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Multitriangulations and Tropical Pfaffians\ast 

Luis Crespo Ruiz\dagger and Francisco Santos\dagger 

Abstract. The k-associahedron \scrA \its \its k(n) is the simplicial complex of (k+1)-crossing-free subgraphs of the com-
plete graph with vertices on a circle. Its facets are called k-triangulations. We explore the connection
of \scrA \its \its k(n) with the \itP \itf \ita ffi\ita \itn \itv \ita \itr \iti \ite \itt \ity \scrP \itf k(n) of antisymmetric matrices of rank \leq 2k. First, we charac-
terize the Gr\"obner cone Grobk(n) for which the initial ideal of I(\scrP \itf k(n)) equals the Stanley--Reisner
ideal of \scrA \its \its k(n) (that is, the monomial ideal generated by (k + 1)-crossings). We then look at the
tropicalization of \scrP \itf k(n) and show that \scrA \its \its k(n) embeds naturally as the intersection of trop(\scrP \itf k(n))
and Grobk(n), and that it is contained in the \itt \ito \itt \ita \itl \itl \ity \itp \ito \its \iti \itt \iti \itv \ite part trop+(\scrP \itf k(n)) of it. We show that
for k= 1 and for each triangulation T of the n-gon, the projection of this embedding of \scrA \its \its k(n) to
the n - 3 coordinates corresponding to diagonals in T gives a complete polytopal fan, realizing the
associahedron. This fan is linearly isomorphic to the g-vector fan of the cluster algebra of type A,
shown to be polytopal by Hohlweg, Pilaud, and Stella in 2018.
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1. Introduction. Throughout the paper we consider [n] = \{ 1,2, . . . , n\} as the vertex set
of a complete graph Kn, thus calling \ite \itd \itg \ite \its its size-two subsets. We think of the n vertices as
drawn in order along a circle (or any other convex closed curve in the plane) so that two edges
\{ i, j\} ,\{ i\prime , j\prime \} \in 

\bigl( 
[n]
2

\bigr) 
with i < j and i\prime < j\prime are said to \itc \itr \ito \its \its each other if either i < i\prime < j < j\prime 

or i\prime < i< j\prime < j. A k-\itc \itr \ito \its \its \iti \itn \itg is a set of k edges that mutually cross each other.
Our object of study is the simplicial complex with vertex set

\bigl( 
[n]
2

\bigr) 
and with faces consisting

of subsets containing no (k + 1)-crossing. For k = 1 this complex is (the polar of) the face
complex of the associahedron. In particular, it is a polytopal sphere, and from the algebraic
geometric perspective it is related to the Grassmannian \scrG \itr 2(n). For higher k the complex is
still known to be a topological sphere, but its polytopality is open. We study this complex
from the perspective of algebraic geometry, for its relation to the Pfaffian variety.

Multitriangulations.
Definition 1.1. \itA \its \itu \itb \its \ite \itt T \subseteq 

\bigl( 
[n]
2

\bigr) 
\iti \its \itc \ita \itl \itl \ite \itd (k + 1)-\itf \itr \ite \ite \iti \itf \iti \itt \itc \ito \itn \itt \ita \iti \itn \its \itn \ito (k + 1)-\itc \itr \ito \its \its \iti \itn \itg \its .

\itT \ith \ite \itm \ita \itx \iti \itm \ita \itl (k+1)-\itf \itr \ite \ite \itg \itr \ita \itp \ith \its \ita \itr \ite \itc \ita \itl \itl \ite \itd k-triangulations, \ito \itr \itm \itu \itl \itt \iti \itt \itr \iti \ita \itn \itg \itu \itl \ita \itt \iti \ito \itn \its \iti \itf k \iti \its \itn \ito \itt 
\its \itp \ite \itc \iti fi\ite \itd .
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MULTITRIANGULATIONS AND TROPICAL PFAFFIANS 303

Many nice combinatorial properties of k-triangulations are known [35, 36, 48]. For ex-
ample, all k-triangulations of the n-gon have the same cardinality, equal to k(2n  - 2k  - 1)
[33, 17]. We are interested in the abstract simplicial complex \scrA \its \its k(n) on the vertex set

\bigl( 
[n]
2

\bigr) 

whose faces are (k+ 1)-free graphs. Hence, facets are k-triangulations.
If an edge \{ i, j\} has | i - j| \leq k (where indices are taken modulo n, and distance is measured

cyclically), then it lies in every k-triangulation since it cannot be part of any (k+1)-crossing.
We call these edges \iti \itr \itr \ite \itl \ite \itv \ita \itn \itt and call \iti \itr \itr \ite \itl \ite \itv \ita \itn \itt \itf \ita \itc \ite the face of \scrA \its \its k(n) they span. We
can thus define the reduced complex, \scrA \its \its k(n), the faces of which are the (k + 1)-free sets of
\itr \ite \itl \ite \itv \ita \itn \itt edges. The exact relation between \scrA \its \its k(n) and \scrA \its \its k(n) is that the former is the
join of the latter with the irrelevant face, and hence the latter is the link of the former at the
irrelevant face. Based on the fact that \scrA \its \its 1(n) is the polar complex to the face poset of the
standard associahedron we define the following.

Definition 1.2. \itW \ite \itc \ita \itl \itl \scrA \its \its k(n) \itt \ith \ite k-\ita \its \its \ito \itc \iti \ita \ith \ite \itd \itr \ito \itn , \ito \itr multiassociahedron \ito \itf \itp \ita \itr \ita \itm \ite \itt \ite \itr \its 
n, k. \itW \ite \itr \ite \itf \ite \itr \itt \ito \scrA \its \its k(n) \ita \its \itt \ith \ite extended multiassociahedron.

Jonsson [26] and Dress et al. [15] proved that \scrA \its \its k(n) is a shellable simplicial sphere, and
conjectured it to be polytopal. This conjecture is one of our motivations.

Conjecture 1.3 (Jonsson). \itF \ito \itr \ite \itv \ite \itr \ity k \geq 1 \ita \itn \itd n \geq 2k + 1, \scrA \its \its k(n) \iti \its \iti \its \ito \itm \ito \itr \itp \ith \iti \itc \itt \ito \itt \ith \ite 
\itf \ita \itc \ite \itl \ita \itt \itt \iti \itc \ite \ito \itf \ita \its \iti \itm \itp \itl \iti \itc \iti \ita \itl \itp \ito \itl \ity \itt \ito \itp \ite \ito \itf \itd \iti \itm \ite \itn \its \iti \ito \itn k(n - 2k - 1).

Besides the case k= 1, the conjecture is known to hold for the following cases: n\leq 2k+3
and for n = 2 and k = 8 there is an ad hoc construction of the polytope [4]. In a forthcom-
ing paper [14] we show polytopality for the remaining cases with n \leq 10, namely, (k,n) \in 
\{ (2,9), (2,10), (3,10)\} . For some additional cases there are constructions that realize \scrA \its \its k(n)
as a complete simplicial fan. This happens for n= 2k+ 4 [2] and for k= 2 and n\leq 13 [32].

Polytopality of \scrA \its \its k(n) is also relevant from the perspective of Coxeter combinatorics. Let
(W,S) be a Coxeter system. Let w \in W be an element in the group and Q a word of a certain
length N and containing a reduced expression for w as a subword. The \its \itu \itb \itw \ito \itr \itd \itc \ito \itm \itp \itl \ite \itx of Q
and w is the simplicial complex with vertex set \{ 1, . . . ,N\} consisting of subsets of positions
that can be deleted from Q and still contain a reduced expression for w. Knutson and Miller
[30, Theorem 3.7 and Question 6.4] proved that every subword complex is either a shellable
ball or sphere, and they asked whether all spherical subword complexes are polytopal. It turns
out that \scrA \its \its k(n) is a spherical subword complex for the Coxeter system of type An - 2k - 1 [48,
Theorem 2.1] and, moreover, it is \itu \itn \iti \itv \ite \itr \its \ita \itl : every other spherical subword complex of type A
appears as a link in some \scrA \its \its k(n) [37, Proposition 5.6]. In particular, Conjecture 1.3 would
provide, in type A, a positive answer to the question of Knutson and Miller. (Versions of
multiassociahedra for the rest of finite Coxeter groups exist, with the same implications [11]).

Pfaffians and tropical varieties. In the case k= 1, one way of realizing the associahedron
is as the positive part of the space of ``tree metrics,"" which coincides with the tropicalization
trop(\scrG \itr 2(n)) of the Grassmannian \scrG \itr 2(n) (see [44, 45, 46] or Remark 3.12). More precisely,
we have the following.

Theorem 1.4 ([45, section 5]). \itT \ith \ite \itt \ito \itt \ita \itl \itl \ity \itp \ito \its \iti \itt \iti \itv \ite \itt \itr \ito \itp \iti \itc \ita \itl \itG \itr \ita \its \its \itm \ita \itn \itn \iti \ita \itn trop+(\scrG \itr 2(n))
\iti \its \ita \its \iti \itm \itp \itl \iti \itc \iti \ita \itl \itf \ita \itn \iti \its \ito \itm \ito \itr \itp \ith \iti \itc \itt \ito (\ita \itc \ito \itn \ite \ito \itv \ite \itr ) \itt \ith \ite \ite \itx \itt \ite \itn \itd \ite \itd \ita \its \its \ito \itc \iti \ita \ith \ite \itd \itr \ito \itn \scrA \its \its 1(n).
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304 LUIS CRESPO RUIZ AND FRANCISCO SANTOS

Let us briefly recall what the tropicalization of a variety, and its positive part, are (see also
[5]). Let I \subset \BbbK [x1, . . . , xN ] be a polynomial ideal and let V = V (I)\subset \BbbK N be its corresponding
variety. Each vector v \in \BbbR N , considered as giving weights to the variables, defines an initial
ideal inv(I), consisting of the initial forms inv(f) of the polynomials in f . For the purposes
of this paper we take the following definitions. (These are not the standard definitions, but
are equivalent to them as shown for example in [45, Propositions 2.1 and 2.2].)

Definition 1.5. \itT \ith \ite tropical variety trop(V ) \ito \itf V \ite \itq \itu \ita \itl \its \itt \ith \ite \its \ite \itt \ito \itf v \in \BbbR N \itf \ito \itr \itw \ith \iti \itc \ith inv(I)
\itd \ito \ite \its \itn \ito \itt \itc \ito \itn \itt \ita \iti \itn \ita \itn \ity \itm \ito \itn \ito \itm \iti \ita \itl . \itI \itf \BbbK = \BbbC , \itt \ith \ite totally positive part \ito \itf trop(V ), \itd \ite \itn \ito \itt \ite \itd 
trop+(V ), \ite \itq \itu \ita \itl \its \itt \ith \ite \its \ite \itt \ito \itf v \in \BbbR N \itf \ito \itr \itw \ith \iti \itc \ith inv(I) \itd \ito \ite \its \itn \ito \itt \itc \ito \itn \itt \ita \iti \itn \ita \itn \ity \itp \ito \itl \ity \itn \ito \itm \iti \ita \itl \itw \iti \itt \ith \ita \itl \itl 
\itc \ito \ite ffi\itc \iti \ite \itn \itt \its \itr \ite \ita \itl \ita \itn \itd \itp \ito \its \iti \itt \iti \itv \ite .

Pachter and Sturmfels [34, p. 107] hint at the fact that the relation between the associ-
ahedron and \scrG \itr 2(n) extends to a relation between the multiassociahedron \scrA \its \its k(n) and the
tropical variety of Pfaffians of degree k+1. Recall that a \itP \itf \ita ffi\ita \itn \ito \itf \itd \ite \itg \itr \ite \ite k is the square root
of the determinant of an antisymmetric matrix M of size 2k. Considering the entries of M as
indeterminates (over a certain field \BbbK ), the Pfaffian is a homogeneous polynomial of degree k
in \BbbK [xi,j ,\{ i, j\} \in 

\bigl( 
[2k]
2

\bigr) 
] with one monomial for each of the (2k - 1)!! perfect matchings in [2k]

(see section 2.1).
For each n \geq 2k + 2, let Ik(n) be the ideal in \BbbK [xi,j ,\{ i, j\} \in 

\bigl( 
[n]
2

\bigr) 
] generated by all the

Pfaffians of degree k + 1. Let \scrP \itf k(n) \subset \BbbK (n2) be the corresponding algebraic variety. That
is, points in \scrP \itf k(n) are antisymmetric n \times n matrices with coefficients in \BbbK and of rank at
most 2k. It is well known and easy to see that \scrP \itf 1(n) equals the Grassmannian \scrG \itr 2(n) in its
Pl\"ucker embedding and, as pointed out in [34], \scrP \itf k(n) equals the kth secant variety of it.

For k = 1, Pfaffians are a universal Gr\"obner basis of Ik(n) [34, 44]. For k > 1 they are
not (see Example 2.11), but it is known that they are a Gr\"obner basis for certain choices of
monomial orders: in [20] it is proved that this happens for a v that selects as initial monomial
in each Pfaffian the (k+ 1)-nesting and in [27] for one that selects the (k+ 1)-crossing.

This paper. We explore relations between k-triangulations and the algebraic variety
\scrP \itf k(n). Our starting point is restricting Gr\"obner bases and tropicalization to weight vec-
tors satisfying the following ``four-point positivity"" conditions.

Definition 1.6. \itW \ite \its \ita \ity \itt \ith \ita \itt \ita \itw \ite \iti \itg \ith \itt \itv \ite \itc \itt \ito \itr v \in \BbbR (
[n]

2 ) \iti \its four-point positive (\ita \itb \itb \itr \ite \itv \iti \ita \itt \ite \itd 
fp-positive) \iti \itf \itf \ito \itr \ita \itl \itl 1\leq a< a\prime < b< b\prime \leq n \itw \ite \ith \ita \itv \ite \itt \ith \ita \itt 

va,b + va\prime ,b\prime \geq max\{ va,a\prime + vb,b\prime , va,b\prime + va\prime ,b\} .(1.1)

We denote by FPn the subset of \BbbR (
[n]

2 ) consisting of fp-positive vectors. That is to say,
v \in FPn if the maximum weight given by v to the three matchings among four points is
attained always for the matching that forms a 2-crossing.

Although the polyhedron FPn \subset \BbbR (
[n]

2 ) of fp-positive vectors (the solution set of (1.1)) is
defined by 2

\bigl( 
n
4

\bigr) 
inequalities, the following

\bigl( 
n
2

\bigr) 
 - n alone are an irredundant description of it,

with indices considered cyclically:

va,b + va+1,b+1  - va,b+1  - va+1,b \geq 0 \forall \{ a, b\} \in 
\biggl( 
[n]

2

\biggr) 
with | a - b| > 1.(1.2)

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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MULTITRIANGULATIONS AND TROPICAL PFAFFIANS 305

The left-hand side coefficient vectors (that is, the facet normals of FPn) are linearly inde-
pendent, so that FPn is linearly isomorphic to an orthant plus a lineality space of dimension

n. We like to think of FPn as the ``positive orthant"" of \BbbR (
[n]

2 ) regarding Pfaffians. It can be
interpreted as the space of weights that represent \its \ite \itp \ita \itr \ita \itt \iti \ito \itn \itv \ite \itc \itt \ito \itr \its among sides of the n-gon,
or as the weights that are monotone with respect to crossings among perfect matchings of
each fixed even set U \subset [n]. See Proposition 2.5 and Corollary 2.6 for details.

Algebraically, fp-positive vectors are the monomial weight vectors for which the leading
form of every 3-term Pl\"ucker relation

xa,bxa\prime ,b\prime  - xa,a\prime xb,b\prime  - xa,b\prime xa\prime ,b, 1\leq a< a\prime < b< b\prime \leq n,

contains the crossing monomial. These relations generate the ideal of the Grassmannian
\scrG \itr 2(n). In particular, fp-positive vectors are the (closed) Gr\"obner cone of \scrG \itr 2(n) producing
as initial ideal the one generated by 2-crossings xa,bxa\prime ,b\prime .

Extending this, we denote by Grobk(n) \subset \BbbR (
[n]

2 ) the Gr\"obner cone consisting of weights
that select the (k+1)-crossing as the leading monomial (or as one of them) in every Pfaffian
of degree k+1. What we say above can then be stated as Grob1(n) = FPn, and the result of
[27] says that Grobk(n) has a nonempty interior. In section 2 we show that FPn \subset Grobk(n)
(Theorem 2.8) and give an explicit description of Grobk(n), both by inequalities and by
generators (Theorem 2.9).

Theorem 1.7 (Theorem 2.9). \itF \ito \itr \ita \itn \ity k > 2n+ 2, Grobk(n) \subset \BbbR (
[n]

2 ) \iti \its \ita \its \iti \itm \itp \itl \iti \itc \iti \ita \itl \itc \ito \itn \ite 
\itw \iti \itt \ith \ita \itl \iti \itn \ite \ita \itl \iti \itt \ity \its \itp \ita \itc \ite \ito \itf \itd \iti \itm \ite \itn \its \iti \ito \itn n.

1. \itI \itt \iti \its \itg \ite \itn \ite \itr \ita \itt \ite \itd \itb \ity \itt \ith \ite \itf \ito \itl \itl \ito \itw \iti \itn \itg :
\bullet (\itl \iti \itn \ite \ita \itl \iti \itt \ity \its \itp \ita \itc \ite ) \itF \ito \itr \ite \ita \itc \ith i \in [n], \itt \ith \ite \itl \iti \itn \ite \itg \ite \itn \ite \itr \ita \itt \ite \itd \itb \ity \itt \ith \ite \iti \itn \itd \iti \itc \ita \itt \ito \itr \itv \ite \itc \itt \ito \itr \ito \itf \itt \ith \ite 
\its \ite \itt \{ \{ i, j\} : j \in [n] \setminus i\} .

\bullet (``\its \ith \ito \itr \itt "" \itg \ite \itn \ite \itr \ita \itt \ito \itr \its ) \itF \ito \itr \ite \ita \itc \ith \{ i, j\} \in [n] \itw \iti \itt \ith 1 \leq | i - j| \leq k, \itt \ith \ite \itn \ite \itg \ita \itt \iti \itv \ite \itb \ita \its \iti \its 
\itv \ite \itc \itt \ito \itr \itc \ito \itr \itr \ite \its \itp \ito \itn \itd \iti \itn \itg \itt \ito \{ i, j\} .

