
A Classification of Artificial Intelligence Systems
for Mathematics Education

Steven Van Vaerenbergh and Adrián Pérez-Suay

Abstract This chapter provides an overview of the different Artificial Intelligence
(AI) systems that are being used in contemporary digital tools for Mathematics
Education (ME). It is aimed at researchers in AI and Machine Learning (ML),
for whom we shed some light on the specific technologies that are being used in
educational applications; and at researchers in ME, for whom we clarify: i) what the
possibilities of the current AI technologies are, ii) what is still out of reach and iii)
what is to be expected in the near future. We start our analysis by establishing a high-
level taxonomy of AI tools that are found as components in digital ME applications.
Then, we describe in detail how these AI tools, and in particular ML, are being used
in two key applications, specifically AI-based calculators and intelligent tutoring
systems. We finish the chapter with a discussion about student modeling systems
and their relationship to artificial general intelligence.

1 Introduction

Artificial intelligence (AI) has a long history, starting from observations by the early
philosophers that a reasoning mind works in some ways like a machine. For AI to
become a formal science, however, several advances in the mathematical formaliza-
tion of fields such as logic, computation and probability theory were required [1].
Interestingly, the relationship between mathematics and AI is not unilateral, as AI,
in turn, serves the field of mathematics in several ways. In particular, AI powers

Steven Van Vaerenbergh
Departamento de Matemáticas, Estadı́stica y Computación, Universidad de Cantabria, Avda. de los
Castros 48, 39005 Santander, Spain, e-mail: steven.vanvaerenbergh@unican.es

Adrián Pérez-Suay
Departament de Didàctica de la Matemàtica, Universitat de València, Avda. Tarongers, 4, 46022
València, Spain, e-mail: adrian.perez@uv.es

This is the author’s accepted manuscript of a chapter accepted for publication. Final DOI: https:
//doi.org/10.1007/978-3-030-86909-0_5

steven.vanvaerenbergh@unican.es
adrian.perez@uv.es
https://doi.org/10.1007/978-3-030-86909-0_5
https://doi.org/10.1007/978-3-030-86909-0_5


2 Steven Van Vaerenbergh and Adrián Pérez-Suay

many computer-based tools that are used to enhance the learning and teaching of
mathematics, several of which are the topic of discussion of this chapter.

The close relationship between AI and Mathematics Education (ME) dates back
at least to the 1970s, and it has been discussed thoroughly in the scientific literature
[2, 3, 4]. One could list several parallels between both fields, for instance that they are
both concerned with constructing sound reasoning based on the use of logic. Indeed,
in ME, developing mathematical reasoning skills is an important educational goal,
while many AI systems are designed to perform reasoning tasks in an automated
manner. Also, modern AI techniques involve the concepts of teaching and learning,
as some systems are required to learn models and concepts, either in an autonomous
manner or supervised through some form of instruction1. Nevertheless, while these
parallels exist, humans and machines clearly carry out these tasks in completely dif-
ferent ways. After all, as noted by Schoenfeld, “AI’s perspective is severely distorted
by the engineering perspective, and extrapolations to human performance can be
dangerous” [2, p. 184].

Before continuing, we will take a closer look at what exactly AI is, including its
subfield, machine learning.

1.1 Artificial intelligence and machine learning

The literature contains many different definitions of AI, though they are all much
related. Generally speaking, AI aims to create machines capable of solving problems
that appear hard to the eyes of a human observer. Such problems may be related solely
to thought processes and reasoning capabilities, or they may refer to exhibiting a
certain behavior that strikes as intelligent [1].

Historically, several simple AI programs have been designed using a set of prede-
fined rules, which can often be represented internally as a decision tree model. For
instance, a program for natural language understanding may look if certain words
are present in a phrase, and combine the results through some set of fixed rules
to determine the sentiment of a text. And in early computer vision systems, results
were obtained by calculating hand-engineered features of pixels and their neighbor-
hoods, after which these features were compared to the surrounding features using
predefined rules. However, as soon as one tries to build a system with an advanced
comprehension of natural language or photographic imagery, a very complex set of
such internal rules is required, exceeding largely what can be manually designed by
a human expert. To deal with this complexity, an automated design process for the
set of internal rules is required, better known as machine learning.

Formally, machine learning (ML) is a subfield of AI that follows a paradigm
known as learning from examples, in which a system is given practical examples of a
concept or behavior to be learned, after which it develops an internal representation
that allows its own output to be consistent with the set of given examples [3]. The

1 We will not enter into details regarding the similarities and differences in learning for AI and ME,
as that discussion is slightly outside of the scope of this chapter.



2. A GLIMPSE OF THE PRESENT 3

concept of ML is perhaps best summarized by Tom Mitchell, who wrote it is “the
field that is concerned with the question of how to construct computer programs
that automatically improve with experience” [5]. This definition highlights the three
properties that any ML system should hold: 1) its learning is automated, as in a
computer program that does not require human intervention; 2) the performance can
be measured, which allows the system to measure improvement; and 3) learning is
based on receiving examples (the experience). In summary, as more examples are
processed, a well-designed ML system guarantees that its performance will improve.

The concept of computer programs that learn from examples has been around
as long as AI itself, notably as early as Alan Turing’s vision in the 1950s [1].
Nevertheless, it was not until the middle of the 1990s that a solid foundation for ML
was established by Vladimir Vapnik in his seminal work on statistical learning theory
[6]. At the same time, the techniques of neural networks and support vector machines
gained popularity as they were being applied in real-world applications, though only
for simple tasks, as compared to today’s standards. The latest chapter in the history
of ML started around 2012, when it became clear that neural networks could solve
tasks that were much more demanding than previously achieved, by making them
larger and feeding them much more examples [7]. These neural networks consist
of multiple layers of neurons, leading to the name deep learning, where each layer
contains thousands or even millions of parameters. They are responsible for many of
the AI applications that people interact with at the time of writing, notably in image
and voice recognition, and natural language understanding.

