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1 Introduction

It is an empirical fact that there are persistent differences in mean test scores across classes

(Hanushek, 1971). Some of these differences can be accounted for by observed characteristics,

such as class size. However, they can also be due to unobservable factors, such as teacher

quality, or the ability of a student’s peers. There are many studies that provide a partial

analysis of the effect of each of these factors in isolation. For instance, Angrist and Lavy

(1999) found that reducing predicted class size by ten students would increase the average

class test scores by about 0.25 standard deviations. Despite the inherent interest of such

analyses, principals or policy makers face a different problem: given a fixed number of

students and teachers, how should they be allocated? What should be the size of each class?

Further, if the policy maker cares about inequality, it is not sufficient to focus on the average

performance, and instead one should pay attention to the distributional effects of a policy.1

In this paper I make the following contributions: first, I propose a method to jointly

identify and estimate social spillovers in the classroom, and the distributions of teacher and

student effects. This method, which extends Graham (2008), is based on the covariance and

higher order moments restrictions in students’ test scores. Further, by allowing teacher and

student effects to be heteroskedastic in class size, I can assess the distributional effect of class

size on test scores. Second, I apply this method to the Tennessee Project STAR experiment

dataset, finding substantial spillovers at the kindergarten level, as well as distributions of the

teacher and student effects that are not normally distributed. Moreover, I find that reducing

class size has a positive effect on mean test scores, but it increases their dispersion. Third,

using these estimates I carry out several counterfactual experiments involving reassignment of

teachers and students into classrooms, and changing the distribution of class sizes, obtaining

different distributions of test scores. Some of these counterfactuals simultaneously increase

mean test scores and reduce their dispersion, without varying the educational inputs.

A major challenge in this setup is to disentangle between the teacher effects and the

student peer effects. If a classroom is assigned a teacher that is more effective than the
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current one, then their students’ test scores will increase. However, if there are spillovers

among students, it will lead to a further endogenous change in students’ test scores. This

problem was already noted by Manski (1993), who referred to it as the reflection problem.

In the literature of peer effects estimation, most identification methods rely on the partial

overlap of the reference groups (Bramoullé et al., 2009), or on some external variation

that can be used as an instrument (Angrist, 2014).2 In this paper, I consider a different

framework in which the data has group (class) structure, and therefore the reference groups

are homogeneous. In contrast with other studies (Hoxby, 2000; Arcidiacono et al., 2012;

Burke and Sass, 2013), it is not required to have a panel, and a single observation per

student suffices. In this setup, I extend Graham (2008) model and I propose a minimum

distance estimator that combines moments of different order and accommodates missing test

scores at random in a simple way. This method requires the double randomization of students

and teachers into classrooms, and class size variation, and it allows to jointly estimate the

social multiplier and the distributions of teacher and student effects. The social multiplier,

which measures the size of the spillovers, is linked to a structural model of peer effects, and

it reflects both endogenous and exogenous effects in Manski’s taxonomy.

Many policies result in a change in the distribution of the students’ performance that is

not accounted for by the mean effect. For example, tracking of students by ability would

reduce within class inequality at the cost of increasing between class inequality, but the

overall effect is not clear. Similarly, many studies focused on the mean effect of class size

on test scores, but not on its distributional effects. In this paper I take an approach based

on the estimation of the higher order moments of the distributions of teacher and student

latent effects. These distributions are interesting by themselves, since at least teacher effects

are often assumed to be normally distributed, and a departure from this assumption is likely

to have implications on the evaluation of teachers’ performance.3

I use the Tennessee project STAR dataset, which satisfies the assumptions required for

the identification of the peer effects. This experiment was originally designed to estimate
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the impact of class size on test scores at early childhood education. During kindergarten,

students and teachers were randomly assigned to classrooms of different size, and they were

tracked during the subsequent years. Recent studies have found test scores at this early stage

to be correlated with economic outcomes later in life (Chetty et al., 2011). Consequently,

an intervention during kindergarten has the potential of affecting lifetime earnings and even

a high rate of return (Heckman et al., 2010).

The results show the existence of strong spillovers: increasing the average ability of

the classmates of a student by one standard deviation results in a mean increase of test

scores of around 0.45 standard deviations. Moreover, teachers also have a large impact on

students’ performance, and being assigned a teacher one standard deviation more efficient

would result in an increase of test scores by 0.11 to 0.15 standard deviations. The results

indicate that the distributions of teacher quality and student ability depart from the usual

normality assumption, showing different degrees of skewness and kurtosis. Moreover, the

student effects distribution is heteroskedastic in class size: the larger the class, the smaller

variance of the student effect. The dispersion of the teacher effect is constant for different

values of class size, despite its mean effect being negatively correlated with class size. Hence,

increasing class size reduces the within class inequality, measured as the variance of the test

scores, at the cost of reducing the mean performance.

Based on these estimates I conduct several counterfactual policy experiments. Given

a number of teachers and enrolled students, a principal can choose how many students to

allocate in each class, and who to assign to each of them, as well as who would be their

teacher. The results show that assignment of good teachers to large classrooms increases

mean test scores and reduces inequality. Tracking of students increases the test scores of

high achievers at the cost of reducing the performance of low achievers. On the other hand,

detracking has a small effect on mean test scores, while at the same time it decreases the

level of inequality. Finally, I also consider the problem of choosing the optimal class size

distribution, which not only increases mean performance, but also reduces inequality.
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The rest of the paper is organized as follows: section 2 discusses the identification of the

peer effects together with the distributions of teacher and student effects, and the estimator

based on this results is proposed in section 3; section 4 describes the Tennessee Project STAR

experiment dataset and presents the estimation results; using these estimates I run several

counterfactuals in section 5, and section 6 concludes.

2 Identification

Denote the test score of student i in classroom c by yic, the teacher effect by αc, and the

student effects by {εic}Nci=1. These effects are latent variables that reflect factors such as

ability, that are unobservable. Let the test scores be given by the linear-in-means equation

yic = αc + (γ − 1) εc + εic (1)

where γ is the social multiplier that captures the strength of the peer effects, which

can be endogenously derived from a model of social interactions in the classroom.4 In the

presence of peer effects (γ > 1) class composition has an impact on individual test scores,

and improving the composition of a student’s peers would enhance his test scores.

I consider a network with a group structure, i.e. all students in a classroom form a group

and they affect each other, so the first moment is not sufficient to distinguish between the

teacher and peer effects.5 Hence, I normalize student effects to have conditional zero mean,

such that the conditional expectation of test scores equals the conditional expectation of

teacher effect, i.e. E [yic|Nc] = E [αc|Nc].

The identification strategy combines Graham (2008), who identifies the social multiplier

by comparing the differences between two types of classes of the between and the within class

variances of the test scores, with the linear independent factor framework in Bonhomme and

Robin (2009).6 With respect to the latter, there are two main differences: vectors can be of

different dimension and there are missing observations. These issues are overcome because

of the double random assignment.
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Rather than identifying the social multiplier in isolation, I also identify the distributions

of teacher and student effects, which are necessary to conduct the counterfactual analysis.

Moreover, I relax the assumption that teacher effects are homoskedastic in class size, and

allow both teacher and student effects to display different types of heteroskedasticity. Also,

with respect to Graham (2008) approach, the treatment of missing test scores is simpler and

more convenient to implement, particularly for higher order moments.7

By equation 1, the covariances of the test scores depend on the variances of all the

individual factors, as well as the covariances among them. If there is sorting of students or

teachers, then the covariances reflect both the spillovers and the cross correlation in agents’

abilities. The following assumptions rule out the existence of sorting:

Assumption 1. Conditional double randomization:
(
αc, {εic}Nci=1

)
are jointly independent

given Nc.

Assumption 2. Class size is independent of students and teacher’s assignment mechanism.

Denote by Yc the vector with the demeaned test scores, and by Xc ≡ (αc, ε1c, ..., εNc)
′ ,

the vector with the teacher and student effects in class c. Then,

Yc = Λ (γ;Nc)Xc (2)

where Λ (γ;Nc) ≡
(
ιNc , INc + γ−1

Nc
ιNcι

′
Nc

)
, IN is the identity matrix of dimension N , and

ιN is a vector of ones of dimension N . Each of the rows of the matrix Λ (γ;Nc) contains

the contribution of the teacher and student effects to the test score of a single student.8

Conditional on class size, the variance matrix of the test scores, ΣY,Nc , depends on two

elements: the variance of the teacher effect, σ2
α (Nc), and the variance of the student effect,

σ2
ε (Nc). Under assumptions 1 and 2, the covariance of the test scores of students i and j is

given by

Cov (ỹic, ỹjc|Nc) = σ2
α (Nc) +

[
γ2 − 1

Nc

+ 1 (i = j)

]
σ2
ε (Nc) (3)

The same strategy can be applied to higher order moments. If the teacher and student

effects are not normally distributed, the higher order cumulants provide more features of
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their distributions, along with overidentifying restrictions for the social multiplier. In this

paper I work with cumulants, which also characterize the distribution of a random variable.9

Assumption 1 and the linear factor representation of test scores make working with cumulants

very tractable: the Rth cumulant of the test scores is a weighted sum of the Rth cumulants

of the teacher and student effects. In particular, the third and fourth cumulants of the

students’ tests scores are given by

κ3 (ỹic, ỹjc, ỹhc|Nc) = κ3 (αc|Nc) +

{
(γ − 1)2 (γ − 2)

N2
c

+
γ − 1

Nc

[1 (i = j) + 1 (i = h) + 1 (j = h)] + 1 (i = j)1 (i = h)

}
κ3 (εic|Nc)

κ4 (ỹic, ỹjc, ỹhc, ỹkc|Nc) = κ4 (αc|Nc) +

{
(γ − 1)3 (γ − 3)

N3
c

+
(γ − 1)2

N2
c

[1 (i = j) + 1 (i = h) + 1 (i = k) + 1 (j = h) + 1 (j = k) + 1 (h = k)]

+
γ − 1

Nc

[1 (i = j)1 (i = h) + 1 (i = j)1 (i = k)1 (i = h)1 (i = k) + 1 (j = h)1 (j = k)]

+ 1 (i = j)1 (i = h)1 (i = k)}κ4 (εic|Nc)

The variance has two different permutations, either i = j or i 6= j, but the third and

fourth order cumulants have more.10 Consequently, the cross cumulants of the test scores

depend differently on these permutations. To avoid working with arrays of different order,

I apply the operator vech to the second to fourth order arrays of the cumulants of the test

scores, and express the resulting vectors with the non repeated elements of these arrays as a

linear function in the cumulants of the teacher and student effects:11

ω2
Y,Nc ≡ vech (ΣY,Nc) = Λ2 (γ;Nc)D2 (αc, εic|Nc)

ω3
Y,Nc ≡ vech (ΓY,Nc) = Λ3 (γ;Nc)D3 (αc, εic|Nc)

ω4
Y,Nc ≡ vech (ΩY,Nc) = Λ4 (γ;Nc)D4 (αc, εic|Nc)

whereDr (αc, εic|Nc) ≡ (κr (αc|Nc) , κr (εic|Nc))
′ for r = 2, 3, 4, and the Λr (γ;Nc) matrices

are defined in appendix F.