\bullet (``\itl \ito \itn \itg "" \itg \ite \itn \ite \itr \ita \itt \ito \itr \its ) \itF \ito \itr \ite \ita \itc \ith \{ i, j\} \in [n] \itw \iti \itt \ith | i  - j| \geq k + 2, \itt \ith \ite \itr \ita \ity \ito \itf FPn

\itc \ito \itr \itr \ite \its \itp \ito \itn \itd \iti \itn \itg \itt \ito \{ i, j\} .
2. \itA \itn \iti \itr \itr \ite \itd \itu \itn \itd \ita \itn \itt \itf \ita \itc \ite \itt \itd \ite \its \itc \itr \iti \itp \itt \iti \ito \itn \ito \itf \iti \itt \iti \its \itg \iti \itv \ite \itn \itb \ity \itt \ith \ite \itf \ito \itl \itl \ito \itw \iti \itn \itg 

\bigl( 
[n]
2

\bigr) 
 - n \iti \itn \ite \itq \itu \ita \itl \iti \itt \iti \ite \its :

\bullet (``\itl \ito \itn \itg "" \iti \itn \ite \itq \itu \ita \itl \iti \itt \iti \ite \its ) \itF \ito \itr \ite \ita \itc \ith \{ i, j\} \in [n] \itw \iti \itt \ith | i - j| \geq k + 1, \itt \ith \ite \iti \itn \ite \itq \itu \ita \itl \iti \itt \ity (1.2)
\itc \ito \itr \itr \ite \its \itp \ito \itn \itd \iti \itn \itg \itt \ito \{ i, j\} .

\bullet (``\its \ith \ito \itr \itt "" \iti \itn \ite \itq \itu \ita \itl \iti \itt \iti \ite \its ) \itF \ito \itr \ite \ita \itc \ith \{ i, j\} \in [n] \itw \iti \itt \ith 2 \leq | i  - j| \leq k, \itt \ith \ite \its \itu \itm \ito \itf \itt \ith \ite 
\iti \itn \ite \itq \itu \ita \itl \iti \itt \iti \ite \its (1.2) \itc \ito \itr \itr \ite \its \itp \ito \itn \itd \iti \itn \itg \itt \ito \ita \itl \itl \itt \ith \ite \{ i\prime , j\prime \} \itw \iti \itt \ith | i\prime  - j\prime | \leq k + 1 \ita \itn \itd \itw \iti \itt \ith 
\{ i, j\} \itc \ito \itn \itt \ita \iti \itn \ite \itd \iti \itn \itt \ith \ite \its \ith \ito \itr \itt \its \iti \itd \ite \ito \itf \{ i\prime , j\prime \} .

\itI \itn \itp \ita \itr \itt \iti \itc \itu \itl \ita \itr , Grobk(n) \itc \ito \itn \itt \ita \iti \itn \its FPn \itf \ito \itr \ite \itv \ite \itr \ity k \ita \itn \itd n.

This description has the following combinatorial interpretation: modulo its lineality space
(of dimension n, equal to that of FPn), Grobk(n) is a simplicial cone with one facet and
generator corresponding to each of the

\bigl( 
[n]
2

\bigr) 
 - n edges of length at least two. The long facet-

inequalities (those corresponding to relevant edges) are the same as the corresponding ones in
FPn, and the short ones are looser in Grobk(n) than in FPn.

Moreover, we show that the monomial initial ideal of Ik(n) produced by any generic weight
vector v \in Grobk(n) equals the Stanley--Reisner ideal of \scrA \its \its k(n). That is, to say, the ideal in
\BbbK [xi,j ,\{ i, j\} \in 

\bigl( 
[2k]
2

\bigr) 
] generated by (k+1)-crossings. This, in turn, implies that k-triangulations

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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306 LUIS CRESPO RUIZ AND FRANCISCO SANTOS

are bases of the algebraic matroid of \scrP \itf k(n) (Corollary 2.15). We find this of interest for two
reasons (see section 2.4 for details).

On the one hand, the algebraic matroid \scrM (\scrP \itf k(n)) of \scrP \itf k(n) is closely related to \itl \ito \itw -
\itr \ita \itn \itk \itc \ito \itm \itp \itl \ite \itt \iti \ito \itn of antisymmetric matrices [1, 29]: given a subset T \subset 

\bigl( 
[n]
2

\bigr) 
of positions for

entries in an antisymmetric matrix M of size n\times n, a generic choice of values for those entries
can be extended to an antisymmetric matrix of rank \leq 2k if and only if T is independent in
\scrM (\scrP \itf k(n)). Thus, we have the following.

Theorem 1.8. \itL \ite \itt T \subset 
\bigl( 
[n]
2

\bigr) 
.

1. \itI \itf T \iti \its (k+1)-\itf \itr \ite \ite \ita \itn \itd \BbbK \iti \its \ita \itl \itg \ite \itb \itr \ita \iti \itc \ita \itl \itl \ity \itc \itl \ito \its \ite \itd , \itt \ith \ite \itn \itf \ito \itr \ita \itn \ity \itg \ite \itn \ite \itr \iti \itc \itc \ith \ito \iti \itc \ite \ito \itf \itv \ita \itl \itu \ite \its 
v \in \BbbK T \itt \ith \ite \itr \ite \iti \its \ita \itt \itl \ite \ita \its \itt \ito \itn \ite \its \itk \ite \itw -\its \ity \itm \itm \ite \itt \itr \iti \itc \itm \ita \itt \itr \iti \itx \ito \itf \itr \ita \itn \itk \leq 2k \itw \iti \itt \ith \itt \ith \ite \ite \itn \itt \itr \iti \ite \its 
\itp \itr \ite \its \itc \itr \iti \itb \ite \itd \itb \ity v.

2. \itI \itf T \itc \ito \itn \itt \ita \iti \itn \its \ita k-\itt \itr \iti \ita \itn \itg \itu \itl \ita \itt \iti \ito \itn \itt \ith \ite \itn \itf \ito \itr \ita \itn \ity \itc \ith \ito \iti \itc \ite \ito \itf \itv \ita \itl \itu \ite \its v \in \BbbK T \itt \ith \ite \itr \ite \iti \its \ito \itn \itl \ity 
\ita fi\itn \iti \itt \ite \itn \itu \itm \itb \ite \itr (\itm \ita \ity \itb \ite \itz \ite \itr \ito ) \ito \itf \its \itk \ite \itw -\its \ity \itm \itm \ite \itt \itr \iti \itc \itm \ita \itt \itr \iti \itc \ite \its \ito \itf \itr \ita \itn \itk \leq 2k \itw \iti \itt \ith \itt \ith \ito \its \ite 
\itp \itr \ite \its \itc \itr \iti \itb \ite \itd \ite \itn \itt \itr \iti \ite \its .

On the other hand, the algebraic matroid of \scrP \itf k(n) coincides with the generic \ith \ity \itp \ite \itr \itc \ito \itn -
\itn \ite \itc \itt \iti \itv \iti \itt \ity \itm \ita \itt \itr \ito \iti \itd in dimension 2k defined by Kalai [28]. The fact that k-triangulations are
bases in it is closely related to the conjecture by Pilaud and Santos [36] that they are bases
in the generic bar-and-joint rigidity matroid in dimension 2k (Conjecture 2.18).

In section 3 we turn our attention to the tropicalization of \scrP \itf k(n). More precisely, we

denote by Pfk(n) \subset \BbbR (
[n]

2 ) the intersection of the tropical hypersurfaces corresponding to
Pfaffians of degree k. This is by definition a tropical \itp \itr \ite \itv \ita \itr \iti \ite \itt \ity . It contains the tropical
variety trop(\scrP \itf k(n)) but it does not, in general, coincide with it, as we show in Theorem 3.7.

In the light of Theorem 1.7, it makes sense to look at the part of Pfk(n) contained in the
Gr\"obner cone Grobk(n). That is, we define

Pf+k (n) := Pfk(n)\cap Grobk(n).

Since the crossing monomial is the only positive monomial in each 3-term Pl\"ucker relation,
for k= 1 we have

trop+(\scrP \itf 1(n)) = trop(\scrP \itf 1(n))\cap FPn =Pf+1 (n).

One of our main results partially generalizes this to higher k.

Theorem 1.9 (See Theorem 3.9 and Corollary 3.11).
1. Pf+k (n) =Grobk(n)\cap trop(\scrP \itf k(n))\subset trop+(\scrP \itf k(n)).
2. Pf+k (n) \iti \its \itt \ith \ite \itu \itn \iti \ito \itn \ito \itf \itt \ith \ite \itf \ita \itc \ite \its \ito \itf Grobk(n) \itc \ito \itr \itr \ite \its \itp \ito \itn \itd \iti \itn \itg \itt \ito (k+ 1)-\itf \itr \ite \ite \itg \itr \ita \itp \ith \its .

This theorem says that for a v \in Grobk(n), being in Pfk(n) is equivalent to the fact that
the ``long inequalities"" of Theorem 1.7 (that is, the inequalities (1.2) for | a - b| \geq k + 1) are
satisfied with equality except in a (k + 1)-free set. Moreover, when this happens v can be
proved to be in trop(\scrP \itf k(n)) and, in fact, in trop+(\scrP \itf k(n)).

In part (2), by \itt \ith \ite \itf \ita \itc \ite \itc \ito \itr \itr \ite \its \itp \ito \itn \itd \iti \itn \itg \itt \ito a certain graph G\subset 
\bigl( 
[n]
2

\bigr) 
we mean the intersection

of the facets of Grobk(n) corresponding to
\bigl( 
[n]
2

\bigr) 
\setminus G in the description of Theorem 1.7. That

is, we consider Grobk(n) as (a cone over) the simplex with vertex set
\bigl( 
[n]
2

\bigr) 
, so that every
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MULTITRIANGULATIONS AND TROPICAL PFAFFIANS 307

simplicial complex on
\bigl( 
[n]
2

\bigr) 
is a subcomplex of its face complex. Hence, Theorem 1.9 has the

following interpretation.

Corollary 1.10. \itA \its \ita \its \iti \itm \itp \itl \iti \itc \iti \ita \itl \itf \ita \itn \ita \itn \itd \itm \ito \itd \itu \itl \ito \iti \itt \its \itl \iti \itn \ite \ita \itl \iti \itt \ity \its \itp \ita \itc \ite , Pf+k (n) = Grobk(n) \cap 
trop(\scrP \itf k(n)) \iti \its \iti \its \ito \itm \ito \itr \itp \ith \iti \itc \itt \ito (\itt \ith \ite \itc \ito \itn \ite \ito \itv \ite \itr ) \itt \ith \ite \ite \itx \itt \ite \itn \itd \ite \itd \itm \itu \itl \itt \iti \ita \its \its \ito \itc \iti \ita \ith \ite \itd \itr \ito \itn \scrA \its \its k(n).

\itR \ite \itm \ita \itr \itk 1.11. Pf+k (n) is \itn \ito \itt equal to trop+(\scrP \itf k(n)). Put differently, four point positivity
implies but is \itn \ito \itt \itt \ith \ite \its \ita \itm \ite as positivity in the sense of Definition 1.5. See Example 3.13.

Theorem 1.9 suggests that one way to realize the multiassociahedron as a polytope would

be to find a projection \BbbR (
[n]

2 ) \rightarrow \BbbR k(2n - 2k - 1) that is injective on Pf+k (n). This would embed
\scrA \its \its k(n) as a full-dimensional simplicial fan in \BbbR k(2n - 2k - 1) whose link at the irrelevant face
would necessarily realize the multiassociahedron \scrA \its \its k(n) as a complete fan in \BbbR k(n - 2k - 1).
A second step is needed in order to show polytopality: to find appropriate right-hand sides
showing that the complete fan is polytopal.

We have achieved both steps for k = 1. We show that, for any seed triangulation T ,

the projection \BbbR (
[n]

2 ) \rightarrow \BbbR 2n - 3 that keeps only the coordinates corresponding to edges in T is
injective on Pf+1 (n) (Corollary 4.2). That is, we have an explicit projection sending Pf+1 (n) to
(the normal fan of) the associahedron. It was pointed out to us by Pilaud that the embedding
that we obtain is exactly the so-called g-vector fan associated with the seed triangulation.
g-vector fans can be defined in an arbitrary cluster algebra of finite type and starting with
any seed cluster, and they were shown to be polytopal by Hohlweg, Pilaud, and Stella [23].
See section 4 for details.

Theorem 1.12 (Corollary 4.7). \itF \ito \itr \ite \ita \itc \ith \its \ite \ite \itd \itt \itr \iti \ita \itn \itg \itu \itl \ita \itt \iti \ito \itn T \ito \itf \itt \ith \ite n-\itg \ito \itn , \itp \itr \ito \itj \ite \itc \itt \iti \ito \itn \ito \itf 
Pf+1 (n) \itt \ito \itt \ith \ite n  - 3 \itc \ito \ito \itr \itd \iti \itn \ita \itt \ite \its \ito \itf \itt \ith \ite \itd \iti \ita \itg \ito \itn \ita \itl \its \iti \itn T \itg \iti \itv \ite \its \ita \itr \ite \ita \itl \iti \itz \ita \itt \iti \ito \itn \ito \itf \itt \ith \ite (n  - 3)-
\ita \its \its \ito \itc \iti \ita \ith \ite \itd \itr \ito \itn \iti \itn \BbbR n - 3 \iti \its \ito \itm \ito \itr \itp \ith \iti \itc \itt \ito \itt \ith \ite g-\itv \ite \itc \itt \ito \itr \itf \ita \itn \ito \itf T .

This would seem to open up the possibility of using these same ideas to find polytopal
realizations of \scrA \its \its k(n) for higher k, by adapting to k-triangulations the (quite simple) pro-
cedure used to define the g-vectors from a seed triangulation. Unfortunately, our final result
Corollary 4.10 says that this approach is doomed to fail, under certain natural assumptions.

2. The variety of antisymmetric matrices of bounded rank.

2.1. Matchings and the Pfaffian of an antisymmetric matrix. The complete graph on
a set of vertices U \subset [n] of size 2k it has (2k  - 1)!! matchings (by which we always mean
a \itp \ite \itr \itf \ite \itc \itt matching), one of which is the unique k-crossing with vertex set U . The \itp \ita \itr \iti \itt \ity 
of a matching E is the parity of the number of pairwise crossings among the edges in E.
This parity coincides with the parity as a permutation, when the pairs of matched vertices
are written one after another, in increasing order within each pair. By \its \itw \ita \itp \itp \iti \itn \itg two pairs
\{ a, b\} and \{ c, d\} in a matching E we mean removing them and inserting one of the other two
matchings of \{ a, b, c, d\} instead. Observe that one of the three matchings of \{ a, b, c, d\} has a
crossing (that is, it is odd) and the other two are crossing-free (hence even).

Lemma 2.1. \itA \its \itw \ita \itp \itc \ith \ita \itn \itg \ite \its \itp \ita \itr \iti \itt \ity \iti \itf \ita \itn \itd \ito \itn \itl \ity \iti \itf \ito \itn \ite \ito \itf \itt \ith \ite \itt \itw \ito \itp \ita \iti \itr \its \ito \itf \ite \itd \itg \ite \its \iti \itn \itt \ith \ite \its \itw \ita \itp 
(\itt \ith \ite \itp \ita \iti \itr \itr \ite \itm \ito \itv \ite \itd \ito \itr \itt \ith \ite \itp \ita \iti \itr \iti \itn \its \ite \itr \itt \ite \itd ) \iti \its \ita \itc \itr \ito \its \its \iti \itn \itg .
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308 LUIS CRESPO RUIZ AND FRANCISCO SANTOS

\itP \itr \ito \ito \itf . Let \{ a, b\} and \{ c, d\} be the initial pairs and \{ a, d\} and \{ b, c\} the new pairs. Any
other edge from the matching crosses the cycle abcda an even number of times. Hence, the
only change in the number of crossings comes from whether the edges in the swap cross.

Recall that an antisymmetric matrix of odd size n has zero determinant because

det(M) = det(M t) = det( - M) = ( - 1)n det(M).

For even size there is the following classical result.

Theorem 2.2 (Cayley 1852 [7]). \itL \ite \itt M \itb \ite \ita \its \iti \itz \ite 2k \ita \itn \itt \iti \its \ity \itm \itm \ite \itt \itr \iti \itc \itm \ita \itt \itr \iti \itx . \itT \ith \ite \itn 

detM =

\left( 
 \sum 

E \itm \ita \itt \itc \ith \iti \itn \itg 

s(E)
\prod 

(i,j)\in E,i<j

mij

\right) 
 

2

,(2.1)

\itw \ith \ite \itr \ite \itt \ith \ite \its \itu \itm \iti \its \itt \ita \itk \ite \itn \ito \itv \ite \itr \itt \ith \ite \itm \ita \itt \itc \ith \iti \itn \itg \its \ito \itf [2k] \ita \itn \itd s(E) =\pm 1 \ita \itc \itc \ito \itr \itd \iti \itn \itg \itt \ito \itt \ith \ite \itp \ita \itr \iti \itt \ity \ito \itf E.

The expression inside the parenthesis in this theorem, that is, the square root of the
determinant of an antisymmetric matrix, is called the \itP \itf \ita ffi\ita \itn of M .

2.2. Four-point positive weight vectors. Let Ik(n) \subset \BbbK [xi,j ,\{ i, j\} \in 
\bigl( 
[n]
2

\bigr) 
] be the ideal

generated by all Pfaffians of degree k of an antisymmetric matrix of size n\times n (with indeter-
minate coefficients) and let \scrP \itf k(n) be the corresponding algebraic variety, whose points are
the antisymmetric matrices of rank at most 2k.

We now introduce certain term orders for the variables that produce as the initial ideal
of Ik(n) the monomial ideal generated by (k + 1)-crossings. For this, we need to introduce a

change of basis in \BbbR (
[n]

2 ), and a change of point of view on the n-gon.
Let us call ath side of the n-gon the edge \{ a - 1, a\} (with indices taken modulo n). Then,

any choice of real numbers wi,j (with \{ i, j\} \in 
\bigl( 
[n]
2

\bigr) 
) for the edges connecting \itv \ite \itr \itt \iti \itc \ite \its of the

n-gon induces a ``separation"" distance between each pair of \its \iti \itd \ite \its , as the sum of w's of the
edges separating those sides. That is, we have the following.