In this chapter, we aim to analyze the uses of AI, and in particular ML, in ME.
The chapter is structured as follows. To fix ideas, in Section 2 we briefly discuss
some contemporary AI-based tools that are being used by mathematical learners.
Based on these examples, we introduce a high-level taxonomy of AI systems that
serve as building blocks for tools in ME, in Section 3. We then show, in Section 4,
how the proposed taxonomy allows us to provide an in-depth analysis of the different
AI systems currently used in some ME tools. We finish with a discussion on future
research required to build complete student modeling systems, in Section 5, and
conclusions, in Section 6.

2 A glimpse of the present

The following are two examples of AI-based tools for mathematics education. These
examples feature some representative AI techniques that will be at the basis of the
taxonomy we propose later, after which we will revisit them for a more in-depth
analysis.



4 Steven Van Vaerenbergh and Adrián Pérez-Suay

2.1 A new breed of calculators

In 2014, a mobile phone application called Photomath2 was released that quickly
became very popular among schoolchildren (and less so among teachers) [8]. It
allows the user to point a phone camera at any equation in a textbook and instantly
obtain the solution, including the detailed steps of reasoning. If the user wishes so, he
or she can even request an alternative sequence of steps for the solution. While the first
version of the software would only work on pictures of clean, textbook equations, the
technology was later upgraded to recognize handwriting as well. Several other apps
have followed suit since, notably Google’s Socratic3 and Microsoft Math Solver4.

The emergence of these tools, known as “camera calculators”, can be mainly
attributed to advances in image recognition technology, and in particular to optical
character recognition (OCR) algorithms based on deep learning. Once the OCR
algorithm has translated the picture into a mathematical equation, standard equation
solvers can be used to obtain a solution. The third and last stage of the application
consists in explaining the solution to the user, for instance, by means of a sequence
of steps. In the case of the solution of a linear equation, this stage is resolved
algorithmically, requiring little AI. Nevertheless, it is often possible to find a shorter
or more intuitive solution by thinking strategically (see, for instance, the example
in [8, p. 4]). For an AI to do so, it would require capabilities of mimicking human
intuition or exploring creative strategies. We will discuss these capabilities later, in
Section 4.2.2.

Interestingly, these apps have reignited the discussion on the appropriate use
of tools in mathematics education, reminiscent of the controversy on the use of
pocket calculators that started several decades ago [8]. Indeed, they could be seen
as examples of a new generation of “smarter” calculators, that limit the number
of actions and calculations that the user must perform to reach a solution. Such
new, smarter calculators are not limited to equation solvers only, as they can be
found in other fields as well. For instance, as of version 5, the popular dynamic
geometry software (DGS) GeoGebra5 includes a set of automated reasoning tools
that allow the rigorous mathematical verification and automatic discovery of general
propositions about Euclidean geometry figures built by the user [9]. Rather than
merely automating calculations, as common digital calculators do, these tools allow
to automate the reasoning, to a certain extent.

2 https://photomath.app/

3 https://socratic.org/

4 https://math.microsoft.com/

5 https://www.geogebra.org/

https://photomath.app/
https://socratic.org/
https://math.microsoft.com/
https://www.geogebra.org/


3. A TAXONOMY OF AI TECHNIQUES FOR MATHEMATICS EDUCATION 5

2.2 Blueprint of a data-driven intelligent tutoring system

Our second example concerns an interactive tool for learning and teaching mathe-
matics. In particular, in the following, we describe a hypothetical interaction between
a student and an intelligent tutoring system (ITS).

Hypatia, a student, logs onto the system through her laptop and she starts reading
a challenge proposed by the system. This time, the challenge consists in solving an
integral equation. Hypatia is not sure how to start, and she spends a few minutes
scratching calculations on her notepad. The system, after checking her profile in the
database, infers that she needs help, and offers a hint on screen. Hypatia now knows
how to proceed and advances a few steps towards the solution. However, some steps
later, she makes a mistake in a substitution. The system immediately notices the
mistake and identifies it as a common error (a “bug”). Through the visual interface,
the system tells Hypatia to check if there were any mistakes in the last step. She
reviews her calculations and quickly corrects the mistake. The system encourages
her for spotting the error, and she continues to solve the exercise successfully. At this
point, the system shows her a summary of the solution and reminds her of the hints
she was given. She can then choose to review any of the steps and their explanation,
or continue to the next problem. If she chooses to continue, the system will present
her a problem that has been designed specifically to advance along her personalized
learning path.

Before Hypatia started using this ITS, the system’s database already contained the
interactions of many other students. By using data mining techniques, it was able to
identify a number of “stereotype” student profiles. The first time Hypatia interacted
with the ITS, the system’s AI analyzed her initial actions to build an initial profile for
her, based on one of the stereotype profiles. As she now performs different problem
solving sessions, the system adds more of her interactions to its database, which
allows it to identify behavioral patterns and build a more refined student model for
her. This, in turn, allows the system to personalize her learning path and to offer her
more relevant feedback when she encounters difficulties.

Certainly, the above-described example is not purely hypothetical, but based on
real ITS that are used in practice today. We will return to this example later on.

3 A taxonomy of AI techniques for mathematics education

We now propose a taxonomy of AI techniques that are used in digital tools for
ME. The taxonomy consists of four categories that span the entire range of such AI
systems. While each of the categories is motivated by some aspect of the previous
examples, we include a more comprehensive list of particular cases from the literature
for each of them. Furthermore, we shed some light on the current technological
capabilities of these AI systems.



6 Steven Van Vaerenbergh and Adrián Pérez-Suay

3.1 Information extractors

We use the term information extractors to refer to AI technologies that take observa-
tions from the real world and translate them into a mathematical representation (Fig.
1). A classic example in this category consists in parsing the text of algebraic word
problems into equations [10]. More advanced information extractors can operate on
digitized data from a sensor, such as a camera or a microphone, to which they apply
an AI algorithm to extract computer-interpretable mathematical information.