The last ingredient required for the identification is variation in class size. Equation 1

does not explicitly model the effect of class size on teacher and student effects. In principle,
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some students are relatively more efficient in small classrooms than other students, and

similarly some teachers are more adept at teaching in small classrooms. Hence, the variance

and higher order moments of these effects can vary with class size. In this paper I consider

three different models: homoskedastic effects and two different types of heteroskedasticity.

In the homoskedastic effects model, the variances of the teacher and student effects are

constant with respect to class size. The second model is heteroskedastic in class type, with

classes being either small or large depending on the number of students. In this model,

each agent has a different potential outcome in each of the class types. Mathematically,

αc = α0c1 (small) + α1c1 (large) and εic = ε0ic1 (small) + ε1ic1 (large). The third model is

a random coefficients model in class size, i.e. αc = α0c + α1cNc and εic = ε0ic + ε1icNc, and

the variance is a polynomial of order two of class size.12

The cumulants of the teacher and student effects are either constant (homoskedasticity),

different for small and large classrooms (class type heteroskedasticity), or a polynomial of

order R of class size (random coefficients), i.e. κR (αc|Nc) =
∑R

r=0 µα,R,rN
r
c , and κR (εc|Nc) =∑R

r=0 µε,R,rN
r
c . The number of parameters in this system of equations equals to 7, 13, and

25, respectively. Given H distinct class sizes, the total number of moment restrictions is

10H.13 The total number of parameters for each of the models equals 3, 5, and 7.14 Hence,

if there are classes of at least four different sizes, it is possible to identify all the parameters

in all three models using just the variances and covariances.

3 Estimation

The first step is to estimate equation 1 with OLS, and denote the residuals by ŷic. For

class c, define the vectors ω̂2
Y,c, ω̂3

Y,c and ω̂4
Y,c as the vectors resulting from applying the vech

operator to Σ̂Y,c, Γ̂Y,c, and Ω̂Y,c, which are the arrays of dimension 2, 3, and 4 respectively,

with generic elements

Σ̂Y,c (i, j) = ŷicŷjc
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Γ̂Y,c (i, j, h) = ŷicŷjcŷhc

Ω̂Y,c (i, j, h, k) = ŷicŷjcŷhcŷkc −
[
σ̂2
Y (i, j) σ̂2

Y (h, k) + σ̂2
Y (i, h) σ̂2

Y (j, k) + σ̂2
Y (i, k) σ̂2

Y (j, h)
]

where the estimator of the covariance term between students l and m is given by

σ̂2
Y (l,m) =

ΣC
c=1Σ

Nc
i=1ŷ

2
ic

ΣC
c=1Nc

1 (l = m) +

∑C
c=1

∑Nc−1
i=1

∑Nc
j=i+1 ŷicŷjc

1
2

∑C
c=1Nc (Nc − 1)

1 (l 6= m)

In words, the ω̂jY,c vectors contain the sample analogues of the cumulants of all possible

combinations of j test scores with repetition but without ordering them. For the variance,

it would include all of the Nc individual variances and the Nc(Nc−1)
2

distinct covariances, and

similarly for higher order cumulants. These vectors are concatenated, creating the vector

ω̂Y . Similarly, the Λj,Nc and Dj matrices are suitably concatenated to create the matrices Λ

and D. Given the weighting matrix WC , the minimum distance estimator is the solution to:

θ̂MD = arg min
θ

(ω̂Y − ΛD)′WC (ω̂Y − ΛD) (4)

where θ ≡ [γ, κ2 (αc) , κ3 (αc) , κ4 (αc) , κ2 (εic) , κ3 (εic) , κ4 (εic)]
′ under the assumption of

homoskedastic teacher and student effects. If the effects are heteroskedastic, the vector θ is

appropriately defined.15

There are two compelling reasons not to use the identity matrix: the higher the order

of the cumulant, the noisier it is, and the higher the weight it receives in the estimation.16

To address the first problem, I follow Cragg (1997), who respectively gives weights 1
2
, 1

15

and 1
96
, to second, third and fourth order cumulants.17 The second problem is overcome by

weighting each moment by the inverse of the number of cumulants of the same order, i.e.(
Nc+R−1

R

)−1
. Standard errors are calculated using the robust White formula with clusters at

the school level.

4 Estimation of Peer Effects in the Kindergarten

4.1 Data

I use the data from the Tennessee Project STAR experiment, whose original goal was to

estimate the impact that a class size reduction policy would have on students achievement.18
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This experiment is also well suited for the analysis of spillovers in the classroom, and it has

previously been used to estimate peer effects (Graham, 2008; Chetty et al., 2011). Classes

were split into three types: small, regular, and regular with aide.19 Small classes had between

13 and 17 students, and the other two types of classes would have between 22 and 25 students

each, with the difference that regular with aide classes had a full time teacher’s aide, and

regular classes did not. In order to be eligible for participation, the number of students

enrolled in each school had to be high enough to accommodate at least one class of each

type. Once class sizes were determined, students were randomly sorted into class type, and

teachers were randomly matched into class type.20

The data consists of 6308 kindergarten students distributed across 325 classrooms.21 At

the end of the academic year, students took the Stanford Achievement Tests in Mathematics

and Reading. No measure of ability or pretreatment test scores are available. To make the

results comparable with other studies, test scores are normalized to have mean zero and

variance one. Among those students who were enrolled, test scores are observed for the

majority of the students, but not all of them.22 Table 1 shows the absolute frequency of

class size, which ranges from 11 to 28 students, and values between 13 and 17, and between

21 and 24 exhibit the highest frequencies. As a result, the between and within variances are

much more precise for these values of class size.

4.2 First Moment Estimates

Table 2 summarizes the results of the regression of the equation in levels.23 Given that the

randomization took place within schools, I control for differences across schools by including

school dummies in all specifications. The class size coefficient is negative in every specification

and it is significant at the 99% confidence level, both for the mathematics and reading test

scores. Classes of regular size with aide have a negative coefficient associated to them,

although this may be because this variable is correlated with large sized classes.
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Table 1: Class size distribution and variance decomposition
Class size 11 12 13 14 15 16 17 18 19
Frequency 3 5 19 23 24 31 29 3 13
MeanM -0.03 0.08 0.06 0.45 -0.14 0.14 0.08 -0.25 0.09
V arB,M 0.04 0.15 0.28 0.31 0.44 0.40 0.25 0.06 0.28
V arW,M 0.65 0.73 0.66 0.73 0.78 0.75 0.69 0.65 0.63
MeanR -0.32 0.20 0.17 0.39 -0.07 0.14 0.10 -0.39 -0.02
V arB,R 0.11 0.53 0.26 0.33 0.37 0.32 0.33 0.01 0.47
V arW,R 0.40 1.03 0.67 0.62 0.70 0.88 0.64 0.28 0.69
Class size 20 21 22 23 24 25 26 27 28
Frequency 14 27 40 36 32 12 6 7 1
MeanM -0.16 -0.15 0.13 0.09 -0.15 -0.09 -0.67 0.01 0.45
V arB,M 0.14 0.22 0.24 0.53 0.25 0.32 0.44 0.28 0
V arW,M 0.53 0.65 0.68 0.70 0.66 0.64 0.50 0.53 0.45
MeanR -0.11 -0.06 0.14 -0.03 -0.19 0.01 -0.69 0.00 0.09
V arB,R 0.17 0.29 0.33 0.30 0.27 0.28 0.30 0.27 0
V arW,R 0.86 0.70 0.67 0.69 0.67 0.60 0.48 0.53 0.29

Notes: The subscripts B, W , M , and R respectively denote between variance,
within variance, mathematics test, and reading test.

Table 2: OLS estimates of the equation in levels
Mathematics Reading
(1) (2) (1) (2)

Class Size -0.022*** -0.021*** -0.023*** -0.020***
(0.003) (0.004) (0.003) (0.004)

Regular with aide - -0.026 - -0.053**
(0.027) (0.027)

School dummies X X X X

Notes: Standard errors in parentheses. *, ** and *** denote significant
at the 90, 95 and 99 percent levels.

