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ABSTRACT: We investigated the metabolomic profile associated with exposure to
trihalomethanes (THMs) and nitrate in drinking water and with colorectal cancer risk in
296 cases and 295 controls from the Multi Case-Control Spain project. Untargeted
metabolomic analysis was conducted in blood samples using ultrahigh-performance liquid
chromatography-quadrupole time-of-flight mass spectrometry. A variety of univariate and
multivariate association analyses were conducted after data quality control, normalization, and
imputation. Linear regression and partial least-squares analyses were conducted for
chloroform, brominated THMs, total THMs, and nitrate among controls and for case-
control status, together with a N-integration model discriminating colorectal cancer cases
from controls through interrogation of correlations between the exposure variables and the
metabolomic features. Results revealed a total of 568 metabolomic features associated with at
least one water contaminant or colorectal cancer. Annotated metabolites and pathway analysis
suggest a number of pathways as potentially involved in the link between exposure to these
water contaminants and colorectal cancer, including nicotinamide, cytochrome P-450, and tyrosine metabolism. These findings
provide insights into the underlying biological mechanisms and potential biomarkers associated with water contaminant exposure
and colorectal cancer risk. Further research in this area is needed to better understand the causal relationship and the public health
implications.
KEYWORDS: blood, colorectal cancer, disinfection byproducts, drinking water, environment, epidemiology, exposure, exposome,
metabolomics, -omics, nitrate, trihalomethanes, untargeted

■ INTRODUCTION
Colorectal cancer was the top third most frequent cancer site
worldwide in 2020, with 1.2 million new cases, accounting for
10% of all cancer sites.1 Diet and lifestyle are recognized risk
factors,2 and some environmental exposures including
carcinogens in drinking water, have been associated with
colorectal cancer although evidence is not conclusive.
Disinfection byproducts (DBPs) constitute a heterogeneous
mixture including more than 700 chemicals generated during
drinking water treatment. DBPs are formed from the reaction
of disinfectants such as chlorine with organic matter occurring
naturally in raw water.3 Trihalomethanes (THMs) are the
most common DBPs and have been employed as indicators of
DBP exposure in epidemiological studies. THMs comprise
chloroform, dibromochloromethane, bromodichloromethane,
and bromoform, and can be incorporated through ingestion,

inhalation, and dermal contact.4 Chloroform and bromodi-
chloromethane are possible human carcinogens.5 Bromodi-
chloromethane and bromomethane are animal carcinogens
although human carcinogenicity evidence is insufficient.5

Epidemiological studies suggest an increased risk of colorectal
cancer associated with THM exposure, albeit with variations
between THM components.6−8
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The global presence of nitrate in the water cycle is
increasing, owing to the widespread use of nitrogen fertilizers
and intensive farming. Nitrate exposure primarily occurs
through the ingestion of food and drinking water.9 Ingested
nitrate undergoes endogenous nitrosation to form N-nitroso
compounds such as nitrosamines, classified as probable human
carcinogens.10 Long-term exposure to nitrate in drinking water
has been linked to colorectal cancer at exposure levels below
the regulatory limits.11,12

Although evidence suggests that exposure to these wide-
spread contaminants in drinking water may increase colorectal
cancer risk, causal inference cannot be drawn due to the lack of
understanding of the underlying biological mechanisms.
Metabolomics offers a promising approach to gain insights
into the relevant metabolic and molecular pathways involved.
Some metabolites may be intermediate biomarkers, which
directly reflect the underlying biochemical activity.13 Previous
studies have linked THM exposure in swimming pools with
changes in serum metabolomic signatures.14 However, the
metabolomic profile associated with THMs and nitrate
exposure in drinking water has not been evaluated so far. In
light of this knowledge gap, we conducted an untargeted
metabolomic study in the framework of the Multi Case-
Control Spain project (MCC-Spain, www.mccspain.org).15 We
aimed to identify circulating metabolites associated with
THMs and nitrate exposure, colorectal cancer, and the
pathway between exposure and colorectal cancer.

■ MATERIALS AND METHODS
Study Design and Participants. The present study is

based on a subset of the MCC-Spain project, conducted in
Spain from September 2007 to November 2013.15 Cases were
diagnosed with incident colorectal cancer confirmed through
histological analysis and defined following the International
Statistical Classification of Diseases and Related Health
Problems (10th revision) (ICD-10): C18, C19, C20, D01.0,
D01.1, D01.2. Cases were identified through regular visits to
hospital departments, including gastroenterology, oncology,
general surgery, radiotherapy, and pathology. Controls were
frequency matched to cases by sex, age (±5 years), and area of
residence and were selected from the general population using
lists of randomly selected family practitioners from primary
care centers sharing the same catchment area as the
participating hospitals. Selection criteria included age (20−85
years old), residence in the hospital catchment area for a
minimum of six months before recruitment, and ability to
respond to the epidemiological questionnaire. Response rates
varied from 54% (Cantabria) to 80% (Barcelona, Leoń) among
cases and from 58% (Barcelona, Gipuzkoa) to 68% (Leon)
among controls. The study protocol and the metabolomics
study were approved by the ethics review boards of the
participating centers, and all participants provided informed
consent before recruitment. For the present analysis we
selected a random subset of noncurrent smoking participants
with most complete exposure assessment to THMs and nitrate
in drinking water (≥70% years with known exposure), enrolled
in 5 provinces (Barcelona, Cantabria, Gipuzkoa, Leoń, and
Navarra). The present analysis included a total of 591
participants (296 cases and 295 controls).

Individual Information. Cases were interviewed at the
hospital as soon as possible after diagnosis (median of 58
days), and controls were interviewed in primary care centers.
Trained interviewers administered a computer assisted person-

al questionnaire to study participants to gather information on
sociodemographics, lifestyle (including smoking, alcohol
consumption, physical activity, etc.), anthropometrics (height,
weight), occupational history, medical and drug history, and
family history of cancer. Residence addresses where partic-
ipants lived for at least 12 months were ascertained, including
the start and stop year and the type of water consumed
(municipal, bottled, private well, other). Participants were
asked to report the number of glasses of bottled water, tap
water, and other sources of water consumed per day on average
as an adult at home, workplace, and other places separately.
Chemotherapy and radiotherapy treatment before the inter-
view were ascertained among cases.