Fig. 1 Representation of an information extractor. The globe represents observations from the real
world, and the summation sign represents mathematical information.

An example of information extractors that operate on visual data was given in
Section 2.1, where the initial stage of the described camera calculator translates a
picture into a mathematical equation. The AI required to perform OCR in these
information extractors operates in two steps: First, it employs a convolutional neural
network (CNN) to recognize individual objects in an image. In essence, a CNN is
a particular type of artificial neural network that is capable of processing spatial
information present in neighborhoods of pixels by applying (and learning) digital
filters [7]. Then, the individually recognized objects are transformed into a sequence,
which was traditionally performed by techniques such as Hidden Markov Models
[11], but is now implemented as neural-network based techniques such as Long
Short-Term Memory networks [12] and transformers [13].

Visual information extractors are not only used to digitize algebraic equations,
but can also be used to extract other types of mathematical information from the real
world. For instance, in the MonuMAI project [14], extractors based on CNN are used
to obtain geometrical information from pictures of monuments. And some camera
calculators, such as Socratic, allow to take pictures of word problems, which are
transformed to text, interpreted, and converted into a mathematical representation.

Finally, sensor data from a student may be used to extract information for an
ITS (see Section 4.2). In particular, these systems may require information about
the student’s state of mind during the resolution of a mathematical problem. In this
category we encounter AI techniques for facial expression recognition [15], speech
emotion recognition [16], and mood sensing through electrodermal activity [17].



3. A TAXONOMY OF AI TECHNIQUES FOR MATHEMATICS EDUCATION 7

3.2 Reasoning engines

In software engineering, a reasoning engine is a computer program that is capable
of inferring logical consequences from a set of axioms found in a knowledge base,
by following a set of predefined rules [18]. For the current context of mathematics
education, we employ a broader definition of reasoning engines that includes all
software systems that are capable of automatically solving a mathematically formu-
lated problem (Fig. 2). A very simple such system consists of an equation solver,
whose action is limited to transforming the (set of) equations into their canonical
form and applying the formula or the algorithm to solve them [19]. Several types
of more sophisticated reasoning engines exist in the mathematical research liter-
ature, for instance automated theorem provers (ATP), whose aim is to verify and
generate proofs of mathematical theorems [20]. While proof verification is a simple
mechanical process that only requires checking the correctness of each individual
step, proof generation is a much harder problem, as it requires searching through a
combinatorial explosion of possible steps in the proof sequence.

Fig. 2 Representation of a reasoning engine. It receives a mathematical problem as an input, and
outputs the corresponding solution.

A novel contribution in the development of reasoning engines lies in the use of
ML techniques, which has been fueled by the success of deep learning in pattern
matching problems [7]. These techniques follow the standard ML paradigm that
requires a set of training examples: The ML algorithm, typically a deep neural
network, learns a model in order to explain as much of the training examples as
possible. The learned model is completely data driven, without any hard rules or
logic programmed into it.

ML algorithms could improve current ATP techniques by encoding human
provers’ intuitions and predicting the best next step in a proof [21, 22, 23]. Fur-
thermore, neural networks for natural language processing are being used to train
machines to solve word problems and to perform symbolic reasoning, yielding cur-
rently some limited but promising results. For instance, Saxton et al. [24] generated
a data set of two million example problems from different areas of mathematics and
their respective solutions. Several neural network models were trained on these data
and, in general, a moderate performance was obtained, depending on the problem
type. Deep learning is also being used to solve differential equations [25, 26], per-
form symbolic reasoning [27], and solve word problems [28, 29]. Note that these
methods typically operate on text data and they perform the action of the information



8 Steven Van Vaerenbergh and Adrián Pérez-Suay

extractor and the reasoning engine using a single AI. Finally, in the ML community
there is a growing interest in automating abstract reasoning. Research in this area
currently focuses on solving visual IQ tests, such as variants of Raven’s Progressive
Matrices [30, 31], and causal inference, which deals with explaining cause-effect
relations, for instance from a statistical point of view [32].

3.3 Explainers

While reasoning engines can solve mathematical problems and generate correct
proofs, they do not necessarily produce results that can be read by a human. Some-
times this is simply not needed, for instance when an ATP is used in research to
verify a theorem that requires a long and complex proof, prone to human errors.
But in a different context, for instance that of the mathematical learner, it becomes
important to have proofs that are understandable [33].

In the AI community, interest in explainable methods has recently surged. Part of
this interest is due to legal reasons, as some administrations demand that decisions
taken by an AI model on personal data be accompanied by a human-understandable
explanation [34]. While some early AI systems generated models that could easily
be interpreted, modern AI techniques, especially deep learning systems, involve
opaque decision systems. These algorithms operate in enormous parametric spaces
with millions of parameters, rendering them effectively black-box methods whose
decisions cannot be interpreted. To solve this issue, the research field of explainable
AI is concerned with developing AI methods that produce interpretable models
and interpretable decisions [35, 36, 37]. We will refer to AI methods that produce
understandable explanations as explainers (Fig. 3).

Fig. 3 Representation of a post-hoc explainer. It translates a machine-code solution into a sequence
of logical, human-readable steps.

From a technical point of view, there exist two types of explainers. The first type
are modules that can be added onto existing, opaque AI systems. They perform what
is called post-hoc explainability, and may do so for instance by approximating the
complex model with a simpler, interpretable one. Some different post-hoc explain-
ability approaches are illustrated in [37, Fig. 4]. The second type of explainable AI
consists of models that are interpretable by design. Under our terminology, these
correspond to reasoning engines that are restricted to only producing interpretable
solutions. Of these two types, the former has the advantage that it does not require



3. A TAXONOMY OF AI TECHNIQUES FOR MATHEMATICS EDUCATION 9

replacing the entire reasoning engine, which is usually hard to design and train in
the first place.

