.9
CBRE B4 Lo 2057.2 1497.0 2153.3 1415.3 3216.8 1627.9 1517.1 2763.3 5597.2 2420.8 7608.3 4220.4 836.8 6452.4 2249.2 5764.2
CBRE B2 Pr 1999.0 1437.4 2095.1 1355.8 3157.6 1575.2 1459.4 2709.4 5539.2 2367.2 7554.5 4160.5 779.3 6391.9 2187.8 5704.3
CBRE B3 Pr 2022.5 1459.0 2118.2 1378.0 3181.6 1595.4 1481.4 2724.3 5563.2 2387.2 7578.3 4182.8 801.2 6417.5 2210.5 5728.2
CBRE B4 Pr 2061.3 1497.5 2156.6 1416.1 3223.8 1633.7 1518.6 2764.3 5603.2 2425.1 7622.7 4222.9 837.4 6458.3 2249.9 5769.2

CBCRE B2 Lo 1993.1 1447.4 2105.3 1373.0 3130.5 1591.2 1467.6 2727.3 5556.3 2360.1 7484.3 4127.4 797.9 6395.9 2208.5 5704.8
CBCRE B3 Lo 2016.2 1469.7 2127.7 1395.5 3155.8 1611.2 1489.2 2742.5 5579.7 2381.6 7508.8 4149.9 819.7 6421.5 2230.6 5728.5
CBCRE B4 Lo 2055.7 1508.0 2166.9 1433.5 3197.9 1649.5 1525.9 2782.3 5620.1 2420.6 7554.1 4191.5 855.8 6462.5 2269.9 5771.7
CBCRE B2 Pr 1996.5 1448.1 2108.3 1373.9 3131.5 1596.8 1467.9 2728.4 5562.3 2362.8 7506.0 4129.9 798.6 6402.7 2209.0 5710.6
CBCRE B3 Pr 2020.1 1470.3 2131.5 1396.3 3156.9 1617.1 1489.4 2743.6 5586.3 2384.0 7530.7 4152.3 820.5 6427.7 2231.5 5734.1
CBCRE B4 Pr 2058.9 1508.7 2170.1 1434.5 3198.9 1655.5 1526.3 2783.7 5626.6 2423.1 7574.9 4193.5 856.7 6468.1 2270.7 5777.5

N 764 604 780 568 1404 696 498 930 1906 882 3370 1422 386 2186 774 2294
Notes: CBCRE and CRE respectively denote the CBRE and RE estimators with correlated random effects; Lo and Pr stand for logit and probit; Cl,
Fr, Ga, and Bx stand for independent, Clayton, Frank, Gaussian, and Bernstein copula of order x; N is the sample size of each country. The estimates
shown are those of Austria, Belgium, Bulgaria, Czech Republic, Denmark, Greece, Spain, Finland, Hungary, Italy, Netherlands, Norway, Poland,
Portugal, and the United Kingdom. The estimates of the remaining countries (Cyprus, Estonia, Iceland, Lithuania, Luxemburg, Latvia, Malta, and
Slovenia) are available upon request.
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Table 14: 10-fold cross validated log-likelihood value across specifications
AT BE BG CZ DK EL ES FI FR HU IT NL NO PL PT UK

RE - Lo -974.3 -719.5 -1011.7 -644.0 -1542.8 -756.5 -691.3 -1316.7 -2732.6 -1147.6 -3762.6 -2059.0 -354.2 -3153.0 -1054.2 -2827.6
RE - Pr -973.1 -743.5 -1014.0 -642.9 -1543.5 -758.1 -692.2 -1316.7 -2732.8 -1149.3 -3770.5 -2057.5 -357.3 -3155.2 -1049.6 -2826.6

CRE - Lo -986.1 -699.7 -1008.7 -654.4 -1522.0 -765.3 -696.2 -1329.3 -2730.9 -1138.4 -3718.4 -2031.1 -358.9 -3150.8 -1067.1 -2817.4
CRE - Pr -988.7 -699.6 -1010.4 -651.4 -1515.2 -766.2 -694.6 -1326.3 -2732.0 -1137.7 -3738.5 -2028.1 -360.9 -3150.1 -1080.1 -2820.4

CBRE Cl Lo -960.2 -701.7 -1008.4 -641.2 -1533.0 -744.2 -691.9 -1317.0 -2722.9 -1144.0 -3725.4 -2037.5 -355.8 -3151.5 -1054.4 -2805.9
CBRE Fr Lo -959.6 -696.9 -1005.8 -642.1 -1527.8 -739.8 -691.3 -1313.6 -2723.5 -1145.2 -3724.1 -2036.6 -356.4 -3147.8 -1053.3 -2802.7
CBRE Ga Lo -960.8 -698.4 -1007.4 -641.7 -1532.7 -745.0 -691.5 -1315.6 -2722.1 -1146.2 -3723.6 -2037.7 -356.3 -3149.7 -1054.1 -2804.5
CBRE Cl Pr -962.0 -703.5 -1009.8 -641.8 -1537.0 -746.1 -692.9 -1317.3 -2724.9 -1145.7 -3734.9 -2039.5 -357.8 -3153.9 -1054.5 -2808.2
CBRE Fr Pr -962.2 -696.9 -1007.4 -642.1 -1533.1 -736.3 -692.2 -1309.8 -2720.5 -1145.8 -3733.3 -2039.2 -356.5 -3147.9 -1053.6 -2804.2
CBRE Ga Pr -962.7 -701.3 -1009.0 -642.1 -1536.8 -747.1 -692.5 -1315.9 -2724.2 -1148.0 -3733.3 -2040.0 -357.4 -3152.0 -1053.9 -2806.6

