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Abstract

Predicting the Remaining Useful Life (RUL) of mechanical systems poses significant challenges in Prognostics and
Health Management (PHM), impacting safety and maintenance strategies. This study evaluates Kernel Adaptive
Filtering (KAF) architectures for predicting the RUL of aircraft engines, using NASA’s C-MAPSS dataset for an in-
depth intra-comparison. We investigate the effectiveness of KAF algorithms, focusing on their performance dynamics
in RUL prediction. By examining their behavior across different pre-processing scenarios and metrics, we aim to
pinpoint the most reliable and efficient KAF models for aircraft engine prognostics. Further, our study extends to
an inter-comparison with approximately 60 neural network approaches, revealing that KAFs outperform more than
half of these models, highlighting the potential and viability of KAFs in scenarios where computational efficiency
and fewer trainable parameters are both crucial. Although KAFs do not always surpass the most advanced neural
networks in performance metrics, they demonstrate resilience and efficiency, particularly underscored by the ANS-
QKRLS algorithm. This evaluation study offers valuable insights into KAFs for RUL prediction, highlighting their
operational behavior, setting a foundation for future machine learning innovations. It also paves the way for research
into hybrid models and deep-learning-inspired KAF structures, potentially enhancing prognostic tools in mechanical
systems.

Keywords: Remaining Useful Life (RUL) Prediction, Kernel Adaptive Filtering (KAF), Prognostics and Health
Management (PHM), C-MAPSS

1. Introduction

Kernel methods are a class of algorithms often used in machine learning [1], nonlinear signal processing and
pattern analysis [2]. The core idea behind kernel methods is that, in the context of reproducing kernel Hilbert spaces
(RKHS), input data are transformed into a high dimensional feature space (Hilbert space H) using a positive-definite
function named reproducing kernel [3]. This way, the inner product operation in the feature space can be computed
explicitly through a kernel evaluation. Conventional kernel-based implementations involve a wide range of batch
formulations such as regularization network [4], support vector machine (SVM) [5], Gaussian process regression
(GPR) [6], kernel principal component analysis (KPCA) [7], relevance vector machine (RVM) [8]. However, batch
algorithms operate in an offline manner and they need to be retrained once new data are present imposing restrictions
for real-time applications. Sequential learning algorithms are suitable for real-time applications as they update their
parameters producing predictions, at each iteration, within a constant stream of data observations’ acquisition.

Kernel adaptive filters (KAFs) [9], as a class of kernel sequential learning approaches, have received increased
research interest over the past decades, mainly because of their online adaptation scheme and the universal approxi-
mation capabilities they offer. They can be considered as efficient extensions of the well-established linear adaptive
filtering algorithms. Indicative applications that have been tackled using KAF variants include: stock returns pre-
diction [10], nonlinear time series contaminated by impulsive noise [11], aero-engine degradation prediction [12],
machine condition prediction [13], noisy chaotic time series prediction [14], suppressing noise and artifact interfer-
ence from ECG signals [15].

Key challenges that emerge in KAFs are: i) kernel type and hyperparameters selection; ii) inherent linear growing
network structure that leads to constant increase in memory and computational demands; Gaussian kernel is consid-
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ered a default choice due to its universal approximation capability, while also it provides infinite dimension to the
nonlinear mapping. In order to obtain a desirable approximation performance, proper specification of kernel parame-
ters is crucial based on the under examination application. Optimal kernel parameter selection can be achieved using
appropriate methods like cross validation [16], but such related methods lack in online learning due to high com-
putational needs. More efficient online techniques for optimizing the kernel size include adaptive kernel size [17],
multikernel adaptive filtering [18] and Gaussian KAFs with adaptive kernel bandwidth [19]. Online kernel-based
learning using adaptive projection algorithms [20] serves as an efficient and simple structured alternative for training
the model in a recursive manner. Various sparse methods have been proposed in order to address the continuously
increased size and the computational cost. Widely used sparse methods in KAF context are: novelty criterion [21],
surprise criterion [22], coherence criterion [23], variance criterion [24], approximate linear dependence (ALD) crite-
rion [25] and others. Alternative approaches that curb the growth of the network are: quantization methods [26], [27],
budget-based ones [28], [29], algorithms that combine established mechanisms [30], [31] and algorithmic extensions
of them like nearest-instance-centroid-estimation kernel least-mean-square (NICE-KLMS) [32] and KRLS Tracker
(KRLS-T) [33]. Other recent approaches that belong in the KAF family include multikernel adaptive filtering [34],
Nyström kernel recursive least squares [35], kernel recursive algorithms that include M-estimate [36].