Definition 2.3. \itG \iti \itv \ite \itn \ita \itv \ite \itc \itt \ito \itr w \in \BbbR (
[n]

2 ), \itt \ith \ite \its \ite \itp \ita \itr \ita \itt \iti \ito \itn \itv \ite \itc \itt \ito \itr d(w) \in \BbbR (
[n]

2 ) \iti \itn \itd \itu \itc \ite \itd \itb \ity w
\iti \its \itd \ite fi\itn \ite \itd \ita \its 

da,b(w) =
\sum 

(i,j)\in ([n]

2 )
a\leq i<b\leq j<a

wij \forall \{ a, b\} \in 
\biggl( 
[n]

2

\biggr) 
.(2.2)

\itH \ite \itr \ite \itt \ith \ite \ito \itr \itd \ite \itr \its \ity \itm \itb \ito \itl \its ``<"" \ita \itn \itd ``\leq "" \itf \ito \itr \iti \itn \itd \iti \itc \ite \its \ita \itr \ite \itc \ito \itn \its \iti \itd \ite \itr \ite \itd \itc \ity \itc \itl \iti \itc \ita \itl \itl \ity . \itE .\itg ., a< b< c< a
\itm \ite \ita \itn \its \itt \ith \ita \itt a, b, c \ita \itr \ite \itd \iti ff\ite \itr \ite \itn \itt \ita \itn \itd \itt \ith \ite \ity \ita \itp \itp \ite \ita \itr \iti \itn \itt \ith \ita \itt \itc \ity \itc \itl \iti \itc \ito \itr \itd \ite \itr \ita \itl \ito \itn \itg \itt \ith \ite n-\itg \ito \itn .

Figure 2.1 shows an example of this transformation. To compute d26(w), where a= 2 and
b= 6 denote two sides of the octagon, we have to sum the wijs in the complete bipartite graph
on the two subsets of vertices separated by a and b.

The entries of d(w) are going to be used as weights for variables in our monomial orders,
but we want to have in mind the weight vector w from which they come. This is well defined
thanks to the following result, which implies that the transformation from w to d(w) is a

linear isomorphism in \BbbR (
[n]

2 ).

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d 

06
/1

1/
24

 to
 1

93
.1

44
.1

98
.1

94
 . 

R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/te

rm
s-

pr
iv

ac
y



MULTITRIANGULATIONS AND TROPICAL PFAFFIANS 309

\bullet 0

\bullet 1
\bullet 2

\bullet 3

\bullet 4

\bullet 
5 \bullet 

6

\bullet 
7

\bullet a = 2

\bullet 
b = 6

Figure 2.1. \itT \ith \ite \itt \itr \ita \itn \its \itf \ito \itr \itm \ita \itt \iti \ito \itn \itf \itr \ito \itm w \itt \ito d.

Proposition 2.4. \itF \ito \itr \ita \itn \ity w \in \BbbR (
[n]

2 ), \ita \itn \itd \ite \itv \ite \itr \ity \{ a, b\} \in 
\bigl( 
[n]
2

\bigr) 
, \itw \ite \ith \ita \itv \ite 

2wa,b = da,b(w) + da+1,b+1(w) - da,b+1(w) - da+1,b(w),(2.3)

\itw \ith \ite \itr \ite da,a(w) = 0 \itb \ity \itc \ito \itn \itv \ite \itn \itt \iti \ito \itn .

\itH \ite \itn \itc \ite , \ite \ita \itc \ith v \in \BbbR (
[n]

2 ) \itc \ita \itn \itb \ite \ite \itx \itp \itr \ite \its \its \ite \itd \itu \itn \iti \itq \itu \ite \itl \ity \ita \its d(w) \itf \ito \itr \ita \itc \ite \itr \itt \ita \iti \itn w \in \BbbR (
[n]

2 ).

\itP \itr \ito \ito \itf . It is enough to check that the rest of the wij 's cancel out when da,b(w)+da+1,b+1(w) - 
da,b+1(w) - da+1,b(w) is computed via (2.2).

That is, we can think of d(w) and w as different choices of linear coordinates for \BbbR (
[n]

2 ).

Proposition 2.5. \itL \ite \itt v \in \BbbR (
[n]

2 ) \itb \ite \ita \itw \ite \iti \itg \ith \itt \itv \ite \itc \itt \ito \itr . \itT \ith \ite \itf \ito \itl \itl \ito \itw \iti \itn \itg \itc \ito \itn \itd \iti \itt \iti \ito \itn \its \ita \itr \ite \ite \itq \itu \iti \itv \ita \itl \ite \itn \itt :
1. v \in FPn. \itT \ith \ita \itt \iti \its , \iti \itt \its \ita \itt \iti \its fi\ite \its \itt \ith \ite \itp \ito \its \iti \itt \iti \itv \ite \itf \ito \itu \itr -\itp \ito \iti \itn \itt \itc \ito \itn \itd \iti \itt \iti \ito \itn \its (1.1) \iti \itn \itD \ite fi\itn \iti \itt \iti \ito \itn 1.6.
2. v \its \ita \itt \iti \its fi\ite \its \itt \ith \ite 

\bigl( 
n
2

\bigr) 
 - n \iti \itn \ite \itq \itu \ita \itl \iti \itt \iti \ite \its (1.2).

3. v = d(w) \iti \itn \itt \ith \ite \its \ite \itn \its \ite \ito \itf \itD \ite fi\itn \iti \itt \iti \ito \itn 2.3 \itf \ito \itr \ita w \itw \iti \itt \ith wa,b \geq 0 \itf \ito \itr \ita \itl \itl \{ a, b\} \in 
\bigl( 
[n]
2

\bigr) 
\itw \iti \itt \ith 

| a - b| > 1.

4. \itF \ito \itr \ite \itv \ite \itr \ity k \geq 1 \ita \itn \itd \ite \itv \ite \itr \ity U \in 
\bigl( [n]
2k

\bigr) 
\itt \ith \ite \itw \ite \iti \itg \ith \itt \its \itg \iti \itv \ite \itn \itb \ity v \itt \ito \itm \ita \itt \itc \ith \iti \itn \itg \its \iti \itn U \ita \itr \ite 

\itm \ito \itn \ito \itt \ito \itn \ite \itw \iti \itt \ith \itr \ite \its \itp \ite \itc \itt \itt \ito \its \itw \ita \itp \its \itt \ith \ita \itt \itc \itr \ite \ita \itt \ite \itc \itr \ito \its \its \iti \itn \itg \its .
5. \itF \ito \itr \ite \itv \ite \itr \ity k \geq 1 \ita \itn \itd \ite \itv \ite \itr \ity U \in 

\bigl( [n]
2k

\bigr) 
\itt \ith \ite \itm \ita \itx \iti \itm \itu \itm \itw \ite \iti \itg \ith \itt \itg \iti \itv \ite \itn \itb \ity v \itt \ito \itm \ita \itt \itc \ith \iti \itn \itg \its \iti \itn 

U \iti \its \ita \itt \itt \ita \iti \itn \ite \itd \itb \ity \itt \ith \ite k-\itc \itr \ito \its \its \iti \itn \itg .

\itP \itr \ito \ito \itf . The equivalence of parts 1 and 4 is obvious and the equivalence of 2 and 3 follows
from Proposition 2.4. The implications 5\Rightarrow 1\Rightarrow 2 are also trivial because the inequalities in
condition 1 are nothing but the case k= 2 of condition 5, and they contain the inequalities in
condition 2 as a subset.

The implication 4 \Rightarrow 5 follows from the fact that every matching can monotonically be
converted into a full crossing by swaps that create crossings.

Finally, the implication 3 \Rightarrow 4 follows from the fact that if 1 \leq a < a\prime < b < b\prime \leq n, then
(2.2) gives

va,b + va\prime ,b\prime =W1 +W2 +W3,

va,a\prime + vb,b\prime =W1 +W2,

va,b\prime + va\prime ,b =W1 +W3,
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310 LUIS CRESPO RUIZ AND FRANCISCO SANTOS

where

W1 =
\sum 

a\leq i<a\prime \leq j<b

wij +
\sum 

a\prime \leq i<b\leq j<b\prime 

wij +
\sum 

b\leq i<b\prime \leq j<a

wij +
\sum 

b\prime \leq i<a\leq j<a\prime 

wij ,

W2 =
\sum 

a\leq i<a\prime ,
b\leq j<b\prime 

wij ,

W3 =
\sum 

a\prime \leq i<b,
b\prime \leq j<a

wij .

Since w is nonnegative (except perhaps for consecutive indices) we have that W2,W3 \geq 0 and
hence va,b + va\prime ,b\prime is greater than or equal to both of va,a\prime + vb,b\prime and va,b\prime + va\prime ,b.

That is to say, FPn is essentially the positive orthant in the w coordinates, except for
one detail. Proposition 2.4 implies that the inequalities (1.2) from the introduction are
equivalent to

wa,b \geq 0 \forall \{ a, b\} \in 
\biggl( 
[n]

2

\biggr) 
with | a - b| > 1;

but the inequalities wa,a+1 \geq 0 are not valid in FPn. The n-dimensional subspace generated
by the vectors with wa,b = 0 if | a  - b| > 1 and wa,a+1 arbitrary can be thought of as the
``irrelevant"" part of the w coordinates; in fact, it is the lineality space of FPn. This suggests
we give it a name. We denote

Ln :=
\Bigl\{ 
d(w) :w \in \BbbR (

[n]

2 ) and wi,j = 0 if | i - j| > 1
\Bigr\} 
\sim =\BbbR n,

FP+
n :=

\biggl\{ 
d(w) :w \in \BbbR (

[n]

2 )
\geq 0

\biggr\} 
\sim =\BbbR (

[n]

2 )
\geq 0 .

Corollary 2.6. FPn =Ln +FP+
n , \ita \itn \itd \iti \itt \iti \its \itl \iti \itn \ite \ita \itr \itl \ity \iti \its \ito \itm \ito \itr \itp \ith \iti \itc \itt \ito \BbbR n \times \BbbR (

[n]

2 ) - n

\geq 0 .

\itP \itr \ito \ito \itf . By Proposition 2.4 the map w \rightarrow d(w) is a linear automorphism in \BbbR (
[n]

2 ); by
Proposition 2.5, FPn is the image FP+

n of the positive orthant plus the linear subspace Ln.

2.3. Pfaffians as a Gr\"obner basis for four-point positive weights. The following is the
main result of Jonsson and Welker [27], although it is also stated without proof in [34, p. 107]).

Theorem 2.7 ([27]). \itT \ith \ite \itr \ite \iti \its \ita (\itl \ite \itx \iti \itc \ito \itg \itr \ita \itp \ith \iti \itc \ita \itl ) \itt \ite \itr \itm \ito \itr \itd \ite \itr \itf \ito \itr \itw \ith \iti \itc \ith inv(Ik(n)) \iti \its \itt \ith \ite 
\itm \ito \itn \ito \itm \iti \ita \itl \iti \itd \ite \ita \itl \itg \ite \itn \ite \itr \ita \itt \ite \itd \itb \ity \ita \itl \itl (k+ 1)-\itc \itr \ito \its \its \iti \itn \itg \its .

The term order of Jonsson and Welker necessarily selects in each Pfaffian the monomial
corresponding to the (k+1)-crossing (in fact, it is designed to have that property), and Pfaffins
are a Gr\"obner basis for it since each Pfaffian contains one and only one of the generators in
the initial ideal. Once we know this, any term order that selects this same monomial in
each Pfaffian will produce the same initial ideal by, for example, Exercise 8.4 in [12, p. 435].
Proposition 2.5(5) says that this includes the order induced by any (generic) fp-positive vector
v \in FPn. Hence, we have the following statement, a bit more general than Theorem 2.7.
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MULTITRIANGULATIONS AND TROPICAL PFAFFIANS 311

Theorem 2.8. \itP \itf \ita ffi\ita \itn \its \ito \itf \itd \ite \itg \itr \ite \ite 2k+ 2 \ita \itr \ite \ita \itG \itr \"\ito \itb \itn \ite \itr \itb \ita \its \iti \its \itf \ito \itr Ik(n) \itw \iti \itt \ith \itr \ite \its \itp \ite \itc \itt \itt \ito \ita \itn \ity 
\itm \ito \itn \ito \itm \iti \ita \itl \ito \itr \itd \ite \itr \itt \ith \ita \itt \its \ite \itl \ite \itc \itt \its \itt \ith \ite k-\itc \itr \ito \its \its \iti \itn \itg \iti \itn \ite \ita \itc \ith \itP \itf \ita ffi\ita \itn ; \iti \itn \itp \ita \itr \itt \iti \itc \itu \itl \ita \itr , \itf \ito \itr \itt \ith \ite \ito \itr \itd \ite \itr \iti \itn \itg \ito \itf 
\ita \itn \ity \itf \itp -\itp \ito \its \iti \itt \iti \itv \ite \itv \ite \itc \itt \ito \itr v \in FPn.

\itI \itf \itt \ith \ite \itf \itp -\itp \ito \its \iti \itt \iti \itv \ite \itv \ite \itc \itt \ito \itr \iti \its \its \itu ffi\itc \iti \ite \itn \itt \itl \ity \itg \ite \itn \ite \itr \iti \itc \itt \ith \ite \itn inv(Ik(n)) \iti \its \itt \ith \ite \itm \ito \itn \ito \itm \iti \ita \itl \iti \itd \ite \ita \itl \itg \ite \itn -
\ite \itr \ita \itt \ite \itd \itb \ity \ita \itl \itl (k+ 1)-\itc \itr \ito \its \its \iti \itn \itg \its .

The case k= 1 of this theorem is classical, via the equality \scrP \itf 1(n) = \scrG \itr 2(n); see [34, Theo-
rem 3.20] and Remark 3.12 below). In fact, in this case the last sentence in the theorem is an
``if and only if."" Indeed, FPn is, by definition, the closed Gr\"obner cone of I1(n) corresponding
to the initial ideal generated by 2-crossings.

In general, let Grobk(n) be the Gr\"obner cone of Ik(n) corresponding to the ideal of (k+ 1)-
crossings. For higher k it is no longer true that FPn =Grobk(n), we only have the containe-
ment FPn \subset Grobk(n) which follows from the previous theorem. Our next result explicitly
describes Grobk(n).

For arbitrary k, the Gr\"obner cone is the intersection of the normal cones of each (k+ 1)-
crossing in the Newton polytope of the corresponding Pfaffian. A priori, this intersection
is described by the following family of linear inequalities, running over all the even cycles
(i0, i1, . . . , i2l - 1, i0) of length 2l that contain an l-crossing contained in a (k + 1)-crossing, for
l\leq k+ 1:

vi0i1  - vi1i2 + \cdot \cdot \cdot  - vi2l - 1i0 \geq 0.(2.4)

But most of these inequalities are redundant. For example, for k = 1, Grob1(n) = FPn

which is defined by 2
\bigl( 
n
4

\bigr) 
four-point conditions, but only the

\bigl( 
n
2

\bigr) 
 - n in (1.2) are irredundant.

In fact, it turns out that for every k and every n\geq 2k+ 3, the Gr\"obner cone is simplicial.

Theorem 2.9. \itF \ito \itr n\geq 2k+3, Grobk(n) \iti \its , \itm \ito \itd \itu \itl \ito \itt \ith \ite \itl \iti \itn \ite \ita \itl \iti \itt \ity \its \itp \ita \itc \ite Ln, \ita \its \iti \itm \itp \itl \iti \itc \iti \ita \itl \itc \ito \itn \ite 
\itg \iti \itv \ite \itn \itb \ity \itt \ith \ite \itf \ito \itl \itl \ito \itw \iti \itn \itg \iti \itn \ite \itq \itu \ita \itl \iti \itt \iti \ite \its , \ito \itn \ite \itf \ito \itr \ite \ita \itc \ith \{ i, j\} \itw \iti \itt \ith | j  - i| \geq 2:

wij \geq 0 \iti \itf | j  - i| >k (\itl \ito \itn \itg \iti \itn \ite \itq \itu \ita \itl \iti \itt \iti \ite \its ),(2.5) \sum 

i\prime \leq i<j\leq j\prime \leq i\prime +k+1

wi\prime j\prime \geq 0 \iti \itf 2\leq | j  - i| \leq k (\its \ith \ito \itr \itt \iti \itn \ite \itq \itu \ita \itl \iti \itt \iti \ite \its ).(2.6)

\itT \ith \ite \itr \ita \ity \ito \itp \itp \ito \its \iti \itt \ite \itt \ito \itt \ith \ite \itf \ita \itc \ite \itt \iti \itn \itd \ite \itx \ite \itd \itb \ity \{ i, j\} \iti \its \itg \ite \itn \ite \itr \ita \itt \ite \itd \itb \ity 
\bullet \itt \ith \ite \itb \ita \its \iti \its \itv \ite \itc \itt \ito \itr \iti \itn \itd \ite \itx \ite \itd \itb \ity \{ i, j\} \iti \itn \itt \ith \ite w \itc \ito \ito \itr \itd \iti \itn \ita \itt \ite \its \iti \itf | j  - i| \geq k+ 2, \ita \itn \itd 
\bullet \itt \ith \ite \itn \ite \itg \ita \itt \iti \itv \ite \itb \ita \its \iti \its \itv \ite \itc \itt \ito \itr \iti \itn \itd \ite \itx \ite \itd \itb \ity \{ i+ 1, j\} \iti \itn \itt \ith \ite v \itc \ito \ito \itr \itd \iti \itn \ita \itt \ite \its \iti \itf | j  - i| <k+ 2.

Observe that the long inequalities are also facet-defining for FPn and the short ones are
sums of facet-defining short inequalities in FPn.

