
IEEE TRANSACTIONS ON EMERGING TOPICS IN COMPUTATIONAL INTELLIGENCE 1

Complex-valued Neural Networks with
Non-parametric Activation Functions

Simone Scardapane, Steven Van Vaerenbergh, Senior Member, IEEE, Amir Hussain, Senior Member, IEEE,
and Aurelio Uncini, Member, IEEE

Abstract—Complex-valued neural networks (CVNNs) are a
powerful modeling tool for domains where data can be naturally
interpreted in terms of complex numbers. However, several
analytical properties of the complex domain (such as holomor-
phicity) make the design of CVNNs a more challenging task than
their real counterpart. In this paper, we consider the problem
of flexible activation functions (AFs) in the complex domain,
i.e., AFs endowed with sufficient degrees of freedom to adapt
their shape given the training data. While this problem has
received considerable attention in the real case, a very limited
literature exists for CVNNs, where most activation functions
are generally developed in a split fashion (i.e., by considering
the real and imaginary parts of the activation separately) or
with simple phase-amplitude techniques. Leveraging over the
recently proposed kernel activation functions (KAFs), and related
advances in the design of complex-valued kernels, we propose
the first fully complex, non-parametric activation function for
CVNNs, which is based on a kernel expansion with a fixed
dictionary that can be implemented efficiently on vectorized
hardware. Several experiments on common use cases, including
prediction and channel equalization, validate our proposal when
compared to real-valued neural networks and CVNNs with fixed
activation functions.

Index Terms—Neural networks, Activation functions, Kernel
methods, Complex domain.

I. INTRODUCTION

OVER the last years, machine learning techniques have
obtained impressive results in a wide range of fields,

especially when dealing with supervised problems [1]–[3].
The majority of these applications has focused on the case
of real-valued data: as an example, most of the deep learning
frameworks currently used today can only work with floating
point (or integer) numbers. Several applicative domains of
interest, however, exhibit data that can be more naturally
modeled using complex-valued algebra, from image processing
to time-series prediction, bioinformatics, and robotics’ control
(see [4], [5] for a variety of examples). While complex data can
immediately be transformed to a real domain by considering
the real and imaginary components separately, the resulting
loss of phase information gives rise to algorithms that are

S. Scardapane and A. Uncini are with the Department of Information En-
gineering, Electronics and Telecommunications (DIET), Sapienza University
of Rome, Via Eudossiana 18, 00184 Rome, Italy. Emails: simone.scardapane,
aurelio.uncini@uniroma1.it

S. Van Vaerenbergh is with the Department of Communications Engineer-
ing, University of Cantabria, Av. los Castros s/n, 39005 Santander, Cantabria,
Spain. Email: steven.vanvaerenbergh@unican.es.

A. Hussain is with the Division of Computing Science & Maths, School
of Natural Sciences, University of Stirling, Stirling FK9 4LA, Scotland, UK.
Email: ahu@cs.stir.ac.uk.

generally less efficient (or expressive) than alternative methods
able to work directly in the complex domain, as evidenced
by a large body of literature [6]. Due to this, many learning
algorithms have been extended to deal with complex data,
including linear adaptive filters [5], [7], kernel methods [8]–
[10], component analysis [11], and neural networks (NNs)
[12]–[18]. We consider this last class of algorithms here.

Despite the apparent similarity between the real and com-
plex domains, working directly in the latter is challenging
because of several non-intuitive analytical properties of the
complex algebra. Most notably, almost all cost functions
involved in the training of complex models require non-
analytic (also known as non-holomorphic [8]) functions, so
that standard complex derivatives cannot be used in the
definition of the optimization algorithms. This is why several
algorithms defined before the last decade considered optimiz-
ing the real and imaginary components separately, resulting in
a more cumbersome notation which somehow hindered their
development [19]. More recently, this problem has been solved
by the adoption of the so-called CR-calculus (or Wirtinger’s
calculus), allowing to define proper complex derivatives even
for non-analytic functions [20], [21], by considering explicitly
their dependence on both their arguments and their complex
conjugates. We describe CR-calculus more in depth in Section
II.

When dealing with neural networks, another challenging
task concerns the design of a proper activation function in
the complex domain. In the real-valued case, the use of the
rectified linear unit (ReLU) has been instrumental in the devel-
opment of truly deep networks [22], [23], and has spun a wave
of further research in the topic, see [24], [25] for very recent
examples. In the complex case, Liouville’s theorem asserts that
the only complex function which is analytic and bounded at the
same time is a constant one. Due to the preference for bounded
activation functions before the introduction of the ReLU, many
authors in the past preferred bounded functions to analytic
ones, most notably in a split organization, wherein the real and
independent parts of the activations are processed separately
[26], or in a phase-amplitude configuration, in which the
nonlinearity is applied only to the magnitude component, while
the phase component is preserved [12]. Even extending the
ReLU function to the complex domain has been shown to
be non-trivial, and several authors have proposed different
variations [14], [16].

In this paper, we consider the problem of adapting activa-
tion functions in the complex domain. For real-valued NNs,
there is a large body of literature pointing to the fact that

IEEE TRANSACTIONS ON EMERGING TOPICS IN COMPUTATIONAL INTELLIGENCE 2

endowing activation functions with several degrees of freedom
can improve the accuracy of the trained networks, ease the
flow of the back-propagated gradient, or vastly simplify the
design of the network. In the simplest case, we can consider
parametric functions having only a few (generally less than
three) parameters per neuron, such as the parametric ReLU
[27] or the S-shaped ReLU [28]. More generally, we can
think of non-parametric activation functions, that can adapt
to potentially any shape in a purely data-driven fashion,
with a flexibility that can be controlled by the user, and to
which standard regularization techniques can be applied. In
the real-valued case, much research has been devoted to the
topic, including the design of Maxout networks [29], adaptive
piecewise linear (APL) units [30], spline functions [31], and
the recently proposed kernel activation functions (KAFs) [32].
When dealing with complex-valued NNs (CVNNs), however,
only a handful of works have considered adapting the acti-
vation functions, and only in the simplified parametric case
[17], or when working in a split configuration [11]. In this
sense, how to design activation functions that can adapt to the
training data while remaining simple to implement remains an
open question.

Contributions of the paper
We introduce a new family of non-parametric activation

functions in the complex domain, building upon the idea
of KAFs [32]. In particular, by building on recent works
on complex-valued reproducing kernel Hilbert spaces [8]
(RKHSs), we propose the first adaptable activation function
directly defined in the complex domain. All the functions we
introduce can leverage highly vectorized CPU/GPU libraries
for matrix multiplication.

The basic idea of KAFs, which were defined in [32] only in
the real-valued case, is to exploit a kernel expansion at every
neuron, in which the elements of the kernel dictionary are
fixed beforehand, while the mixing coefficients are adapted
through standard optimization techniques. Here, we propose
two different techniques to apply the idea of KAFs in the
context of CVNNs. In the first case, we use a split combination
where the real and the imaginary components are processed
by two independent KAFs sharing the same dictionary. In
the second case, based on the complex-valued RKHS theory,
we are able to redefine the KAF directly in the complex
domain, also describing several choices for the kernel function.
We show via multiple experimental comparisons that CVNNs
endowed with complex-valued KAFs can outperform both
real-valued NNs and CVNNs having only fixed or parametric
activation functions.