In the field of ME, explainers have been built principally for solving math equa-
tions step by step, for instance in the open source project mathsteps6. In ATP, on the
other hand, explainability is a fairly new research line. In order to apply a post-hoc
explainer onto an ATP, it might be necessary to construct an ATP based purely on
logic, though, as [38] notes, “while logic methods proposed have always been the
dream of mankind, their applications are limited due to the massive search space”.
One case in point is found in DGS, where geometric automated theorem provers
(GATP) are now being integrated [39]. State-of-the-art GATP are based on algebraic
methods, and their results cannot be translated into human-readable proofs [39, 40].
For this reason, explainability is to be introduced in ATP by designing ATP tech-
niques that are transparent by design [33, 34]. In the case of GATP, this approach is
currently very limited, as discussed in [41].

3.4 Data-driven modeling

Up till this point, we have described several techniques and scenarios in which sub-
stantial amounts of data are generated: the extraction techniques from Section 3.1
distill real-world and sensor observations into numerical information and mathemat-
ical representations; and, in section 2.2, Hypatia interacts with an ITS that relies on
a database of student information and completed student tasks, which increases each
time a student uses the system. In modern AI systems, data mining and machine
learning techniques are used to analyze these data and to convert them into in-
sights and practical models. These techniques, which we will refer to as data-driven
modeling, cover a broad area and make up the final class of AI in ME (Fig. 4).

Fig. 4 Representation of a data-driven model. After receiving data from different sources, it infers
a model for the data that can be used to produce predictions.

Data-driven modeling is employed for several reasons in ME. First, it may allow
building models that are used to improve specific aspects of the learning process
of individual students. These include AI models to predict a student’s performance
[42, 43, 44], to determine at what specific problem step a student learns a concept

6 https://github.com/google/mathsteps

https://github.com/google/mathsteps


10 Steven Van Vaerenbergh and Adrián Pérez-Suay

[45], or even to detect that a student tries to game an ITS [46] 7. The ML techniques
that are used to construct these models are mainly regression techniques (to obtain
predictors that produce numerical values) and classification algorithms (to predict
categorical or qualitative variables).

Second, data-driven modeling techniques can be used on large collections of stu-
dent data, in a big-data fashion. A classic application in this category consists in
analyzing completed student tasks in order to build a database of common errors,
or “bugs” [3, 47], which is an important component of an ITS. A different appli-
cation consists in modeling complete student populations, which can be useful to
group students into different “stereotypes”, and is typically performed by clustering
algorithms. Another application is the large-scale analysis of student profiles and
completed tasks to improve the personalization of learning paths in an ITS. In this
case, recommendation algorithms can be employed [47]. Finally, while studies in
this field are mostly restricted to single schools or data from single ITS, it is easy
to imagine that data-driven modeling can be applied to larger populations of stu-
dents, for instance on a national level, where they could be used to make statistical
assessments about the effectiveness of specific aspects of a curriculum.

4 The present, revisited

Armed with the taxonomy introduced in Section 3, we can now revisit the examples
from Section 2 and analyze their AI and ML techniques in more detail, pointing out
some capabilities that may be added in the future.

4.1 AI-based calculators

Fig. 5 The workflow of a camera calculator.

The “camera calculator”, described earlier, operates as shown in Figure 5: First,
the user captures a problem, for instance by taking a picture, which is translated by an
information extractor into its mathematical formulation. Second, a reasoning engine
solves the problem and produces a solution, in machine code. Third, an explainer

7 We discuss student modeling in more detail in Section 4.2.1.



4. THE PRESENT, REVISITED 11

translates the machine code into a human-readable reasoning sequence. In the case of
simple problems, the reasoning engine and explainer could be replaced by a single
module. Finally, the complete solution is presented to the user, who may request
additional information on each of the steps.

The described workflow is valid for a wide range of calculators: The extractor
could operate on different types of data, such as text from word problems, or voice
commands, which are transcribed to text. As for the reasoning engine, many ATP
and advanced computational engines are available, including the solvers Mathemat-
ica8 and Maple9. In this context, a pioneering role in the development of AI-based
calculators is played by the WolframAlpha computational engine10, which operates
on written queries and combines database look-ups with the computational power
of Mathematica. It includes some explainer capabilities as well, as it provide feed-
back on the solution and links to related educational resources. WolframAlpha was
launched in 2009, making it a forerunner of current AI-based calculator such as the
ones included in personal digital assistants, notably Siri11, Cortana12, Alexa13 and
Google Assistant14.

Another type of AI-based calculator is found in DGS with reasoning capabili-
ties, which take geometric constructions as an input. While these tools contain a
reasoning engine in the form of their GATP, they do not have explainer capabilities,
as mentioned before, since the GATP they include produce proofs that cannot be
translated to human-readable reasoning [39, 40].

Presently, it is not clear how these new tools should fit in current mathemat-
ics curricula. If they are allowed without restrictions, some opponents claim that
they will keep students from learning. Others recognize that the role of these tools
must be debated in the educational community. Some proponents point out that the
availability of these tools produces a shift in the desired objectives of ME [40].

4.2 Intelligent tutoring systems

An ITS is a computer-based learning tool that makes use of AI to create adaptive
educational environments that respond both to the learner’s level and needs, and to
the instructional agenda [48]. While an ITS may share some underlying technologies
with the AI-based calculators we described, they are much more complex tools, and
they are fundamentally interactive. Here, we will review and discuss some relevant
ITS that have been proposed in the literature.

