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Abstract—Power Factor Correction (PFC) converters are
widely employed for AC/DC conversion to fulfil the applicable
standards while ensuring high efficiency. Current-sensorless con-
trollers in PFCs simplify the interaction between power and con-
trol circuits, improving noise immunity. This manuscript reviews
the state-of-the-art in line current control techniques, identifying
relevant contributions that incorporate predictive algorithms, and
those that eliminate the current sensor. Furthermore, it evaluates
two approaches for current-sensorless PFC. The first is applicable
to converters with diode-bridge and includes a high-resolution
digital control loop to cancel the estimation errors. The second,
valid for bridgeless PFCs, is a new current sensorless control,
which includes a fast compensation of the prediction errors with
a third-harmonic dependent function generated from a Phase
Locked Loop (PLL). This compensation modifies the duty cycle
sequence obtained from the controller, ensuring the matching of
the line current with the reference obtained from the line voltage.
The two evaluated approaches are investigated via computer
simulations and experimentally.

Index Terms—Power factor correction, bridgeless, digital con-
trol, current sensor, PLL.

I. INTRODUCTION

POWER Factor Correction (PFC) stages are widely em-
ployed as active front-end AC/DC converters in single-

phase [1], [2] and three-phase [3], [4] grid-connected ap-
plications, achieving regulated output DC voltage and high
efficiency, while close to unity input Power Factor (PF) [5]
is ensured by the analog or digital line current controller.
Therefore, the PFC stage usually behaves as a resistor emulator
(Req) seen from the AC side, minimizing the current phase
displacement and the harmonic content [6].

The applicable current control techniques classify the PFCs
into four groups:
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• Group I: Operation in Discontinuous Conduction Mode
(DCM) or the boundary condition between the Continu-
ous Conduction Mode (CCM) and DCM [7].

• Group II: Non-Linear Carrier (NLC) control of the line
current, where the switching instants are identified by the
comparison of the current with a carrier signal, hysteresis
band or a sliding surface that imposes the proportionality
between the peak, valley or average current and the input
voltage in each switching period [8]–[13].

• Group III: Linear control of the average current. Noise
immunity improves compared to the NLC technique at
the expense of reducing the bandwidth of the current
control. Predictive controllers are employed as inner cur-
rent controllers in [14]–[17], achieving a wider operation
range with current measurement.

• Group IV: Phasor-based control. The input voltage is
assumed sinusoidal, so the modulation function that
imposes the line current must be sinusoidal. Predictive
controllers are frequently found in bidirectional grid-
connected converters [18]. Those developed in a station-
ary complex reference frame (Clarke Transformation) do
not require a PLL, i.e. the deadbeat current controller
in [19] or the predictive direct power controller in [20].
Predictive controllers operating in the rotating reference
frame (Park Transformation) can benefit from the PLL
and generate a synchronously rotating frame to simplify
the algorithm and the rejection of current/voltage har-
monics. This is the case in [21], where the predictive
controller directly generates the duty cycle sequence.

Usually, input current sensors, and the associated signal
conditioning circuitry, lead to high cost [22] and complexity;
resistive sensors may cause high local power losses (hot spot)
and introduce switching noise along with the requirement of
gain compensation in the control circuit.

PFCs in Group I behave intrinsically as, or nearly as,
resistor emulators, so they do not need a current sensor, while
controllers in Groups II to IV can be adapted to operate as
predictive ones. They can even avoid current sensing, if the
limitations of the current estimation are properly overcome,
i.e. effect of nonlinearities and discontinuities, linearization
errors and PFC parasitics, among others.

One of the first works about PFC rectifiers without any
current sensor was [23], where the duty cycle command is a
function of the input and output voltages, the error between the
output voltage and the reference voltage and ∂|sin θ|

∂θ , in which
θ represents the phase angle of the input voltage, vg . Among
all the references, [24] introduces a universal controller with
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Fig. 1. General structure of the evaluated PFC controllers for a) diode-bridge and b) bridgeless topologies.

a wide range of operation in terms of power, voltage and
frequency. Its control diagram is shown in Fig. 1.a. The most
recent works proposing current sensorless solutions are [25]–
[30].