Exposure Assessment. We obtained information on water
source and treatment history and THMs and nitrate
concentrations in public drinking water through questionnaires
to water utilities and local authorities in the study areas.
Routine monitoring levels from 2004 to 2010 were also
provided by the Sistema de Informacioń Nacional en Aguas de
Consumo (SINAC). We estimated the annual average
concentrations of these contaminants in the study municipal-
ities. For the present analysis, we estimated exposure to THMs
and nitrate for a recent period consisting of the 3 years prior to
the interview, excluding the last 2 years. Residential levels were
calculated by combining the concentration in drinking water
supply by year and municipality of residence of the study
subjects. We focused on residential THM concentrations and
waterborne ingested nitrate. For those who drank tap water,
nitrate residential levels were assigned. For those who
consumed bottled water, we assigned a value of 6.1 mg/L
nitrate, which is the average level in the most consumed
bottled water brands in Spain weighted by the sale frequency.16

In the Leon region, where private well water was mainly
consumed, we conducted a sampling campaign to measure
nitrate (range 0.5−93 mg/L), the values of which were
assigned to well water consumers in this area. Well water
consumption was very infrequent in the other areas, where
nitrate values were treated as missing values. The details on the
exposure assessment have been published elsewhere.7,11

Blood Sample Preparation. Blood samples were
collected by venipuncture after the interview, processed, and
stored at −80 °C (average storage time 5 years and 10
months). Prior to the laboratory analyses, serum samples were
randomized by case-control status, area, sex, and age, in order
to minimize potential batch effects. Samples were prepared by
mixing 30 μL of the mixture with 200 μL of acetonitrile and
filtering the precipitate with 0.2 μm Captiva ND plates
(Agilent Technologies). The filtrate was collected into a
polypropylene well plate that was sealed and kept refrigerated
until analysis. Quality control (QC) samples (N = 52) were
prepared from a pooled sample made by mixing small aliquots
of 90 randomly selected study samples. Blank samples (N = 7)
were prepared in identical manner, leaving only serum from
the process. Each well plate included four independently
extracted QC samples and one blank.

Metabolomic Laboratory Analysis. Samples were
analyzed as a single uninterrupted batch with an ultrahigh-
performance liquid-chromatography (UHPLC)-quadrupole
time-of-flight (QTOF)-mass spectrometry (MS) system
(Agilent Technologies) consisting of a 1290 Binary liquid
chromatography (LC) system, a Jet Stream electrospray
ionization source, and a 6550 QTOF-MS. Autosampler tray
was kept refrigerated at 4 °C and 2 μL of the sample solution
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was injected on an ACQUITY UPLC HSS T3 column (2.1 ×
100 mm, 1.8 μm; Waters). Column temperature was 45 °C
and mobile phase flow rate was 0.4 mL/min, consisting of
ultrapure water and LC-MS grade methanol, both containing
0.05% (v/v) of formic acid. The gradient profile was as follows:
0−6 min: 5% → 100% methanol, 6−10.5 min: 100% methanol,
10.5−13 min: 5% methanol. The MS was operated in positive
polarity using the following conditions: drying gas (nitrogen)
temperature 175 °C and flow 12 L/min, sheath gas
temperature 350 °C and flow 11 L/min, nebulizer pressure
45 psi, capillary voltage 3500 V, nozzle voltage 300 V, and
fragmentor voltage 175 V. Data acquisition was performed
using the 2 GHz extended dynamic range mode across a mass
range of 50−1000 Da. Scan rate was 1.67 Hz and data
acquisition was in centroid mode. Continuous mass axis
calibration was performed by monitoring two reference ions
throughout the runs (m/z 121.050873 and m/z 922.009798).
Data were acquired in full scan mode using MassHunter
Acquisition B.05.01 (Agilent Technologies). The analytical run
was initiated with priming injections of a QC sample to achieve
stable instrument response, followed by study samples, which
intervened after every 12 injections with a QC sample to
monitor instrument performance and sample stability.

Metabolomic Data Processing. Preprocessing of the
acquired data was performed using Qualitative Analysis
B.06.00, DA Reprocessor, and Mass Profiler Professional
12.1 software (Agilent Technologies). Recursive feature
finding was employed to find compounds as singly charged
proton adducts [M + H]+, using data from all study samples.
The initial processing of the data was performed using
Qualitative Analysis with the molecular feature extraction
(MFE) algorithm set to small molecules. Threshold values for
mass and chromatographic peak heights were 1500 and 10 000
counts, respectively. Peak spacing tolerance for isotope peaks
was 0.0025 m/z plus 7 ppm, with the isotope model set to
common organic molecules. After the initial feature finding,
the compounds that existed in at least 2% of all the samples
were combined into a target list, using windows of 0.06 min for
retention time and 15 ppm +2 mDa for mass for alignment.
These features were used as targets for the recursive feature
extraction of all the data (samples, QCs, and blanks), which
was performed using Agilent’s Find by Formula (FBF)
algorithm, with match tolerance for the compound mass and
retention time set at ±10 ppm and ±0.03 min and ion species
were limited to [M + H]+, without thresholds for the number
of ions associated with a feature. Chromatographic peak area
was used as a measure of intensity.

Quality Control, Normalization, and Imputation. We
compared the geometric mean of feature intensities between
the blank samples and study samples to identify and exclude
background features. Features present in every blank sample
were excluded unless their average intensity in the study
samples was at least 5-fold greater. Additionally, features with
intensity variation coefficient higher than 30% among QC
samples were excluded. The feature-wise exclusion of missing
values was performed to assess data quality. Features with
>30% missing values either in cases or controls were excluded.
Additionally, one participant with exceptionally high missing
values (32.1%) was excluded from the analysis. Feature
intensities were log-transformed to correct their skewed
distribution. Data normalization based on the experimental
plates was employed to minimize plate-to-plate variation.
Specifically, we calculated a correction value for each feature by

subtracting the overall average intensity of that feature across
all plates from the plate-specific average intensity. This
correction value was then subtracted from each intensity
value of the corresponding feature within each plate. This
process helped align the feature intensities across different
experimental plates, ensuring that plate-related variations were
accounted for in our analysis. Finally, a quantile regression
approach was used to impute left-censored missing data
separately for the control and case data sets, using the R
function ‘impute.QRILC’ from package imputeLCMD17 with
the tune.sigma parameter set to 1.