Organization of the paper
In Section II we introduce the basic theoretical elements

underpinning optimization in a complex domain and CVNNs.
Then, in Section III we summarize research on designing
activation functions for CVNNs. The two proposed complex
KAFs are given in Section IV (split KAF) and Section V (fully
complex KAF). We briefly discuss implementation aspects of
CVNNs in Section VI. Finally, we provide an experimental
evaluation in Section VII before concluding in Section VIII.

Notation

We denote vectors using boldface lowercase letters, e.g., a;
matrices are denoted by boldface uppercase letters, e.g., A. All
vectors are assumed to be column vectors. A complex number
z ∈ C is represented as z = a + ib, where a = ℜ{z} and
b = ℑ{z} are, respectively, the real part and the imaginary
part of the number, and i =

√
−1. Sometimes, we also use

zr and zi to denote the real and imaginary parts of z for
simplicity. Magnitude and phase of a complex number are
given by |z| and ϕ(z) respectively. z∗ = a − ib denotes the
complex conjugate of z. Other notation is introduced in the
text when appropriate.

II. PRELIMINARIES

A. Complex algebra and CR-calculus

We start by introducing the basic theoretical concepts re-
quired to define a complex-valued function and to optimize it.
We consider scalar functions first, and discuss the multivariate
extension later on. Any complex-valued function f : C → C
can be written as:

f(z) = u(a, b) + iv(a, b) , (1)

where u(·, ·) and v(·, ·) are real-valued functions in two
arguments. The function f is said to be real-differentiable if
the partial derivatives of u and v with respect to a and b
are defined. Additionally, the function is called analytic (or
holomorphic) if it satisfies the Cauchy-Riemann conditions:

∂u(a, b)

∂a
=

∂v(a, b)

∂b
and

∂v(a, b)

∂a
= −∂u(a, b)

∂b
. (2)

Only analytic functions admit a complex derivative in the
standard sense, but most functions used in practice for CVNNs
do not satisfy (2) (such as functions with real-valued outputs
for which v(a, b) = 0 everywhere). In this case, CR-calculus
[21] provides a theoretical framework to handle non-analytic
functions directly in the complex domain without the need
to switch back and forth between definitions in the complex
domain and gradients’ computations in the real one.

The main idea of CR-calculus is to consider f explicitly as
a function of both z and its complex conjugate z∗ = a − ib,
which we denote as f(z, z∗). If f is real-differentiable, then it
is also analytic with respect to z when keeping z∗ constant and
vice versa. Thus, we can define a pair of (complex) derivatives
as follows [20], [21]:

R-derivative ≜
∂f(z, z∗)

∂z

∣∣∣∣
z∗=const

=
1

2

(
∂f

∂a
− i

∂f

∂b

)
, (3)

R*-derivative ≜
∂f(z, z∗)

∂z∗

∣∣∣∣
z=const

=
1

2

(
∂f

∂a
+ i

∂f

∂b

)
. (4)

Everything extends to multivariate functions f : Cn → C
of a complex vector z ∈ Cn by defining the cogradient and
conjugate cogradient operators:

∇z =

(
∂

∂z1
, . . . ,

∂

∂zn

)T

, (5)

∇z∗ =

(
∂

∂z∗1
, . . . ,

∂

∂z∗n

)T

. (6)

IEEE TRANSACTIONS ON EMERGING TOPICS IN COMPUTATIONAL INTELLIGENCE 3

Then, a necessary and sufficient condition for z0 to be a min-
imum of f is either ∇z0f(z0, z

∗
0) = 0 or ∇z∗

0
f(z0, z

∗
0) = 0

[20]. CR-calculus inherits most of the standard properties of
the real derivatives, including the chain rule and the differential
rule, see [21]. For the important case where the output of the
function is real-valued (as is the case for the loss function
when optimizing CVNNs) we have the additional property:(

∇zf(z, z
∗)
)∗

= ∇z∗f(z, z∗) . (7)

Combined with the Taylor expansion of the function, an imme-
diate corollary of this property is that the direction of steepest
ascent of f in the point z is given by the conjugate cogradient
operator evaluated in that point [21]. Up to a multiplicative
constant term, this result coincides with taking the steepest
ascent direction with respect to the real derivatives, allowing
for a straightforward implementation in most optimization
libraries.

B. Complex-valued neural networks

We now turn our attention to the approximation of multivari-
ate complex-valued functions. A generic CVNN is composed
by stacking L layers via the alternation of linear and nonlinear
operations. In particular, the l-th layer is described by the
following equation:

hl = g (Wlhl−1 + bl) , (8)

where hl−1 ∈ CNl−1 is the Nl−1-dimensional input to the
layer, Wl ∈ CNl×Nl−1 and bl ∈ CNl are adaptable weight
matrices, and g(·) is a (complex-valued) activation function
applied element-wise, which will be discussed more in depth
later on. By definition, x = h0 denotes the input to the
network, while ŷ = hL denotes the final output, which we
assume one-dimensional for simplicity. Some results on the
approximation properties of this model are given in [13], while
[17] describes techniques to initialize the adaptable linear
weights in the complex domain.

Given I input/output pairs S = {xn, yn}In=1, we train the
CVNN by minimizing a cost function given by:

J(w) =

I∑
n=1

l(yn, ŷn) , (9)

where w ∈ CQ collects all the adaptable weights of the
network and l(·, ·) is a loss function, such as the squared loss:

l(y, ŷ) = |y − ŷ|2 = (y − ŷ) (y − ŷ)
∗
. (10)

Following the results described in the previous section, a basic
steepest descent approach to optimize (9) is given by the
following update equation at the t-th iteration:

wt+1 = wt − µ∇w∗J(w,w∗) , (11)

where µ ∈ R is the learning rate. More in general, we can use
noisy versions of the gradient given by sampling a mini-batch
of elements, or accelerate the optimization process by adapting
most of the state-of-the-art techniques used for real-valued
neural networks [33]. We can also apply some techniques that
are specific to the complex domain. For example [34], inspired

by the theory of widely linear adaptive filters, augments the
input to the CVNN with its complex conjugate x∗. Additional
improvements can be obtained by replacing the real-valued µ
with a complex-valued learning rate [35], which can speed up
convergence in some scenarios.

III. COMPLEX-VALUED ACTIVATION FUNCTIONS

As we stated in the introduction, choosing a proper acti-
vation function in (8) is more challenging than in the real
case because of Liouville’s theorem, stating that the only
complex-valued functions that are bounded and analytic every-
where are constants. So in practice, one must choose between
boundedness and analyticity. Before the introduction of the
ReLU activation [22], almost all activation functions in the
real case were bounded. Consequently, initial approaches to
design CVNNs always preferred non-analytic functions in
order to preserve boundedness, most commonly by applying
real-valued activation functions separately to the real and
imaginary parts [26]:

g(z) = gR(ℜ{z}) + igR(ℑ{z}) , (12)

where z is a generic input to the activation function in (8), and
gR(·) is some real-valued activation function, e.g., sigmoid.
This is called a split activation function. As a representative
example, the magnitude and phase of the split-tanh when
varying the activation are given in Fig. 1. Early proponents
of this approach can be found in [36] and [19].