In [25], only the AC line voltage is acquired and used to
generate the switching signal for the MOSFET. Therefore, not
only the DC output voltage sensor, but also the AC current
sensor can be removed in the control system. A Kalman filter
approach to estimate the input current is presented in [26]. Sev-
eral works avoid the current loop using Single-Loop Current
Sensorless Control (SLCSC) for single-phase Boost-type PFC
rectifiers. This controller was first presented in [27] as Duty
Phase Control (DPC) and presented as SLCSC in [28], where
the duty cycle command is computed taking into consideration
the parasitic elements. Its model and small-signal analysis is
presented in [29]. It provides good behavior under sinusoidal
input voltages. A modification of the controller is presented
in [30], where the input voltage is measured and the SLCSC
is extended to work under distorted input voltages.

A proposal achieving high power factor with a pre-
calculated duty cycle for a line period under nominal con-
ditions, which applies these preprogrammed values at the
detected half-line zero crossings, is presented in [31]–[35]. In
[31] no input voltage changes are considered, and the control
responds to load changes. A predictive duty cycle is presented
in [32], with a DSP implementation, where the duty cycle
command of the next AC line period is computed from the
measurement of the input and output voltages. This solution
presents limitations under load changes and it is improved
in [33] with the measurement of the input current. The pre-
calculated duty cycle strategy is applied in [34] with no
current acquisition. In [35], the control method is based on the
previous experimental acquisitions of the duty cycle command
for different load conditions using a current sensor.

The use of bridgeless topologies motivates more the adop-
tion of control without a current sensor. Bridgeless PFCs
increase their efficiency by removing the input diode bridge

[36], [37]. Consequently, they are prone to suffering noise
issues due to the output voltage ground floating relative to
the AC line input. To address this issue, several solutions
were proposed [37]–[41]. Among them, two of the most
promising are: totem-pole bridgeless and dual boost with diode
connection between the DC-link reference and the grid line.
The former has lower THDi, but the power MOSFETS do
not share the same reference, while the second one requires
two additional power diodes [37] (Fig. 1.b).

Apart from the EMI, one of the drawbacks associated with
the bridgeless topologies is the difficulty of measuring the
AC side variables (voltage and current), because they become
differential measurements [37]. Therefore, the overall cost and
complexity increases, not only because of the necessity of a
differential/isolated current and voltage sensor, but also due to
the signal conditioning and acquisition stage [42]–[47].

In [42], [43], the voltage across the boost inductor is
continuously estimated based on the input and output voltages
and the switching states. This voltage is integrated to obtain
the estimated grid current. Similarly, [44] directly calculates
the duty cycle based on the input and output voltages and the
converter parameters. Finally, one solution within Group IV is
presented in [48], where the quasi-steady-state analysis of the
converter for input current estimation is considered.

The feasibility of current-sensorless predictive controllers
in Boost type PFC operating in CCM is presented in this
work, showing their advantages, and widening their applica-
bility range. Two predictive approaches applicable to current-
sensorless PFCs are evaluated in both linear and nonlinear
controllers. New sensorless current control is presented, which
includes fast compensation of the current estimation errors
by introducing a Phase Locked Loop (PLL) and generating a
third-harmonic-dependent function, modifying the duty cycle
sequence generated by any controller whose input is the
estimated current. This work is organized as follows: Section I
has classified the current shaping techniques for PFC, identi-
fying the relevant predictive controllers oriented to remove
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sensors in PFC and has motivated the adoption of current
sensorless techniques. Section II evaluates two compensation
strategies for estimation errors; one for controllers based on
the computation of the instantaneous current and another one
for controllers that compute the duty cycle sequence. Sections
III and IV provide the simulation and experimental results
obtained with the proposed controllers and, finally, conclusions
are provided.

II. CURRENT-SENSORLESS PREDICTIVE CONTROLLERS IN
PFCS

A. High-resolution current-sensorless strategy in Group II and
III PFC controllers

The proposed strategy is applied within a universal digital
controller for Boost CCM power factor correction stages, such
as the one shown in Fig. 1.a. It is based on the rebuilding
concept in [24] and the current estimation is tuned by adopting
predictive control strategies. This allows the compensation of
the estimation errors, due to variations of the input voltage
specifications and power conversion rate.