In this work, an evaluation study of KAF-based algorithms is presented which is dedicated to aircraft engine
remaining useful life prediction. Remaining useful life (RUL) prediction is a real-world problem that is directly
connected with the productivity and maintenance of industrial systems [37], [38] under the prognostic and health
management (PHM) context. This is an imperative process to determine the time for maintenance and component
replacement in industrial applications. RUL prediction spans among a plethora of problems such as rolling bearings
[39], [40], Lithium-ion batteries [41], [42], supercapacitors [43], power electronics [44] and aircraft engines [45].
The under examination dataset in this paper is called C-MAPSS [46] and it has been created by NASA, simulating
the degradation of aircraft engines (turbofan engines). A set of established KAF algorithms is evaluated in this RUL
prediction problem in terms of divergent metrics. Also, an analysis is conducted in order to interpret the insight
behavior of the mechanism that is encapsulated in each KAF algorithm. Finally, an extensive comparison is presented
between KAF algorithms and neural network approaches reported in the literature in terms of performance and number
of trainable weights. Summarizing, the contribution of this work is three-fold:

1. KAF Review and Algorithmic Insight - A detailed review of a subset of KAF algorithms is presented, with
an emphasis on clarifying the underlying mechanisms that govern their performance. This analysis is not merely
descriptive but analytical, delving into the operational details of each algorithm to understand its functional strengths
and limitations within the RUL prediction problem.

2. Extensive Intra-comparison within KAF Domain - Extensive evaluation study of the adopted KAF architectures
dedicated in a well-known RUL application, using different preprocessing and normalization scenarios. This is per-
formed for intra-comparison purposes within KAF universe to evaluate the behavior of each KAF mechanism in the
aircraft engine RUL problem and subsequently identify the most dominant in terms of performance and reliability.

3. Comprehensive Inter-comparison with Neural Networks - Comparative results with well-known neural network
approaches reported in the literature (around 60 approaches) regarding aircraft engine RUL prediction problem. This
is an inter-comparison analysis to rank KAF produced prediction behavior with other network-based approaches in
terms of performance, training time and number of trainable parameters. The results demonstrate that KAF algorithms
achieve decent performance with significantly fewer trainable parameters, highlighting their efficiency.

In the trade-off between computational burden and prediction accuracy, KAFs emerge as a preferable option,
particularly in resource-constrained environments. Their efficiency, combined with competitive performance, paves
the way for future research to explore deep learning-inspired KAF architectures. The rest of this paper is organized as
follows: Section 2 details the theoretical background of Linear Adaptive Filters. Section 3 expands to Kernel Adaptive
Filters, where the nonlinear extension of linear methods is explored. In Section 4, the focus shifts to sparsification
with ALD, detailing the mechanisms for reducing computational complexity in kernel methods. Section 5 discusses
the growing and pruning strategies, which address the challenge of managing the growth of the model size over time.
Section 6 presents the quantization approaches, while candidates of combined approaches are presented in Section 7.
The Remaining Useful Life problem is described in Section 8 covering the adopted data preprocessing cases and the
utilized evaluation metrics. The extensive evaluation part of KAF approaches is presented in Section 9. Section 10
is devoted to the comparison of KAF algorithms with nearly 60 approaches reported in the literature, providing also
a discussion analysis regarding the research outcomes of this work. Section 11 stands for the results, conclusion and
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future work.

2. Linear Adaptive Filters

2.1. Least Mean Square

Least Mean Square (LMS) [47, 48] is the simplest adaptive filtering algorithm. Suppose there is a sequence of
training input-output pairs {xi, yi}

N
i=1, with N be the size of data, the objective is to learn a continuous input-output

mapping f : U→ R. The input is assumed a L dimensional input vector and the input domain is a subspace of RL, i.e.
x ∈ U ⊆ RL and the output y is assumed as one dimensional, y ∈ R. The LMS algorithm minimizes the cost function
Ji as follows:

Ji =
1
2

e2
i (1)

where ei is the estimation error. The optimal weight vector at ith iteration is approximately obtained by calculating:

ei = yi − wT
i−1xi

wi = wi−1 + ηeixi
(2)

where η is the learning rate. The initial values of weight vector are equal to zero. The LMS algorithm is derived by
using the instantaneous gradient of the cost function Eq. 1 with respect to weight vector, thus it is formulated similarly
with the stochastic gradient descent algorithm (LMS is a special case of stochastic gradient descent).