4.3 Variance and Higher Order Cumulants Estimates

I consider three specifications, in which student effects are respectively homoskedastic,

heteroskedastic in class type, and a random coefficients model in class size, whereas teacher

effects are considered homoskedastic in all three specifications24 For each of them there are

three sets of estimates, one which uses only the variances, another one that uses also the

third order cumulants, and another one that uses up to the fourth order cumulants.25

Table 3 shows the estimates of the social multiplier, the standard deviation, and the

third and the fourth cumulants of the teacher effect.26 For the mathematics exam, the

social multiplier is between 1.4 and 1.8, substantially larger than one, though only barely

significant.27 When the student effects distribution is assumed to be homoskedastic, the
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Table 3: Variance and higher order teacher effect cumulants estimates

Mathematics Test Scores
(1) (2) (3) (4) (5) (6) (7) (8) (9)

γ̂-1 0.854** 0.868** 0.867** 0.545* 0.564* 0.564* 0.520* 0.544* 0.544*
(0.374) (0.395) (0.374) (0.299) (0.299) (0.300) (0.311) (0.311) (0.312)

σ̂α - - - 0.156 0.149 0.149 0.164 0.156 0.156
(0.109) (0.115) (0.116) (0.106) (0.113) (0.113)

κ̂3 (αc) - 0.007 0.007 - 0.008 0.008 - 0.008 0.008
(0.012) (0.010) (0.010) (0.010) (0.010) (0.010)

κ̂4 (αc) - - -0.076*** - - -0.075*** - - -0.076***
(0.009) (0.010) (0.010)

Reading Test Scores
(1) (2) (3) (4) (5) (6) (7) (8) (9)

γ̂-1 0.791* 0.776* 0.733* 0.553 0.545 0.505 0.466 0.471 0.427
(0.413) (0.456) (0.416) (0.349) (0.341) (0.344) (0.371) (0.361) (0.364)

σ̂α - - - 0.091 0.095 0.116 0.132 0.130 0.147
(0.222) (0.203) (0.163) (0.152) (0.149) (0.129)

κ̂3 (αc) - 0.001 0.002 - 0.004 0.004 - 0.004 0.005
(0.014) (0.011) (0.011) (0.011) (0.010) (0.011)

κ̂4 (αc) - - -0.072*** - - -0.070*** - - -0.069***
(0.012) (0.012) (0.012)

Notes: Standard errors in parentheses. *, ** and *** denote significant at the 90, 95 and 99 percent
levels. Specifications 1 to 3 assume that moments of student effects are the same for all students (i.e.,
homoskedastic effects); specifications 4 to 6 allow them to have different values for students in small and
large classes; specifications 7 to 9 assume that student effect is a random coefficient in class size, and thus
their cumulants are polynomials in class size.
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estimated variance of teacher’s quality is negative in all cases, but these estimates are not

significant.28 If student effects are heteroskedastic, then they become positive and close to

0.15, in line with previous results found in the literature (Hanushek and Rivkin, 2010). The

estimates of the third cumulant of the teacher effect are slightly positive but insignificant in

all specifications, which suggests that the distribution is roughly symmetric. The estimates of

the fourth cumulant are negative and significant, implying that the distribution of the teacher

effect has thinner tails than the normal distribution (playtkurtic). Thus, even though there

is variability in teacher quality, there are very few extremely effective or ineffective teachers.

Figure 1 shows the estimates of the standard deviation, the third and the fourth cumulants

of the student effect for specifications 3, 6, and 9, for the mathematics test scores. The

estimates of the standard deviation of the student effects range between 0.8 and 0.9, and

when it is allowed to be heteroskedastic, there is a decreasing pattern as class size increases.

To get an idea of the magnitude of the spillovers operating through the social multiplier, if I

changed the classmates of a student, and the ability of the new classmates was on average one

standard deviation larger, it would increase his test score by around 0.45 standard deviations.

This number is very close to the one found by Carman and Zhang (2012) for kindergarten

students in China (0.4).

The third cumulant is positive and significant, and similarly to the variance, it varies

across different class sizes. The estimates are larger for smaller classes, which means that

the smaller the class size, the more asymmetric the distribution is. In contrast with the

distribution of teacher effects, the fourth cumulant is either positive (small classrooms) or

significantly equal to zero (large classrooms). Hence, student’s quality is more dispersed, and

there is a substantial proportion of particularly good and bad students, and the performance

is more heterogeneous in small classrooms. Finally, the precision of the estimates of the

social multiplier is almost unaffected by the inclusion of the higher order cumulants in the

estimation.

The results for the reading tests are qualitatively similar, but less precisely estimated.
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Figure 1: Estimates of the standard deviation, third and fourth cumulants of student effect,
mathematics test scores
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Notes: The dotted line represents the 95% confidence interval. Standard errors computed for each class size
using the delta method.

The most noticeable differences are the third and fourth cumulants of the distribution of

student effects, which are larger than those found for the mathematics exam. In terms of

the efficiency gained by using more cumulants in the estimation, the results are better than

for the mathematics tests: the estimates of the social multiplier are approximately 2% more

precise, and the standard error of the standard deviation of teacher effect gets significantly

smaller by including the third and fourth cumulant, with gains of about 25% and 15% in

each of the two heteroskedasticity models.

Equation 1 is one of the possible ways to model social interactions in the classroom.

Since this model is not necessarily correctly specified, one would like to test whether the

estimated peer effects are driven by the assumed functional form or if they reflect actual

spillovers. I address this concern in appendix G, where I propose a test statistic that allows

the social spillovers to be incorrectly specified, and whose distribution is known under the

null hypothesis of no spillovers, i.e. γ = 1. For almost every specification, the test fails to
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accept the hypothesis of no spillovers.

4.4 Non-Normally Distributed Teacher and Student Effects

The results show that the third and fourth order cumulants of student effects are significantly

different from zero, and thus non-normal. It is a common practice to assume normality when

the distribution of the unobservables is unknown, so I compare the normal distribution to

the Skew Exponential Power (µ, σ, λ, α) distribution: the second to fourth cumulants of the

estimated distributions of teacher and student effects in specification 6 are fitted to the SEP

distribution, and then compared to the normal distribution that has the same variance.29

Figure 2 shows the pdf of the teacher and student effects under normality and when the

effects follow an unrestricted SEP distribution. The differences between the two distributions

are quite marked for the teacher effects and the student effects in small classes, but not so

much for student effects in the large ones. Interestingly, the distribution of the teacher effects

has such a small fourth moment, that its support is a closed interval.

Figure 2: SEP and normal distributions for student and teacher effects
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Notes: The solid lines represent the estimated SEP pdf, and the dotted lines represent the estimated normal
pdf. The cumulants second to fourth of the SEP distribution have been fitted to those estimated in model
6 for a class with 15 students. For the normal distribution only the variance was fitted.
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5 Counterfactuals and Policy Analysis

I consider two different types of input-neutral counterfactuals, those in which students and

teachers are sorted based on their ability, and those in which the class size distribution

is changed.30 Input-neutral counterfactuals isolate the effects coming from an increase or

a reduction in the resources at disposal. This is an important factor when one wants to

evaluate the effect of reducing the average class size, which requires hiring new teachers,

who may not be as effective as the old ones, and would therefore offset some of the potential

gains from such policy.

I run a Monte Carlo (1000 repetitions) in which I draw teacher and student effects from

the SEP distribution with the parameters implied by the estimates from specification 6, and

then evaluate the distribution of test scores resulting from each counterfactual.31 In all cases,

the changes in the distribution are with respect to the case in which students and teachers

are randomly assigned and the distribution of class sizes is the one observed in the data.32

5.1 Changing the Teacher and Student Assignment Rules

Consider the following four counterfactuals: (1) matching best teachers to largest classrooms,

random assignment of students; (2) random assignment of teachers, tracking of students,

best students assigned smallest classrooms; (3) matching best teachers to largest classrooms,

tracking of students, best students assigned smallest classrooms; (4) random assignment

of teachers, detracking of students, random assignment into classrooms. The results are

shown in the first four columns of table 4. Assigning the best teachers to largest classrooms

(counterfactual 1) has a both a positive effect on the mean of test scores and a reduction

of inequality. Since teachers are a public good and all students equally benefit from them,

assigning better teachers to larger classrooms means that more students can benefit from

them, and less students are assigned to low quality teachers. This way, good teachers partially

offset the negative effect coming from being in large classrooms.
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Table 4: Counterfactuals, mathematics test scores

Counterfactual (1) (2) (3) (4) (5) (6)
mean 0.03 0.04 0.07 0.00 0.03 0.02
sd -0.01 1.34 1.20 -0.09 -0.02 -0.03
p10 0.06 -1.55 -1.33 0.21 0.06 0.02
p25 0.04 -0.90 -0.73 0.05 0.04 0.02
p50 0.03 -0.09 0.05 -0.10 0.03 0.03
p75 0.03 0.72 0.63 -0.13 0.04 0.03
p90 0.02 1.79 1.61 -0.06 0.02 0.01

Notes: The first row of the table shows the change in the mean
test scores with respect to the baseline case, the second row
shows the change in the standard deviation, and the last five
rows show the change in the test scores for a selected number
of percentiles.

Tracking of students (counterfactual 2) has a positive effect on mean test scores. Since

the variance of the student effects is smaller in large classrooms, the student effect is not

so negative for bad students, but the good ones, who are assigned to smaller classrooms,

have a more positive value, resulting in an overall increase of test scores. This assignment

rule reduces the within variance, as students in the same classroom tend to be more similar,

but it greatly increases the between classroom variance, resulting in an overall increase of

inequality. The combination of the two policies (counterfactual 3) leads to a greater increase

of mean test scores, but again the inequality in increased. This result is driven by the peer

effects, which dominate the variance-reduction effect of the teacher asignment.33

Finally, detracking barely affects the mean, but reduces the inequality, as the between

variance of the test scores is greatly reduced. This type of matching is particularly effective

for students in the lower tail of the distributions, who benefit more from being in the

classroom with the best students.

5.2 Changing the Distribution of Class Sizes

Suppose that a principal observes the quality of their teachers, but the ability of their

students is unknown. This is a plausible assumption for kindergarten students with whom

the principal had no prior interaction. Since students ability is unknown, they are randomly
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Figure 3: Distribution of Test Scores
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Notes: The solid line represents the distribution of test scores with random assignment into classrooms
of both teachers and students, and the solid line represents the same distribution for the four different
counterfactuals considered in the text. The distribution of class sizes is the empirical distribution. The
estimates used for the counterfactuals are those from specification 6.

assigned into classrooms, but the principal can still affect their test scores by determining

how many students each teacher is assigned. If the objective is to maximize the expected

average outcome, the maximization problem is the following:

(N1, ..., NC) = arg max
n1,...nC

1

N

C∑
c=1

E (yic|nc, αc)nc (5)

subject to the restriction that all students are assigned to a classroom:
∑Nj

j=1 nj = N .

Conditional on class size and teacher’s quality, the expected value of students ability is

zero, so E (yic|Nc, αc) = αc (Nc) = α0,c + α1Nc. This implies that the intercept is different

for different teachers, but the slope is the same. The maximum is attained at Nc = N
C

+

1
2C

∑C
d=1

α0,d−α0,c

α1
for c = 1, ..., C − 1 and NC = N −

∑C−1
c=1 Nc. In words, the better the

teacher, the more students he is assigned. This rule trades off the increase in test scores of

assigning more students to good teachers with the decrease caused by the increase in class

size. Hence, if teachers were equally effective, it would be optimal to have all classes of the

same size.

Figure 4 shows the actual class sizes distribution and the optimal distribution using the
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estimates of the distribution of teacher effects. The optimal distribution takes values between

13 and 25, in contrast with the observed distribution, which takes values on a broader range.