As introduced in [24], the current rebuilding concepts are
based on the converter principles that define the inductor
current as follows:
• During ON-state

∆ig =
vg
L
ton =

λL,on
L

(1)

• During OFF-state

∆ig =
vg − vdc

L
(Tsw − ton) =

λL,off
L

(2)

where all the variables have been represented in Fig. 1.
The variable volt-seconds (λL, defined as λL,on and λL,off

for the ON- and OFF- states, respectively) across the inductor
is computed in each switching period Tsw. The current esti-
mation error accumulated per switching period over the half
line cycle is represented in Fig. 2, which is caused by errors
in the input and output converter volt-second measurements
(with vg or vdc, respectively) or by a variation in the inductor
value, L. The digitally rebuilt input current ireb is the variable
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Fig. 3. Block diagram of the DCM time cost function cancellation circuit for
predictive current sensorless Boost PFC operating in the CCM.

used in the current loop, and the real current ig , has a large
distortion due to the estimation error ierror = ig − ireb. In
[24], all the different causes of estimation error are defined
and explained in detail, but the implementation, resolution and
dynamic response of a high-resolution digital control loop is
presented in this manuscript, decreasing this error (i.e. current
distortion) and keeping it below the design requirements. The
block diagram of this concept is presented in Fig. 3.

The distortion causes a mismatch between the DCM times
of both currents over the half line cycle, reducing the power
factor (Fig. 2). These times are labeled as T gDCM for the
real current, and T rebDCM for the rebuilt current. The digital
controller captures these DCM times, as is described in [49],
[50], and measures and compares T gDCM and T rebDCM (Fig.
3). The DCM time error function eDCM is computed and
minimized with a horizon equal to the half-line cycle. Variable
vdig allows vsL to be compensated, adjusting the DCM times.
The DCM time error eDCM is the input of an integral
compensator, which internally adjusts the value of the signal
vdig until the DCM times match, i.e. eDCM = 0.

This feedback loop achieves the close-to-universal digital
controller for sensorless Boost CCM power factor correction
stages based on current rebuilding concept, which are also
robust under variations in the passive element values (inductor
or capacitor).

In a PFC operating in CCM, the DCM condition appears
close to the AC line zero crossings, where the duty cycle is
ideally d = 1, but in the real implementation d is saturated
before it reaches unity. Therefore, under d saturation condition,
T rebDCM is constant at different power levels, and it is used as
the DCM time reference. The compensator modifies the value
of vdig used in the digital current estimator. With the ireb
value, the duty cycle command is obtained and applied to the
power stage.

This feedback loop is able to compensate for all the sources
of error that appear in this approach, where the current
estimation error over the half line cycle is given by the time
integration of the volt-seconds estimation error

ierror(t) = 1
L

∫ t

t− πω
(qvdig(τ) − Vβ(τ)) (1 − d(τ)) dτ

+
fsw
L

∫ t

t− πω
vdc(τ)∆ton(τ)dτ

+
1

L

∫ t

t− πω
vδ(τ)dτ

= iβ(t) − iδ(t),
(3)
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where ω and q represent the utility frequency and the bin LSB
resolution of the voltages, respectively. d(t) represents the duty
cycle. Current estimation errors are due to uncompensated
Vβ , and ∆ton. Vβ represents the voltage across the known
parasitics while errors in the ON-time estimation are repre-
sented by ∆ton. The variable vδ corresponds to additional,
not characterized errors. Well defined deviations from the
ideal model, (1) and (2), are corrected with a feedforward
action. Each current term of (3) can be represented by iβ
and iδ , corresponding to the initial estimation error and the
compensation introduced by qvdig , respectively. Figure 4.a
shows the resulting waveforms of the expression (3) terms
for a given value of vdig that minimizes the current estimation
error ierror. The 1 LSB uncertainty in vdig results in a current
estimation error, ierror, as is plotted in Fig. 4.b, over the half
line cycle after the controller (Fig. 3) has reached the steady-
state.

With this goal, the proposed high-resolution current re-
building strategy is shown in Fig. 5, which represents the
following actual case: a 10-bit ADC is used to acquire the
input and output voltages (v∗g [k] and v∗dc[k]), and 4 LSBs are
concatenated to obtain 14-bit length. The signal vdig is 14-bit
length to provide the resolution required in the system, and it
is added to v∗dc[k]. With this approach, the resolution can be
increased as needed by adding more LSBs to vdig .