8 https://www.wolfram.com/mathematica/

9 https://www.maplesoft.com/

10 https://www.wolframalpha.com/

11 https://www.apple.com/siri/

12 https://www.microsoft.com/cortana/

13 https://developer.amazon.com/alexa/

14 https://assistant.google.com/

https://www.wolfram.com/mathematica/
https://www.maplesoft.com/
https://www.wolframalpha.com/
https://www.apple.com/siri/
https://www.microsoft.com/cortana/
https://developer.amazon.com/alexa/
https://assistant.google.com/


12 Steven Van Vaerenbergh and Adrián Pérez-Suay

Fig. 6 Components of an ITS, in relationship to the introduced taxonomy.

Typically, an ITS involves four different components [3, 49, 50], as represented
in Figure 6: i) a domain component to encode the expert knowledge, ii) a student
component to represent student knowledge and behavior, iii) a tutor component to
select the best pedagogical action, and iv) an interface to interact with the student.
The domain component includes, among others, expert knowledge, databases of
tasks, and databases of bugs. The student component includes student models and
student data, such as the detailed history of completed student tasks. After each
interaction, the student actions are analyzed and the models are updated to reflect
the new data. During the interaction with the student, the tutor uses a reasoning
engine to track the reasoning of the student. It uses data from the student and domain
components to spot bugs, offer feedback and personalize the learning path.

In some ITS, the tutor relies on expert knowledge with exact inference rules, which
allow it to know a priori all possible solution paths to a problem. Examples include
the Hypergraph Based Problem Solver (HBPS) ITS, which deals with word problems
[19], and the QED-Tutrix ITS, used for solving high-school level geometric proof
solving problems [51]. In general though, much of the information available in an
ITS is incomplete or uncertain. Modeling the student, for instance, involves making
inferences about the student’s knowledge and behavior. Hence, probabilistic and
approximate techniques such as Bayesian networks or fuzzy modeling are needed.
An example is found in the TIDES ITS, proposed in [52], which uses a Bayesian
network to model student behavior based on the bugs that the student commits.

Currently, large parts of ITS that are being used in practice are designed and
adapted using data-driven approaches, as described in Section 3.4. For instance, [53]
describes the ViLLe ITS, whose commercial version uses AI techniques to improve
the learning experience, based on the data of millions of student interactions.



4. THE PRESENT, REVISITED 13

4.2.1 Narrow student modeling

The literature on student modeling is vast, and currently there exist dozens of student
models that are used in practical ITS [47, 54, 55]. Nevertheless, the majority of
student models focus only on one specific aspects of the student, which is why we
will refer to them as specific or “narrow” models. For instance, a student model
may be constructed solely to predict student performance, and a different model
may represent their competences in mathematics. A comprehensive student model,
as envisioned decades ago, should include both a complete model of the student’s
knowledge as well as model of his behavior [56]. This requires a more advanced AI,
which we will discuss briefly in Section 5.

4.2.2 Some notes on exploration, creativity and randomness

The interaction with an ITS guarantees that a specific learning occurs and that a target
performance is reached. Nevertheless, if the ITS is to provide a rich experience in
which it can “determine the nature of the underlying meaning”, it should contain
environments that allow the student to freely explore problem situations [57]. This
is obtained by “guided discovery learning”, in which the system can shift between
a tutor-like behavior for some situations and an open, exploratory environment for
others.

In the AI literature, exploration is a prevailing theme. It is especially used in
the subfield of ML known as “reinforcement learning”, in which an agent explores
an environment to determine how to maximize some reward over time. Successful
applications of this field include robotics software, where the AI has to learn how to
interact with the physical world, and strategy games, where the system must figure
out how to beat the game using its custom set of rules.

AI is usually not associated with creativity, or the capability to come up with
creative solutions. What is more, popular belief has it that AI is suited only to provide
“mechanical” solutions, while creativity is reserved for humans. Nonetheless, it is
precisely the AI techniques that require exploration that show strong indications that
AI is capable of showing creative behavior. A striking example was seen in the 2015
tournament of the game Go between world champion Lee Sedol and AlphaGo, an
AI-based Go program developed by Google DeepMind [58]. The AI was first trained
on records of human Go games, and then set out to battle clones of itself in order
to continue improving. Interestingly, this approach led it to discover strategies that
were previously unknown to human players.

In general, exploration and creativity require a certain component of “random-
ness”. Several studies have been performed on this topic in the AI literature. For
instance, randomness can be used to initiate the exploration of the solution space in
neural networks. A comprehensive introduction to this topic can be found in [59].



14 Steven Van Vaerenbergh and Adrián Pérez-Suay

5 Modeling the mathematical learner: a most ambitious goal

While the advances in AI and ML over the past decade have been impressive, it is im-
portant to put them in context. In particular, the recent well-known “breakthroughs”
in AI are all techniques that are very good at solving a very specific problem, such
as recognizing objects in pictures or translating text into a different language. If the
specific setting is changed, they may not function properly. For instance, if a model
is trained on recognizing animals in pictures, it may not return a correct answer
when given a drawing of an animal. This capability of transferring a learned concept
from one situation to a new context is known as “generalization”, and humans are
particularly good at it. It is also one of the traits expected from Artificial General
Intelligence (AGI), as opposed to the described narrow AI systems. A discussion on
generalization capabilities in AI can be found in [60].

In the previous sections, we have discussed several examples of student modeling,
most of which are narrow modeling techniques, as they only cover one specific aspect
of the student’s knowledge or behavior. In order to design a complete student model,
we believe the AI needed is akin to AGI, in that it should thoroughly understand
several fields and it should be able to generalize. The following is a non-exhaustive
list of properties: First, it should master the understanding of physics, which is
being researched in robotics AI. In a mathematics learning setting, physics are
often needed to interpret word problems, and they are indispensable to describe
what is happening in photographic imagery. Second, it should feature strong natural
language understanding. This is currently a very active field in ML, with the best
results being obtained by large neural networks. One such noteworthy system is the
Generative Pre-trained Transformer 3 (GPT-3), a neural network built by OpenAI
that contains 175 billion parameters and was trained on 45 TB of text data [61].
It shows remarkable text-analysis capabilities and can correctly answer many text
queries by producing arbitrarily long human-like text passages. Third, the AI should
have reasoning capabilities that allow it to solve mathematical and other problems.
As briefly touched throughout this chapter, this would require cognitive abilities in
mathematical, logical, and abstract reasoning. Its generalization capabilities would
furthermore allow it to relate knowledge from different fields. Finally, it would
require knowledge from cognitive and developmental psychology to understand the
student’s actions and general behavior. This aspect is perhaps the most complex to
model, and ML research in this area is currently very limited.