Moreover, the optimal one is quite evenly distributed, being very close to a discrete uniform

distribution. Counterfactual 5 in table 4 shows the difference between using the optimal

class size rule and the observed class size rule. Since the optimal class size rule assigns more

students to the classrooms taught by good teachers, it is not surprising that the results are

very similar. Counterfactual 6 shows the effect of reducing the class size dispersion to the

minimum, i.e. having all class sizes equal to the average number of students per class. This

policy would raise the mean performance of the classroom, while at the same time reducing

the overall inequality, but relative to the previous counterfactual, the effects would be smaller

in magnitude.

Figure 4: Class size distribution
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Notes: Absolute frequency of the observed and optimal class size distributions.
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5.3 Discussion

One concern with the counterfactuals shown in this paper is that teachers, students, and

even parents and principals could react to them, affecting the distribution of outcomes. For

example, assignment of good teachers to large classrooms could be interpreted as a reward

to bad teachers, thus creating an incentive for teachers to exert less effort.34 Moreover, these

counterfactuals could suffer from misspecification of the model of social interactions. This

would be particularly concerning for the counterfactuals that involve tracking of students,

since the linearity assumption does not allow for endogenous groups formation within the

classroom (Carrell et al., 2013), and nonlinear spillovers could lead to a substantially different

counterfactual (Sacerdote, 2011). On the other hand, the counterfactuals regarding the

change in the distribution of class sizes, or the assignment of teachers would be more robust

to such misspecification.

However, these counterfactuals are useful from a policy perspective: they suggest that,

at least for students in kindergarten, in order to decrease overall inequality, measures aiming

at reducing the between class inequality tend to be more successful than those aiming at

reducing the within class inequality. Also, even though this study is restricted to kindergarten

students, it has been found that kindergarten test scores are highly correlated with different

economic outcomes during adulthood, such as earnings, college attendance, home ownership,

and retirement savings (Chetty et al., 2011).

6 Conclusion

In this paper I propose a method to jointly estimate the strength of peer effects along with

several features of the distributions of teacher and student effects. This method uses excess

covariance (and higher order moments) analysis and I applied it to the estimation of spillovers

in the kindergarten. The results show evidence of strong spillovers in the classroom, with

a social multiplier of around 1.5. Moreover, teacher and student effects depart from the
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usually maintained normality assumption. In particular, the distribution of teacher effects is

thin tailed, i.e. there are few extremely effective or ineffective teachers, whereas the student

distribution is thick tailed. Increasing the teacher’s quality by one standard deviation is

associated with an increase in test scores of around 10 to 15% of a standard deviation, and

increasing classmates’ abilities by one standard deviation is associated with an increase in

one’s own test scores of around 45% of a standard deviation. Class size has a negative mean

effect on test scores, but it also reduces the variance of the student effects, which decreases

the overall variance of test scores.

Using the estimation results, I conduct several counterfactual social planning experiments.

These experiments show that a resource neutral policy can have a direct impact on the

distribution of test scores, with some students benefiting more than others. In particular,

assigning good teachers to large classrooms improves the distribution of test scores overall,

and reduces inequality simultaneously; tracking of students leads to an increase in test scores

for good students, at the cost of a decrease in bad students’ test scores; detracking does a good

job at reducing the inequality among students without affecting much the mean performance.

Finally, I also consider the optimal class size distribution, which assigns more students to

better teachers, resulting in a simultaneous increase of the mean test scores and a reduction

of the inequality.
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Appendix

A A Model of Social Interactions in the Classroom

The model is a simultaneous game of complete information in which both the teacher and

the students observe the number of students in class, their individual ability, and teacher’s

quality. Let individual test scores be determined by the following Cobb-Douglas production

function

yic = exp (ζtc + ξic) e
φ
tce

β
ic (6)

That is, student i in class c’s test score is a function that depends positively on teacher

quality, ζtc, their own student ability, ξic, teacher effort and their own student effort. Assume

that φ < 1 and β < 1, so that teacher and student effort are complements in the production

function but their marginal returns are decreasing.35

The first component of the production function, exp (ζtc + ξic), reflects teacher’s quality

and student’s ability, and it is the way heterogeneity is introduced in this model.36 Further,

teacher’s quality and student’s ability are allowed to depend on class size. Intuitively, both

teachers and students can have a different level of productivity for different levels of class

size. For example, some teachers can be more effective at teaching small classrooms than

large classrooms, as the larger the classroom, the more opportunities for disruptions there

are. Similarly, students can perform differently in classrooms of different sizes. In the most

general formulation, there are potential outcomes for each different class size, which are

drawn from some distribution, ζtc ≡ ζtc (Nc) and ξic ≡ ξic (Nc), i.e. it would be a random

coefficients model with multiple dummy variables, one for each class size. Since it is possible

that the distribution of potential outcomes varies for different values of class size, affecting

the distribution of test scores, it is important to know these distributions for the teacher and

student assignment problem. Moreover, this heterogeneity in teacher and student effects

implies that the variance and higher order moments of test scores are a function of class size.
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Let students’ utility function be linear in their test score. Students incur some cost by

exerting effort, which is homogeneous for all individuals and increasing in effort.

ui (yic, eic) = yic − eδic (7)

where yic is the test score of individual i and eδic is their cost function. This particular

utility function rules out any kind of rank effect, as only the absolute test score matters,

and not the performance relative to their classroom peers.37 I assume that δ > β
1−φ , so that

the marginal cost in effort increases faster than its marginal product. Let teachers’ utility

function be given by

uc (yc
g, etc) = yc

g − etc (8)

That is, teachers utility is linear in the geometric mean of students’ grades, and they

incur a cost that is also homogeneous for all teachers.38 Moreover, the marginal cost is

constant in effort.

The baseline model equations rule out the direct spillovers among students in the same

classroom. The channel for the spillovers in this model is teacher’s effort. Given that agents

behave rationally, teachers are going to put effort according to the effort choices and ability

of all the students in their classroom. Since students optimal effort level is going to depend

on teacher’s effort, it follows that students’ effort and test scores are going to be indirectly

influenced by their peers’ effort and abilities. Therefore, teachers fulfill two roles in this

model: they directly affect students test scores through their quality and effort, and they

allow for the existence of peer effects through the effort they optimally exert. It is also

relatively simple to generalize the production function such that it incorporates direct peer

effects, although it is no longer possible to obtain closed form solutions for the test scores if

the game is simultaneous.

A.1 Solution of the Model

This model is solved using standard game theoretic arguments. Start by obtaining students’

optimal effort level, given their individual ability, teacher’s quality and conditioning on
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teacher’s effort level

e∗ic (etc) = arg max
e

exp (ζtc + ξic) e
φ
tce

β − eδ

Taking the derivative with respect to effort, one gets the first order conditions for this

problem. Notice that this is a coordination game, since there exist two possible Nash

equilibria. In the first one, every student exerts no effort. To solve for the second Nash

equilibrium, it is convenient to work with the logarithm of these foc, obtaining

log (eic) =
1

δ − β
log

(
β

δ

)
+

1

δ − β
(ζtc + ξic) +

φ

δ − β
log (etc) (9)

The best response function indicates that the optimal effort level of a student depends

positively on teacher’s quality, student’s ability and teacher’s effort, which follows from the

fact that teacher and student effort are complements in the test score production function.

The teacher’s best response function is obtained by maximizing the following function:

e∗tc

(
{ejc}Ncj=1

)
= arg max

e
exp

(
ζtc + ξc

)
eφ

Nc∏
j=1

e
β
Nc
jc − e

Again, taking logs of the foc and solving for teacher’s log effort yields

log (etc) =
1

1− φ
log (φ) +

1

1− φ
(
ζtc + ξc

)
+

β

1− φ
log (etc) (10)

The best response function of teacher’s effort shows that they exert more effort the higher

their quality, the higher the average ability of their students, and the higher their effort. This

best response function is the channel for the spillovers. Since the teacher cares for all their

students, he exerts effort according to the ability of all of them. Moreover, the more effort

the teacher exerts, the more effort their students exert, which implies that teacher’s effort is

a public good from which all students benefit. In equilibrium, effort levels equal

log (e∗tc) =
δ − β

δ (1− φ)− β
log (φ) +

β

δ (1− φ)− β
log

(
β

δ

)
+

δ

δ (1− φ)− β
(
ζtc + ξc

)
(11)

log (e∗ic) =
φ

δ (1− φ)− β
log (φ) +

1− φ
δ (1− φ)− β}

log

(
β

δ

)
+

1

δ (1− φ)− β
ζtc +

φδ

(δ (1− φ)− β) (δ − β)
ξc +

1

δ − β
ξic (12)

The optimal student effort levels already take into account the indirect spillovers that

there are among them, and thus they depend on four different terms: a constant, teacher’s

quality, the average ability of their peers, and their own individual ability. Teacher’s optimal
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effort level is similar, and it depends on a constant, his own quality, and the mean of students’

ability. Plugging 11 and 12 into 6 yields the individual test score in equilibrium:

log (yic) =
φδ

δ (1− φ)− β
log (φ) +

β

δ (1− φ)− β
log

(
β

δ

)
+

δ

δ (1− φ)− β
ζtc +

φδ2

(δ (1− φ)− β) (δ − β)
ξc +

δ

δ − β
ξic (13)

In equilibrium, student’s i test score depends positively on teacher’s quality, ζtc, the

average ability of the students in class c, ξc, and his own individual ability, ξic. It is convenient

to rewrite equation 13 as

log (yic) = αc + (γ − 1) εc + εic (14)

where

αc ≡
φδ

δ (1− φ)− β
log (φ) +

β

δ (1− φ)− β
log

(
β

δ

)
+

δ

δ (1− φ)− β
ζtc

εic ≡
δ

δ − β
ξic

γ ≡ δ − β
δ (1− φ)− β

That is, I redefine the teacher effect as the sum of the constant and teacher’s quality,

scaled by δ
δ(1−φ)−β ; the student effect is redefined as the student ability, scaled by δ

δ−β ; and

gamma is interpreted as the social multiplier, i.e. by how much the student test scores

would increase if I increased the average student effect by one unit. In terms of the model

primitives, the social multiplier equals one when φ = 0. This is the case in which teacher’s

behavior plays no role, and the production function simplifies to yic = exp (ζtc + ξic) e
β
ic. This

implies that teacher’s strategic choice of effort, which depends on all students’ abilities, has

no effect on students’ outcomes and therefore students do not benefit from having better

peers. Notice that even in this case students benefit from teacher’s quality, ζtc. If φ < 1,

better peers have a positive spillover through the increase in teacher’s optimal effort.