Univariate Association Analysis. Linear regression
models were fitted for each metabolomic feature as the
response variable and colorectal cancer status as predictor
variable, treated as a dichotomous categorical variable with a
dummy encoding (0 for “Control” and 1 for “Case”) and
adjusting for covariates (area, sex, age, education, body mass
index, smoking status, and chemotherapy and radiotherapy
treatment of cases). For each model, we obtain a regression
coefficient (β) for each covariate and the p-value of a two-
tailed Wald test (β significantly different from 0). P-values
were corrected for multiple tests using the Benjamini-Yekutieli
procedure to control the false discovery rate (FDR). Finally,
features significantly associated with colorectal cancer (sig-
nificance level of α = 0.05) were selected. The same procedure
was used to identify metabolomic features associated with
nitrate and trihalomethane exposure among controls. These
analyses were performed in Python 3.6.15. Linear regressions
were performed using the statsmodels package (version 0.12.1)
with statsmodels.formula.api. We controlled the false discovery
rate (FDR) using the multiple-tests function from statsmo-
dels.stats.multitest. Additionally, data manipulation and anal-
ysis were performed with numpy (version 1.16.3) and pandas
(version 0.24.2).

Metabolome-Colorectal Cancer Multivariate Associa-
tion Analyses. We employed Unit-Variance (UV) scaling to
scale the features and fitted a partial least square-discriminant
analysis (PLS-DA) with two components. The Hotelling T2

statistic at 95% confidence, a multivariate generalization of the
Student’s t-distribution, was used for outlier detection. The
optimal number of components was selected using 10-fold
cross validation with a criterion of selecting the number of
components that results in a Q2Y value, defined over the test
set as 1-predictive residual error sum of squares (PRESS)/
total sum of squares (TSS), with a difference <5% compared to
the previous number of components. Moreover, repeated
cross-validation (with 100 repetitions), where the rows in the
metabolomic matrix are shuffled each time, was used to check
the distribution of Q2Y values per component, which gives a
comprehensive overview of each component’s robustness,
since the Q2Y value obtained with K-Fold cross validation may
be sensitive to row permutation of the explanatory matrix. The
model was then refitted with the optimal number of
components, and cross-validation was used to estimate
validation metrics such as ROC curves and area under the
curve (AUC). A permutation randomization test was also
performed to validate the model and obtain empirical p-values
(with 1000 permutation randomizations). Finally, features
were selected based on the permuted p-value of the regression
coefficients, β, and of the weights of the first component, w,
with a significance level of α = 0.05. This model was performed
using pyChemometrics (version 0.1) in Python 3.6.15.
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Metabolome-Water Exposures Multivariate Associa-
tion Analyses. Features were UV-scaled and a PLS model for
regression with 4 components was fitted. To select the optimal
number of components, repeated cross-validation with 10-fold
and 100 repeats was performed, maximizing the Q2Y measure.
To determine the optimal number of metabolomic features for
each component, a sparse Partial Least Squares (sPLS) model
was fitted using the previously determined optimal number of
components. The model’s performance was evaluated through
repeated cross-validation (10-fold, 100 repeats) using Mean
Absolute Error (MAE) as the metric. The number of features
that minimized the MAE for each component was selected.
Subsequently, a final sPLS model was fitted with the optimal
number of components and the determined number of
metabolomic features for each component. Repeated cross-
validation was performed to compute the Mean Squared Error
of Prediction (MSEP) metric for model validation. Addition-
ally, a PLS model with the same number of components was
fitted to assess the performance of the sparse model. To ensure
feature stability, the selected features from all components of
the final sPLS model were analyzed. Only features that were
selected for a given component in at least 60% of the cross-
validation folds (repeated 100 times) were retained for further
analysis. This entire process was repeated for each water
contaminant variable. These analyses were done using the R
package mixOmics.

N-Integration Analysis. The DIABLO method from
package mixOmics was used to build an integrated multivariate
model using all the exposure variables, the metabolomic
profile, and the colorectal cancer status as the response
variable. To avoid overfitting, 80% of the data was randomly
selected for training the model, and the remaining data was
held out as a test set to evaluate the performance of the model
on unseen data. The features were UV-scaled, the model was
built using PLS regression, and the optimal number of
components was selected using 10-fold cross-validation
repeated 100 times. Sparse PLS regression was used to identify
the most relevant variables for each data set that contribute to
the joint variation between the data sets. Finally, the model was
validated by using cross-validation techniques and predictions
over the test set. A feature was considered stable if it was
consistently selected across different cross validation folds for a
given component. Only features selected for a given
component in at least 60% of the cross-validation folds
(repeated 100 times) were retained.

Annotation of Metabolic Features. In order to prioritize
the annotation of features, we employed a ranking approach
based on the following criteria. For the FDR-corrected linear
regression results in relation to cancer, we determined
thresholds using the median values of significant p-values
(0.00051) and the median of the absolute values of regression
coefficients (0.241). Regarding the FDR-corrected linear
regression results for water contaminants, due to the limited
number of selected features, most of which were common
across all variables, we did not apply additional criteria. For the
multivariate and N-integration models, we employed a high
stability threshold of 90%. Applying these criteria we
retained244 out of the initial 568 features, further clustered
based on retention time proximity (0.05 min) and correlation
of intensities across the samples >0.8 (Pearson) to assist in
finding related ions. The m/z values of the features were
searched against IARC’s in-house metabolite databases and the
human metabolome database (HMDB, https://hmdb.ca/,

accessed on June fifth 2023) using [M + H]+, and [M +
Na]+ ions, with 10 ppm molecular weight tolerance. Candidate
metabolites matching their accurate mass were confirmed by
comparing the MS/MS spectra and retention times against
those of pure chemical reference standards whenever available.
The level of identification was based on the recommendations
of the Chemical Analysis Working Group of Metabolomics
Standards Initiative.18