6 Conclusions and discussion

In this chapter, we have presented an overview of contemporary AI techniques that
are being used in digital ME tools. To provide a framework for this analysis, we have
established a taxonomy of four different classes that cover each of these techniques:
Information extractors, which convert data from the real world into a mathematical
representation; Reasoning engines, which are solvers for mathematical problems;



References 15

Explainers, which translate machine reasoning into human-interpretable steps; and
data-driven modeling techniques, which are used to distill useful information and
models from the data generated by students, for instance in ITS. We have also given
more an in-depth analysis of AI-based calculator apps, which we consider to be the
next generation of pocket calculators, and we have related the proposed taxonomy to
the different components in a modern data-driven ITS.

We leave the reader with some ideas on AI-based tools for ME that we may
see in the near future. First, progress in AI is currently dominated by ML-based
techniques. The influence of these techniques is also noticeable in the experimental
tools for ME that we have discussed. For instance, ML is used to automate perception
in information extractors, to encode human intuition for searching in large solution
spaces, and to analyze large volumes of data that are being generated in online
education platforms. This trend will likely continue, with advances in ML being
used to improve digital ME tools.

Second, a recurrent theme throughout this chapter is the existence of parallels
between research in AI and research in ME. For one, many of the questions asked
in the design of digital ME tools can be found in AI research as well. And, as such,
many state-of-the-art techniques that are developed in AI can solve problems that
are encountered while building ME tools, in particular in ITS. Nevertheless, it must
be noted that the mentioned AI techniques were developed in fields other than ME,
with goals other than ME in mind, after which they were “borrowed” to be used
in ME tools. This imbalance is certainly fueled by the massive interest that exists
nowadays in the AI space, and one could wonder what incentives in research and
industry would be required to start a new generation of ME-first AI techniques. A
related observation is that the field of AI has advanced greatly over the past decade,
partly due to the habit of publishing novel algorithms as open source software. In
ME, digital tools are currently difficult to access: Most of them are either private (and
closed-source) initiatives, or academic prototypes that are not maintained after their
research project finishes. A notable exception is found in DGS such as GeoGebra.

Finally, we can reflect on the transformation that occurred around five decades ago
with the advent of pocket calculators. At that time, there existed a large experimental
space in which many different ideas were tried out, after which some standard tools
emerged that are still in use today. Currently, AI-based ME tools are in a similar
experimental phase, and although it may take some years or decades, we do expect
to see a similar appearance of a set of standard AI-based applications for ME.

References

1. Stuart Russell and Peter Norvig. Artificial Intelligence: A Modern Approach. Prentice Hall
Press, USA, 3rd edition, 2009.

2. Alan H. Schoenfeld. Artificial intelligence and mathematics education: A discussion of Riss-
land’s paper. In E. Silver, editor, Teaching and learning mathematical problem solving: multiple
research perspectives, pages 177–187. Lawrence Erlbaum Associates, Hillsdale, NJ, 1985.



16 Steven Van Vaerenbergh and Adrián Pérez-Suay

3. Etienne Wenger. Artificial intelligence and tutoring systems: computational and cognitive
approaches to the communication of knowledge. Morgan Kaufmann, 1987.

4. Nicolas Balacheff. Didactique et intelligence artificielle. Recherches en Didactique des
Mathématiques, 14:9–42, 1994.

5. Tom M. Mitchell. Machine Learning. McGraw-Hill, New York, 1997.
6. Vladimir N. Vapnik. The Nature of Statistical Learning Theory. Springer-Verlag, Berlin,

Heidelberg, 1995.
7. Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. ImageNet classification with deep

convolutional neural networks. In F. Pereira, C. J. C. Burges, L. Bottou, and K. Q. Weinberger,
editors, Advances in Neural Information Processing Systems, volume 25. Curran Associates,
Inc., 2012.

8. Corey Webel and Samuel Otten. Teaching in a world with PhotoMath. The Mathematics
Teacher, 109(5):368–373, 2015.

9. Zoltán Kovács, Tomás Recio, Philippe R. Richard, Steven Van Vaerenbergh, and M. Pilar
Vélez. Towards an ecosystem for computer-supported geometric reasoning. International
Journal of Mathematical Education in Science and Technology, 2020.

10. Rik Koncel-Kedziorski, Hannaneh Hajishirzi, Ashish Sabharwal, Oren Etzioni, and Siena Du-
mas Ang. Parsing algebraic word problems into equations. Transactions of the Association for
Computational Linguistics, 3:585–597, 2015.

11. L. R. Rabiner and B. H. Juang. An introduction to hidden Markov models. IEEE ASSP
Magazine, 3(1):4–16, 1986.

12. Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neural computation,
9(8):1735–1780, 1997.

13. Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
 Lukasz Kaiser, and Illia Polosukhin. Attention is all you need. In I. Guyon, U. V. Luxburg,
S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and R. Garnett, editors, Advances in
Neural Information Processing Systems 30, pages 5998–6008. Curran Associates, Inc., 2017.

14. Alberto Lamas, Siham Tabik, Policarpo Cruz, Rosana Montes, Álvaro Martı́nez-Sevilla, Teresa
Cruz, and Francisco Herrera. MonuMAI: Dataset, deep learning pipeline and citizen science
based app for monumental heritage taxonomy and classification. Neurocomputing, 420:266–
280, 2021.