Another common class of non-analytic activation functions
are the phase-amplitude (PA) functions popularized by [12],
[37]:

g(z) =
z

c+ |z|/r
, (13)

g(z) = tanh

{
|z|
m

}
exp {iϕ(z)} , (14)

where ϕ(z) is the phase of z, while c, r and m are positive
constant which in most cases are set equal to 1. PA func-
tions can be seen as the natural generalization of real-valued
squashing functions such as the sigmoid, because the output
g(z) has bounded magnitude but preserves the phase of z.

A third alternative is to use fully-complex activation func-
tions that are analytic and bounded almost everywhere, at
the cost of introducing a set of singular points. Among all
possible transcendental functions, it is common to consider the
complex-valued extension of the hyperbolic tangent, defined
as [13]:

g(z) = tanh {z} =
exp {z} − exp {−z}
exp {z}+ exp {−z}

, (15)

possessing periodic singular points at the imaginary points
i (0.5 + n)π, with n ∈ N. However, careful scaling of the
inputs and of the initial weights allows to avoid these singu-
larities during training.

Finally, several authors have proposed extensions of the
popular real-valued ReLU function ReLU(s) = max {0, s}.
As discussed in [17], a simple split configuration as in (12)

IEEE TRANSACTIONS ON EMERGING TOPICS IN COMPUTATIONAL INTELLIGENCE 4

4 2 0 2 4 4
2

0
2

4

0.2
0.4
0.6
0.8
1.0
1.2
1.4

(a) Absolute value

4 2 0 2 4 4
2

0
2

4

3
2
1
0
1
2
3

(b) Phase

Fig. 1. Example of split activation function having gR(·) = tanh(·) in (12) processing both the real and the imaginary parts of the input. (a) Magnitude of
the output. (b) Phase of the output.

results in poor performance. An improved complex-valued
ReLU is designed in [16] as:

g(z) =

{
z if ℜ{z} ,ℑ{z} ≥ 0 ,

0 otherwise
. (16)

Alternatively, inspired by the PA functions to maintain the
phase of the activation value, [14] propose the following
modReLU function:

g(z) = ReLU (|z|+ b) exp {iϕ(z)} , (17)

where b is an adaptable parameter defining a radius along
which the output of the function is 0. Another extension, the
complex cardioid, is advanced in [38]:

g(z) =
1

2

(
1 + cos {ϕ(z)}

)
z , (18)

maintaining phase information while attenuating the magni-
tude based on the phase itself. For real-valued inputs, (18)
reduces to the ReLU.

Note that in all cases these proposed activation functions
are fixed or endowed with a very small degree of flexibility
(as in (17)). In the following sections we describe a principled
technique to design non-parametric activation functions for use
in CVNNs.

IV. SPLIT KERNEL ACTIVATION FUNCTIONS

Our first proposal is a split function as in (12), where non-
parametric (real-valued) functions for gR(·) are used in place
of fixed ones. Specifically, we consider the kernel activation
function (KAF) proposed in [32], which will also serve as a
base for the fully complex-valued proposal of the following
section. Here, we introduce the basic elements of the KAF,
and we refer to the original paper [32] for a fuller exposition.

The basic idea of a KAF is to model each activation
function as a one-dimensional kernel model, where the kernel
elements are chosen in a proper way to obtain an efficient
backpropagation step. Consider the generic activation function
gR(s), where s denotes either the real or the imaginary part

of z as in (12). To obtain a flexible shape, we can model
a linear predictor on a high-dimensional feature space Φ(s)
of the activation. However, this process becomes infeasible
for a large number of feature transformations, and cannot
handle infinite-dimensional feature spaces. For feature maps
associated to a reproducing kernel Hilbert space H with kernel
κ(·, ·), we can write an equivalent linear model by exploiting
the representer theorem as:

gR(s) =

D∑
n=1

αnκ (s, dn) , (19)

where {αn}Dn=1 are the mixing coefficients and {dn}Dn=1 make
up the so-called dictionary of the kernel expansion [39], [40].
Remember that a function κ(·, ·) is a valid kernel function if
it respects the positive semi-definiteness property, i.e., for any
possible choice of {αn}Dn=1 and {dn}Dn=1 in (19):

D∑
n=1

D∑
m=1

αnαmκ (dn, dm) ≥ 0 . (20)

In the context of a neural network, the dictionary elements
cannot be selected a priori because they would change at
every step of the optimization algorithm depending on the
distribution of the activation values. Instead, we exploit the fact
that we are working with one-dimensional kernels to fix the
elements beforehand, and only adapt the mixing coefficients
in the optimization step. In particular, we select the elements
d1, . . . , dD by sampling D values over the x-axis, uniformly
around zero. In this way, the value D becomes a hyper-
parameter controlling the flexibility of the approach: for larger
D we obtain a more flexible method at the cost of a larger
number of adaptable parameters. In general, since the function
is only a small component of a much larger neural network,
values in the range D ∈ [10, 20] are sufficient for most
applications. As the number of parameters per neuron can
potentially grow without bound depending on the choice of
D, we refer to such activation functions as non-parametric.

The same dictionary is shared across the entire neural

IEEE TRANSACTIONS ON EMERGING TOPICS IN COMPUTATIONAL INTELLIGENCE 5

network, but with two different sets of mixing coefficients
for the real and imaginary parts of each neuron. Due to
this, an efficient implementation of the proposed split-KAF is
straightforward. In particular, consider the vector z containing
the Nl (complex) activations of a layer following the linear
operations in (8). We build the matrix KR ∈ RNl×D by
computing all the kernel values between the real part of the
activations and the elements of the dictionary (and similarly
for KI using the imaginary parts), and we compute the final
output of the layer as:

hl = (AR ⊙KR)1+ i (AI ⊙KI)1 , (21)

where ⊙ represents element-wise product (Hadamard product),
AR,AI ∈ RNl×D are matrices collecting row-wise all the
mixing coefficients for the real and imaginary components of
the layer, and 1 ∈ RD is a vector of ones. For handling batches
of elements (or convolutive layers), we only need to slightly
modify (21) by adding additional trailing dimensions.

For all our experiments, we consider the 1D Gaussian kernel
defined as:

κ(s, dn) = exp
{
−γ (s− dn)

2
}
, (22)

where γ ∈ R is the inverse of the kernel bandwidth. In the
proposed KAF scheme, the values of the dictionary are chosen
according to a grid, and as such the optimal bandwidth param-
eter depends uniquely on the grid resolution. In particular, the
following rule-of-thumb was proposed in [32] and it is used
in our experiments:

γ =
1

6∆2
, (23)

where ∆ is the distance between the grid points. In order to
provide an additional degree of freedom to our method, we
also optimize a single γ per layer via back-propagation after
initializing it following (23).

V. FULLY-COMPLEX KERNEL ACTIVATION FUNCTIONS

While most of the literature on kernel methods in machine
learning has focused on the real-valued case, it is well known
that the original mathematical treatment originated in the
complex-valued domain [41]. In the context of the kernel filter-
ing literature, techniques to build complex-valued algorithms
by separating the real and the imaginary components (as in
the previous section) are called complexification methods [8].
However, recently several authors have advocated for the direct
use of (pure) complex-valued kernels leveraging the complex-
valued treatment of RKHSs for a variety of fields, as surveyed
in the introduction.