2.2. Recursive Least Squares

In contrast with the LMS minimization procedure, which calculates the instantaneous value of the squared esti-
mation error as presented in Eq. 1, the Recursive Least Squares (RLS) algorithm [49, 50] minimizes the sum of all
squared estimation errors up to the current time step. Following a sequence of input-output pairs up to time i − 1,
{x j, y j}

i−1
j=1, the objective is to minimize the corresponding cost:

min
wi−1

i−1∑
j=1

|y j − xT
j wi−1|

2 + λ∥wi−1∥
2 (3)

where λ is the regularization parameter. The recursive nature of this algorithm is reflected in the estimation of weight
wi, when a new pair {xi, yi} becomes available, from the previous weight wi−1. Hence, the RLS algorithm iterates
following the procedure:

ri = 1 + xT
i Pi−1xi

ki =
Pi−1xi

ri

ei = yi − xT
i wi−1

wi = wi−1 + kiei

Pi = Pi−1 −
Pi−1xixT

i Pi−1

ri

(4)

where ki is the gain vector (L × 1), the input xi is also of the form (L × 1), ei is the prediction error and Pi is the
correlation matrix (L × L). The initial values of weight vector are equal to zero (w0 = 0), while also the initial values
of correlation matrix are P0 = λ

−1I.
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3. Kernel Adaptive Filters

Kernel methods provide non-linear and non-parametric versions of conventional learning algorithms, which trans-
late data into higher dimensional space. Then, linear adaptive algorithms are applied to transformed data, where these
algorithms correspond to non-linear implementations in the original input space. The core idea behind kernel methods
is that, in the context of reproducing kernel Hilbert spaces (RKHS), input data are transformed into a high dimensional
feature space (Hilbert space H) using a positive-definite function named reproducing kernel [3]. This way, the inner
product in the feature space can be computed through kernel evaluations. More specifically, there is no need to execute
calculations in the high dimensional feature space as long as an approach can be expressed in terms of inner products
(or kernel evaluations). In case that algorithmic operations in RKHS can be expressed by inner products, then these
operations can be calculated by kernel evaluations in the input space without making any direct reference to feature
vectors. This methodological aspect is commonly known as the “kernel trick” and based on this idea a wide variety
of adaptive filtering algorithms has been introduced in RKHS [9].

The “kernel trick” describes that for a given algorithm that can be expressed in terms of inner products, an al-
ternative algorithm can be constructed by replacing the inner products with a positive definite kernel function, i.e.,
the algorithm can be extended to RKHS. Reproducing Kernel Hilbert Spaces are Hilbert spaces that satisfy certain
additional properties. RKHS theory is normally described as a transform theory between RKHSs and positive semi-
definite functions called kernels. RKHS is a space of functions that: a) each point in space is a particular function; b)
functions are smooth and continuous; c) linear functions in RKHS provide useful non-linear results; d) each RKHS has
a unique kernel function. Each kernel induces exactly one RKHS, and each RKHS has a unique kernel function and
certain problems posed in RKHSs are more easily solved by involving the kernel [51]. Based on the aforementioned
properties, Kernel adaptive filters (KAF) are generated in RKHS by implementing well-known linear adaptive filter-
ing techniques that correspond to nonlinear filters in the original input space, utilizing the linear structure and inner
product of this space [17]. Therefore, the linear adaptive algorithms described in Section 2 can be extended in Kernel
Least Mean Square (KLMS) [52], Kernel Recursive Least Squares (KRLS) [25] and Extended Kernel Recursive Least
Squares (EX-KRLS) [53] respectively.