A.2 Multiplicity of Equilibria

As mentioned above, there are two Nash equilibria that solve the previous model: in the first

equilibrium all agents exert no effort; in the second, all agents exert the optimal level of effort
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given by equations 11 and 12. The focus of this paper is not to consider a coordination game

as in Todd and Wolpin (2014). They have a richer model that also includes the equilibrium

in which no agent exerts effort, to which they refer as the trivial equilibrium. As in their

paper, I rule out this equilibrium. One compelling reason for this is that if the model were

correct, then in classes in which this equilibrium occurred, everyone would have a zero in

their test score, which is not observed in the data.

B Operator vech

Let AN be a d-dimensional array with all dimensions of size N . The operator vech selects

some of the elements of this array and arranges them into a vector. If AN is a matrix, it

selects the diagonal and upper diagonal elements and arrange them row by row:

vech (AN) = (a11, a12, ..., a1N , a22, ..., a2N , ..., aNN)′

More generally, for d-dimensional arrays it selects the elements (i1, i2, ..., id) such that

i1 ≤ i2 ≤ ... ≤ id and arrange them lexicographically by dimensions. The size of the

resulting vector equals the total number of combinations with repetition,
(
N+d−1

d

)
.

C Identification with Missing Test Scores

As mentioned in section 4, not all of the test scores were observed. Therefore, I extend

Bonhomme and Robin (2009) to accommodate missing test scores at random. Let N0c

denote the number of students in a class, and N1c the number of students whose test scores

are observed. Then, Yc is a vector of dimension N1c, and Xc is a vector of dimension

N0c, and the relation between the two of them is given by Yc = Λ (γ;N0c, N1c)Xc, where

Λ (γ;N0c, N1c) =
(
ιN1c ,

(
IN1c , 0N1c0

′
N0c−N1c

)
+ γ−1

N0c
ιN1cι

′
N0c

)
. Most of the analysis remains the

same, but now the ωrY vectors are smaller, and the Λr matrix are also different, as shown in

appendix F.
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D Cumulants and Cumulant Generating Functions

Let X be a random variable. Its cumulant generating function (CGF), gX (t), is defined as

the logarithm of the moment generating function:

gX (t) ≡ log (E [exp (X)])

To obtain the cumulant of order R, simply take the Rth derivative of the CGF with

respect to t and evaluate at t = 0:

κR (X) ≡ ∂RgX (t)

∂tR

∣∣∣∣
t=0

There is a bijection between cumulants and moments. For example, cumulants up to

order 4 are κX1 = E [X], κX2 = E
[
(X − E (X))2

]
, κX3 = E

[
(X − E (X))3

]
, and κX4 =

E
[
(X − E (X))4

]
− 3E

[
(X − E (X))2

]2
. They satisfy the following two properties: let a be

a scalar, then the Rth order cumulant of aX equals κR (aX) = aRκR (X); let X and Y be

two independent random variables, then the Rth cumulant of their sum equals κR (X) =

κR (X) + κR (Y ). With these two properties, it is possible to obtain closed form expressions

for the cumulants of the between and within variables. The CGF of Yc, gYc , is a linear

function of the CGF of teacher and student effects, which I define as gα and gε, respectively

gYc (t|Nc) = gα

(
Nc∑
j=1

tj|Nc

)
+

Nc∑
j=1

gε

(
tj +

γ − 1

Nc

Nc∑
h=1

th|Nc

)
(15)

Let i, j, h and k denote students of class c. To obtain the joint cumulants of the test

scores, simply take the Rth derivative of the CGF with respect to the different components

of the vector t and evaluate it at t = 0.

E Characteristic Functions

The characteristic function of the vector of class test scores can be expressed as a function

of the characteristic functions of teacher and student effects. Bonhomme and Robin (2010)

showed that using the empirical characteristic functions of the observed data, one can recover

the characteristic functions of the underlying processes. The framework in this paper is very

similar, but there are three differences: several factors are equally distributed, the size of
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the veY vector varies for different groups, and some of the observations from this vector are

missing. The first difference comes from the fact that students are randomly assigned into

classes and therefore student effects are treated as coming from the same distribution. Thus,

there is extra structure that can be exploited in this paper’s framework. The second and

the third differences come from the fact that classrooms have a different number of students

and some of the test scores are missing.

Assume for the time being that N0c = N1c, i.e. all students test scores are observed, and

drop the 0/1 subscript. The characteristic function of Yc is given by

ϕYc (t|Nc) = E

[
exp

(
i

(
Nc∑
j=1

ỹjctj

))
|Nc

]
= ϕα

(
Nc∑
j=1

tj|Nc

)
ΠNc
j=1ϕε

(
tj +

γ − 1

Nc

Nc∑
h=1

th|Nc

)
(16)

The CGF of the vector of observed test scores equals the logarithm of the previous equation,

and after taking the second derivative, one gets the following Nc ×Nc matrix:

∇∇TgYc (t|Nc) = g
′′

α

(
Nc∑
j=1

tj|N0c

)

+
Nc∑
j=1

g
′′

ε

(
tj +

γ − 1

Nc

Nc∑
h=1

th|Nc

)[(
γ − 1

Nc

)2

ιNcι
′
Nc +

γ − 1

Nc

(
ΥNc (j) + ΥNc (j)′

)
+ ΨNc (j)

]
where ΥNc (j) is a Nc × Nc matrix of zeros except for column j, whose elements equal

one, and ΨNc (j) is a Nc × Nc matrix of zeros except for the element (j, j), which equals

one. The next step is to apply the vech operator to the matrix of second derivatives of the

CGF, and express it as the product of a weighting matrix and a vector with the Nc + 1

different second derivatives of the CGF of teacher and students effects. Given that students

are randomly sorted into classes, I use the extra information coming from the fact that they

are independent and identically distributed. To do so, let t = τιNc , i.e. t is no longer any

vector, it gives the same weight, τ ∈ R, to all test scores. Apply the vech operator to the

previous expression to obtain

vech
(
∇∇TgYc (τιNc |Nc)

)
= Q

g′′α (Ncτ |Nc)

g
′′
ε (γτ |Nc)


where Q ≡

(
ι (Nc+1)Nc

2

, vech (INc) +
(γ2−1)
Nc

ι (Nc+1)Nc
2

)
. Let Q−j denote the jth row of matrix
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Q−, the second derivative of the CGF of the teacher and student effects equals

g
′′

α (τ |Nc) = Q−1 vech

(
∇∇TgYc

(
τ

Nc

ιNc |Nc

))
g
′′

ε (τ |Nc) = Q−2 vech

(
∇∇TgYc

(
τ

γ
ιNc|Nc

))
And using the fact that α and ε have both mean zero and g (0) = 0, it is possible to

doubly integrate the previous expressions to obtain the CGF of the teacher and student

effects

gα (τ |Nc) =

ˆ τ

0

ˆ u

0

Q−1 vech

(
∇∇TgYc

(
v

Nc

ιNc |Nc

))
dvdu

gε (τ |Nc) =

ˆ τ

0

ˆ u

0

Q−2 vech

(
∇∇TgYc

(
v

γ
ιNc |Nc

))
dvdu

All that remains to do is to take the exponential of those two quantities to get the

characteristic function of the teacher and student effects

ϕα (τ |Nc) = exp

(ˆ τ

0

ˆ u

0

Q−1 vech

(
∇∇TgYc

(
v

Nc

ιNc |Nc

))
dvdu

)
ϕε (τ |Nc) = exp

(ˆ τ

0

ˆ u

0

Q−2 vech

(
∇∇TgYc

(
v

γ
ιNc |Nc

))
dvdu

)
Notice that in the last two expressions, in order to have the CGF or characteristic function

of the teacher and student effects evaluated at τ , I need two different weighting vectors t. In

both cases each test score has the same weight, but they are different for the two functions.

For the function of the teacher effect the weight has to be equal to 1
Nc

, and for the student

effect the weight equals 1
γ
. This means that knowledge of γ is required in order to get

estimates of the characteristic function of the student effect.

Now consider again the case in which test scores are missing, i.e. N0c 6= N1c. The vector

of second derivatives of the CGF is expressed as

vech
(
∇∇TgYc (τιN1c |N0c)

)
= Q

g′′α (N1cτ |N0c) +
(γ2−1)N1c

N0c
g
′′
ε

(
(γ−1)N1c

N0c
τ |N0c

)
g
′′
ε

(
γN1c+N0c−N1c

N0c
τ |N0c

)


Since there are no observations for the test scores of students N1c + 1, ..., N0c, there

is multicollinearity between their effects and the teacher effect, since they affect all the

remaining students proportionally to the teacher. This means that an extra step is needed

in order to identify the characteristic function of the teacher effect. The CGF of both the
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teacher and student effects equal

gε (τ |N0c) =

ˆ τ

0

ˆ u

0

Q−2 vech

(
∇∇TgYc

(
vN0c

γN1c + (N0c −N1c)
ιN1c |N0c

))
dvdu

gα (τ |N0c) =

ˆ τ

0

ˆ u

0

[
Q−1 vech

(
∇∇TgYc

(
v

N1c

ιN1c |N0c

))
− g

′′

ε

(
(γ − 1) (N0c −N1c)

N0cN1c

vιN1c|N0c

)]
dvdu

That is, the CGF of ε needs a minor correction that involves only the class size and the

observed number of test scores, whereas the CGF of α needs a major correction, as the term

is now contaminated by the second derivative of the CGF of ε.

F Λ Matrices

F.1 All Test Scores are Observed

Λ2 (γ;Nc) ≡ ι

(
1,
γ2 − 1

Nc

)
+
[
0, vech

(
ηNc2,1,2

)]
Λ3 (γ;Nc) ≡ ι

(
1,

(γ − 1)2 (γ − 2)

N2
c

)
+

[
0,
γ − 1

Nc

vech
(
ηNc3,1,2 + ηNc3,1,3 + ηNc3,2,3

)]
+
[
0, vech

(
ηNc3,1,2 � ηNc3,1,3

)]
Λ4 (γ;Nc) ≡ ι

(
1,

(γ − 1)3 (γ − 3)

N3
c

)

+

[
0,

(γ − 1)2

N2
c

vech
(
ηNc4,1,2 + ηNc4,1,3 + ηNc4,1,4 + ηNc4,2,3 + ηNc4,2,4 + ηNc4,3,4

)]

+

[
0,
γ − 1

Nc

vech
(
ηNc4,1,2 � ηNc4,1,3 + ηNc4,1,2 � ηNc4,1,4 + ηNc4,1,3 � ηNc4,1,4 + ηNc4,2,3 � ηNc4,2,4

)]
+
[
0, vech

(
ηNc4,1,2 � ηNc4,1,3 � ηNc4,1,4

)]
where 0 and ι represent vectors of zeros and ones of the appropriate dimension, i.e.