From a theoretical standpoint, defining complex RKHSs and
kernels is relatively straightforward. As an example, a one-
dimensional complex-function κC : C × C → C is positive
semi-definite if and only if:

D∑
n=1

D∑
m=1

α∗
nαmκ (dn, dm) ≥ 0 ,∀αn, αm, dn, dm ∈ C , (24)

where all values are now defined in the complex-domain. Any
PSD function is then a valid kernel function. Based on this,
in this paper we also propose a fully-complex, non-parametric

<{z}

={z}

2−2

2i

−2i

Fig. 2. A visual example of sampling the dictionary for the complex-valued
KAF, in the complex plane, for D = 4 in the range [−1.5, 1.5].

KAF by defining (19) directly in the complex domain, without
the need for split functions:

g(z) =

D∑
n=1

D∑
m=1

αn,mκC (z, dn + idm) , (25)

where the mixing coefficients {αn,m}Dn,m=1 are now defined
as complex numbers. Note that, in order for the dictionary to
provide a dense sampling of the space of complex numbers, we
now consider D2 fixed elements arranged over a regular grid,
an example of which is depicted in Fig. 2. Due to this, we now
have D2 adaptable mixing coefficients per neuron, as opposed
to 2D in the split case. We counter-balance this by selecting
a drastically smaller D (see the experimental section).

An immediate complex-valued extension of the Gaussian
kernel in (22) is given by:

κC(z, d) = exp
{
−γ (z − d∗)2

}
, (26)

where in our experiments the bandwidth hyper-parameter γ
is selected using the same rule-of-thumb as before and then
adapted layer-wise. A complete analysis of the feature space
associated to (26) is given in [42]. In order to gain some
informal understanding, we can write the kernel explicitly in
terms of the real and imaginary components of its arguments:

κC(z, d) = exp
{
−γ|zr − dr|2

}
exp

{
γ|zi + di|2

}
·
(
cos {2γ (zr − dr) (zi + di)}

−i sin {2γ (zr − dr) (zi + di)}
)
. (27)

By analyzing the previous expression, we see that the
complex-valued Gaussian kernel has several properties which
are counter-intuitive if one is used to work with its real-valued
restriction. First of all, (26) cannot be interpreted as a standard
similarity measure, because it depends on its arguments only
via (zr − dr) and (zi + di). For the same reasons, the kernel
is not stationary, and it has an additional oscillatory behavior.
We refer to Fig. 3 (or to [10, Section IV-A]) for an illustration
of the kernel when fixing the second argument.

IEEE TRANSACTIONS ON EMERGING TOPICS IN COMPUTATIONAL INTELLIGENCE 6

15 10 5 0 5 10 15 15
10

5
0

5
10

15

2
0
2
4
6
8

(a) Absolute value

15 10 5 0 5 10 15 15
10

5
0

5
10

15

6
4
2
0
2
4
6

(b) Phase

Fig. 3. Example of Gaussian complex kernel in (26) with d = 0+ i0 and γ = 0.01. Notice the scale of the axes (more details are provided in the text). (a)
Real part of the output. (b) Imaginary part of the output.

For these reasons, another extension of the Gaussian kernel
to the complex domain is given in [8], where the authors
propose to build a whole family of complex-valued kernels
starting from any real-valued one κR as follows:

κC (z, d) = κR (zr, dr) + κR (zi, di)

+ i (κR (zr, di)− κR (zi, dr)) . (28)

The new complex-valued kernel is called an independent
kernel. By plugging the real-valued Gaussian kernel (22) in the
previous expression, we obtain a complex-valued expression
that can still be interpreted as a similarity measure between
the two points.

Note that several alternative kernels are also possible, many
of which are specific to the complex-valued case, a prominent
example being the Szego kernel [8]:

κC(z, d) =
1

(1− zd∗)2
. (29)

VI. NOTES ON IMPLEMENTATION

In the previous sections we have described two complete
functional models of complex-valued neural networks based
on non-parametric activation functions. Nevertheless, the de-
sign of the architecture and the training of a CVNN in a practi-
cal implementation involve several additional procedures. We
now briefly discuss these procedures and comment on how
they must be adapted for the complex-valued case w.r.t. real-
valued neural networks (RVNNs).

a) Hyperparameter optimization: The optimization of
real-valued hyperparameters (such as hidden layer size) in
CVNNs is equivalent to RVNN practices. As such, it can be
dealt with by standard hyperparameter optimization methods
including grid search, randomized search [43], and Bayesian
optimization [44]. The optimization of complex-valued hyper-
parameters (such a complex step size) has not been explored
yet in the literature to the best of our knowledge, and it
is beyond the scope of this work. Before considering a
fully complex hyperparameter optimization, however, a simple
workaround would consist in splitting the complex-valued

hyperparameters in real and imaginary part, similar to the
strategy followed in Section IV.

b) Weight initialization: Standard initialization proce-
dures for the linear weights in RVNNs have been described in
[45] and [27]. Recently, an extension of these procedures to the
complex-valued case was proposed [17], which we adopt in
the experiments of Section VII. In particular, we initialize the
complex weights of the l-th layer by drawing their magnitudes
from N

(
0, 2

Nl

)
and their phases from U(−π, π), where Nl

is the number of neurons in this layer.
c) Deep networks: The construction of deep complex-

valued architectures requires overcoming several practical
challenges, similar to those that appear in real-valued net-
works. In the experiments of Section VII, we only consider
shallow networks that contain at most three hidden layers.
Nevertheless, the interested reader may refer to the discussion
on deep complex-valued networks in [17], which proposes
among others a complex-valued batch normalization tech-
nique.

VII. EXPERIMENTAL EVALUATION

In this section, we experimentally evaluate the proposed
activation functions on several benchmark problems, including
channel identification in Section VII-A, wind prediction in
Section VII-B, and multi-class classification in the complex
domain in Section VII-C. In all cases, we linearly preprocess
the real and the imaginary components of the input features
to lie in the [−1,+1] range. We regularize all parameters with
respect to their squared absolute value (which is equivalent to
standard ℓ2 regularization applied on the real and imaginary
components separately), but we exclude the bias terms and
the window parameter in (17). We select the strength of
the regularization term and the size of the networks based
on previous literature or on a cross-validation procedure, as
described below. For optimization, we use a simple complex-
valued extension of the Adagrad algorithm, which computes a
per-parameter learning rate weighted by the squared magnitude
of the gradients themselves. For each iteration, we construct

IEEE TRANSACTIONS ON EMERGING TOPICS IN COMPUTATIONAL INTELLIGENCE 7

a mini-batch by randomly sampling 40 elements from the
entire training dataset. All algorithms have been implemented
in Python using the Autograd library [46].