Enrichment and Pathway Analysis. For identified
metabolites in common between exposure and outcome, we
used the MetaboAnalyst, a widely used platform dedicated to
metabolomics data analysis (https://new.metaboanalyst.ca/
home.xhtml), to conduct pathway analysis (integrating enrich-
ment analysis and pathway topology analysis). Additionally, we
performed an analysis using the software Mummichog version
2.6.1 in Python version 3.6,19 focusing on all the significant
features identified in univariate analysis for colorectal cancer,
nitrate, chloroform, and Br-THM. This program allows
analyzing significantly enriched pathways directly from feature
tables, bypassing metabolite identification. We supplied all
1629 features as the reference list and a significance cutoff p-
value of 0.05. These analyses allow us to explore the metabolic
pathways in which these metabolites are involved and potential
links to the biological mechanisms involved in colorectal
cancer pathogenesis.

■ RESULTS AND DISCUSSION
Study Population and Exposures. In Table 1, we

present the characteristics of the study population, along with
the corresponding p-values that assess the differences between
cases and controls. For numerical variables, including exposure
variables, we conducted two-tailed t tests, while for categorical

Table 1. Characteristics of the Study Population (n = 585)

Controls
(n = 293)

Cases
(n = 292) p-value

Age (years), mean (SD) 67.0 (7.7) 68.5 (9.2) 0.022
Sex, N (%) 0.407

Male 182 (62.1) 191 (65.4)
Female 111 (37.9) 101 (34.6)

Area, N (%) 0.998
Barcelona 94 (32.1) 95 (32.6)
Cantabria 29 (9.9) 29 (9.9)
Gipuzkoa 30 (10.2) 30 (10.3)
Leon 95 (32.4) 92 (31.6)
Navarra 45 (15.4) 46 (15.8)

Smoking status, N (%) 0.003
Never 162 (57.3) 132 (45.2)
Former 125 (42.7) 160 (54.8)

Body mass index (kg/m2),
mean (SD)

27.3 (4.1) 27.6 (4.6) 0.510

Education, N (%) 0.228
Less than primary school 73 (24.9) 82 (28.1)
Primary school 129 (44.0) 122 (41.8)
Secondary school 54 (18.4) 64 (21.9)
University 37 (12.6) 24 (8.2)
Total THMs (μg/L), mean
(SD)

37.1 (25.0) 42.9 (33.6) <0.001

Brominated THMs (μg/L) <0.001
Mean (SD) 17.2 (21.8) 27.5 (30.6)
Chloroform (μg/L), mean (SD) 19.9 (13.1) 15.4 (11.0) <0.001
Nitrate (mg/L), mean (SD) 5.4 (5.5) 7.1 (7.4) 0.105
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variables, we employed Pearson’s chi-square tests to evaluate
the significance of these differences. No major differences were
found in the covariables between cases and controls; cases
were slightly older, and there were more former smokers
among cases than controls. The recruitment areas contributing
the largest population were Barcelona and Leon, accounting
for approximately 2/3 of study subjects. Cantabria was the area
with less cases and controls (Table 1). The mean
concentrations of total and brominated THMs were,
respectively, 5.8 and 10.3 μg/L on average lower in controls
than in cases. By contrast, chloroform concentrations were 4.5
μg/L higher in the controls than in cases. Waterborne ingested
nitrate did not exhibit significant differences between controls
and cases (Table 1). Out of the 292 cases, 67 (22.9%) received
radiotherapy, and 168 (57.5%) received chemotherapy treat-
ment before the sample collection. We focused on a recent (3
years before the interview) rather than long-term exposure
window given that in previous studies we found higher
associations with effect biomarkers linked to recent exposure
compared to long-term exposure.20

Metabolic Features Derived from Untargeted Metab-
olomic Analyses. A total of 5354 features were found in the
591 samples analyzed. Analysis of the QC samples revealed
good reproducibility along the run, with coefficients of
variation (CV) consistently below 12% for a set of 10
known compounds when screened in the raw data of all QC
samples (Agilent Qual, FBF algorithm using elemental
composition as target and [M + H]+ as ion): tyrosine,
tryptophan, phenylalanine, leucine, lauroylcarnitine, isoleucine,
indolepropionic acid, indole-3-acetic acid, hippuric acid, and
decanoylcarnitine. Three samples (2 cases, 1 control) with
significantly low overall feature intensity due to an analytical
issue were considered outliers and excluded. Two participants
were excluded due to missing DBP exposure. One control with
32.1% of missing values in the feature intensities was also
excluded. After the QC process (Supporting Figure 1), a total
of 1629 features and 585 study participants (292 colorectal
cancer cases, 293 controls) were included in the analysis.
In Table 2, we provide a breakdown of the number of

features associated with each variable as determined through
various statistical methods. Collectively, considering all the
different analyses, we identified a total of 568 distinct features
associated with either an exposure variable or colorectal cancer.
The N-integration model identified 107 features discriminating
colorectal cancer cases from controls through interrogation of
correlations between the exposure variables and the metab-
olomic features block. Supporting Table 1 presents the shared
features across different statistical models.

Associations from univariate analysis. Our FDR-
corrected linear regression models identified 405 features
significantly associated with colorectal cancer (Table 2), of
which 258 were exclusively identified through this analysis
(Figure 1). A total of 259 of the 405 features (64%) were
negatively associated with cancer (Figure 2). Likewise, we
identified 21, 20, 20, and 24 features significantly associated,
respectively, with TTHM, Br-THM, chloroform, and nitrate
exposures (Table 2). Among these, 15 features were
significantly associated with all of the exposure variables
(Figure 3b), of which 11 were exclusively found in these FDR-
linear analyses (Figure 1). The sign of the association for all
metabolomic features was consistent among all exposure
variables. One feature (identified as creatine) was positively
associated with increased exposure levels of TTHM, chloro-

form, nitrate, and also with colorectal cancer status. Another
feature (mass = 700.5512; retention time = 8.20 min.) was
positively associated with TTHM and Br-THM levels. The rest
of the selected features were negatively correlated with
exposure levels to water contaminants, representing 90.5%
(TTHM), 95.0% (Br-THM), 95.0% (chloroform), and 95.8%
(nitrate) of the features significantly associated through this
model.