(Nc+1)Nc
2

, (Nc+2)(Nc+1)Nc
6

and (Nc+3)(Nc+2)(Nc+1)Nc
24

, respectively. ηNcd,e,f is the d-dimensional array

whose d dimensions are all of size Nc and all elements zero except for those that are the same

in dimensions e and f , e < f , which take value one.39 Finally, � is the Hadamard product,

i.e. the element-wise product of arrays.
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F.2 Missing Test Scores at Random

Λ2 (γ;N0c, N1c) ≡ ι

(
1,
γ2 − 1

N0c

)
+
[
0, vech

(
ηN1c
2,1,2

)]
Λ3 (γ;N0c, N1c) ≡ ι

(
1,

(γ − 1)2 (γ − 2)

N2
0c

)

+

[
0,
γ − 1

N0c

vech
(
ηN1c
3,1,2 + ηN1c

3,1,3 + ηN1c
3,2,3

)]
+
[
0, vech

(
ηN1c
3,1,2 � ηN1c

3,1,3

)]
Λ4 (γ;N0c, N1c) ≡ ι

(
1,

(γ − 1)3 (γ − 3)

N3
0c

)

+

[
0,

(γ − 1)2

N2
0c

vech
(
ηN1c
4,1,2 + ηN1c

4,1,3 + ηN1c
4,1,4 + ηN1c

4,2,3 + ηN1c
4,2,4 + ηN1c

4,3,4

)]

+

[
0,
γ − 1

N0c

vech
(
ηN1c
4,1,2 � ηN1c

4,1,3 + ηN1c
4,1,2 � ηN1c

4,1,4

+ ηN1c
4,1,3 � ηN1c

4,1,4 + ηN1c
4,2,3 � ηN1c

4,2,4

)]
+
[
0, vech

(
ηN1c
4,1,2 � ηN1c

4,1,3 � ηN1c
4,1,4

)]

G Testing for the Presence of Peer Effects

Let the test score of student i in classroom c by given by the following equation:

yic = αc + (γ − 1)h (εic, ε−ic) + εic (17)

As in equation 1, αc and εic respectively represent the teacher and student effects. The

only difference lies in the peer effects function, h (εic, ε−ic), which depends on the own student

effect, and the effect of all other students in the classroom, ε−ic. This function is left

unspecified, and coincides with the linear-in-means model when h (εic, ε−ic) = εc, but it can

also represent other peer effects models, such as the bad apple model (h (εic, ε−ic) = minj εjc).

Consider the mean test score of classroom c, yc = αc + (γ − 1) 1
Nc

∑Nc
i=1 h (εic, ε−ic) + εc,

and the difference of individual test scores with respect to it, yic−yc = (γ − 1) (h (εic, ε−ic))+
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εic − εc. The variance of these two quantities are given by

V ar (yc) = V ar (αc) + (γ − 1)2
[

1

Nc

V ar (h (εic, ε−ic)) +
Nc − 1

Nc

Cov (h (εic, ε−ic) , h (εjc, ε−jc))

]
+

1

Nc

V ar (εic)

+ 2 (γ − 1)

[
1

Nc

Cov (εic, h (εic, ε−ic)) +
Nc − 1

Nc

Cov (εic, h (εjc, ε−jc))

]
(18)

V ar (yic − yc) = (γ − 1)2
[
Nc − 1

Nc

V ar (h (εic, ε−ic))−
Nc − 1

Nc

Cov (h (εic, ε−ic) , h (εjc, ε−jc))

]
+
Nc − 1

Nc

V ar (εic)

+ 2 (γ − 1)

[
Nc − 1

Nc

Cov (εic, h (εic, ε−ic))−
Nc − 1

Nc

Cov (εic, h (εjc, ε−jc))

]
(19)

where all the moments are conditional on class size, but for notational simplicity it is

omitted in the equations. After some algebra, one obtains

V ar (yc)−
1

Nc − 1
V ar (yic − yc)− V ar (αc) = (γ − 1)2Cov (h (εic, ε−ic) , h (εjc, ε−jc))

+ 2 (γ − 1)Cov (εic, h (εjc, ε−jc))

Under the null hypothesis of no spillovers, H0 : γ = 1, the right hand side of the previous

equation equals zero, whereas under the alternative hypothesis of spillovers, H0 : γ > 1, it

is in general different from zero. Hence, one can construct a test statistic with the between

and within class variances, denoted by TC :

TC ≡
1

C

C∑
c=1

(yc − µ̂ (Nc))
2 − 1

C

C∑
c=1

1

Nc (Nc − 1)

Nc∑
i=1

(yic − yc)
2 − σ̂2

α (20)

Under H0 : γ = 1, the limiting distribution of the previous test is N (0, r′V ∗r), where

r ≡ (−1, 1,−1)′, and

√
C




σ̂2
α

1
C

∑C
c=1 (yc − µ̂ (Nc))

2

1
C

∑C
c=1

1
Nc(Nc−1)

∑Nc
i=1 (yic − yc)

2

−


V ar (αc)

E [V ar (yc)]

E
[

1
Nc−1V ar (yic − yc)

]

 d→ N (0, V ∗)

Some comments are in order: first, both the between and the within variances need to

be corrected by the missing test scores, as in Graham (2008); second, one could also use

higher order moments of the mean class test scores and their within class variance, but the

resulting equations would be algebraically cumbersome even without missing data, which
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would further complicate them; third, estimation of V ∗ is not straightforward, and therefore

I use the bootstrap to estimate it.40

The results are shown in table 5, and they show that for the mathematics exams, the

null hypothesis of no peer effects cannot be accepted at the 95% confidence level for all nine

specifications.

Table 5: Tests for the presence of spillovers
(1) (2) (3) (4) (5) (6) (7) (8) (9)

TC 0.095 0.058 0.056 0.097 0.060 0.058 0.096 0.060 0.058
c0.95 0.074 0.053 0.055 0.074 0.052 0.055 0.074 0.052 0.055
TC 0.094 0.066 0.056 0.092 0.065 0.057 0.087 0.060 0.052
c0.95 0.086 0.069 0.069 0.082 0.065 0.064 0.081 0.064 0.062

Notes: Columns 1-9 represent use the estimate of the variance of αc from
the 9 specifications presented in the main text. TC and c0.95 respectively
denote the value of the test and the 95% critical value.

H Extra Results

H.1 Heterogeneous Teacher Effects

H.2 Estimation when Teacher’s aide affects the Variance

Table 2 showed that classes in which there was a full time teacher’s aide had a slightly smaller

performance, only barely significant for the reading test, but this variable was excluded from

the main covariance analysis. Table 7 shows the estimates of the social multiplier, the

teacher and the students’ variances when the teacher’s aide is allowed to have an impact

on the variance of the teacher effect. Having a teacher’s aide only marginally increases this

variance, though this effect is not significant in any of the three specifications. Moreover,

the estimates of the social multiplier are barely changed by the inclusion of this variable in

the regression.
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Table 6: Heterogeneous teacher effects
Mathematics Reading

γ̂ 0.739 0.715*
(1.142) (0.392)

κ̂2 (αc|small) 0.123 0.114***
(0.076) (0.030)

κ̂2 (αc|large) 0.079 0.066***
(0.060) (0.022)

κ̂3 (αc|small) 0.059* 0.054
(0.032) (0.035)

κ̂3 (αc|large) 3.1 · 10−4 0.004
(0.011) (0.011)

κ̂4 (αc|small) -0.021 0.002
(0.040) (0.055)

κ̂4 (αc|large) -0.084*** -0.0723***
(0.009) (0.040)

κ̂2 (εic|small) 0.676*** 0.703***
(0.024) (0.040)

κ̂2 (εic|large) 0.783*** 0.779***
(0.040) (0.059)

κ̂3 (εic|small) 0.319*** 1.187***
(0.119) (0.265)

κ̂3 (εic|large) 0.213*** 0.934***
(0.058) (0.148)

κ̂4 (εic|small) 1.104** 4.608***
(0.488) (1.524)

κ̂4 (εic|large) 0.216 3.196***
(0.142) (0.778)

Notes: Standard errors in parentheses.
*, ** and *** denote significant at the
90, 95 and 99 percent levels.

H.3 Estimation Constraining the Variances to be Positive

The results shown in section 4.3 for the case in which the variance of student’s ability

is homoskedastic were not coherent, as the estimate of the variance of teacher’s quality

was negative. In this section I present the estimates of the social multiplier when the

teacher variance is constrained to be non-negative. Figure 5 shows the estimates of the

social multiplier and the value of the objective function for different values of σ2
α for the

mathematics exam. If the variance is constrained to be weakly positive, then the constrained

estimates yield a social multiplier of 1.76. If, on the other hand, the constraint is that the

variance be strictly positive, then there are no proper estimates, since the objective function

is increasing at zero, and hence for any positive value of the variance, there is always a

smaller value such that the objective function evaluated at that value is smaller. In any

case, the estimate of the social multiplier is smaller and closer to the estimates when the

variance of student’s ability is allowed to be heteroskedastic, but still higher. As the variance
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Table 7: Teacher’s aide affects the variance
(1) (4) (7)

γ̂ 1.874*** 1.578*** 1.538***
(0.360) (0.288) (0.300)

κ̂2 (αc) -0.016 0.018 0.024
(0.048) (0.034) (0.034)

AIDE 0.003 0.007 0.003
(0.021) (0.021) (0.021)

κ̂2 (εic) 0.709*** - -
(0.021)

κ̂2 (εic|small) - 0.792*** -
(0.042)

κ̂2 (εic|large) - 0.672*** -
(0.024)

µ̂ε,2,0 - - 0.942**
(0.468)

µ̂ε,2,1 - - -0.011
(0.049)

µ̂ε,2,2 - - 0.000
(0.001)

Notes: Standard errors in parentheses. *, **
and *** denote significant at the 90, 95 and
99 percent levels.

of teacher’s quality increases, the social multiplier decreases, obtaining an estimate of the

social multiplier of 1.55 when the teacher’s quality variance equals 0.025. The results are

robust to the inclusion of higher order moments in the estimation (not shown here).