A. Experiment 1 - Channel Identification

Our first experiment is a standard benchmark in the
complex-valued literature, i.e. a channel identification task
[47]. The input to the channel is generated as:

sn =
(√

1− ρ2Xn + iρYn

)
, (30)

where Xn and Yn are Gaussian random variables, and the
parameter ρ determines the circularity1 of the signal. For
ρ =

√
2
2 the input is circular, while for ρ approaching 0 or

1 the signal is highly non-circular. The output of the channel
is computed by first applying a linear filtering operation:

tn =

5∑
k=1

h(k)sn−k+1 , (31)

where:

h(k) = 0.432

(
1 + cos

{
2π(k − 3)

5

}
−i

(
1 + cos

{
2π(k − 3)

10

}))
, (32)

for k = 1, . . . , 5. Then, the output of the linear filter goes
through a memoryless nonlinearity:

rn = tn + (0.15− i0.1) t2n , (33)

and finally it is corrupted by adding white Gaussian noise in
order to get the final signal r̃n. The variance of the noise is
selected to obtain a signal-to-noise ratio (SNR) of about 13 dB.
The input to the neural network is an embedding of channel
inputs:

x = [sn−L+1, sn−L+2, . . . , sn]
T
, (34)

with L = 5, and the network is trained to output r̃n. We
generate 2000 samples of the channel, and we randomly keep
15% for testing, averaging over 15 different generations of the
dataset. We compare the following algorithms:

• LIN: a standard linear filter [5] with complex-valued
coefficients.

• 2R-NN: a real-valued neural network taking as input the
real and imaginary parts separately. For the activation
functions in the hidden layers, we consider either a
standard tanh or ReLUs.

• C-NN: complex-valued neural networks with fixed acti-
vation functions, including a split-tanh, a split-ReLU, the
AMP function in (13), or the complex ReLU in (16).

• ModReLU-NN: CVNN with adaptable activation func-
tions with ModReLU neurons as in (17). In this case, the
coefficients of the neurons are all initialized at 0.1 and
later adapted.

1A random variable Z is circular if Z and Z exp {iψ} have the same
probability distribution for any angle ψ. Roughly speaking, non-circular
signals are harder to predict, requiring the use of widely linear techniques
when using standard linear filters [8].

• Maxout: a CVNN where we use the non-parametric
Maxout activation function [29] in a split configuration.

• Proposed KAF-NN: CVNN with the split-KAF proposed
in Section IV. We empirically select D = 20 elements in
the dictionary sampled uniformly in [−2,+2].

• Proposed C-KAF-NN: CVNN with the fully complex
KAF proposed in Section V. In this case, we test either
the complex Gaussian kernel (26), or the independent ker-
nel with the real Gaussian kernel as base. We empirically
select D = 8.

All algorithms are trained by minimizing the mean-squared er-
ror in (10) on random mini-batches of 40 elements. Following
[34], in this scenario we consider one hidden layer with 10
neurons (as more layers are not found to provide significant
improvements in performance). The size of the regularization
factor is empirically selected as 10−4. Results in terms of mean
squared error (MSE) expressed in dBs are given in Table 4, by
considering either ρ =

√
2
2 (circular input signal) or the more

challenging scenario ρ = 0.95 (non-circular signal).
As expected, results are generally lower for the non-circular

case, proportionally so for techniques that are not able to
exploit the geometry of non-circular complex signals, such
as non-widely linear models and real-valued neural networks.
However, the proposed KAF-NN and C-KAF-NN are able to
consistently out-perform all other methods in both scenarios
in a stable fashion. Note that this difference in performance
cannot be overcome by increasing the size of the other
networks, thus pointing to the importance of adapting the
activation functions also in the complex case. Interestingly, the
complex Gaussian kernel in (26) results in a poor performance,
similarly to the split-Maxout, which is solved by using the
independent one.

B. Experiment 2 - Wind prediction

For the second experiment, we consider a real-world dataset
for a task of wind prediction [48]. The dataset consists of 5000
hourly samples of wind intensity collected along two different
axes (north axis and east axis). The dataset is provided in
three settings of wind regime, namely ‘low’, ‘medium’, and
‘high’, from which we select the highest, being the most
challenging one. In order to construct a complex-valued signal,
the two samples for each hour are considered as the real and
the imaginary components of a single complex number (for
more motivation on the use of complex-valued information
when dealing with wind forecasting, see [18], [48]–[51]). A
snapshot of the absolute value and phase of the resulting signal
is shown in Fig. 5 for the initial 500 samples. We consider
the task of predicting both components of the wind for an
8-hour-ahead horizon, starting from an embedding of the last
10 hours of measurements. We select neural networks with 2
hidden layers (as more hidden layers are not found to provide
gain in performance), and we optimize both the number of
neurons and the regularization factor on a held-out validation
set. We test the datasets on the last 500 components of the
time-series, in terms of the R2 coefficient of determination:

IEEE TRANSACTIONS ON EMERGING TOPICS IN COMPUTATIONAL INTELLIGENCE 8

LI
N

2R
-N

N
 (t

an
h)

2R
-N

N
 (R

eL
U

)

C
-N

N
 (s

pl
it-

ta
nh

)

C
-N

N
 (s

pl
it-

R
eL

U
)

C
-N

N
 (A

M
P)

C
-N

N
 (C

R
eL

U
)

M
od

R
eL

U
-N

N

M
ax

ou
t

K
A

F-
N

N

C
-K

A
F-

N
N

C
-K

A
F-

N
N

 (I
nd

.)

Model

20

15

10

M
SE

 (d
B

)

(a) Circular signal (ρ =
√
2

2
)

LI
N

2R
-N

N
 (t

an
h)

2R
-N

N
 (R

eL
U

)

C
-N

N
 (s

pl
it-

ta
nh

)

C
-N

N
 (s

pl
it-

R
eL

U
)

C
-N

N
 (A

M
P)

C
-N

N
 (C

R
eL

U
)

M
od

R
eL

U
-N

N

M
ax

ou
t

K
A

F-
N

N

C
-K

A
F-

N
N

C
-K

A
F-

N
N

 (I
nd

.)

Model

20

10M
SE

 (d
B

)

(b) Non-circular signal (ρ = 0.95)

Fig. 4. Results for the first experiment, expressed in terms of MSE (dB). (a) Circular input signal. (b) Non-circular input signal. With a dashed line we divide
the results of the proposed models.

0 100 200 300 400 500
Time instant

1

2

A
bs

ol
ut

e
va

lu
e

(a) Absolute value

0 100 200 300 400 500
Time instant

2

0

2
Ph

as
e

(b) Phase

Fig. 5. A plot of the complex-valued wind profile for the initial 500 samples of the wind time-series. (a) Absolute value of the signal. (b) Phase of the signal.

R2 = 1−

500∑
n=1

|yn − ŷn|2

500∑
n=1

|yn − ȳ|2
, (35)

where yn is the true value, ŷn is the predicted value, and ȳ is
the mean of the true values computed from the test set. Positive
values of R2 denotes a prediction which is better than chance,
with values approaching 1 for an almost-perfect prediction.

Results for the experiment are reported in Table I. We can
see that, also in this scenario, the two best results are ob-
tained by the proposed split-KAF and complex KAF neurons,
significantly outperforming the other models.

C. Experiment 3: complex-valued multi-class classification

We conclude our experimental evaluation by testing the
proposed algorithms on four multi-class image classification
problems expressed in the complex domain. Following [47],
we build each task by applying a two-dimensional fast Fourier

transform (FFT) to the images in the well-known MNIST
dataset,2 comprising 60000 28 × 28 black-and-white images
of handwritten digits split into ten classes. We then rank the
coefficients of the FFT in terms of significance (by considering
their mean absolute value), and keep only the 100 most
significant coefficients as input to the models. In order to
provide a wider comparison, we also apply the same procedure
to three additional datasets:

• Fashion MNIST (F-MNIST) [52]: a variant of MNIST
concerning images of clothing items, with the same
dimensionality.