\itP \itr \ito \ito \itf . First let us see that the inequalities are valid in the cone. The first group (2.5) is
obvious, because the (k+1)-crossing has higher weight than any swap. For the second group,
let \{ i, i+ \ell \} be an edge with \ell \leq k. For each set U of 2k+2 sides of the n-gon and each edge
e\in T we call the \itl \ite \itn \itg \itt \ith \ito \itf e \itw \iti \itt \ith \itr \ite \its \itp \ite \itc \itt \itt \ito U and denote it \ell U (e) the smallest size of the two
parts of U separated by e. (Equivalently, it is the usual length of the edge as a diagonal of
the n-gon when all the sides not in U are contacted.) For a matching M of U and an edge e
we denote by cM (e) the number of edges of M that cross e.
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312 LUIS CRESPO RUIZ AND FRANCISCO SANTOS

Consider the matching

M = \{ \{ i+ 1, i+ \ell \} ,\{ i+ 2, i+ k+ 3\} ,\{ i+ 3, i+ k+ 4\} , . . . ,\{ i+ \ell  - 1, i+ k+ \ell \} ,

\{ i - k+ \ell  - 1, i+ \ell + 1\} ,\{ i - k+ \ell , i+ \ell + 2\} , . . . ,\{ i, i+ k+ 2\} \} .

This is a k-crossing plus the edge \{ i+1, i+ \ell \} . The coefficient of a w will be the same in this
matching than in the (k+1)-crossing, that is, \ell U (e) = cM (e), except for the edges \{ i\prime , j\prime \} with
i\prime \leq i < i+ l\leq j\prime \leq i\prime + k+1, for which cM (e) = \ell U (e) - 2. Hence the left-hand side of (2.6) is
half the difference between the weights, which proves the inequalities.

Once we know that the inequalities are valid, let Gij be the ray defined in the statement.
We only need to show that at each Gij all inequalities are equalities, except for the one of
index ij, and that the Gij indeed lie in Grobk(n).

Indeed, if | i  - j| > k + 1, then Gij has all w coordinates equal to zero except wij > 0.
it is clear that all inequalities of the form (2.6) are equalities (since they only involve w's of
length \leq k+ 1) and all of type (2.5) except the one for ij are equalities (by construction). If
| i - j| \leq k+ 1, in Gij we have that the only nonzero v coordinate is vi+1,j , which is negative.
We take it equal to  - 1. Proposition 2.4 implies that in the w coordinates the only nonzero
ones are

wi+1,j =wi,j - 1 = - 1

2
, wi+1,j - 1 =wi,j =

1

2
.

Now, if j  - i \leq k, (2.5) always gives 0 and (2.6) gives 1/2 exactly for one sum, the one
corresponding to \{ i, j\} , and 0 for the rest. If j - i= k+1, (2.6) always gives 0 and (2.5) gives
1 only for wi,j .

It remains to see that these rays are in Grobk(n):
\bullet For the w basis vectors this follows from the fact that they are in FPn.
\bullet For the negative v basis vectors, we are giving weight  - 1 to an irrelevant edge and

0 to all the other edges; it is clear that every (k + 1)-crossing gets weight zero, and
every other matching gets nonpositive weight.

\itR \ite \itm \ita \itr \itk 2.10. Theorem 2.9 fails for n = 2k + 2, but in this case it is easy to describe
Grobk(n). Since we have a single Pfaffian, the Gr\"obner fan is simply the normal fan of its
Newton polytope. In particular, none of the equalities (2.4) are redundant and Grobk(n)
has as many facets as there are matchings of [2k + 2] whose symmetric difference with the
k+ 1-crossing is a single cycle. For example,

\bullet for k = 2, n = 6, all matchings differ from the 3-crossing in a single cycle. Thus, the
Grob2(6) has (modulo its lineality space) dimension

\bigl( 
6
2

\bigr) 
 - 6 = 9 and 14 facets;

\bullet for k = 3, n = 8, there are matchings differing from the 4-crossing in two cycles of
length four. There are exactly 12 of them, coming from the three ways of partitioning
the 4-crossing into two pairs of edges and the two ways of completing each pair of
edges into a four-cycle. Hence, Grob3(8) has dimension

\bigl( 
8
2

\bigr) 
 - 8 = 20 and it has

105 - 1 - 12 = 92 facets.

One difference between k= 1 and k > 1 is that for k= 1 Pfaffians are a universal Gr\"obner
basis for the ideal I1(n) (one proof is that every other Gr\"obner cone of I1(n) can be sent to
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MULTITRIANGULATIONS AND TROPICAL PFAFFIANS 313

FPn by a permutation of [n]; see [44, Theorem 4.3]). The same is known to fail for higher
Grassmannians (see, e.g., [44, section 7] or [31, Example 4.3.10]), and it also fails for higher
Pfaffians.

\itE \itx \ita \itm \itp \itl \ite 2.11 (Pfaffians are not a universal Gr\"obner basis). Let n= 9 and k= 2. Consider
the vector with

v12 = v34 = v56 = v47 = v89 = 2,

v58 = v69 = 1,

v17 = v28 = v39 = 10,

and the rest of entries equal to zero. We are going to show that, regardless of the field \BbbK ,
Pfaffians are not a Gr\"obner basis for this choice of v (or any small perturbation of it).

Call f and g the Pfaffians on the sets U = \{ 1,2,3,4,5,6\} and V = \{ 4,5,6,7, 8,9\} , which
have as matchings of highest weight \{ 12,34,56\} and \{ 56,47,89\} , both of weight 6. That is,

in(f) = x12x34x56, in(g) = x56x47x89.

The following polynomial, which is nothing but the S-polynomial of f and g that arises in
Buchberger's algorithm, lies in I3(9):

h := x12x34 g - x47x89 f.

The only monomials of weight > 6 in h are the initial terms of the two parts x12x34 g
and x47x89 f , which cancel out, and x12x34 x47x58x69, of weight 8. Hence, we have that
in(h) = x12x34 x47x58x69.

In particular, if Pfaffians were a universal Gr\"obner basis, there should be a Pfaffian whose
leading monomial divides in(h). That is, there should be a set W \subset [9] of six elements whose
matching M of maximum weight is contained in \{ 12,34,47,58,69\} . This W does not exist.
Indeed, W cannot contain any of the pairs \{ 1,7\} , \{ 2,8\} , or \{ 3,9\} , because then its highest
matching would have weight \geq 10. And every set of three edges among \{ 12,34,47,58,69\} not
containing any of those pairs of vertices contains the edges \{ 58,69\} , which cannot be in the
leading term of any Pfaffian since they produce a smaller weight than their swap \{ 56,89\} .

\itR \ite \itm \ita \itr \itk 2.12. That Pfaffians are a Gr\"obner basis for the ideal Ik(n) they generate was
known before [27]. The earliest proof we are aware of is by Herzog and Trung [20], who
construct a lexicographic order for which the initial ideal in<(Ik(n)) is generated by the
(k+ 1)-nestings. Here \{ a, d\} and \{ b, c\} are nested if 1\leq a< b< c< d\leq n.

This result was recovered by Sturmfels and Sullivant [49] as a special case of a more
general behavior; Sturmfels and Sullivant study the relation between the Gr\"obner bases of
an ideal I and those of its secant ideals I\{ k\} , and call a monomial order ``delightful"" if the
initial ideal of I\{ k\} can be obtained from that of I by the following simple combinatorial rule:
the standard monomials in in<(I

\{ k\} ) are the products of k standard monomials of in<(I).
They then consider Ik(n) = I1(n)

\{ k\} as an example [49, Example 4.13], and show that the
lexicographic order of Herzog and Trung [20] is delightful.

It is worth noticing that fp-positive orders are not delightful in the sense of [49]. Indeed,
the maximal square-free standard monomials in our initial ideal are the k-triangulations of the
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314 LUIS CRESPO RUIZ AND FRANCISCO SANTOS

n-gon, and not every k-triangulation is the union of k triangulations. For a trivial example
observe that the complete graph on 5 vertices is a 2-triangulation but it is not the union of
two triangulations of the pentagon. Related to this, see [36, section 6].

Theorem 2.8 has a natural interpretation via (k + 1)-free sets and multitriangulations.
Observe that k(2n - 2k - 1), the dimension of \scrA \its \its k(n), coincides with that of \scrP \itf k(n).

Corollary 2.13. \itI \itf \itt \ith \ite \itw \ite \iti \itg \ith \itt \itv \ite \itc \itt \ito \itr v \itf \ito \itr \itt \ith \ite \itv \ita \itr \iti \ita \itb \itl \ite \its \iti \itn \BbbK [xi,j ,\{ i, j\} \in 
\bigl( 
[n]
2

\bigr) 
] \itl \iti \ite \its \iti \itn 

Grobk(n) (\itf \ito \itr \ite \itx \ita \itm \itp \itl \ite , \iti \itf \iti \itt \iti \its \itf \itp -\itp \ito \its \iti \itt \iti \itv \ite ) \ita \itn \itd \itg \ite \itn \ite \itr \iti \itc \itt \ith \ite \itn \itt \ith \ite \iti \itn \iti \itt \iti \ita \itl \iti \itd \ite \ita \itl \ito \itf Ik(n) \ite \itq \itu \ita \itl \its 
\itt \ith \ite \itS \itt \ita \itn \itl \ite \ity --\itR \ite \iti \its \itn \ite \itr \iti \itd \ite \ita \itl \ito \itf \itt \ith \ite \ite \itx \itt \ite \itn \itd \ite \itd k-\ita \its \its \ito \itc \iti \ita \ith \ite \itd \itr \ito \itn \scrA \its \its k(n). \itT \ith \ita \itt \iti \its , \iti \itt \iti \its \itt \ith \ite \itr \ita \itd \iti \itc \ita \itl 
\itm \ito \itn \ito \itm \iti \ita \itl \iti \itd \ite \ita \itl \itw \ith \ito \its \ite \its \itq \itu \ita \itr \ite -\itf \itr \ite \ite \its \itt \ita \itn \itd \ita \itr \itd \itm \ito \itn \ito \itm \iti \ita \itl \its \itf \ito \itr \itm , \ita \its \ita \its \iti \itm \itp \itl \iti \itc \iti \ita \itl \itc \ito \itm \itp \itl \ite \itx , \scrA \its \its k(n).

2.4. The algebraic matroid of \bfscrP \bfitf \bfitk (\bfitn ) and low-rank matrix completion. Let I \subset 
\BbbK [x1, . . . , xN ] be a prime ideal; the \ita \itl \itg \ite \itb \itr \ita \iti \itc \itm \ita \itt \itr \ito \iti \itd of I, which we denote as \scrM (I), has
the variables E := \{ x1, . . . , xN\} as elements and a subset S \subset E is independent if I does not
contain any nonzero polynomial in \BbbK [S]. If \BbbK is algebraically closed and V = V (I) is the
irreducible variety of V , then dependence and independence of a subset S of variables can be
told via the natural projection map \pi S : V \subset \BbbK N \rightarrow \BbbK S , as follows. A set is independent in
\scrM (I) if and only if the corresponding projection map \pi S : V \rightarrow KS is dominant; that is, its
image is (Zariski) dense. We use [39, 40, 29] as our main sources for algebraic matroids.

Theorem 2.14. \itL \ite \itt \BbbK \itb \ite \ita \itn \ita \itl \itg \ite \itb \itr \ita \iti \itc \ita \itl \itl \ity \itc \itl \ito \its \ite \itd fi\ite \itl \itd , I \subset \BbbK [x1, . . . , xN ] \ita \itp \itr \iti \itm \ite \iti \itd \ite \ita \itl , \ita \itn \itd 
V \iti \itt \its \ita \itl \itg \ite \itb \itr \ita \iti \itc \itv \ita \itr \iti \ite \itt \ity . \itF \ito \itr \ite \ita \itc \ith S \subset [N ] \itd \ite \itn \ito \itt \ite \itb \ity \pi S :\BbbK [N ] \rightarrow \BbbK S \itt \ith \ite \itc \ito \ito \itr \itd \iti \itn \ita \itt \ite \itp \itr \ito \itj \ite \itc \itt \iti \ito \itn 
\itt \ito S. \itT \ith \ite \itn 

1. S \iti \its \iti \itn \itd \ite \itp \ite \itn \itd \ite \itn \itt \iti \itn \scrM (I) \iti \itf \ita \itn \itd \ito \itn \itl \ity \iti \itf \pi S(V ) \iti \its \itZ \ita \itr \iti \its \itk \iti \itd \ite \itn \its \ite \iti \itn \BbbK S'
2. \itt \ith \ite \itr \ita \itn \itk \ito \itf S \iti \its \ite \itq \itu \ita \itl \itt \ito \itt \ith \ite \itd \iti \itm \ite \itn \its \iti \ito \itn \ito \itf \pi S(V );
3. S \iti \its \its \itp \ita \itn \itn \iti \itn \itg \iti \itf \ita \itn \itd \ito \itn \itl \ity \iti \itf \pi S \iti \its fi\itn \iti \itt \ite -\itt \ito -\ito \itn \ite : \itf \ito \itr \ite \itv \ite \itr \ity x \in \BbbK S \itt \ith \ite fi\itb \ite \itr \pi  - 1

S (x) \iti \its 
fi\itn \iti \itt \ite (\itp \ite \itr \ith \ita \itp \its \ite \itm \itp \itt \ity ).

\itP \itr \ito \ito \itf . The first part is Theorem 15 in [40]. For the second, the rank of S is the maximum
size among independent subsets of S, which are the subsets T for which \pi T (V ) = \pi T (\pi S(V ))
has dimension | T | . The maximal ones are those which have the same size as the dimension of
\pi S(V ), so this is the rank.

The third part is a consequence of the second, because a projection has the same dimension
as the variety if and only if the fiber has dimension zero, and a fiber has dimension zero if
and only if it is finite.

This statement has as a consequence that, over an algebraically closed field, we can speak
of the algebraic matroid of the irreducible variety V , and denote it \scrM (V ), instead of looking
at the ideal.

We now turn our attention to the case of \scrP \itf k(n).
Corollary 2.15. (k + 1)-\itf \itr \ite \ite \its \itu \itb \its \ite \itt \its \ito \itf \ite \itd \itg \ite \its \ita \itr \ite \iti \itn \itd \ite \itp \ite \itn \itd \ite \itn \itt \iti \itn \itt \ith \ite \ita \itl \itg \ite \itb \itr \ita \iti \itc \itm \ita \itt \itr \ito \iti \itd \ito \itf 

\scrP \itf k(n) \ita \itn \itd k-\itt \itr \iti \ita \itn \itg \itu \itl \ita \itt \iti \ito \itn \its \ita \itr \ite \itb \ita \its \ite \its .

After Proposition 2.16 we show examples of nonplanar graphs that are independent in
\scrP \itf 1(n). This implies that the converse of Corollary 2.15 is false; not every basis of \scrP \itf 1(n) is,
after relabeling vertices, a triangulation.
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MULTITRIANGULATIONS AND TROPICAL PFAFFIANS 315

\itP \itr \ito \ito \itf . Let S be a dependent set in the matroid. Then there is a polynomial f in Ik(n)
using only the variables in S and the initial monomial of f according to any fp-positive weight
also uses only variables in S. By Corollary 2.13 Ik(n) has an initial ideal consisting only of
(k + 1)-crossing monomials, hence f has a monomial with a (k + 1)-crossing, and S is not
(k+ 1)-free.

For the second part, it is enough to see that the rank of the matroid equals 2nk - 
\bigl( 
2k+1
2

\bigr) 
.

This is because points in \scrP \itf k(n) are antisymmetric matrices of rank\leq 2k. In order to construct
one such matrix M we can choose generic elements in the first 2k rows above the diagonal and
every other element Mi,j (i, j > 2k) is uniquely determined by them. Indeed, the Pfaffian of
the rows and columns indexed by [2k]\cup \{ i, j\} has the form AMi,j +B, where A is the Pfaffian
of [2k]. Since our choice was generic, A \not = 0.

This proof already shows the relation between independence in the algebraic matroid of
\scrP \itf k(n) and low-rank completion of partially known antisymmetric matrices. Suppose that we
are given a matrix M \in \BbbK n\times n, of which we only know a subset T of entries, we want to deduce
the rest of entries with the restriction that M needs to be antisymmetric and have at most
range 2k. Corollary 2.15 then immediately allows us to prove Theorem 1.8.

\itP \itr \ito \ito \itf \ito \itf \itT \ith \ite \ito \itr \ite \itm 1.8. Consider the projection \pi T : \BbbK ([n]

2 ) \rightarrow \BbbK T that keeps only the
coordinates of T . In part (1) we are saying that \pi T is almost surjective (any element has
a preimage except for a zero measure set) and in part (2) that it is finite-to-one (every
point x \in \BbbK T has a finite fiber \pi  - 1(x)). Both parts follow from Corollary 2.15, via the
characterization of algebraic matroids in Theorem 2.14.

It is worth mentioning that the algebraic matroid of \scrP \itf k(n) coincides with the \itg \ite \itn \ite \itr \iti \itc \ith \ity -
\itp \ite \itr \itc \ito \itn \itn \ite \itc \itt \iti \itv \iti \itt \ity \itm \ita \itt \itr \ito \iti \itd \iti \itn \itd \iti \itm \ite \itn \its \iti \ito \itn 2k introduced by Kalai [28]. Let us review this relation.

The \ith \ity \itp \ite \itr \itc \ito \itn \itn \ite \itc \itt \iti \itv \iti \itt \ity \itm \ita \itt \itr \iti \itx of a configuration \{ p1, . . . ,pn\} \subset \BbbR d is defined to be

H(p) :=

\left( 
           

p2  - p1 0 . . . 0 0
p3 0  - p1 . . . 0 0
...

...
...

...
...

pn 0 0 . . . 0  - p1

0 p3  - p2 . . . 0 0
...

...
...

...
...

0 0 0 . . . pn  - pn - 1

\right) 
           

.

We call the \ith \ity \itp \ite \itr \itc \ito \itn \itn \ite \itc \itt \iti \itv \iti \itt \ity \itm \ita \itt \itr \ito \iti \itd \ito \itf p the linear matroid \scrH d(p) of rows of H(p). There
clearly exists an open dense subset of configurations where the matroid is the most free; we
call that matroid the generic hyperconnectivity matroid of dimension d and denote it \scrH d.