Colorectal Cancer Multivariate Analysis (Partial Least
Squares Discriminant Analysis). The optimal number of
components was determined to be 4, as the Q2Y measure
stabilized at this point. The cross-validated ROC curve showed
a mean AUC of 0.87 and the Q2Y value of 0.38, indicating a
good discriminative ability of the model. Permutation
randomization tests confirmed the statistical significance of
the model’s AUC and Q2Y values, with p-value <0.01. By
applying permutation tests, we identified 16 features with
significant regression coefficients (β) and 99 features with
significant weights (w) in the first component. Combining
these two sets as the union set, a total of 104 features were
retained for the PLS-DA model for cancer, suggesting their
potential relevance in predicting the cancer status (Table 2).
All of these features are shared with the features identified in
the FDR-corrected model with the exception of one feature
(Figure 2a), indicating the robust association across multiple
analyses. Interestingly, this particular feature re-emerged in the
N-integration model (Figure 3b).

Exposure Multivariate Analysis (Sparse Partial Least
Squares). The sparse partial least squares (sPLS) and PLS
models were evaluated with two optimal components for
TTHM. The sPLS compared to the PLS model achieved lower
mean squared error of prediction (MSEP) values: 0.58 and
0.56 (components 1 and 2 in sPLS), vs 0.83 and 0.71
(components 1 and 2 in PLS). This suggests that the sPLS
model outperforms the PLS model in terms of prediction
accuracy, potentially due to its feature selection capabilities and
sparsity constraints. In the sPLS model for TTHM, a total of
85 features was initially selected. However, after ensuring
stability and robustness of the model, only 61 features
consistently appeared in at least 60% of the cross-validation

Table 2. Number of Metabolomic Features Associated with
Mean Residential Levels (μg/L) of Total Trihalomethanes
(TTHM), Brominated THMs (Br-THMs), Chloroform
(CHCl3), and Waterborne Ingested Nitrate (mg/day),
Colorectal Cancer, and all Variables in an N-Integration
Analysis (DIABLO model) (292 cases, 293 controls)a

Univariate model
(FDR corrected
linear regression)

Multivariate model
(sparse-PLS (exposure),

PLS-DA (cancer))
Union
counta

TTHM 21 61 82
Br-THM 20 4 24
Chloroform
(CHCl3)

20 61 80

Nitrate 24 - 24
Colorectal
cancer

405 104 406

N-integration 107
Overall
profilea

568

a“Union count” shows the features in the union of the univariate and
multivariate analysis (that may include features in common). “Overall
profile” includes metabolomic features that exhibited associations with
at least one exposure variable or colorectal cancer.
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folds, repeated 100 times (Table 2). Similarly, for chloroform,
the sPLS model showed lower MSEP values (0.65 and 0.64)
compared to the PLS model (0.87 and 0.78). The selected
features for the sPLS model before stability were 90, of which
61 were retained after stability (Table 2). In the case of Br-
THMs, both sPLS and PLS models were evaluated with one
component. The sPLS model had an MSEP of 0.83, while the
PLS model had an MSEP of 0.92. The selected features before
stability were 5, and after stability, 4 features were retained
(Table 2). Regarding waterborne ingested nitrate, the
preliminary PLS model showed a very low Q2Y measure of
0.02, indicating poor predictive ability. Therefore, a sPLS
analysis was not performed for this variable. Overall, the results
show the potential advantages of using the sPLS over the
traditional PLS model in terms of prediction accuracy,
especially when dealing with exposure variables like TTHM
and chloroform. The selection of stable features based on the
cross-validation process further enhances the robustness of the
models, with a reduced number of features retained after
stability checks. Figure 3d presents a Venn diagram illustrating
the overlap among features associated with different water
contaminants according to the sparse-PLS model. The total of
4 features associated with Br-THMs are shared with TTHMs
and chloroform. Furthermore, it shows a substantial inter-
section between the features associated with TTHMs and
chloroform (N = 21 features). However, unlike the features
associated with cancer, the intersection between features found
in the FDR-corrected linear regression models and sparse-PLS
differs for water contaminants. Specifically, there is no
intersection for TTHM and Br-THM, and only one feature
overlaps with chloroform (Supporting Table 1). The differ-
ences between univariate and multivariate analyses can be
attributed to various factors, such as independent variables
(metabolite abundances) that may complement each other in
the prediction of the dependent variable and the effect of
consistency at large or multiple testing corrections increasing
the risk of false negatives. Despite these discrepancies, seeking
validation of univariate results through multivariate analysis, or

vice versa, may not be appropriate. The two methods provide
complementary results and offer valuable insights into the
associations between metabolomic features and the studied
variables.22

We conducted a complementary analysis to explore the
potential variations in associations across different exposure
levels. Except for waterborne ingested nitrate, which lacked a
multivariate analysis, sparse-PLS models were fitted for each
water contaminant variable and categorized into two groups
using the same methodology and criteria as the main sparse-
PLS models. Controls were divided into higher and lower
exposure groups based on a threshold defined as the median
value of exposure among controls. We identified 4 metab-
olomic features associated with higher TTHM levels, 3 of
which overlapped with the main analysis based on all controls
(Supporting Figure 3). For lower TTHM levels, we found 42
features, 1 of which was shared with the main analysis.
Notably, this feature also appeared in the high exposure
category, indicating its consistent association across all levels.
Among the 61 metabolomic features identified in the primary
TTHM model, 58 did not exhibit differential associations
across different exposure levels. In the case of chloroform, 16
metabolomic features were associated with the lower exposure
group, while the higher exposure group exhibited associations
with 20 features. There was no overlap between the lower and
higher exposure groups. However, the lower exposure group
shared 4 features with the main analysis, and the higher
exposure group shared 12 features, indicating some consistency
in associations. Regarding Br-THMs, the higher exposure
group displayed a negative Q2Y measure, indicating poor
predictive ability. Consequently, a multivariate analysis was not
conducted for this group. In the lower exposure group, we
identified 18 metabolomic features associated with Br-THMs.
Only 1 feature was common between the lower exposure group
and the 4 features found in the main analysis. These findings
suggest potential variations in the associations between water
contaminants and metabolomic profiles across different
exposure levels. The robustness of the main analysis findings