CBCRE Cl Lo -970.8 -697.9 -1004.8 -645.2 -1511.3 -751.6 -690.1 -1316.8 -2723.6 -1133.8 -3689.3 -2012.7 -358.7 -3146.6 -1065.1 -2803.0
CBCRE Fr Lo -970.6 -694.5 -1003.3 -645.8 -1499.4 -750.8 -689.6 -1315.0 -2724.1 -1133.0 -3683.9 -2012.2 -359.4 -3144.2 -1063.3 -2799.4
CBCRE Ga Lo -969.8 -695.7 -1004.2 -645.0 -1511.2 -751.8 -690.0 -1315.4 -2723.0 -1135.0 -3686.3 -2012.6 -358.9 -3144.9 -1064.5 -2800.3
CBCRE Cl Pr -979.5 -700.1 -1006.5 -645.7 -1511.4 -753.7 -690.4 -1316.3 -2725.8 -1134.5 -3704.2 -2013.8 -359.9 -3148.7 -1072.3 -2805.1
CBCRE Fr Pr -979.3 -697.5 -1004.0 -646.6 -1499.7 -743.3 -689.6 -1315.3 -2725.7 -1133.6 -3699.7 -2012.9 -359.6 -3145.5 -1073.4 -2801.7
CBCRE Ga Pr -979.6 -698.2 -1005.6 -645.9 -1511.0 -753.9 -690.2 -1316.3 -2725.1 -1135.7 -3700.8 -2013.2 -360.5 -3146.9 -1072.3 -2802.5
CBRE B2 Lo -960.6 -697.5 -1006.4 -641.9 -1539.8 -746.4 -691.3 -1315.3 -2723.2 -1147.0 -3725.4 -2038.5 -355.7 -3148.1 -1053.9 -2802.8
CBRE B3 Lo -960.2 -697.3 -1005.0 -642.5 -1539.3 -745.2 -692.6 -1310.4 -2721.7 -1143.1 -3722.5 -2036.4 -355.9 -3149.4 -1052.8 -2802.1
CBRE B4 Lo -960.2 -698.7 -1004.9 -642.6 -1538.7 -745.3 -691.2 -1311.0 -2718.3 -1142.2 -3722.6 -2036.0 -355.9 -3145.4 -1053.5 -2799.4
CBRE B2 Pr -963.1 -699.6 -1008.2 -641.8 -1543.5 -748.0 -692.7 -1315.5 -2725.6 -1148.6 -3733.9 -2040.3 -355.6 -3150.5 -1053.8 -2804.8
CBRE B3 Pr -964.2 -699.1 -1007.0 -642.8 -1542.8 -746.9 -694.3 -1310.7 -2723.9 -1145.5 -3731.5 -2038.0 -356.3 -3151.8 -1053.3 -2803.9
CBRE B4 Pr -962.3 -700.9 -1005.9 -642.8 -1542.3 -746.9 -693.3 -1311.7 -2720.0 -1143.5 -3728.7 -2036.4 -356.3 -3147.7 -1053.6 -2800.8

CBCRE B2 Lo -972.6 -695.6 -1003.9 -645.1 -1523.4 -753.4 -690.1 -1315.8 -2724.2 -1136.4 -3685.5 -2014.4 -358.1 -3143.9 -1064.5 -2799.6
CBCRE B3 Lo -972.2 -695.5 -1002.2 -646.3 -1523.5 -752.6 -691.1 -1310.9 -2722.9 -1134.8 -3682.6 -2012.2 -358.7 -3145.3 -1062.3 -2798.7
CBCRE B4 Lo -972.9 -696.6 -1002.2 -646.4 -1522.0 -753.1 -689.4 -1311.2 -2720.0 -1135.2 -3683.3 -2011.1 -358.6 -3142.0 -1063.6 -2797.8
CBCRE B2 Pr -1636.7 -698.0 -1004.3 -645.4 -1521.8 -756.3 -690.4 -1316.6 -2727.7 -1136.5 -3698.5 -2015.5 -358.8 -3145.2 -1074.5 -2800.7
CBCRE B3 Pr -1636.7 -697.8 -1004.2 -646.9 -1522.4 -755.7 -690.5 -1311.4 -2726.3 -1136.9 -3696.4 -2013.3 -359.1 -3146.4 -1079.1 -2800.0
CBCRE B4 Pr -1634.7 -698.5 -1002.9 -646.9 -1520.8 -756.8 -689.7 -1312.6 -2722.9 -1135.3 -3694.7 -2012.4 -359.5 -3142.8 -1079.1 -2800.1

N 764 604 780 568 1404 696 498 930 1906 882 3370 1422 386 2186 774 2294
Notes: CBCRE and CRE respectively denote the CBRE and RE estimators with correlated random effects; Lo and Pr stand for logit and probit; Cl, Fr,
Ga, and Bx stand for independent, Clayton, Frank, Gaussian, and Bernstein copula of order x; N is the sample size of each country. The estimates shown
are those of Austria, Belgium, Bulgaria, Czech Republic, Denmark, Greece, Spain, Finland, Hungary, Italy, Netherlands, Norway, Poland, Portugal, and the
United Kingdom. The estimates of the remaining countries (Cyprus, Estonia, Iceland, Lithuania, Luxemburg, Latvia, Malta, and Slovenia) are available
upon request.
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