On the other hand, if an algebraic variety V is parametrized by a polynomial map T :
\BbbR M \rightarrow V \subset \BbbR N , then the algebraic matroid of V equals the linear matroid of rows of the
Jacobian of T at a sufficiently generic point of \BbbR M [39, Proposition 2.5]. In our case, \scrP \itf k(n)
is parametrized by the following linear map:

T : (\BbbR n)2k \rightarrow \scrP \itf k(n)\subset \BbbR (
n

2),

(a1,b1, . . . ,ak,bk) \mapsto \rightarrow 
k\sum 

l=1

(al,ibl,j  - al,jbl,i)1\leq i<j\leq n ,(2.7)
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316 LUIS CRESPO RUIZ AND FRANCISCO SANTOS

where al = (al,1, . . . , al,n) and bl = (bl,1, . . . , bl,n). The Jacobian of T at a point (a1,b1, . . . ,ak,
bk) then coincides with the hyperconnectivity matrix of the configuration (p1, . . . ,pn), where

pi = (b1,i, - a1,i, . . . , bk,i, - ak,i).

As a consequence we get the following (known) result, which is implicit for example in
[34, Theorem 3.23].

Proposition 2.16. \itT \ith \ite \ita \itl \itg \ite \itb \itr \ita \iti \itc \itm \ita \itt \itr \ito \iti \itd \ito \itf \scrP \itf k(n) \itc \ito \iti \itn \itc \iti \itd \ite \its \itw \iti \itt \ith \itt \ith \ite \itg \ite \itn \ite \itr \iti \itc \ith \ity \itp \ite \itr \itc \ito \itn \itn \ite \itc -
\itt \iti \itv \iti \itt \ity \itm \ita \itt \itr \ito \iti \itd \iti \itn \itd \iti \itm \ite \itn \its \iti \ito \itn 2k.

With this result it is easy to construct nonplanar graphs that are bases in \scrP \itf 1(n) =\scrH 2(n).
Start with any nonplanar graph and subdivide every edge into two parts. The graph G
obtained is independent in every two-dimensional rigidity matroid, in particular in \scrH 2(n),
because iteratively removing the new vertices, which all have degree two, we get the empty
graph. Hence, G can be extended to a nonplanar basis of \scrH 2(n). As a consequence, not every
basis of \scrP \itf 1(n) is a triangulation.

Corollary 2.17. k-\itt \itr \iti \ita \itn \itg \itu \itl \ita \itt \iti \ito \itn \its \ita \itr \ite \itb \ita \its \ite \its \iti \itn \itt \ith \ite \itg \ite \itn \ite \itr \iti \itc \ith \ity \itp \ite \itr \itc \ito \itn \itn \ite \itc \itt \iti \itv \iti \itt \ity \itm \ita \itt \itr \ito \iti \itd \ito \itf \itd \iti -
\itm \ite \itn \its \iti \ito \itn 2k.

This statement is related to the following conjecture of Pilaud and Santos.

Conjecture 2.18 ([36, Conjecture 8.6]). k-\itt \itr \iti \ita \itn \itg \itu \itl \ita \itt \iti \ito \itn \its \ita \itr \ite \itb \ita \its \ite \its \iti \itn \itt \ith \ite \itg \ite \itn \ite \itr \iti \itc \itb \ita \itr -\ita \itn \itd -
\itj \ito \iti \itn \itt \itr \iti \itg \iti \itd \iti \itt \ity \itm \ita \itt \itr \ito \iti \itd \ito \itf \itd \iti \itm \ite \itn \its \iti \ito \itn 2k.

Let us denote by \scrR d the generic bar-and-joint rigidity matroid. It is known that hyper-
connectivity falls under the framework of rigidity theory in the sense that both \scrR d and \scrH d

are \ita \itb \its \itt \itr \ita \itc \itt \itr \iti \itg \iti \itd \iti \itt \ity \itm \ita \itt \itr \ito \iti \itd \its as defined by Edmonds: matroids of rank dn  - 
\bigl( 
d+1
2

\bigr) 
on the

ground set
\bigl( 
[n]
2

\bigr) 
with the property that every complete graph on d+ 1 elements is indepen-

dent. It is conjectured that \scrR d is freer than \scrH d, which would make Proposition 2.17 imply
Conjecture 2.18, but the conjecture is open starting at dimension 3. (For d= 1 both matroids
coincide with the usual graphical matroid of the complete graph; for d = 2 there are combi-
natorial characterizations of independent graphs in both of them: Laman graphs in \scrR 2, and
the graphs described in [1] in \scrH 2.)

It is known, however, that for points chosen along the moment curve the two matroids
coincide.

Theorem 2.19 ([13]). \itL \ite \itt d \itb \ite \ita \itp \ito \its \iti \itt \iti \itv \ite \iti \itn \itt \ite \itg \ite \itr \ita \itn \itd \itl \ite \itt t1, . . . , tn \in \BbbR \itb \ite (\itd \iti \its \itt \iti \itn \itc \itt ) \itr \ite \ita \itl 
\itn \itu \itm \itb \ite \itr \its . \itL \ite \itt p = (p1, . . . ,pn) \subset \BbbR d \itb \ite \itt \ith \ite \itc \ito \itr \itr \ite \its \itp \ito \itn \itd \iti \itn \itg \itc \ito \itn fi\itg \itu \itr \ita \itt \iti \ito \itn \ito \itf \itp \ito \iti \itn \itt \its \ita \itl \ito \itn \itg \itt \ith \ite 
\itm \ito \itm \ite \itn \itt \itc \itu \itr \itv \ite , \its \ito \itt \ith \ita \itt pi = (ti, . . . , t

d
i ), i= 1, . . . , n. \itT \ith \ite \itn , \scrH d(p) =\scrR d(p).

In particular, a statement that would imply both Proposition 2.17 and Conjecture 2.18 is
that k-triangulations are bases for the matroid \scrH d(p) =\scrR d(p) when p is a generic collection of
points along the moment curve. We refer to [13] and the references in there for an up-to-date
account of the relation between \scrH d and \scrR d.

3. The tropicalization of \bfscrP \bfitf \bfitk (\bfitn ).

3.1. The tropical Pfaffian variety and prevariety. Recall that the \itt \itr \ito \itp \iti \itc \ita \itl \ith \ity \itp \ite \itr \its \itu \itr \itf \ita \itc \ite 
trop(f) of a polynomial f \in \BbbK [x1, . . . , xN ] is the collection of weight vectors v \in \BbbR N for
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MULTITRIANGULATIONS AND TROPICAL PFAFFIANS 317

which inv(f) is not a monomial. Put differently, the weight vectors for which the maximum
weight among monomials in f is attained at least twice. It is a polyhedral fan, namely, the
codimension one skeleton of the normal fan of the Newton polytope of f .

If V is the algebraic variety of an ideal I, the \itt \itr \ito \itp \iti \itc \ita \itl \iti \itz \ita \itt \iti \ito \itn of V equals

trop(V ) :=\cap f\in I trop(f).

A finite subset B \subset I such that trop(V ) := \cap f\in B trop(f), which always exists, is called a
\itt \itr \ito \itp \iti \itc \ita \itl \itb \ita \its \iti \its \ito \itf I. Not every generating set of I (not even a universal Gr\"obner basis of I; see
[3, Example 10] or [31, Example 2.6.1]) is a tropical basis. In general, a finite intersection of
tropical hypersurfaces is called a \itt \itr \ito \itp \iti \itc \ita \itl \itp \itr \ite \itv \ita \itr \iti \ite \itt \ity , while the tropicalization of a variety is
a \itt \itr \ito \itp \iti \itc \ita \itl \itv \ita \itr \iti \ite \itt \ity [31, Definitions 3.1.1 and 3.2.1]. The tropical prevariety defined by a finite
set of polynomials \{ f1, . . . , fn\} contains, but is sometimes not equal to, the tropical variety of
the ideal (f1, . . . , fn) generated by them.

Looking at the case of Pfaffians, for each subset U of [n] of size 2k+2 we have as tropical

hypersurface the set of vectors v \in \BbbR (
[n]

2 ) for which the maximum

\left\{ 
 
 
\sum 

\{ i,j\} \in E

vij :E matching in U

\right\} 
 
 ,

is attained at least twice. We denote by Pfk(n) the intersection of all these tropical hyper-

surfaces for the different U \in 
\bigl( [n]
2k

\bigr) 
. We call it the \itt \itr \ito \itp \iti \itc \ita \itl \itP \itf \ita ffi\ita \itn \itp \itr \ite \itv \ita \itr \iti \ite \itt \ity . It contains

the tropicalization trop(\scrP \itf k(n)) of \scrP \itf k(n) and it is known to coincide with it in the following
cases:

\bullet If n= 2k+ 2, since then we have a single Pfaffian defining trop(\scrP \itf k(n)).
\bullet If k= 1, by the results in [44] and the fact that \scrP \itf 1(n) coincides with the Grassmannian

\scrG \itr 2(n) (see Remark 3.12 below).
The following example looks at the first open case.

\itE \itx \ita \itm \itp \itl \ite 3.1. For k = 2 and n = 7, using Gfan [25] we have computed Pf2(7) as the
intersection of the seven hypersurfaces corresponding to Pfaffians. The result is a nonsimplicial
fan of pure dimension 18 with 77 rays and a lineality space of dimension 7 (as expected). It
has 73395 maximal cones, all of them with multiplicity 1. These cones correspond to 33 classes
of symmetry via permutations of variables. The 77 rays are the following:

\bullet The 21 vectors in the standard basis of the coordinates v, and their 21 opposites. That
is, for each \{ i, j\} \in 

\bigl( 
7
2

\bigr) 
, the two vectors with vij =\pm 1 and vi\prime j\prime = 0 otherwise.

\bullet The 35 vectors obtained as follows: for each \{ i, j, k\} \in 
\bigl( 
7
3

\bigr) 
, the vector with vij = vik =

vjk = 1 and vi\prime j\prime = 0 otherwise.
7 of the 14 extremal rays of FP7 are among these vectors. In the w coordinates these are
the vectors with wij = 1 and all other entries equal to zero, for the fourteen choices of
nonconsecutive i and j. The seven with i = j  - 2 coincide (modulo the lineality space) with
the v-basis vectors with vj - 1,j =  - 1, which are rays, and the seven with i = j  - 3 are the
vectors with vj - 2,j = vj - 1,j = vj - 2,j - 1 = - 1, that is, the opposites to some rays, but they are
not rays themselves. None of the other 77 rays computed by Gfan lie in FP7.
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318 LUIS CRESPO RUIZ AND FRANCISCO SANTOS

The cone corresponding to a given 2-triangulation cannot be in this prevariety, because
its rays are not among those rays. But it can be the result of intersecting a cone from the
prevariety with FP7, because, by Remark 2.10, the Gr\"obner cone in which it is contained is a
bit greater than FP7. In fact, a v coming from a 2-triangulation is in the cone spanned by the
rays vj - 1,j = - 1 for all j and vj - 2,j = - 1 for \{ j - 3, j\} in the 2-triangulation. The intersection
of this cone with FP7 is the cone in the 2-associahedron.

In this case, we want to check whether the tropical prevariety Pf2(7) coincides with the
variety trop(\scrP \itf 2(7)). To do that, we need to compute the tropical variety as a subfan of the
Gr\"obner fan. However, it is not enough to check that the cones in both fans are the same,
because the tropical prevariety may not be a subfan of the Gr\"obner fan.

trop(\scrP \itf 2(7)) is a simplicial fan with 84420 cones, that belong to 35 equivalence classes.
The equality as sets for the two fans can now be checked by showing that all the simplicial
cones in trop(\scrP \itf 2(7)) are contained in a cone of Pf2(7) and the union of the cones contained
in the same cone gives the whole cone.

The prevariety contains 71820 simplicial and 1575 nonsimplicial cones. The simplicial
ones are also cones of the variety, so that part is correct. Now there are 12600 remaining
cones in the variety, that correspond to the nonsimplicial part. The nonsimplicial cones can
be triangulated in two ways: in 8 cones and in 3 cones. The triangulation in 8 cones of all
them can be shown to match exactly the cones of the variety, and we are done.

To better understand the difference between Pfk(n) and trop(\scrP \itf k(n)) we are now going
to relate them to two different notions of rank for a tropical matrix. For this, it is convenient
to extend \BbbR to the \itt \itr \ito \itp \iti \itc \ita \itl \its \ite \itm \iti \itr \iti \itn \itg \BbbR := \BbbR \cup \{  - \infty \} with the operations max as ``addition""
and + as ``multiplication"". By a tropical n1 \times n2-matrix we mean an n1 \times n2-matrix with
entries in \BbbR . To distinguish between tropical (pre)varieties in \BbbR n and \BbbR n

we denote as V the
extension to \BbbR n

of a tropical variety or prevariety V \in \BbbR n.
Clearly, for every family F of polynomials, the prevariety of F in \BbbR n

is topologically
closed, so it contains the closure of the prevariety in \BbbR n, and the same holds for varieties. The
converse is not always true, as the following example shows.

\itE \itx \ita \itm \itp \itl \ite 3.2. Let I = (x1x3 + x2, x2x3 + x1). The tropical variety it defines in \BbbR 3 equals

\{ (a,a,0) : a\in \BbbR \} , while the variety it defines in \BbbR 3
contains that plus the points \{ ( - \infty , - \infty , b) :

b\in \BbbR \} .
Observe that this ideal is not prime, since it contains x1(x

2
3  - 1) but it does not contain

any of its factors x1, x3 + 1, or x3  - 1. We do not know whether for prime ideals it is always
true that the closure of V equals V .

The following two notions of rank were introduced in [16].

Definition 3.3 (tropical rank [31, Def. 5.3.3]). \itA \its \itq \itu \ita \itr \ite \itm \ita \itt \itr \iti \itx M \in \BbbR r\times r
\iti \its tropically

singular \iti \itf \itt \ith \ite \itm \ita \itx \iti \itm \itu \itm \iti \itn \itt \ith \ite \itt \itr \ito \itp \iti \itc \ita \itl \itd \ite \itt \ite \itr \itm \iti \itn \ita \itn \itt 

tropdet(M) :=max
\sigma \in Sr

r\sum 

i=1

mi\sigma (i)

\iti \its \ita \itt \itt \ita \iti \itn \ite \itd \ita \itt \itl \ite \ita \its \itt \itt \itw \iti \itc \ite , \ita \itn \itd tropically regular \ito \itt \ith \ite \itr \itw \iti \its \ite .
\itT \ith \ite tropical rank \ito \itf \ita \itt \itr \ito \itp \iti \itc \ita \itl \itm \ita \itt \itr \iti \itx \iti \its \itt \ith \ite \itl \ita \itr \itg \ite \its \itt \its \iti \itz \ite \ito \itf \ita \itt \itr \ito \itp \iti \itc \ita \itl \itl \ity \itr \ite \itg \itu \itl \ita \itr \itm \iti \itn \ito \itr \iti \itn \iti \itt .
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MULTITRIANGULATIONS AND TROPICAL PFAFFIANS 319

Stated differently, the tropical rank of M is the largest r such that M is not in the tropical
prevariety of the r \times r minors or, equivalently, the smallest r such that M is in the tropical
prevariety of the (r+ 1)\times (r+ 1) minors.

Definition 3.4 (Kapranov rank [31, Def. 5.3.2]). \itL \ite \itt M \in \BbbR n1\times n2
\itb \ite \ita \itt \itr \ito \itp \iti \itc \ita \itl \itm \ita \itt \itr \iti \itx . \itT \ith \ite 

Kapranov rank \ito \itf M \ito \itv \ite \itr \ita \itv \ita \itl \itu \ita \itt \ite \itd fi\ite \itl \itd \BbbK \iti \its \itt \ith \ite \its \itm \ita \itl \itl \ite \its \itt \itr \ita \itn \itk \ito \itf \ita \itl \iti \itf \itt \ito \itf \itt \ith \ite \itm \ita \itt \itr \iti \itx , \itt \ith \ita \itt 
\iti \its , \ita \itm \ita \itt \itr \iti \itx \widetilde M \in \BbbK \its \itu \itc \ith \itt \ith \ita \itt \itt \ith \ite \itd \ite \itg \itr \ite \ite \ito \itf \widetilde Mij \iti \its mij.

The tropical variety of the (r+1)\times (r+1) minors is the tropicalization of the (classical)
variety of the matrices with rank at most r. Hence, the Kapranov rank is the smallest r such
that M is in the tropical variety of the (r+1)\times (r+1) minors, or the largest r such that M
is not in the tropical variety of the r\times r minors.

Observe that the Kapranov rank of M depends on the field \BbbK under consideration, while
the tropical rank does not. The relation of the two notions of rank to the tropical variety
and prevariety of minors readily shows that the Kapranov rank is greater than or equal to the
tropical rank [16, Theorem 1.4]. Two small examples where the two notions do not coincide
appear in [16, section 7] (a 7 \times 7 matrix of tropical rank three and Kapranov rank four)
and [41] (a 6 \times 6 matrix of tropical rank four and Kapranov rank five). The two examples
are reproduced in [42, section 4] where Shitov, completing the work of Develin, Santos, and
Sturmfels [16], Chan, Jensen, and Rubei [9], and himself [43] shows that these two examples
are the smallest possible.

Lemma 3.5 ([42]). \itF \ito \itr \itg \iti \itv \ite \itn \itp \ito \its \iti \itt \iti \itv \ite \iti \itn \itt \ite \itg \ite \itr \its r,n1, n2 \itt \ith \ite \itf \ito \itl \itl \ito \itw \iti \itn \itg \ita \itr \ite \ite \itq \itu \iti \itv \ita \itl \ite \itn \itt :
1. \itT \ith \ite (r+1)\times (r+1) \itm \iti \itn \ito \itr \its \ita \itr \ite \ita \itt \itr \ito \itp \iti \itc \ita \itl \itb \ita \its \iti \its \itf \ito \itr \itt \ith \ite \itv \ita \itr \iti \ite \itt \ity \ito \itf n1 \times n2 \itm \ita \itt \itr \iti \itc \ite \its \ito \itf 

\itr \ita \itn \itk r (\ito \itv \ite \itr \ita \itn \ity \ito \itf \itt \ith \ite \itc \ito \itm \itp \itl \ite \itx , \itr \ite \ita \itl , \ito \itr \itr \ita \itt \iti \ito \itn \ita \itl fi\ite \itl \itd \its ).
2. r\leq 2, \ito \itr r=min\{ n1, n2\} , \ito \itr r= 3 \ita \itn \itd min\{ n1, n2\} \leq 6.