B. Current-sensorless strategy in Group IV PFC controllers

The current sensorless technique proposed for Group II and
III PFC controllers can be extended for Group IV controllers.
Moreover, diverse PFC topologies can be controlled following
equivalent current sensorless approaches, as is shown in this
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Fig. 6. a) AC variables in bridgeless Dual Boost topology and b) phasor
diagram.

section. In bridgeless topologies, the absence of an input diode
bridge [36], [37] removes the natural synchronization of the
input line current and the grid voltage and the DCM condition
around the voltage zero crossings is lost. In order to overcome
these issues, a PLL compensates for the absence of the diode-
bridge and generates an accurate, noise-free reference signal
for the linear controllers.

For analysis purposes, the schema shown in Fig. 6, where
the different AC variables are related through the phasor
diagram, corresponds to the converter in Fig. 1.b, with linear
control and assuming that the actual grid frequency is around
the nominal one. The voltage vconv is the product of the
control signal, um(t), divided by PWM sawtooth amplitude,
VR, and multiplied by the DC-link voltage, vdc. Since vconv
lags vg , φ < 0 and

vconv(t) = Vconv sin(ωt+ φ) =
vdc
VR

um(t) (4)

The DC-link ripple distorts vconv , unless a large capacitor
is used, which would increase the system cost and size. In
order to compensate for this effect, the DC-link voltage is
represented by

vdc(t) = Vdc −
Idc

2ωC
sin(2ωt), (5)

where Idc is the DC current.
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Therefore, to obtain a sinusoidal current in phase with the
grid voltage, the effect of the DC-link voltage ripple, whose
amplitude is Vpk, must be compensated for in (4). This can
be achieved by injecting a predistortion uo(t) [48], resulting
in the control signal

u′m(t) = um(t) + uo(t) = Um sin (ωt+ φ) + uo(t). (6)

By replacing (6) in (4), uo(t) is obtained

uo(t) ≈
UmIdc

2VRωCVdc
sin (ωt+ φ) sin (2ωt) , (7)

which is rewritten using the first and third harmonic as

uo(t) ≈
UmIdc

4VRωCVdc
(cos(ωt− φ) − cos(3ωt+ φ)) , (8)

where Um is the power command given by the outer loop, and
includes the average DC-link voltage controller. For further
circuit simplification, the output voltage acquisition is not used
to control the line current in this technique, even though the
ripple amplitude of the output voltage is used to estimate
the load. The average DC voltage, Vdc, is assumed to be
constant in steady-state and known for a given application. The
capacitance C is also known, for the given the application. The
remaining variables need to be evaluated and incorporated by
the circuit. Deviations of these parameters due to the manufac-
turing process, circuit changes and aging are compensated by
the control action due to the outer voltage control loop. The
grid frequency, ω, which is not constant but bounded, and the
term 3ω are provided by a digital PLL. However, there are still
two terms that need to be calculated: φ and Idc. Their initial

TABLE I
BOOST PFC OPERATING CONDITIONS

Vg,rms 230 V Vdc 400 V
ω 314.16 rad/s C 220 µF

fsw 100 kHz Rload 250 Ω
L 1 mH RL 0.3 Ω
VD 0.6 V RD 0.3 Ω
Ron 0.18 Ω

values can be obtained from the following analysis. The DC
current is obtained from Vpk, as expressed below.

Idc = Vpk · 2ωC (9)

Meanwhile, φ can be approximated by the following ex-
pression, assuming 100% efficiency in the power converter.

φ =
LCω2VdcVpk−pk

V 2
g,rms

(10)

Other effects, such as switching delay or parasitics can
be bounded, but the controller deals with them by adjusting
the above parameters dynamically. For instance, the switching
delay depends on the current through the power device, the
voltage across the power device and the driver itself [51]. The
effect of the delays throughout one grid half-period on the
real duty cycle applied to the power converter, compared with
the theoretical one, are shown in Fig. 7.a and Fig. 7.b. The
implemented control scheme is shown in the Fig. 8.