H.4 Full Results

In this section I present the full table with the estimates of specifications 1 to 9, as described

in section 3, for both the mathematics and reading test scores. Moreover, I also present a

table with the results of the specification that allows for heterogeneous teacher and student

effects. These effects take two different distributions for small and large classrooms.
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Figure 5: Social multiplier and objective function as a function of σ2
α, mathematics test

scores
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Table 8: Full estimates, mathematics test scores

(1) (2) (3) (4) (5) (6) (7) (8) (9)
γ̂ 1.854*** 1.868*** 1.867*** 1.545*** 1.564*** 1.564*** 1.520*** 1.544*** 1.544***

(0.374) (0.395) (0.374) (0.299) (0.299) (0.300) (0.311) (0.311) (0.312)
κ̂2 (αc) -0.013 -0.014 -0.014 0.024 0.022 0.022 0.027 0.024 0.024

(0.050) (0.053) (0.050) (0.034) (0.034) (0.034) (0.035 (0.035)) (0.035)
κ̂3 (αc) - 0.007 0.007 - 0.008 0.008 - 0.008 0.008

(0.012) (0.010) (0.010) (0.010) (0.010) (0.010)
κ̂4 (αc) - - -0.076*** - - -0.075*** - - -0.076***

(0.009) (0.010) (0.010)
κ̂2 (εic) 0.709*** 0.709*** 0.709*** - - - - - -

(0.021) (0.021) (0.021)
κ̂3 (εic) - 0.242*** 0.242*** - - - - - -

(0.083) (0.049)
κ̂4 (εic) - - 0.263* - - - - - -

(0.136)
κ̂2 (εic|small) - - - 0.791*** 0.789*** 0.789*** - - -

(0.042) (0.041) (0.041)
κ̂2 (εic|large) - - - 0.672*** 0.673*** 0.673*** - - -

(0.024) (0.024) (0.024)
κ̂3 (εic|small) - - - - 0.367*** 0.367*** - - -

(0.115) (0.115)
κ̂3 (εic|large) - - - - 0.187*** 0.187*** - - -

(0.057) (0.057)
κ̂4 (εic|small) - - - - - 0.899** - - -

(0.355)
κ̂4 (εic|large) - - - - - 0.014 - - -

(0.124)

40



µ̂ε,2,0 - - - - - - 0.933* 0.928*** 0.928**
(0.467) (0.465) (0.465)

µ̂ε,2,1 - - - - - - -0.010 -0.010 -0.010
(0.049) (0.049) (0.049)

µ̂ε,2,2 - - - - - - 4.5·10−5 4.5·10−5 4.7·10−5

(1.2·10−3) (1.2·10−3) (1.2·10−3)
µ̂ε,3,0 - - - - - - - -2.281 -2.283

(5.264) (5.263)
µ̂ε,3,1 - - - - - - - 0.438 0.439

(0.845) (0.845)
µ̂ε,3,2 - - - - - - - -0.023 -0.023

(0.044) (0.044)
µ̂ε,3,3 - - - - - - - 3.8·10−4 3.8·10−4

(7.3·10−4) (7.4·10−4)
µ̂ε,4,0 - - - - - - - - -138.55**

(61.65)
µ̂ε,4,1 - - - - - - - - 30.49**

(13.35)
µ̂ε,4,2 - - - - - - - - -2.429**

(1.051)
µ̂ε,4,3 - - - - - - - - 0.084**

(0.036)
µ̂ε,4,4 - - - - - - - - -0.001**

(4.5·10−4)
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Table 9: Full estimates, reading test scores

(1) (2) (3) (4) (5) (6) (7) (8) (9)
γ̂ 1.791*** 1.776*** 1.733*** 1.553*** 1.545*** 1.505*** 1.466*** 1.471*** 1.427***

(0.413) (0.456) (0.416) (0.349) (0.341) (0.344) (0.371) (0.361) (0.364)
κ̂2 (αc) -0.020 -0.019 -0.013 0.018 0.009 0.013 0.022 0.017 0.022

(0.054) (0.058) (0.052) (0.040) (0.039) (0.038) (0.040) (0.039) (0.038)
κ̂3 (αc) - 0.001 0.002 - 0.004 0.004 - 0.004 0.005

(0.014) (0.011) (0.011) (0.011) (0.010) (0.011)
κ̂4 (αc) - - -0.072*** - - -0.070*** - - -0.069***

(0.012) (0.012) (0.012)
κ̂2 (εic) 0.727*** 0.728*** 0.728*** - - - - - -

(0.033) (0.033) (0.033)
κ̂3 (εic) - 0.882*** 0.887*** - - - - - -

(0.146) (0.125)
κ̂4 (εic) - - 2.730*** - - - - - -

(0.609)
κ̂2 (εic|small) - - - 0.793*** 0.793*** 0.796*** - - -

(0.060) (0.059) (0.059)
κ̂2 (εic|large) - - - 0.697*** 0.697*** 0.697*** - - -

(0.040) (0.040) (0.040)
κ̂3 (εic|small) - - - - 1.067*** 1.075*** - - -

(0.261) (0.261)
κ̂3 (εic|large) - - - - 0.835*** 0.840*** - - -

(0.141) (0.142)
κ̂4 (εic|small) - - - - - 3.697*** - - -

(1.329)
κ̂4 (εic|large) - - - - - 2.567*** - - -

(0.681)
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µ̂ε,2,0 - - - - - - 0.286 0.285 0.288
(0.743) (0.743) (0.749)

µ̂ε,2,1 - - - - - - 0.062 0.062 0.062
(0.079) (0.079) (0.080)

µ̂ε,2,2 - - - - - - -0.002 -0.002 -0.002
(0.002) (0.002) (0.002)

µ̂ε,3,0 - - - - - - - -11.63 -11.63
(13.90) (13.18)

µ̂ε,3,1 - - - - - - - 1.992 1.995
(2.090) (2.103)

µ̂ε,3,2 - - - - - - - -0.100 -0.100
(0.108) (0.109)

µ̂ε,3,3 - - - - - - - 0.002 0.002
(0.002) (0.002)

µ̂ε,4,0 - - - - - - - - -98.76
(287.19)

µ̂ε,4,1 - - - - - - - - 19.38
(62.26)

µ̂ε,4,2 - - - - - - - - -1.304
(4.939)

µ̂ε,4,3 - - - - - - - - 0.037
(0.170)

µ̂ε,4,4 - - - - - - - - 3.7·10−4

(0.002)
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H.5 Goodness of Fit

I compare the goodness of fit of the different specifications by looking at the value attained by

the objective function at the minimum. This comparison requires the objective function to be

the same, so it is possible to compare specifications 3, 6, and 9, because they use cumulants

two to four in the estimation, but it is not possible to compare models 7, 8, and 9 because

the objective function is the same. Table 10 shows the results. For the mathematics test

scores, the model with class type heteroskedasticity for student effects achieves the smallest

value of the objective function of all three models, and the random coefficients model in

class size for student effect has a similar fit. On the other hand, the model that assumes

homoskedastic teacher and student effects does a poorer job than the other two. For the

reading test scores the results are similar, but in this case it is the specification with student

effects following a random coefficients model attaining the minimum value.

Table 10: Goodness of Fit

Mathematics test scores Reading test scores

(1) (2) (3) (4) (5) (6)
Homoskedasticity 45889.9 55945.3 59273.8 63995.3 88224.6 103950.8

Class type heteroskedasticity 45871.7 55926.5 59254.3 63983.4 88211.1 103934.9
Random coefficients model 45878.7 55933.7 59261.2 63978.7 88203.9 103925.9

Notes: Columns 1 and 4 refer to the estimation with only the variances, columns 2 and 5
refer to the estimation with the variances and third order cumulants, and columns 3 and 6
refer to the estimation with the cumulants up to order four.

The estimates of the third and fourth cumulants are in many cases significantly different

from zero. If teacher and student effects were normal, these cumulants would be equal

to zero. In that case, the estimates of the variance of the teacher and student effects are

sufficient to characterize these distributions. Compare the increase in the fit of the model

by looking at the difference in the objective function when using the estimates that assume

normality with those that relax this assumption and allow for nonzero third and fourth order

cumulants. Table 11 shows the results. Columns 1 and 2 report the value of the objective
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function when using only the second and third cumulants, whereas columns 3 and 4 report

the value of the objective function when using the second, third and fourth cumulants.41

The fit under normality is always worse, and this is particularly marked for the reading test

scores.

Table 11: Goodness of fit under normality

Mathematics test scores

Cumulants 2 & 3 Cumulants 2 to 4
Non-normality Normality Non-normality Normality

Homoskedasticity 55945.3 55954.8 59273.8 59290.3
Class type heteroskedasticity 55926.5 55936.5 59254.3 59272.0
Random coefficients model 55933.7 55943.6 59261.2 59279.1

Reading test scores
Cumulants 2 & 3 Cumulants 2 to 4

Non-normality Normality Non-normality Normality
Homoskedasticity 88224.6 88332.6 103950.8 104093.2

Class type heteroskedasticity 88211.1 88320.8 103934.9 104081.3
Random coefficients model 88203.9 88316.1 103925.9 104076.6

Given that the estimates of the social multiplier are substantially large, one might argue

that if the fit of the model remains largely unchanged without spillovers, it would be possible

to argue that the estimates of the social multiplier reflect sample variability rather than actual

peer effects. The top graph in figure 6 shows the value of the objective function for different

values of the social multiplier, and the remaining parameters are the estimates conditional on

the social multiplier. The results show that for values of the social multiplier between 1 and 2,

the rank in the performance of each model is the same. Hence, the model with homoskedastic

teacher and student effects has the poorest fit and the models with heteroskedastic student

effects have a better fit. These last two models have a very similar difference in the objective

function for each value of the social multiplier, whereas the difference between any of this

two and the model with homoskedastic teacher and student effects is decreasing as the social

multiplier increases. This is because the estimate of the social multiplier is much larger in

the latter model than in the former two.
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Figure 6: Goodness of fit and standard deviation of teacher effects as a function of γ,
mathematics test scores
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Because the sum of the total variance in the test scores is the sum of the variances of

student and teacher effects, weighted by the social multiplier, there is a tension between

these two estimates: if social multiplier is large, the variance of the teacher effect is small,

and the other way around. A particularly interesting case is to restrict the social multiplier

to be one, and see what the estimates of the standard deviation of teacher effects are in

that case. The bottom graph of figure 6 shows the estimates of the standard deviation

of the teacher effect for different values of the social multiplier. For the three models, the

estimates of the standard deviation of teacher effects are very close, and if the actual value of

the social multiplier were 1, the estimate of the standard deviation of teacher effects would
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be approximately 0.27, a number much higher than what has been usually found in the

literature. Moreover, for values of the social multiplier larger than 1.75, the estimate of the

variance is negative, which suggests that the social multiplier cannot be that large.