15. Shan Li and Weihong Deng. Deep facial expression recognition: A survey. IEEE Transactions
on Affective Computing, 2020.

16. Haytham M Fayek, Margaret Lech, and Lawrence Cavedon. Evaluating deep learning archi-
tectures for speech emotion recognition. Neural Networks, 92:60–68, 2017.

17. Henri Kajasilta, Mikko-Ville Apiola, Erno Lokkila, Ashok Veerasamy, and Mikko-Jussi
Laakso. Measuring students’ stress with mood sensors: First findings. In International Con-
ference on Web-Based Learning, pages 92–99. Springer, 2019.

18. Borko Furht. Encyclopedia of multimedia. Springer Science & Business Media, 2008.
19. David Arnau, Miguel Arevalillo-Herráez, Luis Puig, and José Antonio González-Calero. Fun-

damentals of the design and the operation of an intelligent tutoring system for the learning
of the arithmetical and algebraic way of solving word problems. Computers & Education,
63:119–130, 2013.

20. Donald W Loveland. Automated Theorem Proving: a logical basis. Elsevier, 1978.
21. Thibault Gauthier and Cezary Kaliszyk. Premise selection and external provers for HOL4. In

Proceedings of the 2015 Conference on Certified Programs and Proofs, pages 49–57. ACM,
2015.

22. Sarah Loos, Geoffrey Irving, Christian Szegedy, and Cezary Kaliszyk. Deep network guided
proof search. LPAR-21. 21st International Conference on Logic for Programming, Artificial
Intelligence and Reasoning, 2017.

23. Claudia Schon, Sophie Siebert, and Frieder Stolzenburg. Using conceptnet to teach common
sense to an automated theorem prover. In Proceedings ARCADE 2019, 2019.

24. David Saxton, Edward Grefenstette, Felix Hill, and Pushmeet Kohli. Analysing mathematical
reasoning abilities of neural models. In Proceedings of ICLR, 2019.



References 17

25. Forough Arabshahi, Sameer Singh, and Animashree Anandkumar. Towards solving differential
equations through neural programming. In ICML Workshop on Neural Abstract Machines and
Program Induction (NAMPI), 2018.

26. Guillaume Lample and François Charton. Deep learning for symbolic mathematics. In
Proceedings of ICLR, 2019.

27. Dennis Lee, Christian Szegedy, Markus N Rabe, Sarah M Loos, and Kshitij Bansal. Mathe-
matical reasoning in latent space. In Proceedings of ICLR, 2020.

28. Yan Wang, Xiaojiang Liu, and Shuming Shi. Deep neural solver for math word problems. In
Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing,
pages 845–854, 2017.

29. Lei Wang, Dongxiang Zhang, Lianli Gao, Jingkuan Song, Long Guo, and Heng Tao Shen.
Mathdqn: Solving arithmetic word problems via deep reinforcement learning. In Thirty-Second
AAAI Conference on Artificial Intelligence, 2018.

30. David Barrett, Felix Hill, Adam Santoro, Ari Morcos, and Timothy Lillicrap. Measuring
abstract reasoning in neural networks. In Jennifer Dy and Andreas Krause, editors, Proceedings
of the 35th International Conference on Machine Learning, volume 80 of Proceedings of
Machine Learning Research, pages 511–520. PMLR, 10–15 Jul 2018.

31. François Chollet. On the measure of intelligence. arXiv preprint arXiv:1911.01547, 2019.
32. Madelyn Glymour Judea Pearl and Nicholas P. Jewell. Causal inference in statistics: A primer.

John Wiley & Sons, 2019.
33. Mohan Ganesalingam and William Timothy Gowers. A fully automatic theorem prover with

human-style output. Journal of Automated Reasoning, 58(2):253–291, 2017.
34. How Meng-Leong. Future-ready strategic oversight of multiple artificial superintelligence-

enabled adaptive learning systems via human-centric explainable AI-empowered predictive
optimizations of educational outcomes. Big Data and Cognitive Computing, 3(3):46, July
2019.

35. Amina Adadi and Mohammed Berrada. Peeking inside the black-box: A survey on explainable
artificial intelligence (XAI). IEEE Access, 6:52138–52160, 2018.

36. Christoph Molnar. Interpretable Machine Learning. Lulu Publishing, 2019.
37. Alejandro Barredo Arrieta, Natalia Dı́az-Rodrı́guez, Javier Del Ser, Adrien Bennetot, Siham

Tabik, Alberto Barbado, Salvador Garcı́a, Sergio Gil-López, Daniel Molina, Richard Ben-
jamins, et al. Explainable artificial intelligence (xai): Concepts, taxonomies, opportunities and
challenges toward responsible ai. Information Fusion, 58:82–115, 2020.

38. Hongguang Fu, Jingzhong Zhang, Xiuqin Zhong, Mingkai Zha, and Li Liu. Robot for mathe-
matics college entrance examination. In Electronic Proceedings of the 24th Asian Technology
Conference in Mathematics, Mathematics and Technology, LLC, 2019.

39. Pedro Quaresma. Automated deduction and knowledge management in geometry. Mathematics
in Computer Science, 14(4):673–692, 2020.

40. Zoltán Kovács and Tomás Recio. GeoGebra reasoning tools for humans and for automatons.
In Proceedings of the 25th Asian Technology Conference in Mathematics, 2020.

41. Ludovic Font, Philippe R. Richard, and Michel Gagnon. Improving QED-Tutrix by automating
the generation of proofs. In Pedro Quaresma and Walther Neuper, editors, Proceedings 6th
International Workshop on Theorem proving components for Educational software (ThEdu’17),
volume 267 of Electronic Proceedings in Theoretical Computer Science, pages 38–58. Open
Publishing Association, 2018.

42. Paulo Cortez and Alice Maria Gonçalves Silva. Using data mining to predict secondary school
student performance. In A. Brito and J. Teixeira, editors, Proceedings of 5th Future Business
Technology Conference, pages 5–12. EUROSIS-ETI, April 2008.