Since these notions of rank distinguish between the variety and prevariety of minors,
antisymmetric versions of them will distinguish between the variety and prevariety of Pfaffians.
(The same idea for the \its \ity \itm \itm \ite \itt \itr \iti \itc case is explored in [50].)

Let M \in \BbbR n1\times n2 be a tropical matrix and let n= n1 + n2. Let K \in \BbbR be a sufficiently big
constant. From M and K we construct the following n\times n matrix:

Sym(M,K) :=

\biggl( 
N1 M
M t N2

\biggr) 
\in \BbbR n\times n

,

where (N1)ij =mi1+mj1 - K and (N2)ij =m1i+m1j - K for i \not = j, and (N1)ii = (N2)ii = - \infty .

We have a corresponding vector v(M,K)\in \BbbR (
[n]

2 ) of entries of Sym(M,K):

vij :=

\left\{ 
  
  

mi,j - n1
if 1\leq i\leq n1 < j,

mi1 +mj1  - K if 1\leq i, j \leq n1,

m1,i - n1
+m1,j - n1

 - K if i, j > n1.

For example, for the 2\times 3 matrix

M =

\biggl( 
1 2 3
4 5 6

\biggr) 
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320 LUIS CRESPO RUIZ AND FRANCISCO SANTOS

we have

Sym(M,10) =

\left( 
     

 - \infty  - 5 1 2 3
 - 5  - \infty 4 5 6
1 4  - \infty  - 7  - 6
2 5  - 7  - \infty  - 5
3 6  - 6  - 5  - \infty 

\right) 
     

and

v(M,10) = ( - 5,1,2,3,4,5,6, - 7, - 6, - 5),

where the negative entries are obtained subtracting 10 from the sum of the two corresponding
elements from the first row or from the first column of M .

We also consider the matrix and vector Sym(M,\infty ) and v(M,\infty ) \in \BbbR (
[n]

2 ) obtained using
\infty instead of K. That is

Sym(M,\infty ) :=

\biggl( 
 - \infty M
M t  - \infty 

\biggr) 
\in \BbbR n\times n

.

Lemma 3.6. \itL \ite \itt M \in \BbbR n1\times n2
\itb \ite \ita \itt \itr \ito \itp \iti \itc \ita \itl \itm \ita \itt \itr \iti \itx \ita \itn \itd K \in \BbbR . \itF \ito \itr \itt \ith \ite \itv \ite \itc \itt \ito \itr v(M,K) \in 

\BbbR (
[n]

2 ) \itd \ite fi\itn \ite \itd \ita \itb \ito \itv \ite \itw \ite \ith \ita \itv \ite 
1. \itf \ito \itr K \its \itu ffi\itc \iti \ite \itn \itt \itl \ity \itl \ita \itr \itg \ite , v(M,K) \in Pfk(n) \iti \itf \ita \itn \itd \ito \itn \itl \ity \iti \itf \itt \ith \ite \itt \itr \ito \itp \iti \itc \ita \itl \itr \ita \itn \itk \ito \itf M \iti \its \ita \itt 

\itm \ito \its \itt k;
2. v(M,\infty )\in trop(\scrP \itf k(n)) \iti \itf \ita \itn \itd \ito \itn \itl \ity \iti \itf \itt \ith \ite \itK \ita \itp \itr \ita \itn \ito \itv \itr \ita \itn \itk \ito \itf M \iti \its \ita \itt \itm \ito \its \itt k.

\itP \itr \ito \ito \itf . For part (1), assume first that v(M,K) \in Pfk(n), and consider a (k+ 1)\times (k+ 1)

minor of M . This corresponds to a set U \in 
\bigl( [n]
2k+2

\bigr) 
with half of the elements in [1, . . . , n1]

and the other half in [n1 + 1, . . . , n]. Since v(M,K) \in Pfk(n), there are at least two perfect
matchings in U of maximum weight. Since we chose K very big, none of these matchings come
from the N1 or N2 parts of Sym(M,K). This implies that the minor of M that we started
with is tropically singular.

Conversely, assume that trop rankM \leq k. Let U \in 
\bigl( [n]
2k+2

\bigr) 
and consider a perfect matching

E in U with maximal weight, which is a term in the Pfaffian of U . We have three cases:
\bullet If all the edges in E are between [n1] and [n1 +1, n], E corresponds to a permutation

in M attaining the tropical determinant. As trop rankM \leq k, there must be another
permutation with the same weight.

\bullet If all the edges in E except one are between [n1] and [n1 + 1, n], suppose E =
\{ \{ i1, j1\} , . . . ,\{ ik+1, jk+1\} \} and i1, . . . , ik+1, j1 \leq n1 < j2, . . . , jk+1 (the other case is
symmetric). Then

w(E) = vi1j1 + \cdot \cdot \cdot + vik+1jk+1

=mi11 +mj11 +mi2,j2 - n1
+ \cdot \cdot \cdot +mik+1,jk+1 - n1

 - K.

We have now two cases:
-- If jl = n1 + 1 for some l, for example j2 = n1 + 1, then

w(E) = vi1i2 + vj1,n1+1 + vi3j3 + \cdot \cdot \cdot + vik+1jk+1
.
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MULTITRIANGULATIONS AND TROPICAL PFAFFIANS 321

-- If jl > n1 + 1 for all l, w(E)  - mj11 + K is the weight of the permutation
\{ i1,1\} ,\{ i2, j2  - n1\} , . . . ,\{ ik+1, jk+1  - n1\} in M . Since the tropical rank of M
is smaller than k + 1, there is another permutation with weight greater than
or equal to w(E) - mj11 +K. That is,

w(E) - mj11 +K \leq mi\prime 11 +mi\prime 2,j2 - n1
+ \cdot \cdot \cdot +mi\prime k+1,jk+1 - n1

,

where (i\prime 1, . . . , i
\prime 
k+1) is a permutation of (i1, . . . , ik+1). Equivalently

w(E)\leq (mi\prime 11 +mj11  - K) +mi\prime 2,j2 - n1
+ \cdot \cdot \cdot +mi\prime k+1,jk+1 - n1

= vi\prime 1j1 + vi\prime 2j2 + \cdot \cdot \cdot + vi\prime k+1jk+1
.

As E is maximal, this is an equality, and we have another matching in U with
the same weight.

\bullet If there is more than one edge inside [n1] or inside [n1+1, n], suppose for example we
have the edges \{ a, b\} and \{ c, d\} with a, b, c, d\leq n1. Then any of the two swaps among
these four elements preserves the weight; indeed,

va,b + vc,d =ma1 +mb1 +mc1 +md1  - 2K = va,c + vb,d = va,d + vb,c.

In any case, there is another matching with the same weight as E, and this finishes part (1).

For part (2), ifM has Kapranov rank at most k then there is a lift \widetilde M ofM of rank k. Thus,\Biggl( 
0 \widetilde M
\widetilde M t 0

\Biggr) 

is an antisymmetric lift of Sym(M,\infty ) of rank 2k.
Conversely, if v(M,\infty ) \in trop(\scrP \itf k(n)), consider an antisymmetric matrix in \scrP \itf k(n) pro-

jecting to it, hence of rank 2k. This matrix necessarily has zero entries in the places where
v(M,\infty ) has  - \infty , so it is of the form \Biggl( 

0 \widetilde M
\widetilde M t 0

\Biggr) 
,

where \widetilde M is a matrix of rank at most k and projecting to M .

Theorem 3.7. \itI \itf \itt \ith \ite \itr \ite \iti \its \ita \itm \ita \itt \itr \iti \itx M \in \BbbR n1\times n2 \ito \itf \itt \itr \ito \itp \iti \itc \ita \itl \itr \ita \itn \itk \leq k \ita \itn \itd \itK \ita \itp \itr \ita \itn \ito \itv \itr \ita \itn \itk >k
\itt \ith \ite \itn Pfk(n) \not = trop(\scrP \itf k(n)), \itw \ith \ite \itr \ite n= n1 + n2.

\itT \ith \iti \its \ith \ita \itp \itp \ite \itn \its , \itf \ito \itr \ite \itx \ita \itm \itp \itl \ite , \itf \ito \itr k= 3 \ita \itn \itd \ita \itn \ity n\geq 14 \ita \itn \itd \itf \ito \itr \ita \itn \ity k\geq 4 \ita \itn \itd n\geq 2k+ 4.

\itP \itr \ito \ito \itf . Let M \in \BbbR n1\times n2 be a matrix of tropical rank \leq k and Kapranov rank >k. By part
(1) of Lemma 3.6 we have that v(M,K)\in Pfk(n) for every sufficiently big K.

Also, by part (2) of the lemma, v(M,\infty ) \not \in trop(\scrP \itf k(n)). In particular, v(M,\infty ) is not in
the closure of trop(\scrP \itf k(n)), which implies it is not true that v(M,K) \in trop(\scrP \itf k(n)) for all
sufficiently big K.

Thus, Pfk(n) \not = trop(\scrP \itf k(n)).
Summing up, the cases where we do not know whether Pfk(n) = trop(\scrP \itf k(n)) are
\bullet k= 2 and n\geq 8;
\bullet k= 3 and n\in \{ 9,10,11,12,13\} ;
\bullet k\geq 4 and n= 2k+ 3.
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322 LUIS CRESPO RUIZ AND FRANCISCO SANTOS

3.2. The \bfitk -associahedron as the fp-positive part of the tropical Pfaffian variety. We
are interested in the part of Pfk(n) contained in Grobk(n).

Definition 3.8. \itW \ite \itd \ite fi\itn \ite 

Pf+k (n) := Pfk(n)\cap Grobk(n).

\itW \ite \itc \ita \itl \itl \iti \itt \itt \ith \ite (k+ 1)-free part \ito \itf \itt \ith \ite \itt \itr \ito \itp \iti \itc \ita \itl \itP \itf \ita ffi\ita \itn \itv \ita \itr \iti \ite \itt \ity \ito \itf \itp \ita \itr \ita \itm \ite \itt \ite \itr \its n \ita \itn \itd k \itf \ito \itr \itt \itw \ito 
\itr \ite \ita \its \ito \itn \its . \itO \itn \itt \ith \ite \ito \itn \ite \ith \ita \itn \itd , \itt \ith \ite \iti \itn \iti \itt \iti \ita \itl \iti \itd \ite \ita \itl \itc \ito \itr \itr \ite \its \itp \ito \itn \itd \iti \itn \itg \itt \ito Grobk(n) \iti \its \itt \ith \ite \itS \itt \ita \itn \itl \ite \ity --\itR \ite \iti \its \itn \ite \itr 
\iti \itd \ite \ita \itl \ito \itf \itt \ith \ite \itc \ito \itm \itp \itl \ite \itx \ito \itf (k + 1)-\itf \itr \ite \ite \its \ite \itt \its . \itB \itu \itt , \itm \ito \itr \ite \its \iti \itg \itn \iti fi\itc \ita \itn \itt \itl \ity , \ito \itu \itr \itr \ite \its \itu \itl \itt \its \iti \itn \itt \ith \iti \its \its \ite \itc \itt \iti \ito \itn 
\its \ita \ity \itt \ith \ita \itt Pf+k (n) \itc \ito \iti \itn \itc \iti \itd \ite \its \itw \iti \itt \ith \itt \ith \ite \itp \ito \iti \itn \itt \its \ito \itf Grobk(n) \itw \ith \iti \itc \ith , \ite \itx \itp \itr \ite \its \its \ite \itd \iti \itn \itt \ith \ite w-\itc \ito \ito \itr \itd \iti \itn \ita \itt \ite \its ,
\ith \ita \itv \ite (k+ 1)-\itf \itr \ite \ite \its \itu \itp \itp \ito \itr \itt .

Theorem 3.9. \itL \ite \itt v= d(w)\in Grobk(n) \itb \ite \ita \itv \ite \itc \itt \ito \itr \iti \itn \itt \ith \ite \itG \itr \"\ito \itb \itn \ite \itr \itc \ito \itn \ite . \itT \ith \iti \its \iti \itn \itc \itl \itu \itd \ite \its \itt \ith \ite 
\itc \ita \its \ite \itw \ith \ite \itr \ite w \iti \its \itn \ito \itn \itn \ite \itg \ita \itt \iti \itv \ite (\ito \itr , \ite \itq \itu \iti \itv \ita \itl \ite \itn \itt \itl \ity , v \in FPn). \itT \ith \ite \itn ,

1. v \in Pf+k (n) \iti \itf \ita \itn \itd \ito \itn \itl \ity \iti \itf \itt \ith \ite \its \itu \itp \itp \ito \itr \itt \ito \itf w \iti \its (k+ 1)-\itf \itr \ite \ite ;

2. \iti \itf \itt \ith \ite \ita \itb \ito \itv \ite \ith \ito \itl \itd \its , \itt \ith \ite \itn \itf \ito \itr \ite \itv \ite \itr \ity \its \itu \itb \its \ite \itt U \subset 
\bigl( 
[n]
2

\bigr) 
\ito \itf \its \iti \itz \ite 2k + 2 \ito \itn \ite \ito \itf \itt \ith \ite \itm \ita \itx \iti \itm \ita \itl 

\itm \ita \itt \itc \ith \iti \itn \itg \its \ito \itf U \itf \ito \itr v \iti \its \itt \ith \ite \ito \itn \ite \itp \itr \ito \itd \itu \itc \iti \itn \itg \ita (k + 1)-\itc \itr \ito \its \its \iti \itn \itg , \ita \itn \itd \ita \its \ite \itc \ito \itn \itd \ito \itn \ite \iti \its 
\ito \itb \itt \ita \iti \itn \ite \itd \itf \itr \ito \itm \iti \itt \itb \ity \ita \its \itw \ita \itp \ito \itf \itt \itw \ito \itc \ito \itn \its \ite \itc \itu \itt \iti \itv \ite \ite \itd \itg \ite \its \iti \itn \itt \ith \ite (k+ 1)-\itc \itr \ito \its \its \iti \itn \itg .

\itP \itr \ito \ito \itf . Let U = \{ a0, a1, . . . , a2k+1\} written in cyclic order, and let E0 be the (k+1)-crossing
in it, that is, the matching that pairs ai with ak+1+i. As we already know, the maximum
weight given by v to matchings of U is attained at E0.

If the support of w is (k+1)-free, there must be an l such that no edge in the support of
w has an end between sides al and al+1 and the other between al+k+1 and al+k+2. Then,

E1 :=E0 \setminus \{ \{ al, al+k+1\} ,\{ al+1, al+k+2\} \} \cup \{ \{ al, al+k+2\} ,\{ al+1, al+k+1\} \} 

has the same weight as E0, so that v \in Pf+k (n) and part (2) holds.
Conversely, if the support of w contains a (k+1)-crossing then there is a U = \{ a0, a1, . . . ,

a2k+1\} such that each ai lies in one of the 2k + 2 regions defined by that crossing, and then
the matching E0 of U has weight strictly larger than any other matching. In particular,
v \not \in Pfk(n).

We now want to show that Pf+k (n) is contained in trop(\scrP \itf k(n)). That is to say, even if the
tropical Pfaffian variety and prevariety may not coincide, their ``(k + 1)-free parts"" coincide.
We need the following lemma, the proof of which we postpone to section 3.3.

Lemma 3.10. \itL \ite \itt v = d(w) \in Grobk(n) \itb \ite \its \itu ffi\itc \iti \ite \itn \itt \itl \ity \itg \ite \itn \ite \itr \iti \itc . \itT \ith \ite \itn , \itf \ito \itr \ite \itv \ite \itr \ity \its \itu \itb \its \ite \itt U \in \bigl( [n]
2k+2

\bigr) 
\itw \ite \ith \ita \itv \ite \itt \ith \ita \itt U \ith \ita \its \itt \ith \ite \its \ita \itm \ite \itn \itu \itm \itb \ite \itr \ito \itf \itp \ito \its \iti \itt \iti \itv \ite \ita \itn \itd \itn \ite \itg \ita \itt \iti \itv \ite \itm \ita \itt \itc \ith \iti \itn \itg \its \ito \itf \itm \ita \itx \iti \itm \itu \itm 

\itw \ite \iti \itg \ith \itt \itw \iti \itt \ith \itr \ite \its \itp \ite \itc \itt \itt \ito v.

Corollary 3.11. Pf+k (n)\subset trop(\scrP \itf k(n)). \itM \ito \itr \ite \ito \itv \ite \itr , Pf+k (n)\subset trop+(\scrP \itf k(n)).
Let us point out that Pfk(n) and Pf+k (n) are independent of the field \BbbK , while trop(\scrP \itf k(n))

and trop+(\scrP \itf k(n)) are (probably) not. The first statement is over an arbitrary field. The
second statement is stronger, but it makes sense only over fields of characteristic zero.

\itP \itr \ito \ito \itf . Let v \in Pf+k (n). We want to show that v \in trop(\scrP \itf k(n)). In fact, it is enough to
show this under the assumption that v is sufficiently generic (within Pf+k (n)), since trop(\scrP \itf k(n))
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MULTITRIANGULATIONS AND TROPICAL PFAFFIANS 323

is closed. By Theorem 3.9, being generic in Pf+k (n) implies that v= d(w) for a w with support
equal to a k-triangulation. By Lemma 3.10 the latter implies that the initial form of every
Pfaffian for the weight vector v vanishes at the point (1, . . . ,1). Since Pfaffians are a Gr\"obner
basis for v by Theorem 2.8, we have that

(1, . . . ,1)\in V (inv(Ik(n))).

This clearly implies that inv(Ik(n)) contains no monomials (over an arbitrary field) and that
it does not contain polynomials with all coefficients real and of the same sign (over fields of
characteristic zero).

Putting together Theorem 3.9 and Corollary 3.11 we conclude Theorem 1.9.