Figure 1. Upset plot showing the number of metabolomic features associated with exposure to water contaminants and colorectal cancer using
different statistical models. Multivariate models are sparse-PLS (exposure) and PLS-DA (cancer). The remaining are FDR-corrected linear
regression models or the N-integration model (DIABLO). The plot illustrates the intersections between the different models and the number of
unique and shared features identified for each contaminant/cancer outcome. The subsets are ordered by frequency. The plot was generated using
the R package UpSetR.21
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is evident as several features were consistently associated with
the contaminants regardless of the exposure level. In
Supporting Figure 3, Venn diagrams are provided, illustrating
the metabolomic features associated with each specific
disinfection byproduct and their respective exposure groups.

N-Integration Analysis. In the N-integration analysis, we
employed 10-fold cross-validation repeated 100 times to
determine the optimal number of components, which was
found to be 4. After fitting the final model, the metabolomic
profile was defined as the union set of features selected across
the four components. Initially, the union of these selected
features comprised a total of 167 features. However, to ensure
the stability and robustness of the model, only those features
that consistently appeared in at least 60% of the cross-
validation folds, repeated 100 times, were retained. The final
metabolomic profile from the N-integration analysis model
consisted of 107 features (Table 2), out of which 53 were
exclusively identified through this model (Figure 1), and 50
were found to be shared with the metabolomic profile

associated with cancer as determined by the FDR-corrected
linear regression model. Notably, the N-integration model also
identified the only feature that was associated with cancer in
the PLS-DA model but not in the FDR-corrected linear
regression model (Figure 3b). In Supporting Figure 2, the N-
integration model reveals strong negative correlations between
Br-THM and metabolomic features, while nitrate and chloro-
form display strong positive correlations. However, the TTHM
does not exhibit a strong correlation in any of the four
components of the model.
When assessing the performance of the N-integration

analysis using 10-fold cross-validation repeated 100 times, we
observed error rate values ranging from 0.31 to 0.24 across the
four components. This indicates that the model generally
performs well with the lowest error rate observed in the fourth
component (0.24). Balanced error rate (BER), which considers
sensitivity and specificity, ranged from 0.31 to 0.25, with the
fourth component achieving the lowest balanced error rate. For
the metabolomic features block with 4 components, the model

Figure 2. Results from the false discovery rate (FDR)-corrected linear regression models for colorectal cancer and water contaminants. Each dot
represents a metabolomic feature and is represented by the −log10(Benjamini-Yekuteli q-value) against the regression coefficient (β) of the variable.
Horizontal line sets the cutoff of −log10(0.5), implying that the obtained signature has an estimated FDR of 5%. Features significantly associated
with each variable are colored in darker blue.
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achieved an AUC of 0.8928, indicating a high level of accuracy
in discriminating between cases and controls based on the
metabolite’s profiles. Overall, the model demonstrated
satisfactory performance.
We further tested the model on an external test set using the

Weighted Vote method in N-integration analysis, resulting in a
confusion matrix. The matrix showed that 26 cases were
correctly predicted as cases, 17 cases were incorrectly predicted
as controls, 7 controls were incorrectly predicted as cases, and
37 controls were correctly predicted as controls. The calculated
BER based on the confusion matrix was 0.28, which is
relatively low. This suggests that the model performed
reasonably well in terms of balancing sensitivity and specificity
even when applied to unseen data. In summary, the N-
integration analysis demonstrated good performance with
consistent results across multiple evaluation metrics.

Annotated Metabolites and Metabolic Pathways.
Among the 568 metabolomic features associated with at least
one of the water contaminants or with colorectal cancer, 26
metabolites could be annotated (Table 3). If multiple ion
species were identified, then the most intense was presented.
The level of identification was based on the recommendations
of the Chemical Analysis Working Group of Metabolomics
Standards Initiative.18 Three of the annotated metabolites were
associated with both colorectal cancer and at least one of the
water contaminants. These were creatine, positively associated;
lysophosphatidylcholines (LysoPC) (20:2), inversely associ-
ated; and 1-methylnicotinamide (MNA), inversely associated

with cancer and positively associated with chloroform and Br-
THMs (Table 3).
Nicotinamide (NA) metabolism involving MNA was the

pathway identified as having higher significance. Previous
studies have also documented an inverse correlation between
MNA and colorectal cancer.23,24 NA represents a bioactive
form of vitamin B3 and is a precursor of nicotinamide-adenine
dinucleotide (NAD+) coenzymes. NAD+ is a key molecule
participating in a wide range of intracellular events, including
transcription regulation, longevity, genome stability, and
response to DNA damage.25 Nicotinamide N-methyltransfer-
ase (NNMT) catalytic activity significantly contributes to the
regulation of NA and NAD+ intracellular levels, participating
in an irreversible catabolism of NA to MNA, which is excreted
through urine and NA is no longer available as a precursor for
NAD+ biosynthesis.26 NNMT is mainly expressed in the liver,
belongs to phase II metabolizing enzymes and is suggested to
be involved in the biotransformation and detoxification of
many xenobiotics.27 Some studies show NNMT overexpres-
sion associated with colorectal cancer28−30 Although further
research is required to confirm this hypothesis, we suggest that
exposure to chloroform and Br-THM may result in the
deregulation of NNMT, causing its overexpression.
Cytochrome P-450 (CYP) metabolism is a pathway

identified between nitrate exposure and colorectal cancer by
Mummichog et al. (Table 4). Most xenobiotics must be
biotransformed to have toxic effects, which is a two-stage
process carried out by phase I and phase II metabolizing