III. SIMULATION RESULTS

A. High-resolution current-sensorless strategy in Group II
PFC controllers

A current sensorless Boost converter with diode-bridge
using the high-resolution error compensation feedback loop
is modeled and evaluated. The model parameters are given
in Table I and, from (3) and Fig. 4.a, the selected resolution
is 14 bits. The simulation results obtained are shown in Fig.
9, where the maximum current estimation error achieved is
30 mA. The evaluated PF and THDi are 0.997 and 1.78 %
respectively.
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B. Current-sensorless strategy in Group III PFC controllers

The simulation parameters for the bridgeless topology are
shown in Table II. To evaluate the response of this method,
Fig 10 shows the simulation results before and after a rms
voltage step from 115 V to 125 V. At 1.2 s, a grid voltage
step is applied. It can be seen that the grid current becomes
temporarily non-sinusoidal because the PLL loses synchro-
nization during the transient recovery. However, once the PLL
is locked again, the grid current obtained is sinusoidal and in
phase with the grid voltage. The response time Tr is 72.4 ms
and the maximum input current during the transient reaches

TABLE II
BRIDGELESS PFC OPERATING CONDITIONS

Vg,rms 115 V Vdc 250 V
ω 314.16 rad/s C 550 µF

fsw 98.5 kHz Rload 200 Ω
L 1.1 mH
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9.77 A. The obtained results with the equivalent sensor-based
approach controller is shown in Fig. 10.b, where the grid
current waveform keeps the sinusoidal shape but exhibits a
slower response, Tr = 187.6 ms.

A load step from R = 200 Ω to R = 167 Ω is shown in Fig.
11. The step is applied at 1.2 s. In this case, since the PLL is
not affected by the load step, the algorithm adapts to the new
conditions instantaneously and ig is slightly distorted during
Tr = 28.1 ms. The grid peak current varies from 3.79 A to
4.65 A, and output voltage ripple increases 1 % after Tr. The
response of the sensor-based controller (Fig. 11.b) is slower,
due to absence of the third-harmonic injection strategy in Fig.
11.a, and reaches Tr = 203.2 ms.

The performance of the proposed controller has been evalu-
ated in steady-state and a load transient, considering different
resolutions for uo(t) in (8). Results are shown in Fig. 12.a
and 12.b, respectively. Three different uo(t) resolutions (10,
12 and 16 bits) and a 12 bits ADC is used to acquire vg .
Figure 12.a shows that increasing the resolution improves the
ig waveform. The THDi is 8.8 % with 10 bits, 5.0 % with
12 bits and reaches 4.2 % with 16 bits. Fig. 12.b shows that
to increase the resolution has a negligible effect on the ig
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waveform in the load step.

IV. EXPERIMENTAL RESULTS

A. High-resolution current-sensorless strategy in Group II
PFC controllers

A 1 kW Boost converter with diode-bridge using the digital
feedback loop for sensorless topologies is built and tested.
The output dc voltage reference is 400 V with an input
rms voltage ranging from 120 V to 250 V. The resolution
is obtained using (3) at the zero-crossing of vg , vg = 0 V,
assuming an upper boundary for the output voltage, Vdc,max,
q = Vdc,max/(2N − 1). In the experimental set-up, q ≈ 25
mV. The switching frequency is 96 kHz. The capacitance of
output capacitor is 220 µF, the inductance of the inductor is
L = 1 mH, the MOSFET and diode used to build the pro-
totype are a IRFP27N60K from International Rectifier™and
a IDH12S60 from Infineon™. The digital PFC controller is
described in VHDL and implemented in a Xilinx XC3S200E
field programmable gate array (FPGA). A second order ad-
hoc sigma delta ADC is used for the output voltage and a
commercial TLV1572 serial 10-bit ADC for the input voltage
to obtain the voltage data.

The DCM time feedback loop sets vdig to compensate for
the current estimation error in all the different situations.
To evaluate this approach, the converter controlled by the
FPGA is tested under different voltage, grid frequency, and
randomly applied load steps. The results of this experiment
are shown in Fig. 13. The variables Vg (rms input voltage)
and ω (grid frequency) are modified manually in the Agilent
6813B AC power source, used to supply the Boost converter,
and the power demanded from the grid Pg (input voltage)

g
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Fig. 13. Experimental time evolution of the different electrical variables with
Vdc = 400 V, fsw = 96 kHz.