\itR \ite \itm \ita \itr \itk 3.12. Since Pfaffians of degree two coincide with the 3-term Pl\"ucker relations
that generate the Grassmannian \scrG \itr 2(n), we have that \scrP \itf 1(n) = \scrG \itr 2(n) and that Pf1(n) equals
the \itD \itr \ite \its \its \iti \ita \itn \scrD r2(n) (the tropical prevariety defined by quadratic Pl\"ucker relations [31, sec-
tion 4.4]).

It was proven in [44] that \scrD r2(n) = trop(\scrG \itr 2(n)) (equivalently, that Pf1(n) = trop(\scrP \itf 1(n)),
by showing that trop(\scrG \itr 2(n)) also coincides with the space \scrT \itr \ite \ite n of \itt \itr \ite \ite \itm \ite \itt \itr \iti \itc \its for trees with
n leaves. The proof is reproduced in [31, Theorem 4.3.3] and the idea of it is the following:
the tropical hypersurface corresponding to the Pfaffian of degree two (or the 3-term Pl\"ucker
relation) of a certain U \subset 

\bigl( 
[n]
4

\bigr) 
equals the solution set of

vi,j + vk,l \leq max\{ vi,k + vj,l, vi,l + vj,k\} \forall \{ i, j\} \in 
\biggl( 
U

2

\biggr) 
.

These relations (taken for all U) are exactly the \itf \ito \itu \itr -\itp \ito \iti \itn \itt \itc \ito \itn \itd \iti \itt \iti \ito \itn \its that characterize tree
metrics [6]. Hence, trop(\scrP \itf 1(n)) \subset Pf1(n) = \scrT \itr \ite \ite n. For the converse, for any given (generic)
v \in \scrT \itr \ite \ite n = Pf1(n) there is a ternary tree T with nonnegative weights w on its edges and
realizing v as a tree metric. By relabeling its leaves, we can assume that T is the dual tree
of a certain triangulation of the n-gon. Hence, v coincides (after relabeling, but this does not
change trop(\scrP \itf 1(n))) with the d(w) of Definition 2.3 for this choice of weights. Theorem 3.9
and Corollary 3.11 then imply that v \in Pf+1 (n)\subset trop(\scrP \itf 1(n)).

We do not have a concrete example showing that Pf2(n) \not = trop(\scrP \itf 2(n)) for any n, nor
Pfk(2k+3) \not = trop(\scrP \itf k(2k+3)) for any k, but the above proof cannot work for k\geq 2 since not
every cone in Pfk(n) can be sent to Pf+k (n) by a relabeling of the vertices. This is illustrated
in the following example.

\itE \itx \ita \itm \itp \itl \ite 3.13. Let n = 6 and k = 2. Observe that Pf2(6) = trop(\scrP \itf 2(6)) since it is a
hypersurface.

Consider the v \in \BbbR (
[6]

2 ) defined by

v1,3 = v2,3 = v2,4 = v4,5 = v5,6 = v1,6 = 1,

and vi,j = 0 for every other i, j. This v lies in Pf2(6) since it gives maximum weight to
(exactly) two matchings, namely, \{ 13,24,56\} and \{ 23,45,16\} .

Since the first matching is negative and the second one is positive, we have that v \in 
trop+(\scrP \itf 2(6)). Since the two matchings do not differ by a single swap, part (2) of Theorem 3.9
implies that no relabeling sends v to Pf+2 (6).
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324 LUIS CRESPO RUIZ AND FRANCISCO SANTOS

The example also shows that trop+(\scrP \itf k(n)) is not contained in the Gr\"obner cone of k+1-
crossings, but that is also easy to achieve with the following simpler example: let v13 = 1 and
every other vij = 0. For any k\geq 2 and every n\geq 6 this gives a point in trop+(\scrP \itf k(n)) (in every
maximum matching of size 3 we can swap the two edges of weight zero to get a maximum
matching of the opposite sign) that is not in the Gr\"obner cone (in any U containing \{ 1,3\} the
matching using \{ 1,3\} has weight larger than the 3-crossing).

3.3. Proof of Lemma 3.10. In the following result we call an \ita \itc \itc \ito \itr \itd \iti \ito \itn any sequence
e1, . . . , em of edges from

\bigl( 
[n]
2

\bigr) 
such that (a) for every i= 1, . . . , n - 1, ei and ei+1 share a vertex;

(b) for every i= 2, . . . , n - 1, the endpoints of ei - 1 and ei+1 that are not in ei lie on opposite
sides of the line containing ei.

The only property of k-triangulations that we need in what follows (apart from the fact
that they are (k+ 1)-free) is the following.

Lemma 3.14. \itL \ite \itt T \itb \ite \ita k-\itt \itr \iti \ita \itn \itg \itu \itl \ita \itt \iti \ito \itn \ito \itf \itt \ith \ite n-\itg \ito \itn , \itf \ito \itr \its \ito \itm \ite k. \itT \ith \ite \itn , \ite \itv \ite \itr \ity \itt \itw \ito \ite \itd \itg \ite \its 
\ito \itf T \itt \ith \ita \itt \itd \ito \itn \ito \itt \itc \itr \ito \its \its \ita \itr \ite \itp \ita \itr \itt \ito \itf \ita \itn \ita \itc \itc \ito \itr \itd \iti \ito \itn \itc \ito \itn \itt \ita \iti \itn \ite \itd \iti \itn T .

\itP \itr \ito \ito \itf . Let e = \{ a, b\} and e\prime = \{ a\prime , b\prime \} be the two edges of T ; we assume without loss of
generality that 1 \leq a \leq a\prime < b\prime \leq b \leq n. We will use induction on min\{ a\prime  - a, b - b\prime \} , taking
as base cases those with a = a\prime or b = b\prime , which are trivial. Hence, for the inductive step we
suppose that e and e\prime have no endpoints in common.

If \{ a, b\prime \} \in T , we are done, so we assume that \{ a, b\prime \} /\in T . Then there is a k-crossing K in
T that crosses that edge. That is, K \cup \{ a, b\prime \} is a (k+1)-crossing contained in T \cup \{ a, b\prime \} . Let
e\prime \prime be the edge next to \{ a, b\prime \} in the positive direction in this (k+1)-crossing. If e\prime \prime crossed e
(resp., e\prime ), then every edge in K would cross e (resp., e\prime ), which would imply that T contains
the (k+1)-crossing K\cup \{ e\} (resp., K\cup \{ e\prime \} ). Thus, e\prime \prime does not cross any of e or e\prime . Inductive
hypothesis implies that T contains an accordion from e to e\prime \prime and an accordion from e\prime \prime to e\prime ,
and the union of these two accordions is an accordion from e to e\prime .

We now consider a subset U \in 
\bigl( [n]
2k+2

\bigr) 
(as a set of sides, not vertices, of the n-gon) and

v= d(w)\in Grobk(n) sufficiently generic. Genericity implies, by Theorem 3.9, that the support
of w is a certain k-triangulation T . For each edge e\in T we call the \itl \ite \itn \itg \itt \ith \ito \itf e \itw \iti \itt \ith \itr \ite \its \itp \ite \itc \itt \itt \ito 
U , and denote as \ell U (e) the smallest size of the two parts of U separated by e. If both parts
are equal (that is, if \ell U (e) = k+ 1) we say that e is a diameter of U .

For a matching M of U and an edge e of T we denote by cM (e) the number of edges of
M that cross e. Remember that, v being in the Gr\"obner cone, the maximum weight among
matchings of U is the weight of the (k+ 1)-crossing.

Lemma 3.15. \itL \ite \itt M \itb \ite \ita \itm \ita \itt \itc \ith \iti \itn \itg \ito \itf U . \itT \ith \ite \itn , M \iti \its \ito \itf \itm \ita \itx \iti \itm \itu \itm \itw \ite \iti \itg \ith \itt \itw \iti \itt \ith \itr \ite \its \itp \ite \itc \itt \itt \ito 
v \iti \itf \ita \itn \itd \ito \itn \itl \ity \iti \itf \itf \ito \itr \ite \itv \ite \itr \ity e\in T \itw \ite \ith \ita \itv \ite \itt \ith \ita \itt \ell U (e) = cM (e).

\itP \itr \ito \ito \itf . Observe that the equality \ell U (e) = cM (e) holds for the case when M is the (k+1)-
crossing, and that, for arbitrary M , knowing which edges of T cross each edge of M is enough
to compute the weight of M . This shows the sufficiency of \ell U (e) = cM (e).

Now suppose that \ell U (e)> cM (e) for some edge e\in T . Take a vector w\prime obtained setting we

to its minimum possible value while staying in Grobk(n). For v
\prime = d(w\prime ), the (k+ 1)-crossing

is still the maximum weight matching, so
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MULTITRIANGULATIONS AND TROPICAL PFAFFIANS 325

\sum 

e\in T
w\prime 
ecM (e)\leq 

\sum 

e\in T
w\prime 
elU (e)\Rightarrow 

\sum 

e\in T
w\prime 
e(lU (e) - cM (e))\geq 0.

Our condition in w implies that we >w\prime 
e, so

\sum 

e\in T
we(lU (e) - cM (e))> 0\Rightarrow 

\sum 

e\in T
wecM (e)<

\sum 

e\in T
welU (e).

Hence, M is not of maximum weight.

For the rest of this section, we collapse the n-gon to a (2k + 2)-gon by leaving only the
sides labeled by U ; that is, by contracting all edges e with \ell U (e) = 0. We denote as TU the
subgraph of K2k+2 obtained from T after this collapse. We introduce the following partial
order among edges of TU (or, in fact, among edges of K2k+2): e and f are incomparable if
they either cross or are separated by a diameter of U , and if they are comparable then they
are ordered according to their \ell U .

Observe that both \ell U (e) and cM (e) depend only on the class of e in TU . Thus, Lemma 3.15
needs only to be checked in TU and not in T . (That is, only one representative edge of T for
each class in TU needs to be checked.) But even more is true. Let T\mathrm{m}\mathrm{a}\mathrm{x}

U be the set of edges of
TU that are maximal (within TU ) for this order.

Lemma 3.16. \itL \ite \itt M \itb \ite \ita \itm \ita \itt \itc \ith \iti \itn \itg \ito \itf U . \itI \itf \ell U (e) = cM (e) \ith \ito \itl \itd \its \itf \ito \itr \itt \ith \ite \ite \itd \itg \ite \its \iti \itn T\mathrm{m}\mathrm{a}\mathrm{x}
U

\itt \ith \ite \itn \iti \itt \ith \ito \itl \itd \its \itf \ito \itr \ita \itl \itl \ite \itd \itg \ite \its \iti \itn TU , \ith \ite \itn \itc \ite \iti \itn T .

\itP \itr \ito \ito \itf . Let e < e\prime be two edges of TU and suppose that \ell U (e
\prime ) = cM (e\prime ). Then, the edges

of M that cross e\prime match the \ell U (e
\prime ) edges of the (2k+ 2)-gon on the shorter side of e\prime to the

same number of edges on the longer side (if e\prime is a diameter it does not matter which side we
call short). By the definition of e < e\prime , the smaller side of e is contained in the smaller side of
e\prime , so the same holds for e and \ell U (e) = cM (e).

This last lemma suggests we should look at the properties of T\mathrm{m}\mathrm{a}\mathrm{x}
U .

Lemma 3.17.
1. \itE \itv \ite \itr \ity \itt \itw \ito \ite \itd \itg \ite \its \iti \itn T\mathrm{m}\mathrm{a}\mathrm{x}

U \ite \iti \itt \ith \ite \itr \itc \itr \ito \its \its \ite \ita \itc \ith \ito \itt \ith \ite \itr \ito \itr \its \ith \ita \itr \ite \ita \itv \ite \itr \itt \ite \itx .
2. \itT \ith \ite \itr \ite \iti \its \ita \itv \ite \itr \itt \ite \itx \ito \itf \itt \ith \ite (2k+ 2)-\itg \ito \itn \itn \ito \itt \itu \its \ite \itd \iti \itn T\mathrm{m}\mathrm{a}\mathrm{x}

U .

\itP \itr \ito \ito \itf . For part (1) we use Lemma 3.14 and the observation that the passage from T to
TU preserves accordions. In particular, every two edges of TU that do not cross are part of an
accordion in TU . Only two of the edges of an accordion contained in TU can be in T\mathrm{m}\mathrm{a}\mathrm{x}

U , and
they share a vertex; hence, every two edges in T\mathrm{m}\mathrm{a}\mathrm{x}

U that do not cross share a vertex.
This finishes the proof of part (1) and gives us two possibilities:
\bullet If all the edges in T\mathrm{m}\mathrm{a}\mathrm{x}

U mutually cross, then T\mathrm{m}\mathrm{a}\mathrm{x}
U is a j-crossing for some j < k + 1.

Hence, at least one (in fact at least two) of the 2k+2 vertices of the (2k+2)-gon are
not used.

\bullet If two edges e and e\prime of T\mathrm{m}\mathrm{a}\mathrm{x}
U share a vertex p, then none of them is a diameter and,

in fact, they are on opposite sides of the diameter using p. Then the opposite vertex
q of that diameter is not used in T\mathrm{m}\mathrm{a}\mathrm{x}

U because it is impossible for an edge with an
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326 LUIS CRESPO RUIZ AND FRANCISCO SANTOS

endpoint in q other than the diameter itself to cross or share a vertex with both of
e and e\prime .

In both cases we have a proof of part (2).

Lemma 3.18. \itL \ite \itt p \itb \ite \ita \itv \ite \itr \itt \ite \itx \ito \itf \itt \ith \ite (2k + 2)-\itg \ito \itn \itn \ito \itt \itu \its \ite \itd \iti \itn T\mathrm{m}\mathrm{a}\mathrm{x}
U . \itL \ite \itt a \ita \itn \itd b \itb \ite \itt \ith \ite 

\ite \itl \ite \itm \ite \itn \itt \its \ito \itf U \itn \ite \itx \itt \itt \ito p. \itT \ith \ite \itn , \itn \ito \itm \ita \itx \iti \itm \ita \itl \itm \ita \itt \itc \ith \iti \itn \itg \ito \itf U \itm \ita \itt \itc \ith \ite \its a \itt \ito b.

\itP \itr \ito \ito \itf . To seek a contradiction, suppose that M is a maximal matching and that \{ a, b\} \in 
M . We claim that, for any other edge \{ c, d\} \in M , no edge of T\mathrm{m}\mathrm{a}\mathrm{x}

U has a and b on one side
and c and d on the other side. Suppose that there is such an edge e. Then, by Lemmas 3.15
and 3.16, we have cM (e) = lU (e), and the swaps \{ a, c\} ,\{ b, d\} and \{ a, d\} ,\{ b, c\} cross T\mathrm{m}\mathrm{a}\mathrm{x}

U more
often than the original pair of edges \{ a, b\} ,\{ c, d\} ; that is, more often than the single edge \{ c, d\} 
(since \{ a, b\} does not cross T\mathrm{m}\mathrm{a}\mathrm{x}

U ). This implies that, after swapping, we have cM (e)> lU (e),
which is not possible. This proves the claim.

Now, since all edges of T\mathrm{m}\mathrm{a}\mathrm{x}
U have a and b on the same side, we conclude that this side

must contain one of c or d for every \{ c, d\} \in M other than \{ a, b\} . In particular, for every
e \in T\mathrm{m}\mathrm{a}\mathrm{x}

U the side of e containing a and b has length at least k + 2 (it contains a, b, and one
vertex of each of the other k edges in M). This gives the following contradiction: let p\prime be one
of the vertices of the (2k+ 2)-gon next to p. The edge \{ p, p\prime \} is in TU , since every boundary
edge of the 2k+2-gon is. Hence, there must be an edge in TU that is greater than \{ p, p\prime \} in the
partial order, and that edge can have length at most k+ 1 on the side containing a and b.

We are now ready to prove Lemma 3.10.

\itP \itr \ito \ito \itf \ito \itf \itL \ite \itm \itm \ita 3.10. Let p be a vertex of the (2k+2)-gon not used in T\mathrm{m}\mathrm{a}\mathrm{x}
U , which exists

by Lemma 3.17. Let a and b be the first elements of U on both directions starting at p.
Let us denote by \scrM the set of matchings of U not using the edge \{ a, b\} . This contains

all matchings of maximum weight by Lemma 3.18. Consider the map \phi :\scrM \rightarrow \scrM that takes
each matching M \in \scrM and swaps in it the edges that contain a and b in the way that does
not produce the pair \{ a, b\} . This map is well-defined since there are three possible matchings
among four vertices and we are excluding one of them. We have the following:

\bullet The map \phi is obviously an involution.
\bullet The map \phi sends matchings of maximum weight to matchings of maximum weight by

Lemmas 3.15 and 3.16, since every edge of T\mathrm{m}\mathrm{a}\mathrm{x}
U leaves a and b on the same side.

\bullet If a\prime and b\prime are the elements of U matched to a and b in a certain matching M then
the matching of a, b, a\prime , b\prime that has a crossing is involved in the swap from M to \phi (M)
(because the matching that is not involved in the swap is \{ a, b\} ,\{ a\prime , b\prime \} , which does
\itn \ito \itt have a crossing). Hence, M and \phi (M) have opposite parity, by Lemma 2.1.

Putting these facts together we conclude that \phi restricts to a bijection between the odd
and the even matchings of U of maximum weight.

4. Recovering the g-vector fan for \bfitk = 1. In this section we look at the case k = 1
and show how to project Pf+1 (n) isomorphically to the associahedron \scrA \its \its 1(n). In doing so
we recover the so-called g-vector fan of the associahedron defined in the context of cluster
algebras. Throughout the section let T \subset 

\bigl( 
[n]
2

\bigr) 
be an arbitrary triangulation of the n-gon, that

we call the \its \ite \ite \itd \itt \itr \iti \ita \itn \itg \itu \itl \ita \itt \iti \ito \itn . Then we have the following.
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MULTITRIANGULATIONS AND TROPICAL PFAFFIANS 327

Lemma 4.1. \itF \ito \itr \ite \itv \ite \itr \ity (vi,j)i,j \in Pf+1 (n), \itk \itn \ito \itw \iti \itn \itg \itt \ith \ite \ite \itn \itt \itr \iti \ite \its \ito \itf v \itc \ito \itr \itr \ite \its \itp \ito \itn \itd \iti \itn \itg \itt \ito T , \itw \ite 
\itc \ita \itn \itr \ite \itc \ito \itv \ite \itr \ita \itl \itl \ito \itt \ith \ite \itr \ite \itn \itt \itr \iti \ite \its . \itT \ith \ita \itt \iti \its , \itt \ith \ite \itp \itr \ito \itj \ite \itc \itt \iti \ito \itn \pi : Pf+1 (n)\rightarrow \BbbR T \sim = \BbbR 2n - 3 \itt \ith \ita \itt \itr \ite \its \itt \itr \iti \itc \itt \its 
\ite \ita \itc \ith \itv \ite \itc \itt \ito \itr (vi,j)i,j \itt \ito \itt \ith \ite \ite \itn \itt \itr \iti \ite \its \itw \iti \itt \ith \{ i, j\} \in T \iti \its \iti \itn \itj \ite \itc \itt \iti \itv \ite .