Figure 3. Venn diagrams showing the metabolomic features associated with water contaminants and colorectal cancer using different statistical
models and the overlap between models.
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enzymes. Phase I enzymes such as those belonging to the CYP
family are involved in the initial oxidation, reduction, or
dealkylation of carcinogens; this phase generally leads to the
production of active intermediate metabolites. The three CYP

isoenzymes, CYP2E1, CYP1A2 and CYP3A4 have previously
been identified as important in the THM metabolism.31−33

There are also data suggesting that chlorinated disinfectants
mixtures are able to perturb CYP-mediated reactions and
induce oxidative stress.34 Likewise, the CYP3A superfamily
specifically participates in nitric oxide formation in the liver
from organic nitrates.35 Interestingly, it has been observed that
chronic exposure to organic nitrates significantly decreased
hepatic P450, i.e., P450-dependent drug metabolism may be
drastically affected after continuous organic nitrate exposure.36

In turn, CYP has a major role in tumor development via
metabolism of many carcinogens37 and specific CYP have also
been shown to be overexpressed in colorectal cancer, such as
the isoenzymes CYP3A,38 CYP1B1,39 CYP2S1, CYP2U1,
CYP3A5, and CYP51.40 All together, these findings may
provide an explanation for the link between THMs exposure
and colorectal cancer. Long-term human exposure to THMs
warrants further investigations into both the possible
epigenetic and genetic mechanisms of toxicity of these
compounds.
Our pathway analyses by the program Mummichog also

identified that the tyrosine metabolism involved was in all
water contaminants as well as colorectal cancer associations
(Table 4). Tyrosine kinases play crucial roles in various
biological processes including growth, differentiation, metab-
olism, and apoptosis in response to internal and external
signals. Tyrosine kinases have been linked to the development
of cancer. While these enzymes are tightly controlled in healthy
cells, mutations, overexpression, and autocrine/paracrine

Table 3. Annotated Metabolites

Metabolite Massa Retention Time ID levelb Direction Associated with

1-methylnicotinamide 136.0624 0.60 1 DOWN|UP|UP Cancer, chloroform, Br-THM
2-Hydroxy-3-methylbutyric acid 202.0141 2.76 1 DOWN TTHM, chloroform, Br-THM, nitrate
Bilirubin 582.249 7.97 1 DOWN TTHM, nitrate
Creatine 131.0695 0.66 1 UP Cancer, TTHM, chloroform, nitrate
Creatinine 113.0591 0.61 1 DOWN TTHM, chloroform, Br-THM
Cyclo(prolyl-valyl) 196.1221 3.14 1 DOWN Cancer
Docosahexaenoic acid 350.2198 7.25 1 UP Cancer
Ethyl glucoside related peak 230.077 0.86 - DOWN Cancer
Hexanoylcarnitine (C6:0) 259.1778 3.34 2 UP Cancer
Hippuric acid 179.0597 3.10 1 DOWN Cancer
Indole-3-propionic acid 189.08 4.60 1 DOWN Cancer
Indolelactic acid 205.0753 3.88 1 DOWN TTHM, chloroform, Br-THM, nitrate
Inosine 268.0821 1.67 1 DOWN Chloroform
Isatin 147.0321 3.34 1 DOWN TTHM
L-glutamine 146.0698 0.62 1 DOWN TTHM
LysoPC(14:0) 467.3018 6.75 2 DOWN Cancer
LysoPC(16:1) 515.2993 6.84 2 DOWN Cancer
LysoPC(18:0) 523.3656 7.25 2 DOWN Cancer
LysoPC(18:2) 519.3343 6.92 2 DOWN Cancer
LysoPC(20:2) 547.3616 7.16 2 DOWN Cancer, chloroform, Br-THM, nitrate
LysoPC(P-16:0) 501.3201 7.14 2 DOWN Cancer
N6,N6,N6-Trimethyl-L-lysine 188.1528 0.54 1 DOWN TTHM, chloroform, Br-THM, nitrate
Nonanoylcarnitine (C9:0) 301.2249 4.64 2 DOWN Cancer
Tetradecenoylcarnitine (C14:1) 369.2883 5.83 2 UP Cancer
Theobromine 180.0651 2.39 1 DOWN Cancer
Trigonelline 137.048 0.68 1 DOWN Cancer

aMonoisotopic mass calculated from the m/z peak that best represents the metabolite. In cases where multiple features were associated with the
metabolite, data from the most intense feature is presented. bIdentification (ID) level indicates the degree of confidence in annotation (from ref
18). Level 1 (identity confirmed): retention time and MS/MS matched with an authentic chemical standard; Level 2 (putative annotation): no
standard available or analyzed but mass within 5 ppm mass error and MS/MS spectra matches with those in a database.

Table 4. Metabolic Pathways Significantly Associated with
Colorectal Cancer, Chloroform, Brominated THMs, and
Nitrate Exposure Based on 1629 Features As a Reference
List and Significant Features (p-value <0.05) Obtained from
the Univariate Regression Modela

Pathways
Colorectal

cancer Chloroform
Br-

THM Nitrate

Arginine and Proline
Metabolism

1 (7) 1 (7) 1 (7)

Aspartate and asparagine
metabolism

1 (8)

D4&E4-neuroprostanes
formation

2 (3)

Drug metabolism -
cytochrome P450

6 (10) 1 (10)

Methionine and cysteine
metabolism

1 (3) 1 (3) 1 (3)

Tyrosine metabolism 6 (16) 1 (16) 1 (16) 1 (16)
Urea cycle/amino group
metabolism

1 (8) 1 (8) 1 (8)

Valine, leucine and
isoleucine degradation

1 (2) 1 (2)

aN = 405 for cancer, N = 24 for nitrate, N = 20 for chloroform and
brominated THMs, based on Mummichog software. The numbers
indicate significant features (number of features in the pathway in our
reference list).
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stimulation can confer oncogenic properties contributing to
malignancy.41 Tyrosine nitration and halogenation, which
consists in the addition of a nitro-(NO2) group, chloride or
bromide, to the phenolic ring of tyrosine residues in proteins,
is involved in carcinogenesis.42 It has been shown both in vitro
and in vivo widespread nitration of tyrosine residues of cellular
proteins in response to increased intracellular nitric oxide
(NO) in colon cancer cells. We, therefore, speculate that
tyrosine nitration may be responsible, at least in part, for the
effect of nitrate exposure (internal NO source) on cancer cell
growth and that this may represent a mechanism of colorectal
carcinogenesis.43