Fig. 14. Experimental prototype of the bridgeless sensorless converter and
controller.

is changed with load steps. PF (power factor) and THDi

are the output variables used to evaluate the performance of
the controller. It can be observed that every step in Vg , ω or
Pg decreases the PF value. The more aggressive the step is,
the higher the instantaneous change in the PF value. At the
same time, in parallel with the PF modification, the THDi

value increases. This current distortion is detected by the DCM
time feedback loop, which compensates for the DCM time
mismatch, always increasing the PF up to a value greater
than 0.990. At the frequency steps from 60 Hz to 400 Hz,
from 400 Hz to 800 Hz and from 360 Hz to 500 Hz, the THDi

shows impulse like modifications over time due to the effective
error compensation, while apparently the PF remains high
because the power analyzer does not track such high-speed
changes.

B. Current-sensorless strategy in Group IV PFC controllers

A laboratory prototype of a bridgeless dual boost converter
(Fig. 14) has been developed. The laboratory setup consists of



8

Fig. 15. Experimental results of bridgeless sensorless controller response
under 115 V to 125 V input rms voltage step response. Above, input voltage,
vg , 100 V/div. Below, input current, iL, 5 A/div. Time scale 40 ms/div.

Fig. 16. Experimental result of the bridgeless sensorless controller response
under 200 Ω to 167 Ω load step. Above, input voltage, vg , 100 V/div. Below,
input current, iL, 5 A/div. Time scale 40 ms/div.

the following elements:
• For ease of implementation, a Full-Bridge topology based

on Vincotech™Power MOSFET Modules V23990-P722-
F64-PM, where the two upper MOSFETs are disabled, is
used.

• Power MOSFET drivers based on Scale cores
(2SC0650P).

• Sensing Board. Used to measure the DC-link and the grid
voltages needed to implement the proposed algorithm.

• Digilent™Nexys 4 board (based on Xilinx 7 XC7A100T-
1CSG324C) used to implement the digital control.

Throughout the experimental validation, the switching de-
lays are compensated for by limiting the duty cycle to 90
% around voltage zero crossing (zone A) and subtracting a
constant value for the rest of the half period (zone B), as
shown in Fig. 7.a.

The results are the following. Firstly, in the same way as
for the simulation results, a grid rms voltage step was applied
from 115 V to 125 V in Fig. 15.

Similarly, in a second experiment following simulation tests,
a load step from 200 Ω to 167 Ω was applied, obtaining the
results shown in Fig. 16.

Finally, in steady state, the results obtained are shown in Fig.

Fig. 17. Steady-state result of the bridgeless sensorless controller under the
conditions in Table I. Blue, iL, 5 A/div. Purple vg , 50 V/div. Time scale
10 ms/div.

17. The values obtained are THDi = 6.3 % and PF = 0.996,
which fulfils the standard IEC 61000-3-2, Class C.

V. CONCLUSION

In addition to the advantages that digital controllers ob-
tain for power converters in terms of flexibility and syn-
chronization, PFC stages benefit from simplifications in the
power variable acquisition circuits and filters, resulting in
cost savings, better power efficiency and lower harmonic
distortion. Current sensorless control simplifies the acquisition
and signal-conditioning circuitry, and reduces the interaction
between the power and the control circuits, improving noise
immunity.

Strategies to generate PFC controllers have been reviewed
and classified into four groups to identify the feasibility of
adapting those controllers to using the estimation of the current
with a plant model approach. Different current sensorless
controllers have also been reviewed, identifying their limited
range of operation in terms of input voltage and load along
with the approaches that compensate for the current estimation
errors that greatly extend the applicability range.

Therefore, the potential application range of PFC controllers
without current sensors covers all the input voltage amplitudes
and frequencies as well as a wide load range, when a complete
cancelation of the current estimation errors is achieved with
an extra feedback loop included for this purpose. This specific
feedback loop is inherently slow and obtains the duty cycle
with the required resolution. The PFC response is improved
with predictive modulators and feed-forward algorithms that
rapidly bring the duty cycle sequence to the optimum one.

By replacing the threshold detection of the converter op-
erating in DCM or current zero crossing with the reference
of a PLL, several advantages are found, including the exten-
sion of the current sensorless control technique to bridgeless
topologies and improvements in the controller response under
grid voltage events. The compensation of the estimation errors
using a third-harmonic component using the PLL reference
leads to a faster response of the estimation error cancellation
and lower distortion in input voltage and load transients. The
two discussed approaches have been investigated via computer
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simulations and experimentally. This approach makes it pos-
sible to obtain a PFC controller without current sensor within
the ranges covered by commercial PFC ICs.
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