Based on the above rationale, suppose the goal is to learn a continuous input-output mapping f : U → R based
on a sequence of training data {xi, yi}

N
i=1, where U ⊆ RL is the input domain and y ∈ R is the corresponding desired

output. A kernel (Mercer kernel) [3] is a continuous, symmetric and positive-definite function κ : U × U→ R, where
a nonlinear mapping φ(·) is associated with this kernel to transform input data x into a potentially infinite-dimensional
feature space RKHS H. Common examples of symmetric and positive definite kernels are the linear, polynomial and
Gaussian kernel as:

κ(x, x′) = xT · x′ (5)

κ(x, x′) = (xT · x′ + 1)p (6)

κ(x, x′) = exp(−ξ∥x − x′∥2) (7)

or equivalent for the Gaussian kernel:

κ(x, x′) = exp
(
−
∥x − x′∥2

2h2

)
(8)

where p is the order of the polynomial kernel, h is called kernel bandwidth or kernel size and ξ is the kernel parameter.
From Mercer theorem [3], any reproducing kernel κ(x, x′) can be expressed as:

κ(x, x′) =
∞∑

i=1

ζiϕi(x)ϕi(x′) (9)

where ζi and ϕi are the eigenvalues (non-negative) and eigenfunctions respectively. Therefore, the kernel induced
mapping φ(·), where φ : U→ H is constructed as:

φ(x) =
[ √
ζ1ϕ1(x),

√
ζ2ϕ2(x), . . .

]
(10)
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such that:
κ(x, x′) = φ(x)Tφ(x′) (11)

Note that the dimensionality of H is determined by the number of strictly positive eigenvalues, which can be infinite
in the case of the Gaussian kernel. Also, note that there is a unique isometric isomorphism in RKHS, which means
that the linear structure and the inner product are both preserved. A linear model is constructed using the nonlinear
mapping φ(·), i.e., the kernel-induced mapping of Eq. 10 transforms the input xi into the high dimensional feature
space H as φ(xi), in the feature space:

f (·) = ωT
i φ(·) (12)

where ωi is the weight vector in the feature space. Then, the learning task is to find (recursively) a weight vector at
each iteration that minimizes the regularized least squares regression in H:

min
ωi

i∑
j=1

|y j − ω
T
i φ(x j)|2 + λ∥ωi∥

2 (13)

Finally, by the representer theorem [54], for a new input x′ the optimal solution can be expressed as:

f̂ (x′) =
i∑

j=1

α j
i κ(x j, x′) (14)

where α j
i is the jth component of coefficient vector αi and the form of Eq. 14 reminds of a radial-basis function (RBF)

network. KAF architectures create a growing RBF network which aims to [9]: i) learn the network topology, and
ii) adapt the free parameters directly from data at the same time. However, two main challenges emerge in the KAF
context [9]: i) growing architecture as, at each step, new input points are getting involved to the estimation leading to
constant increase in memory and computational demands; ii) proper selection of Mercer kernel type and its parameters
is needed. In the first case, sparsification approaches are applied to limit the expansion size of dictionary considering
only the important/informative data. Such approaches are presented in Platt’s novelty criterion [21] and approximate
linear dependence (ALD) condition described in [25]. This way, sparsity allows the solution to be kept in memory in a
compact form and to be easily assessed later rather than storing information pertaining to the entire history of training
instances. Regarding the second challenge, various methods are used for kernel size selection such as cross-validation
[16], adaptive width Gaussian kernel [55] and a sequential optimization strategy with adaptive kernel size that have
been proposed in [17].

3.1. Kernel Least Mean Square
The implementation of Kernel Least Mean Square (KLMS) algorithm [52] starts from the fact that the output of

LMS model (Eq. 2) can be expressed in terms of inner products. Thus the incorporation of kernel function is feasible,
by the kernel trick, resulting in the form of Eq. 14. More specifically, the output of Eq. 2, for a given input x′, can be
expressed as inner product as follows:

f LMS (x′) = wT
i φ(x′)

= η

i∑
j=1

e j

[
φ(x j)Tφ(x′)

] (15)

Therefore, the output of the KLMS algorithm using the kernel trick and Eq. 11 becomes:

f KLMS (x′) = η
i∑

j=1

e jκ(x j, x′) (16)

As can been seen from Eq. 16, the solution to the unknown nonlinear mapping is computed step-by-step leading to a
growing RBF topological network. This way, the algorithm allocates a new kernel, at each time step, with center x′
and fitting parameter as the measured error scaled by learning step η. Thus, a dictionary Di is formed that increases
constantly as new samples arrive. The KLMS algorithm is summarized in Algorithm 1.
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Algorithm 1 Kernel Least Mean Square [52]
Input: {xi, yi} with i = 1 . . .N
Initialization: choose kernel type κ , kernel parameter ξ and learning step η, f1 = 0, α1