• Extended MNIST (EMNIST) [53]: a set of extensions
of MNIST, from which we consider the ‘Digits’ one,
comprising 240 thousand images of handwritten digits.

• Latin OCR [54]: an OCR problem concerning hand-
written Latin digits segmented from real manuscripts of
the Vatican secret archives. There are approximately 12
thousands characters belonging to 23 separate classes.

2http://yann.lecun.com/exdb/mnist/

http://yann.lecun.com/exdb/mnist/

IEEE TRANSACTIONS ON EMERGING TOPICS IN COMPUTATIONAL INTELLIGENCE 9

TABLE I
RESULTS (MEAN AND STANDARD DEVIATION FOR THE COEFFICIENT OF
DETERMINATION R2) IN THE WIND PREDICTION TASK. BEST RESULT IS

HIGHLIGHTED IN BOLD, SECOND-BEST RESULT IN UNDERLINED.

Model R2

Linear Linear 0.361± 0.0227

Real-valued NNs
2R-NN (tanh) 0.424± 0.015

2R-NN (ReLU) 0.435± 0.016

CVNN

C-NN (split-tanh) 0.426± 0.015

C-NN (split-ReLU) 0.438± 0.016

C-NN (AMP) 0.431± 0.014

C-NN (CReLU) 0.181± 0.106

ModReLU-NN 0.438± 0.015

Proposed CVNN

KAF-NN 0.444± 0.015

C-KAF-NN 0.424± 0.016

C-KAF-NN (Ind.) 0.442± 0.016

We compare a real-valued NN taking the real and the
imaginary components of the coefficients as separate inputs, a
CVNN with modReLU activation functions, and two CVNNs
employing spit-KAFs and fully-complex KAFs with indepen-
dent kernels. All networks have a softmax activation function
in their output layer. For the CVNNs, we use the following
variation to handle the complex valued activations h:

softmaxn(h) =
exp

{
ℜ{hn}2 + ℑ{hn}2

}
∑C

t=1 exp
{
ℜ{ht}2 + ℑ{ht}2

} , (36)

where h ∈ CC , and C = 10 for our problem. All networks
are then trained by minimizing the classical regularized cross-
entropy formulation with the same optimizer as the last sec-
tions. We consider networks with three hidden layers having
100 neurons each, whose regularization term is optimized via
cross-validation separately. We also apply an early stopping
procedure (with the standard splits from each dataset), stop-
ping whenever accuracy is not improving for 1000 iterations
of optimization. Results on the test sets are provided in Table
II.

We see that working in the complex domain results in
significantly better performance when compared to working
in the real domain. We show a representative evolution of the
loss function for MNIST in Fig. 6, where we highlight the
first 10000 iterations for readability.

VIII. CONCLUSIVE REMARKS

In this paper, we considered the problem of adapting activa-
tion functions in a complex-valued neural network (CVNN).
To this end, we proposed two different non-parametric models
that extend the recently introduced kernel activation function
(KAF) to the complex-valued case. The first model is a split
configuration, where the real and the imaginary components

of the activation are processed independently by two separate
KAFs. In the second model, we directly redefine the KAF in
the complex domain with the use of fully-complex kernels. We
showed that CVNNs with adaptable functions can outperform
neural networks with fixed functions in different benchmark
problems, including channel identification, wind prediction,
and multi-class classification. For the fully-complex KAF, the
independent kernel generally outperforms a naive complex
Gaussian kernel without introducing significantly more com-
plexity.

Due to the space constraints, in this paper we have focused
only on a selected number of experimental comparisons, with
a limited number of complex kernels. In order to overcome
these limitations, multiple future works are possible, most
notably by leveraging over recent advances in the field of real-
valued kernels [55] and complex-valued kernel regression and
classification. One example is the use of pseudo-kernels [10]
to handle more efficiently the non-circularity in the signals
propagated through the network. Additionally, we plan on
comparing with more datasets, e.g., [10], and analyze the
temporal convergence rate comparison of CVNN with real-
valued approaches. More generally, it would be interesting to
extend other classes of non-parametric, real-valued activation
functions (such as Maxout networks [29] or adaptive piecewise
linear units [30]) to the complex domain, or adapt the proposed
complex KAFs to other types of NNs, such as convolutive
architectures [1], [56].

ACKNOWLEDGMENTS

The work of Simone Scardapane was supported in
part by Italian MIUR, “Progetti di Ricerca di Rile-
vante Interesse Nazionale”, GAUChO project, under Grant
2015YPXH4W 004. The work of Steven Van Vaerenbergh
was supported by the Ministerio de Economı́a, Industria y
Competitividad (MINECO) of Spain under grant TEC2014-
57402-JIN (PRISMA). Amir Hussain was supported by the
UK Engineering and Physical Science Research Council (EP-
SRC) grant no. EP/M026981/1.

The authors also thank the anonymous reviewers for their
help in improving the manuscript.

REFERENCES

[1] Y. LeCun, Y. Bengio, and G. Hinton, “Deep learning,” Nature, vol. 521,
no. 7553, pp. 436–444, 2015.

[2] N. Shone, T. N. Ngoc, V. D. Phai, and Q. Shi, “A deep learning approach
to network intrusion detection,” IEEE Transactions on Emerging Topics
in Computational Intelligence, vol. 2, no. 1, pp. 41–50, Feb 2018.

[3] K. Zheng, W. Q. Yan, and P. Nand, “Video dynamics detection using
deep neural networks,” IEEE Transactions on Emerging Topics in
Computational Intelligence, 2017.

[4] A. Hirose, Complex-valued neural networks: theories and applications.
World Scientific, 2003, vol. 5.

[5] P. J. Schreier and L. L. Scharf, Statistical signal processing of complex-
valued data: the theory of improper and noncircular signals. Cambridge
University Press, 2010.

[6] D. P. Mandic, S. Javidi, G. Souretis, and V. S. Goh, “Why a complex
valued solution for a real domain problem,” in 2007 IEEE Workshop
on Machine Learning for Signal Processing (MLSP). IEEE, 2007, pp.
384–389.

[7] B. Fisher and N. Bershad, “The complex LMS adaptive algorithm–
transient weight mean and covariance with applications to the ALE,”
IEEE Transactions on Acoustics, Speech, and Signal Processing, vol. 31,
no. 1, pp. 34–44, 1983.

IEEE TRANSACTIONS ON EMERGING TOPICS IN COMPUTATIONAL INTELLIGENCE 10

TABLE II
TEST ACCURACY (MEAN AND STANDARD DEVIATION) IN THE COMPLEX-VALUED IMAGE CLASSIFICATION TASKS. THE BEST RESULTS FOR EACH

DATASET ARE HIGHLIGHTED IN BOLD.

Model MNIST F-MNIST E-MNIST Latin OCR

Real-valued NN 92.39± 0.10 71.08± 0.45 92.78± 1.25 39.01± 3.42

CVNN (ModReLU) 95.92± 0.18 77.27± 0.61 95.53± 0.98 70.42± 0.93

CVNN (KAF-NN) 97.21± 0.34 79.73± 0.32 97.74± 0.84 72.27± 1.21

CVNN (C-KAF-NN, Ind) 97.18± 0.27 81.94± 0.91 98.11± 2.04 71.79± 2.40

0 2000 4000 6000 8000 10000

10 1

100

KAF-NN
Real-valued
ModReLU

Fig. 6. Loss function evolution for three of the algorithms on the complex-
valued MNIST task (detail of the first 10000 iterations). The evolution of the
C-KAF-NN algorithms was very similar to split-KAF and for clarity we have
left out their curves.