H.6 Counterfactuals using the Normal Distribution

Table 12: Counterfactual results, mathematics test scores

Counterfactual (1) (2) (3) (4)
mean 0.03 0.06 0.09 0.00
sd -0.01 1.30 1.15 -0.11
p10 0.05 -1.55 -1.33 0.15
p25 0.04 -0.90 -0.75 0.07
p50 0.04 -0.15 -0.11 0.02
p75 0.03 0.61 0.55 -0.06
p90 0.02 1.25 1.15 -0.10

Notes: The first row of the table shows the
change in the mean test scores with respect
to the baseline case, the second row shows the
change in the standard deviation, and the last
five rows show the change in the test scores for
a selected number of percentiles.

Notes

1A major question in the economics of education literature is the estimation of the mean effect of class size

on students achievement, but its distributional effects have received less attention. One exception is Lazear

(2001), who proposed a model in which the disruptions in a classroom depend on its size, and consequently

class size affects the whole distribution of test scores.

2See Brock and Durlauf (2001) or Durlauf and Ioannides (2010) for literature reviews of the estimation

of spillovers in general, and Sacerdote (2011) for a review of the estimation of peer effects in education.

3Morris (1983) method to correct for the bias caused by the incidental parameter problem, which invokes

the Gaussianity of the unobserved effects, is typically used for the estimation of teacher value-added (Kane

and Staiger, 2008; Chetty et al., 2014). It has already been considered that sorting can bias the teacher

value-added estimates (Rothstein, 2009), but not the effect of non-normally distributed teacher effects on

these estimates. Rockoff (2004) also assumes normality of teacher effects to estimate its actual distribution.
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4In this model, students and teachers play a game in which test scores depend on the amount of effort they

exert and their ability. The social multiplier arises from the complementarity between students and teacher

efforts. Hence, in this framework the outcome is not a choice variable, which is a conceptually different

framework from those in which the outcome variable is the choice variable, such as the decision of smoking

depending on whether your friends smoke or not. The model links the social multiplier and the moments of

the distributions of teacher and student effects to its fundamental parameters, and is solved and discussed

in detail in appendix A.

5The standard identification strategy to identify peer effects is based on heterogeneous reference groups,

which exploit the partial overlap of the group of peers that affect each individual. Bramoullé et al. (2009)

formalize this empirical strategy and describe the asymptotic properties of the estimator. Calvó-Armengol

et al. (2009), De Giorgi et al. (2010), De Giorgi and Pellizzari (2014), Arcidiacono et al. (2012), and Boucher

et al. (2014) use this empirical strategy to estimate the spillovers.

6To my knowledge, the earliest example of using covariances to estimate spillovers is Glaeser et al. (1996),

though both their framework and the setup are different.

7The estimator proposed by Graham (2008) requires a correction of the variances that is complicated to

apply to higher order moments. Appendix C shows how this issue is addressed in this paper.

8Using all the strength from assumption 1, the characteristic function of Yc can be expressed as the

product of Nc + 1 different characteristic functions. See appendix E for the complete derivation.

9There is a bijection between cumulants and moments. See appendix D for more details.

10In particular, the third cumulant has five different permutations (i = j = h, i = j 6= h, i = h 6= j,

j = h 6= i, and i, j, h all different) and the fourth cumulant has eighteen different permutations.

11The vech operator is defined in appendix B; ΓY,Nc and ΩY,Nc are the three and four-dimensional arrays

that contain all the third and fourth order cumulants of vector Yc, respectively.

12For expositional purposes, consider a student. This model assumes that his effect varies with class size

monotonously, either increasing if ε1ic > 0 or decreasing if ε1ic < 0. However, different students get different

draws of (ε0ic, ε1ic), which means that some are more efficient at learning in large classes than in small classes

and the other way around. This model provides a parsimonious way to capture heterogeneity in teacher and

student effects at the class size level.

13There are 2H for the variances (variance and covariance), 3H for the third cumulants (all test scores

are of the same student, two are of the same student and the other one is different, or the three of them are

of different students), and 5H for the fourth cumulants (all test scores are of the same student, three are of

the same student and the other one is different, two of them are of the same student and the other two are

of a different student, two of them are of the same student and the other two are of different students, or
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the four of them are of different students).

14If the effects are homoskedastic, (γ, V ar (αc) , V ar (εic)); if the effects are class type heteroskedastic,

(γ, V ar (αc|type) , V ar (εic|type)) for type = {small, large}; under the random coefficients model in class

size for the effects, (γ, V ar (α0c) , V ar (α1c) , Cov (α0c, α1c) , V ar (ε0c) , V ar (ε1c) , Cov (ε0c, ε1c)).

15In particular, for the second model it includes κR (αc|small) and κR (αc|large) for the teacher cumulants

and similarly for the student cumulants. For the third model, they depend on {µα,R,r, µε,R,r}Rr=0.

16To illustrate this, for a classroom of size 18, the number of second, third and fourth order cumulants

would be 171, 1140, and 5985, respectively. In relative terms, their weights would be 2%, 16%, and 82%.

17These weights are proportional to the variance of the second, third and fourth power of a standard

normal random variable. An alternative would be to use the estimated optimal minimum distance weighting

matrix. Despite having appealing asymptotic properties, there are two compelling reasons not to use it in

this case: as Altonji and Segal (1996) showed, using such matrix when the sample is small would result in

biased estimates, particularly for distributions with thick tails; also, because of the number of permutations,

the dimension of the weighting matrix would be excessively large to implement the optimal one.

18For a more detailed explanation of the experiment and its results, see Word et al. (1990).

19Since teachers were always in the same classroom, it is impossible to distinguish between teacher and

classroom specific effects. Hereafter I refer to the combined teacher-classroom effect as the teacher effect.

20Full randomization took place in the 28 schools (out of 79) in which there was only one class of each type.

In the remaining schools, principals could assign teachers and students within classrooms of the same type,

but Nye et al. (2004) and Graham (2008) results indicate that using the full sample or only the subsample

for which there is fully randomization led to very similar estimates, but more imprecise, so I restrict to the

analysis the full sample in this paper.

21The length of the experiment was four years, following a cohort from kindergarten to third grade. After

the randomization in kindergarten, transfers of students between schools could have created some degree of

sorting of students, thus invalidating assumption 2. Therefore, I restrict the analysis to the first year of the

experiment.

22Following Graham (2008) I assume that the missing test scores are a random sample of the population

of test scores. For the mathematics and reading exams, there are 5856 and 5646 observations, respectively.

23Alternative specifications allowing the effect of class on test scores to be nonlinear did not yield significantly

different results.

24The results when I consider heterogeneous teacher effects are shown in appendix H.1. When I include

those, the estimates of the teacher cumulants for small and large classes are not significantly different, and

the social multiplier is below 1, suggesting some kind of misspecification. If I let the teacher’s aide to have
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a differential effect on the variance of teacher effect, the results are largely unchanged. See appendix H.2.

25I also obtained the estimates without Cragg (1997) weights, obtaining a slightly larger estimate of the

social multiplier, but much more imprecisely estimated. Results available upon request.

26See appendix H.4 for the tables with all estimates.

27For comparison with Graham (2008) estimates, the estimate of the square of the social multiplier ranges

between 2.1 and 3.4, which are similar to the estimates he obtained, which were between 2.3 and 3.5.

28It is possible to estimate the remaining parameters conditional on σ2
α being positive. The results in this

case yield a smaller social multiplier, more in line with the estimates of the heteroskedastic models. The

details are shown in appendix H.3.
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distribution, where Φ (·) is the standard normal cdf and Γ (·) is the gamma function. If λ = 0 and α = 2,

then X is a normal distribution with parameters
(
µ, σ

2

2

)
.

30Bhattacharya (2009) considers both the maximization of students’ test scores and other academic

outcomes.

31Teachers and students may have different potential outcomes for different class sizes, but only the

marginal distribution is identified. In these counterfactuals I assume that the rank is the same for all class

sizes, which implies that there are no gains by reassigning students to classrooms of a size in which their

rank is higher.

32To avoid changes in the distribution being driven by a particular school, I take the mean of the school

fixed effects and the regular with aide dummy as the intercept of the test scores equation.

33The counterfactuals using the normal distribution yielded a similar qualitative answer, but the mean

increase was larger and the standard deviation increase was smaller. See table 12 in appendix H.6

34This would be a concern on the dynamic performance of teachers, which would not be incompatible

with the findings on Projects STAR report (Word et al., 1990), in which it was stated that the pattern of

instruction of teachers did not seem to vary with class size.

35Mathematically, ∂yic∂eic
> 0, ∂yic∂etc

> 0, ∂yic∂ejc
= 0, ∂

2yic
∂e2ic

< 0, ∂
2yic
∂e2tc

< 0 and ∂2yic
∂eic∂etc

> 0.

36Teacher’s effort and teacher’s quality are public goods, as the teacher affects all students equally.

37This assumption, while not testable, is arguably likely to be satisfied in this paper’s context, because the

test was low stakes. Studies finding an effect of the rank on academic achievement (Murphy and Weinhardt,

2014; Tincani, 2014) focused on secondary education students, whose behavior may differ from kindergarten

students.

38The use of the geometric mean of students’ grades is not the most common choice for a utility function.

However, since the model is solved in logarithms, and the logarithm of the geometric mean of the test scores
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is the arithmetic mean of the logarithm of the test scores, using the geometric mean is convenient.

39For example, ηN2,1,2 = IN , and for the array ηN3,1,2, its element (i, j, h) equals one if i = j, and is zero

otherwise. The total number of nonzero elements is Nd−1
c .

40Because the data is independent at the class level, I draw C classes at random with replacement a total

number of R = 200 repetitions.

41The results when using only the variances in the objective function are the same for both estimators, so

they are not reported.
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