1 = 0, center list D1 = {}

1: for i = 2 . . .N do ▷ Iterate over input-output pairs
2: fi−1(xi) =

∑i−1
j=1 α

j
i−1κ(xi, x j)

3: ei = yi − fi−1(xi) ▷ Prediction error calculation
4: Di = {Di−1, xi} ▷ Register new center
5: αi

i = ηei ▷ Store new coefficient
6: end for

3.2. Kernel Recursive Least Squares
Using the Mercer theorem, the input xi can be transformed into the feature space H as φ(xi) and the RLS algorithm

can be derived in RKHS leading to Kernel Recursive Least Squares (KRLS) algorithm [25]. Thus, for the example
sequence {φ(xi), yi}

N
i=1 the Eq. 3 becomes similar with Eq. 13. Using yi = [y1, . . . , yi]T and Φi = [φ(x1), . . . ,φ(xi)]

the optimal solution of weight vector is calculated generally as:

ωi = Φi[λI +ΦT
i Φi]−1yi (17)

The weight ω can be also expressed explicitly as a linear combination of the input data such as ωi = Φiαi with
αi = [λI +ΦT

i Φi]−1yi. Denoting K̃i = [λI +ΦT
i Φi]−1, K̃i can be expressed in the recursive form:

K̃i =

[
K̃i−1 k̃i

k̃T
i λ + kii

]
(18)

where k̃i = Φ
T
i−1φ(xi) = [κ(xi, x1), . . . , κ(xi, xi−1)] is the kernel vector and kii = φ(xi)Tφ(xi) = κ(xi, xi). Thus, the

inverse of K̃i is updated using:

K̃−1
i =

1
δi

[
K̃−1

i−1δi + ãT
i ãi −ãi

−ãT
i 1

]
(19)

where ãi = K̃−1
i k̃i and δi = λ + κ(xi, xi) − k̃T

i ãi. Then, the approximated function can be expressed similarly with
Eq.14 where the coefficient vector is calculated as follows:

αi =

[
αi−1 − ãiδ

−1
i ei

δ−1
i ei

]
(20)

Algorithm 2 Kernel Recursive Least Squares [25]
Input: {xi, yi} with i = 1 . . .N
Initialization: choose kernel type κ, kernel parameter ξ and regularization parameter λ, K̃−1

1 = 1/(λ + κ(x1, x1)),
α1 = (K̃−1

1 y1), center list D1 = {}

1: for i = 2 . . .N do ▷ Iterate over input-output pairs
2: k̃i = [κ(xi, x1), . . . , κ(xi, xi−1)] ▷ Kernel vector
3: ãi = K̃−1

i−1 k̃i

4: δi = λ + κ(xi, xi)) − k̃T
i ãi

5: Compute kernel matrix K̃−1
i by using Eq. 19

6: ei = yi − k̃T
i αi−1 ▷ Prediction error calculation

7: Compute αi by using Eq. 20
8: Di = {Di−1, xi} ▷ Register new center
9: end for

This way, at every time-step a new unit is registered in Di with center xi and αi as the coefficient. More specifically,
the current coefficient is calculated using δ−1

i ei (second row of Eq. 20), while the previous coefficients are updated by
−ãiδ

−1
i ei (first row of Eq. 20). The KRLS algorithm is summarized in Algorithm 2.
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4. Sparsification with ALD

As described in Section 3, at each iteration, a new feature input is registered into the current state of dictionary
Di. Adopting Gaussian kernels, a new kernel unit is registered for every new input sample as a RBF center leading to
a constantly growing RBF network. This way, the network is linearly depended on the number of training samples.
Sparsification techniques have been proposed in the literature to limit the expansion size of dictionary, alleviating the
computational load and memory requirements. In order to curb the growth of the networks, a wide set of sparsification
techniques has been proposed in the literature including novelty criterion [21], surprise criterion [22], coherence
criterion [23], variance criterion [24] and others. Approximate Linear Dependence (ALD) [25] criterion is such an
efficient sparsification procedure which is usually preferred. ALD selects a set of basis vectors (dictionary vectors) in
the feature space resulting to a simplified network by discarding the redundant information.