[8] P. Bouboulis and S. Theodoridis, “Extension of Wirtinger’s calculus to
reproducing kernel Hilbert spaces and the complex kernel LMS,” IEEE
Transactions on Signal Processing, vol. 59, no. 3, pp. 964–978, 2011.

[9] F. A. Tobar, A. Kuh, and D. P. Mandic, “A novel augmented complex
valued kernel LMS,” in 2012 IEEE 7th Sensor Array and Multichannel
Signal Processing Workshop (SAM). IEEE, 2012, pp. 473–476.

[10] R. Boloix-Tortosa, J. J. Murillo-Fuentes, I. Santos, and F. Pérez-Cruz,
“Widely linear complex-valued kernel methods for regression,” IEEE
Transactions on Signal Processing, vol. 65, no. 19, pp. 5240–5248, 2017.

[11] M. Scarpiniti, D. Vigliano, R. Parisi, and A. Uncini, “Generalized split-
ting functions for blind separation of complex signals,” Neurocomputing,
vol. 71, no. 10, pp. 2245–2270, 2008.

[12] G. M. Georgiou and C. Koutsougeras, “Complex domain backpropaga-
tion,” IEEE Transactions on Circuits and Systems II: Analog and Digital
Signal Processing, vol. 39, no. 5, pp. 330–334, 1992.

[13] T. Kim and T. Adalı, “Approximation by fully complex multilayer
perceptrons,” Neural Computation, vol. 15, no. 7, pp. 1641–1666, 2003.

[14] M. Arjovsky, A. Shah, and Y. Bengio, “Unitary evolution recurrent neu-
ral networks,” in 33rd International Conference on Machine Learning
(ICML), 2016, pp. 1120–1128.

[15] I. Danihelka, G. Wayne, B. Uria, N. Kalchbrenner, and A. Graves, “As-
sociative long short-term memory,” arXiv preprint arXiv:1602.03032,
2016.

[16] N. Guberman, “On complex valued convolutional neural networks,”
arXiv preprint arXiv:1602.09046, 2016.

[17] C. Trabelsi, O. Bilaniuk, D. Serdyuk, S. Subramanian, J. F. Santos,
S. Mehri, N. Rostamzadeh, Y. Bengio, and C. J. Pal, “Deep complex
networks,” arXiv preprint arXiv:1705.09792, 2017.

[18] A. S. Shiva, M. Gogate, N. Howard, B. Graham, and A. Hussain,
“Complex-valued computational model of hippocampal CA3 recurrent
collaterals,” in 2017 IEEE 16th International Conference on Cognitive
Informatics Cognitive Computing (ICCI*CC), July 2017, pp. 161–166.

[19] H. Leung and S. Haykin, “The complex backpropagation algorithm,”

IEEE Transactions on Signal Processing, vol. 39, no. 9, pp. 2101–2104,
1991.

[20] D. Brandwood, “A complex gradient operator and its application in
adaptive array theory,” in IEE Proceedings F - Communications, Radar
and Signal Processing, vol. 130, no. 1. IET, 1983, pp. 11–16.

[21] K. Kreutz-Delgado, “The complex gradient operator and the CR-
calculus,” arXiv preprint arXiv:0906.4835, 2009.

[22] X. Glorot, A. Bordes, and Y. Bengio, “Deep sparse rectifier neural
networks,” in 14th International Conference on Artificial Intelligence
and Statistics (AISTATS), 2011, pp. 315–323.

[23] A. L. Maas, A. Y. Hannun, and A. Y. Ng, “Rectifier nonlinearities im-
prove neural network acoustic models,” in 30th International Conference
on Machine Learning (ICML), vol. 30, no. 1, 2013.

[24] G. Klambauer, T. Unterthiner, A. Mayr, and S. Hochreiter, “Self-
normalizing neural networks,” arXiv preprint arXiv:1706.02515, 2017.

[25] P. Ramachandran, B. Zoph, and Q. V. Le, “Swish: a self-gated activation
function,” arXiv preprint arXiv:1710.05941, 2017.

[26] T. Nitta, “An extension of the back-propagation algorithm to complex
numbers,” Neural Networks, vol. 10, no. 8, pp. 1391–1415, 1997.

[27] K. He, X. Zhang, S. Ren, and J. Sun, “Delving deep into rectifiers:
Surpassing human-level performance on imagenet classification,” in
2015 IEEE International Conference on Computer Vision (ICCV), 2015,
pp. 1026–1034.

[28] X. Jin, C. Xu, J. Feng, Y. Wei, J. Xiong, and S. Yan, “Deep learning with
S-shaped rectified linear activation units,” in Thirtieth AAAI Conference
on Artificial Intelligence, 2016.

[29] I. J. Goodfellow, D. Warde-Farley, M. Mirza, A. Courville, and Y. Ben-
gio, “Maxout networks,” in 30th International Conference on Machine
Learning (ICML), 2013.

[30] F. Agostinelli, M. Hoffman, P. Sadowski, and P. Baldi, “Learning
activation functions to improve deep neural networks,” arXiv preprint
arXiv:1412.6830, 2014.

[31] S. Scardapane, M. Scarpiniti, D. Comminiello, and A. Uncini, “Learning
activation functions from data using cubic spline interpolation,” arXiv
preprint arXiv:1605.05509, 2016.

[32] S. Scardapane, S. Van Vaerenbergh, S. Totaro, and A. Uncini, “Kafnets:
kernel-based non-parametric activation functions for neural networks,”
arXiv preprint arXiv:1707.04035, 2017.

[33] L. Bottou, F. E. Curtis, and J. Nocedal, “Optimization methods for large-
scale machine learning,” arXiv preprint arXiv:1606.04838, 2016.

[34] D. Xu, H. Zhang, and D. P. Mandic, “Convergence analysis of an
augmented algorithm for fully complex-valued neural networks,” Neural
Networks, vol. 69, pp. 44–50, 2015.

[35] H. Zhang and D. P. Mandic, “Is a complex-valued stepsize advantageous
in complex-valued gradient learning algorithms?” IEEE Transactions on
Neural Networks and Learning Systems, vol. 27, no. 12, pp. 2730–2735,
2016.

[36] N. Benvenuto and F. Piazza, “On the complex backpropagation algo-
rithm,” IEEE Transactions on Signal Processing, vol. 40, no. 4, pp.
967–969, 1992.

[37] A. Hirose, “Continuous complex-valued back-propagation learning,”
Electronics Letters, vol. 28, no. 20, pp. 1854–1855, 1992.

[38] P. Virtue, S. X. Yu, and M. Lustig, “Better than real: Complex-valued
neural nets for MRI fingerprinting,” arXiv preprint arXiv:1707.00070,
2017.

[39] T. Hofmann, B. Schölkopf, and A. J. Smola, “Kernel methods in machine
learning,” The Annals of Statistics, pp. 1171–1220, 2008.

[40] W. Liu, J. C. Principe, and S. Haykin, Kernel adaptive filtering: a
comprehensive introduction. John Wiley & Sons, 2011, vol. 57.