43. Andy Smith, Wookhee Min, Bradford W Mott, and James C Lester. Diagrammatic student
models: Modeling student drawing performance with deep learning. In International Confer-
ence on User modeling, Adaptation, and Personalization, pages 216–227. Springer, 2015.

44. Raheela Asif, Agathe Merceron, Syed Abbas Ali, and Najmi Ghani Haider. Analyzing un-
dergraduate students’ performance using educational data mining. Computers & Education,
113:177–194, 2017.



18 Steven Van Vaerenbergh and Adrián Pérez-Suay

45. Ryan S.J.d. Baker, Adam B. Goldstein, and Neil T. Heffernan. Detecting the moment of
learning. In International Conference on Intelligent Tutoring Systems, pages 25–34. Springer,
2010.

46. Ryan Baker, Jason Walonoski, Neil Heffernan, Ido Roll, Albert Corbett, and Kenneth
Koedinger. Why students engage in “gaming the system” behavior in interactive learning
environments. Journal of Interactive Learning Research, 19(2):185–224, 2008.

47. Konstantina Chrysafiadi and Maria Virvou. Student modeling approaches: A literature review
for the last decade. Expert Systems with Applications, 40(11):4715–4729, 2013.

48. Arthur C. Graesser, Mark W. Conley, and Andrew Olney. Intelligent tutoring systems. In
APA educational psychology handbook, Vol 3: Application to learning and teaching, pages
451–473. American Psychological Association, 2012.

49. M.A.F. de Souza and Maria Alice Grigas Varella Ferreira. Designing reusable rule-based
architectures with design patterns. Expert Systems with Applications, 23(4):395–403, 2002.

50. Valerie J. Shute and Joseph Psotka. Intelligent tutoring systems: Past, present, and future. In
D. Jonassen, editor, Handbook of Research on Educational Communications and Technology,
pages 570–600. Macmillan, New York, 1996.

51. Nicolas Leduc. QED-Tutrix: système tutoriel intelligent pour l’accompagnement des élèves en
situation de résolution de problèmes de démonstration en géométrie plane. PhD thesis, École
Polytechnique de Montréal, 2016.

52. Abderrahim Danine, Bernard Lefebvre, and Andre Mayers. Tides-using bayesian networks for
student modeling. In Sixth IEEE International Conference on Advanced Learning Technologies
(ICALT’06), pages 1002–1007. IEEE, 2006.

53. Einari Kurvinen, Erkki Kaila, Mikko-Jussi Laakso, and Tapio Salakoski. Long term effects on
technology enhanced learning: The use of weekly digital lessons in mathematics. Informatics
in Education, 19(1):51–75, 2020.

54. Salisu Muhammad Sani, Abdullahi Baffa Bichi, and Shehu Ayuba. Artificial intelligence ap-
proaches in student modeling: Half decade review (2010-2015). IJCSN-International Journal
of Computer Science and Network, 5(5), 2016.

55. Abir Abyaa, Mohammed Khalidi Idrissi, and Samir Bennani. Learner modelling: system-
atic review of the literature from the last 5 years. Educational Technology Research and
Development, 67(5):1105–1143, 2019.

56. Nicolas Balacheff. Artificial intelligence and mathematics education: Expectations and ques-
tions. In Tony Herrington, editor, 14th Biennal of the Australian Association of Mathematics
Teachers, pages 1–24, Perth, Australia, 1993. Curtin University.

57. Nicolas Balacheff and James J Kaput. Computer-Based Learning Environments in Mathemat-
ics, pages 469–501. Springer Netherlands, Dordrecht, 1996.

58. David Silver, Julian Schrittwieser, Karen Simonyan, Ioannis Antonoglou, Aja Huang, Arthur
Guez, Thomas Hubert, Lucas Baker, Matthew Lai, Adrian Bolton, et al. Mastering the game
of go without human knowledge. Nature, 550(7676):354–359, 2017.

59. Simone Scardapane and Dianhui Wang. Randomness in neural networks: an overview. Wiley
Interdisciplinary Reviews: Data Mining and Knowledge Discovery, 7(2):e1200, 2017.

60. Ken Kansky, Tom Silver, David A Mély, Mohamed Eldawy, Miguel Lázaro-Gredilla, Xinghua
Lou, Nimrod Dorfman, Szymon Sidor, Scott Phoenix, and Dileep George. Schema networks:
Zero-shot transfer with a generative causal model of intuitive physics. In International Con-
ference on Machine Learning, pages 1809–1818. PMLR, 2017.

61. Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhari-
wal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, Sandhini Agarwal,
Ariel Herbert-Voss, Gretchen Krueger, Tom Henighan, Rewon Child, Aditya Ramesh, Daniel
Ziegler, Jeffrey Wu, Clemens Winter, Chris Hesse, Mark Chen, Eric Sigler, Mateusz Litwin,
Scott Gray, Benjamin Chess, Jack Clark, Christopher Berner, Sam McCandlish, Alec Radford,
Ilya Sutskever, and Dario Amodei. Language models are few-shot learners. In H. Larochelle,
M. Ranzato, R. Hadsell, M. F. Balcan, and H. Lin, editors, Advances in Neural Information
Processing Systems, volume 33, pages 1877–1901. Curran Associates, Inc., 2020.


	A Classification of Artificial Intelligence Systems for Mathematics Education
	Introduction
	Artificial intelligence and machine learning

	A glimpse of the present
	A new breed of calculators
	Blueprint of a data-driven intelligent tutoring system

	A taxonomy of AI techniques for mathematics education
	Information extractors
	Reasoning engines
	Explainers
	Data-driven modeling

	The present, revisited
	AI-based calculators
	Intelligent tutoring systems

	Modeling the mathematical learner: a most ambitious goal
	Conclusions and discussion
	References
	References