Creatine participates in arginine and proline metabolism,
which has also been identified as a significant pathway for
biological effects related to THMs and nitrate exposures
(Table 4). We also detected creatine levels higher in colorectal
cancer cases than in controls and those more exposed to both
THMs and nitrate (Table 3). However, prior evidence is
inconsistent. While two previous studies have reported
elevated levels of proline in plasma of patients with colorectal
cancer,23,44 another study observed reduced levels of proline in
colorectal cases compared to control subjects.45

The sex-determining region Y (SRY)-box (SOX) family
plays a crucial role in carcinogenesis and cancer progression.
While the dysregulation of SOX12 has been linked to
colorectal cancer, the underlying mechanisms remain elusive.46

It is established that SOX12 promotes asparagine synthesis by
activating genes such as glutaminase (GLS), glutamic oxalo-
acetic transaminase 2 (GOT2), and asparagine synthetase
(ASNS). Given our data’s correlation between disturbances in
aspartate and asparagine metabolism with nitrate exposure
(Table 4), we propose that this pathway may contribute to the
association between nitrate exposure and colorectal cancer.47

Our pathway analysis also revealed the involvement of
lysophospholipid lysoPC(20:2) in glycerophospholipid metab-
olism as a metabolic pathway between contaminants in water
and colorectal cancer. Several other lysophosphatidylcholines
have been inversely related to colorectal cancer in this study
(Table 3), supporting the hypothesis of dysregulated lipid
metabolism in cancer.48 In line with our findings, multiple
studies have consistently demonstrated a noteworthy decrease
in the levels of various lysophosphatidylcholines (LysoPCs) in
colorectal cancer cases.23,24,49−51 Considering this prior
evidence and our discoveries, it is plausible that dysregulated
lipid metabolism serves as a potential mechanism by which
both THMs and nitrates contribute to the development of
colorectal cancer.
In agreement with previous research,23 we identified many

acyl carnitines as associated with colorectal cancer (Table 3).
Metabolites associated with the carnitine cycle play a crucial
role in modulating fatty acid metabolism and facilitating
mitochondrial fatty acid transport. These metabolites can also
exert an influence on the composition of the gut microbiota.52

In the PISCINA-II study (EXPOsOMICS project), which
investigated volunteers who swam for 40 min in an indoor
pool, the hexanoylcarnitine was associated with bromodi-
chloromethane, and nonanoylcarnitine was associated with
bromoform in exhaled breath. However, in this data, we found
these metabolites associated with colorectal cancer but not
with any water contaminant variable. This discrepancy might
be attributed to our grouping of all bromates together, whereas
the PISCINA-II study analyzed separately each individual Br-
THM.14

Finally, bilirubin was negatively associated with TTHM and
nitrate (Table 3). Although bilirubin was not associated with
cancer risk in our study, it has been found to exhibit significant
antioxidant and anticancer properties in previous studies,
which have proposed the bilirubin as a potentially valuable
prognostic biomarker for overall survival in advanced color-
ectal cancer.53 Likewise, there is robust evidence substantiating
the participation of diminished levels of bilirubin in the
pathogenesis of colorectal carcinogenesis.23,24,51 Thus, an
additional potential mechanism by which THMs and nitrate
elevate the risk of colorectal cancer may involve the reduction
of bilirubin levels (porphyrin and chlorophyll metabolism).

Strengths and Limitations. Metabolomic profiles can be
influenced by various factors, including the disease status.
Given that metabolomic analysis was conducted after cancer
diagnosis, reverse causation cannot be ruled out. The
associations observed with cancer need to be cautiously
interpreted, even if we accounted for chemotherapy and
radiotherapy treatment, which led to 106 features less
compared to the model without radio- and chemotherapy
treatment adjustment. Longitudinal studies are needed to
elucidate the dynamic nature of these associations and
establish causal relationships. In contrast, exposure assigned
corresponded to a period before diagnosis and sample
collection and excluded 2 years before the interview. This is
better aligned with the hypothesized causal pathway, where
exposure precedes changes in the metabolomic profile and,
subsequently, the development of cancer. Thus, the associa-
tions observed between water contaminant exposure and
metabolomic features among controls provide more robust
evidence for a plausible causal relationship.
Finally, it is important to emphasize that pathway analyses,

while valuable for generating hypotheses and estimating
pathway-level differences using metabolomics data, are
typically not exhaustive or definitive in nature. Conflicting
findings regarding metabolite levels across different studies can
often be attributed to variations in study populations, divergent
approaches to sample collection and preparation, diverse
analytical platforms employed, and disparities in the statistical
methodologies employed.
The advantages of untargeted metabolomic analysis include

the ability to identify novel metabolic features and gain insights
into impacted pathways from an agnostic perspective,
enhancing our understanding of the underlying mechanisms.
However, independent validation in other cohorts and the
confirmation of identity by targeted metabolomics would be
needed to confirm the detected associations. The statistical
analysis of our study encompasses univariate, multivariate, and
N-integration methods. This multifaceted approach allows us
to capture a broader and more nuanced understanding of the
associations between metabolomic features, water contami-
nants, and colorectal cancer. By applying different analytical
techniques, we maximize the robustness and reliability of our
findings, providing a more comprehensive picture of the
complex relationships within the metabolome.
In conclusion, this is, to the best of our knowledge, the first

study evaluating the metabolomic profile associated with
exposure to trihalomethanes and nitrate in drinking water and
colorectal cancer risk that constitute widespread environmental
exposures and one of the most frequent cancer sites. Our
comprehensive analysis using untargeted metabolomic analysis
and a variety of bioinformatic approaches suggests the
involvement of various metabolic pathways including nicoti-
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namide, cytochrome P-450, and tyrosine metabolism, among
others. These findings provide insights into potential biological
mechanisms involved and underscore the need for deeper
investigation into these pathways as potential targets for future
research on colorectal cancer and the evaluated exposures.
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