IEEE TRANSACTIONS ON EMERGING TOPICS IN COMPUTATIONAL INTELLIGENCE 11

[41] N. Aronszajn, “Theory of reproducing kernels,” Transactions of the
American Mathematical Society, vol. 68, no. 3, pp. 337–404, 1950.

[42] I. Steinwart, D. Hush, and C. Scovel, “An explicit description of
the reproducing kernel hilbert spaces of gaussian rbf kernels,” IEEE
Transactions on Information Theory, vol. 52, no. 10, pp. 4635–4643,
2006.

[43] J. Bergstra and Y. Bengio, “Random search for hyper-parameter opti-
mization,” Journal of Machine Learning Research, vol. 13, no. Feb, pp.
281–305, 2012.

[44] J. Snoek, H. Larochelle, and R. P. Adams, “Practical bayesian optimiza-
tion of machine learning algorithms,” in Advances in neural information
processing systems, 2012, pp. 2951–2959.

[45] X. Glorot and Y. Bengio, “Understanding the difficulty of training
deep feedforward neural networks,” in 13th International Conference on
Artificial Intelligence and Statistics (AISTATS), vol. 9, 2010, pp. 249–
256.

[46] D. Maclaurin, D. Duvenaud, and R. P. Adams, “Autograd: Effortless
gradients in numpy,” in ICML 2015 AutoML Workshop, 2015.

[47] P. Bouboulis, S. Theodoridis, C. Mavroforakis, and L. Evaggelatou-
Dalla, “Complex support vector machines for regression and quaternary
classification,” IEEE Transactions on Neural Networks and Learning
Systems, vol. 26, no. 6, pp. 1260–1274, 2015.

[48] S. Goh, M. Chen, D. Popović, K. Aihara, D. Obradovic, and D. Mandic,
“Complex-valued forecasting of wind profile,” Renewable Energy,
vol. 31, no. 11, pp. 1733–1750, 2006.

[49] S. L. Goh and D. P. Mandic, “A complex-valued rtrl algorithm for
recurrent neural networks,” Neural Computation, vol. 16, no. 12, pp.
2699–2713, 2004.

[50] ——, “Nonlinear adaptive prediction of complex-valued signals by
complex-valued prnn,” IEEE Transactions on Signal Processing, vol. 53,
no. 5, pp. 1827–1836, 2005.

[51] A. Kuh and D. Mandic, “Applications of complex augmented kernels
to wind profile prediction,” in 2009 IEEE International Conference on
Acoustics, Speech and Signal Processing (ICASSP). IEEE, 2009, pp.
3581–3584.

[52] H. Xiao, K. Rasul, and R. Vollgraf, “Fashion-MNIST: a novel image
dataset for benchmarking machine learning algorithms,” arXiv preprint
arXiv:1708.07747, 2017.

[53] G. Cohen, S. Afshar, J. Tapson, and A. van Schaik, “EMNIST: an exten-
sion of mnist to handwritten letters,” arXiv preprint arXiv:1702.05373,
2017.

[54] D. Firmani, P. Merialdo, E. Nieddu, and S. Scardapane, “In codice
ratio: OCR of handwritten latin documents using deep convolutional
networks,” in 11th International Workshop on Artificial Intelligence for
Cultural Heritage (AI*CH 2017). CEUR Workshop Proceedings, 2017,
pp. 9–16.

[55] M. Mansouri, M. N. Nounou, and H. N. Nounou, “Multiscale kernel
PLS-based exponentially weighted-GLRT and its application to fault
detection,” IEEE Transactions on Emerging Topics in Computational
Intelligence, 2017.

[56] P. Ren, W. Sun, C. Luo, and A. Hussain, “Clustering-oriented multi-
ple convolutional neural networks for single image super-resolution,”
Cognitive Computation, pp. 1–14, 2017.

Simone Scardapane Simone Scardapane received
his B.Sc. in Computer Engineering at Roma Tre
university in 2009, and a M.Sc. in Artificial In-
telligence and Robotics in “Sapienza” University
two years later. After working one year as a soft-
ware/web developer, he obtained a Ph.D. in the
same university in 2016, researching mainly in the
fields of distributed machine learning and adaptive
audio processing. Currently, he is a post-doc fellow
at “Sapienza” University, and an honorary research
fellow at the CogBID laboratory at the University of

Stirling (UK).

Steven Van Vaerenbergh Steven Van Vaerenbergh
(M’11–SM’15) received the M.Sc. degree in elec-
trical engineering from Ghent University, Ghent,
Belgium, in 2003, and the Ph.D. degree from the
University of Cantabria, Santander, Spain, in 2010.
He was a Visiting Researcher with the Computa-
tional Neuroengineering Laboratory, University of
Florida, Gainesville, FL, USA, in 2008. He is cur-
rently a Post-Doctoral Associate with the Depart-
ment of Telecommunications Engineering, Univer-
sity of Cantabria. His research interests include

machine learning algorithms for pattern recognition, prediction, system iden-
tification, and online machine learning.

Amir Hussain Amir Hussain obtained his BEng and
PhD from the University of Strathclyde in Glasgow,
Scotland, UK, in 1992 and 1997 respectively. He
is currently Professor of Computing Science, and
founding Director of the Cognitive Big Data Infor-
matics (CogBID) Research Lab at the University of
Stirling in Scotland, UK. He has published over 300
papers, including over a dozen books and around 120
journal papers. He is founding Editor-in-Chief of the
journals Cognitive Computation (Springer Nature),
and Big Data Analytics (BioMed Central/Springer

Nature), and of the Springer Book Series on Socio-Affective Computing,
and Cognitive Computation Trends. He is Associate Editor of the IEEE
Transactions on Neural Networks and Learning Systems, the IEEE Computa-
tional Intelligence Magazine and the IEEE Transactions on Systems, Man and
Cybernetics (Systems). He is a Senior Fellow of the Brain Science Foundation
(USA).

Aurelio Uncini Aurelio Uncini (M’88) received
the Laurea degree in Electronic Engineering from
the University of Ancona, Italy, on 1983 and the
Ph.D. degree in Electrical Engineering in 1994 from
University of Bologna, Italy. At present time he is
Full Professor with the Department of Information
Engineering, Electronics and Telecommunications,
where he is teaching Neural Networks, Adaptive
Algorithm for Signal Processing and Digital Au-
dio Processing, and where he is the founder and
director of the ‘Intelligent Signal Processing and

Multimedia’ (ISPAMM) group. He is a member of the Institute of Electrical
and Electronics Engineers (IEEE), of the Associazione Elettrotecnica ed
Elettronica Italiana (AEI), of the International Neural Networks Society
(INNS) and of the Società Italiana Reti Neuroniche (SIREN).

	Introduction
	Preliminaries
	Complex algebra and CR-calculus
	Complex-valued neural networks

	Complex-valued activation functions
	Split kernel activation functions
	Fully-complex kernel activation functions
	Notes on implementation
	Experimental evaluation
	Experiment 1 - Channel Identification
	Experiment 2 - Wind prediction
	Experiment 3: complex-valued multi-class classification

	Conclusive remarks
	References
	Biographies
	Simone Scardapane
	Steven Van Vaerenbergh
	Amir Hussain
	Aurelio Uncini