\itP \itr \ito \ito \itf . Let v \in Pf+1 (n) and let us see that we can recover the entry vi,j for any \{ i, j\} \in 
\bigl( 
[n]
2

\bigr) 
,

knowing the entries of v corresponding to edges of T .
The proof is by induction on the number of triangles of T crossed by \{ i, j\} . If only two

triangles are crossed, then \{ i, j\} is the only unknown entry from the quadruple U = \{ i, j, k, l\} 
consisting of those two triangles, and the edges \{ i, j\} and \{ k, l\} cross. Since d \in Pf+1 (n), we
have that the maximum weight among the three matchings in U is attained by \{ ij, kl\} and
at least one of the other two matchings, so we can write

vi,j =max\{ vi,k + vj,l, vi,l + vj,k\}  - vk,l.

If \{ i, j\} crosses more than two triangles, let \{ k, i, l\} be the triangle incident to i and crossed by
\{ i, j\} . By inductive hypothesis, all the entries among the 4-tuple \{ i, j, k, l\} are known except
for the entry \{ i, j\} , so we can recover vi,j with the same formula as above.

That is, \pi embeds Pf+1 (n) as a full-dimensional fan \pi (Pf+1 (n)) \subset \BbbR T \sim = \BbbR 2n - 3. If we now
compose it with a second projection

\phi :\BbbR T \rightarrow \BbbR T \sim =\BbbR n - 3

that sends the irrelevant face of \pi (Pf+1 (n)) to zero we will automatically have that \phi (\pi (Pf+1 (n)))
is a fan isomorphic to the link of the irrelevant face in \pi (Pf+1 (n)), that is, isomorphic to
\scrA \its \its 1(n), the normal fan of the associahedron. Here, T denotes the relevant part (the n - 3
diagonals) of T .

Corollary 4.2. \itT \ith \ite \itp \itr \ito \itj \ite \itc \itt \iti \ito \itn 

\phi \circ \pi : Pf+1 (n)\rightarrow \BbbR T \sim =\BbbR n - 3

\itg \iti \itv \ite \its \ita \itr \ite \ita \itl \iti \itz \ita \itt \iti \ito \itn \ito \itf \itt \ith \ite \ita \its \its \ito \itc \iti \ita \ith \ite \itd \itr \ito \itn \scrA \its \its 1(n) \ita \its \ita \itc \ito \itm \itp \itl \ite \itt \ite \itf \ita \itn .

\itP \itr \ito \ito \itf . This projection is conewise linear (linear in each cone). After normalizing, it
becomes a continuous map from the (n - 4)-dimensional sphere \scrA \its \its 1(n) to the unit sphere in
\BbbR n - 3 and, by Lemma 4.1, it is injective. Since every injective continuous map from a sphere
to itself is a homeomorphism, \phi (\pi (Pf+1 (n))) is complete.

\itR \ite \itm \ita \itr \itk 4.3. Lemma 4.1 and its Corollary 4.2 do not hold for k \geq 2. In fact, suppose we
take T to be any k-triangulation containing all the edges of the form (1, i) and (2, i), which
exists since k\geq 2. Consider now the cone corresponding to a k-triangulation T \prime that does not
use a certain edge (1, i). In this cone we have w1,i = 0 and hence

v1,i + v2,i+1 = v1,i+1 + v2,i.

Thus, the projection \pi is not injective; it collapses the cone of T \prime to a lower dimension.

We now want to give a more explicit description of the fan in Corollary 4.2; that is,
explicit coordinates in \BbbR n - 3 for the ray corresponding to each diagonal \{ i, j\} \in 

\bigl( 
[n]
2

\bigr) 
. For this,
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328 LUIS CRESPO RUIZ AND FRANCISCO SANTOS

remember that T is embedded as a true triangulation using the vertices of our n-gon, while
the diagonals \{ a, b\} \in 

\bigl( 
[n]
2

\bigr) 
corresponding to coordinates in our ambient space correspond to

pairs of sides. For any given diagonal \delta we define the following \itc \itr \ito \its \its \iti \itn \itg \its \iti \itg \itn of \{ a, b\} with
respect to \delta and the g-vector of \{ a, b\} with respect to T as follows.

Definition 4.4 (See [23, Proposition 33] or [24, Definition 1.1]). \itL \ite \itt \delta \itb \ite \ita \itd \iti \ita \itg \ito \itn \ita \itl \iti \itn T \ita \itn \itd 
\{ a, b\} \in 

\bigl( 
[n]
2

\bigr) 
. \itL \ite \itt q(\delta ) \itb \ite \itt \ith \ite \itq \itu \ita \itd \itr \iti \itl \ita \itt \ite \itr \ita \itl \iti \itn T \itc \ito \itn \its \iti \its \itt \iti \itn \itg \ito \itf \delta \ita \itn \itd \iti \itt \its \itt \itw \ito \ita \itd \itj \ita \itc \ite \itn \itt \itt \itr \iti \ita \itn \itg \itl \ite \its .

\itW \ite \itd \ite fi\itn \ite \itt \ith \ite crossing sign of \{ i, j\} with respect to \delta in T :

ε(δ ∈ T, {a, b}) :=





+1 if {a, b} crosses q(δ) as a Z (“zig”),

−1 if {a, b} crosses q(δ) as a Z(“zag”),

0 otherwise.

\itW \ite \itd \ite fi\itn \ite \itt \ith \ite \bfitg -vector of \{ a, b\} with respect to T \ita \its 

\bfitg (T,\{ a, b\} ) := (\varepsilon (\delta \in T,\{ a, b\} ))\delta \in T .

\itR \ite \itm \ita \itr \itk 4.5. g(T,\{ a, b\} ) has the following interpretation: the edges of T crossed by \{ i, j\} 
form an accordion in the sense of section 3.3. The signs in the vector g(T,\{ a, b\} ) record at
which edges the accordion turns left or right. In particular, the g-vector is zero for edges of
T that are not in the accordion, but also for those in which the accordion ``does not turn.""

This definition of g-vectors, which we have taken from Hohlweg, Pilaud, and Stella [23],
is a specialization to the disc of the \its \ith \ite \ita \itr \itc \ito \ito \itr \itd \iti \itn \ita \itt \ite \its described for arbitrary surfaces by
Fomin and Thurston in [18]. They consider the g-\itv \ite \itc \itt \ito \itr \itf \ita \itn obtained considering as cones
all the possible clusters (which, in type A are the triangulations) and taking as generators
the g-vectors for a fixed but arbitrary seed triangulation T . The main result of [23] is that
these fans are polytopal. It turns out that these fans are linearly isomorphic to the ones of
Corollary 4.2.

Theorem 4.6. \itI \itn \itt \ith \ite \itb \ita \its \iti \its \ito \itf \BbbR n - 3 \itc \ito \itn \its \iti \its \itt \iti \itn \itg \ito \itf \itt \ith \ite \itr \ita \ity \its \itc \ito \itr \itr \ite \its \itp \ito \itn \itd \iti \itn \itg \itt \ito \itt \ith \ite \itd \iti \ita \itg \ito \itn \ita \itl \its 
\ito \itf T \itw \ite \ith \ita \itv \ite \itt \ith \ita \itt \itf \ito \itr \ite \itv \ite \itr \ity \{ a, b\} \in 

\bigl( 
[n]
2

\bigr) 
, \itt \ith \ite \itv \ite \itc \itt \ito \itr \bfitg (T,\{ a, b\} ) \its \itp \ita \itn \its \itt \ith \ite \itr \ita \ity \ito \itf im(\phi \circ \pi )

\itc \ito \itr \itr \ite \its \itp \ito \itn \itd \iti \itn \itg \itt \ito \{ a, b\} .
\itP \itr \ito \ito \itf . For each (i, j) \in 

\bigl( 
[n]
2

\bigr) 
let Wi,j be the generator of FPn corrresponding to a certain

\{ i, j\} . That is, Wi,j = d(w) for the vector w with wi,j = 1 and wi\prime ,j\prime = 0 if \{ i\prime , j\prime \} \not = \{ i, j\} . We
think of Wi,j as the standard basis vector in the coordinates wi,j , and let Vi,j be the standard
basis vector in the coordinates vi,j that we have been using so far. The Wi,j are also the
generators for the fan structure in Pf+k (n), so that \phi \circ \pi (Wi,j) is the corresponding generator
of \phi \circ \pi (Pf+1 (n)).

The relations in Definition 2.3, which express the coordinates v in terms of the coordinates
w, get transposed to the following relations among the vectors Wi,j and Va,b:

Wi,j =
\sum 

\{ a,b\} \in ([n]

2 )
i<b\leq j<a\leq i

Va,b.(4.1)
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MULTITRIANGULATIONS AND TROPICAL PFAFFIANS 329

Observe that the projections \pi and \phi are defined by their images at the vectors V and W ,
respectively. \pi sends Vi,j to zero if \{ i, j\} \not \in T , and \phi sends \pi (Wi,i+1) to zero for every i. For

simplicity, for each vector V \in \BbbR (
[n]

2 ) we will denote V := \phi (\pi (V ))\in \BbbR n - 3, and the same for W .
Let \{ i, j\} be a diagonal of T . We then have

W i,j +W i+1,j+1 =W i,i+1 +W j,j+1 = 0,

where the first equality comes from (4.1) taking into account that the only edges of T crossing
\{ i, j\} or \{ i + 1, j + 1\} are those with an endpoint in i or j, and each of them crosses \{ i, j\} 
and \{ i+1, j+1\} the same number of times as it crosses \{ i, i+1\} or \{ j, j+1\} . (Namely, they
all cross once except for the edge \{ i, j\} which crosses twice). The second equality comes from
the fact that \phi (\pi (Wi,i+1) = 0 for every i. Thus we have

W i,j = - W i+1,j+1

for each diagonal \{ i, j\} of T .
Now, let a and b be two sides of the n-gon and consider the accordion in T between a and b.

Let \{ i1, j1\} , . . . ,\{ i\ell , j\ell \} be the diagonals of T at which the accordion has an ``inflection point""
(it changes from turning left to turning right, or vice versa, that is, \{ a, b\} crosses \{ im, jm\} as
a Z or a , alternatively). The statement we want to prove is that

W a,b =
\sum 

\delta \in T

\varepsilon (\delta \in T,\{ a, b\} )W \delta =
\sum 

m

\varepsilon (\{ im, jm\} \in T,\{ a, b\} )W im,jm .(4.2)

Note that  - W im,jm equals W im+1,jm+1, so we are taking the sum of the edges in the zigzag
turned in the direction of the path. Indeed, the sum in the right-hand side includes three times
the diagonals \{ im, jm\} , twice the rest of the diagonals in the accordion, and once the rest of
the edges with an endpoint in vertices where an \{ im, jm\} meets the next one. Subtracting the
irrelevant W 's for these vertices, we get exactly once the diagonals separating a and b, and
only them.

Corollary 4.7. \itL \ite \itt T \itb \ite \ita \itn \ity \itt \itr \iti \ita \itn \itg \itu \itl \ita \itt \iti \ito \itn \ito \itf \itt \ith \ite n-\itg \ito \itn . \itT \ith \ite \ita \its \its \ito \itc \iti \ita \ith \ite \itd \itr \ita \itl \itf \ita \itn im(\phi \circ \pi ) \iti \itn 
\BbbR n - 3 \ito \itf \itC \ito \itr \ito \itl \itl \ita \itr \ity 4.2 \ite \itq \itu \ita \itl \its \itt \ith \ite \bfitg -\itv \ite \itc \itt \ito \itr \itf \ita \itn \ito \itf T . \itH \ite \itn \itc \ite , \iti \itt \iti \its \itp \ito \itl \ity \itt \ito \itp \ita \itl .

\itR \ite \itm \ita \itr \itk 4.8. From the perspective of cluster algebras, associahedra are the type A case of
the \itg \ite \itn \ite \itr \ita \itl \iti \itz \ite \itd \ita \its \its \ito \itc \iti \ita \ith \ite \itd \itr \ita that Fomin and Zelevinsky [19] defined as simplicial spheres and
Chapoton, Fomin, and Zelevinsky [10] constructed as polytopes, using the so-called d-vector
fans for certain seed clusters. In type A, this construction was generalized by Ceballos, Santos,
and Ziegler [8, section 5] to obtain Catalan-many associahedra by showing that any triangu-
lation works as the seed triangulation in the d-vector construction.

The construction of generalized associahedra via g-vectors instead of d-vectors was first
achieved in various special cases by, among others, Hohlweg-Lange [21], Hohlweg, Lange, and
Thomas [22], Pilaud and Stump [38], and Stella [47], before the general case was settled by
Hohlweg, Pilaud, and Stella in [23].
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The associahedral fans obtained by Santos via d-vector fans and by Hohlweg, Pilaud, and
Stella via g-vector fans from a seed triangulation T have certain similarities:

1. For each of the n - 3 diagonals \{ i, j\} \in T , the ray corresponding to \{ i, j\} is opposite
to another ray. That is, the corresponding facets in the associahedron are parallel.

2. Every other ray can be expressed as a \{ +1,0, - 1\} combination in the basis given by
those n - 3 rays.

However, they are not the same. In the g-vector fan the ray opposite to a diagonal \{ i, j\} 
of T is \{ i+1, j +1\} while in the d construction it is the diagonal inserted in T by the flip of
\{ i, j\} .

One could think that there is a variant of g-vectors for k > 1. For example, for k = 2 it
is known that multitriangulations are complexes of 5-sided stars [36], and a g-vector can be
defined assigning different values for \varepsilon (\{ i, j\} \in T,\{ a, b\} ) depending on the position of \{ a, b\} 
with respect to the two stars incident to \{ i, j\} . A priori, the problem would be how to define
these \varepsilon (\{ i, j\} \in T,\{ a, b\} ) so that they work. If the two edges cross, there are 4 possible
positions for a and the same number for b, giving 16 different positions, and the idea would be
to use different coefficients as \varepsilon depending on which of the 16 possibilities (or 10, if we mod
out symmetry) we are in.

However, this idea can not work for n big enough.

Theorem 4.9. \itF \ito \itr \ita k-\itt \itr \iti \ita \itn \itg \itu \itl \ita \itt \iti \ito \itn T \itw \iti \itt \ith k > 1, \iti \itf \itt \ith \ite \itr \ite \iti \its \ita \itn \ite \itd \itg \ite \itn \ito \itt \itc \ito \itn \itt \ita \iti \itn \ite \itd \iti \itn \ita \itn \ity 
\itp \ita \iti \itr \ito \itf \ita \itd \itj \ita \itc \ite \itn \itt \its \itt \ita \itr \its \ito \itf T , \iti \itt \iti \its \iti \itm \itp \ito \its \its \iti \itb \itl \ite \itt \ito \itr \ite \ita \itl \iti \itz \ite \itt \ith \ite k-\ita \its \its \ito \itc \iti \ita \ith \ite \itd \itr \ito \itn \ita \its \ita \bfitg -\itv \ite \itc \itt \ito \itr \itf \ita \itn 
\itw \iti \itt \ith \its \ite \ite \itd T , \iti \itn \itd \ite \itp \ite \itn \itd \ite \itn \itt \itl \ity \ito \itf \itt \ith \ite \itv \ita \itl \itu \ite \its \itc \ith \ito \its \ite \itn \itf \ito \itr \varepsilon .

\itP \itr \ito \ito \itf . Let \{ a, b\} be the edge. We will show that g(a, b) + g(a+ 1, b+ 1) = g(a, b+ 1) +
g(a+ 1, b). Then, we can choose a k-triangulation that contains these edges (for k > 1 it will
exist), and its cone will not have full dimension.

This equality can be checked one coordinate at a time. For an edge \{ i, j\} \in T , either a
is not in the two stars delimited by \{ i, j\} or b is not. In the first case, \varepsilon (\{ i, j\} \in T,\{ a, c\} ) =
\varepsilon (\{ i, j\} \in T,\{ a+1, c\} ) for any c, concretely for c= b and c= b+1, and the equality holds for
this component. The same happens if b is not in the two stars.

Corollary 4.10. \itI \itt \iti \its \iti \itm \itp \ito \its \its \iti \itb \itl \ite \itt \ito \itr \ite \ita \itl \iti \itz \ite \itt \ith \ite k-\ita \its \its \ito \itc \iti \ita \ith \ite \itd \itr \ito \itn \ita \its \ita \bfitg -\itv \ite \itc \itt \ito \itr \itf \ita \itn , \iti \itn \itd \ite \itp \ite \itn -
\itd \ite \itn \itt \itl \ity \ito \itf \itt \ith \ite \itv \ita \itl \itu \ite \its \itc \ith \ito \its \ite \itn \itf \ito \itr \varepsilon \itf \ito \itr k > 1 \ita \itn \itd n \itb \iti \itg \ite \itn \ito \itu \itg \ith .

\itP \itr \ito \ito \itf . Suppose it is possible. Then all edges must be contained in a pair of adjacent stars.
There are as many pairs of adjacent stars as relevant edges in T , that is, k(n - 2k - 1). Each
pair contains at most 4k vertices that form

\bigl( 
4k
2

\bigr) 
edges, so we get

\biggl( 
n

2

\biggr) 
\leq k(n - 2k - 1)

\biggl( 
4k

2

\biggr) 

which is false for n big enough.
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