More specifically, after a set of training samples {x j, y j}
i−1
j=1 have been observed, ALD participates for the creation

of a dictionary which is consisted of a subset of these samples, i.e. Di−1 = {x̃ j}
mi−1
j=1 , where the feature inputs {φ(x̃ j)}

mi−1
j=1

are linearly independent. Thus, every new feature input φ(xi) is tested whether it breaches (added to the dictionary as
informative sample) or passes (discarded as redundant sample) the ALD condition. The ALD condition is expressed
as [25]:

δi := min
αi

∥∥∥∥ mi−1∑
j=1

α jφ(x̃ j) − φ(xi)
∥∥∥∥2 ≤ ν (21)

where αi = (α1, . . . , αmi−1 )T are the coefficients that satisfy the ALD condition, ν indicates the ALD threshold param-
eter or the level of sparsity (small positive constant), x̃ j is the jth support vector in the dictionary until i − 1 and mi−1
defines the number of breaches. The δi represents the square of the Euclidean distance between the new feature input
φ(xi) and the subspace spanned by the support feature vector bases that have been already selected until time i − 1.
If Eq. 21 holds, then φ(xi) can be expressed within a squared error ν as a linear combination of current dictionary
centers. In such a case, this training sample will be discarded and the expansion coefficients will not be updated. The
δi can be expressed in terms of inner products (in H) and subsequently as:

δi = min
α
{αT K̃i−1α − 2αT k̃i−1(xi) + kii} (22)

where k̃i−1(xi) is the kernel vector with (k̃i−1(xi))l = κ(x̃l, xi), the kernel matrix is [K̃i−1]l, j = κ(x̃l, x̃ j), kii = κ(xi, xi)
with l, j = 1, . . . ,mi−1. The optimal ãi and the ALD threshold parameter are given by solving Eq. 22 as:

ãi = K̃−1
i−1 k̃i−1(xi), δi = kii − k̃i−1(xi)T ãi ≤ ν (23)

Therefore, if δi > ν then ALD breaches and the current input sample, xi, is added to the dictionary so as, Di =

Di−1 ∪ {xi} and subsequently the number of breaches occurred is increased by one, mi = mi−1 + 1. Finally, the
corresponding approximation in terms of kernel matrices is Ki = AiK̃i AT

i , where [Ki]l, j = κ(xl, x j) with l, j = 1, . . . , i
is the full kernel matrix.

4.1. The ALD-KRLS Algorithm

The ALD criterion has been initially proposed in conjunction with KRLS in [25]. The concept of this sparsification
procedure defines two operational paths that are encapsulated in ALD-KRLS algorithm [25]:

• Breach Path (δi > ν): The input sample xi is not approximately linear dependent on Di−1, thus it is added to the
dictionary, Di = Di−1 ∪ {xi}, and mi = mi−1 + 1. Here, Ki , Ki−1. Then, the kernel matrix recursive formula for
K̃−1

i (inverse kernel matrix) and the coefficient vector αi are computed by Eq. 19 and Eq. 20 respectively as in
Section 3.2 and Pi (covariance matrix) is expressed as:

Pi =

[
Pi−1 0
0T 1

]
(24)
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• Pass Path (δi ≤ ν): The dictionary remains unchanged, thus Di = Di−1, K̃−1
i = K̃−1

i−1 and mi = mi−1. Defining:

qi =
Pi−1 ãi

1 + ãT
i Pi−1 ãi

(25)

while also the recursive formula for Pi:

Pi = Pi−1 −
Pi−1 ãi ãT

i Pi−1

1 + ãT
i Pi−1 ãi

(26)

the coefficient vector αi is updated as:

αi = αi−1 + K̃−1
i qi(yi − k̃T

i−1αi−1) (27)

Note that the kernel vector k̃i−1(xi) = k̃i−1 = κ(Di−1, xi) is calculated using the support vectors x̃ j stored in the
dictionary at each time step with the updated dictionary length m (Eq. 21). Thus, the kernel vector for the Gaussian
kernel case is given by:

k̃i−1 = κ(Di−1, xi) = e−(xi−x̃1:mi−1 )T (xi−x̃1:mi−1 )/(2h2) (28)

Also, the prediction is computed by an inner product as:

f̂ (xi) = k̃T
i−1αi−1 (29)

Therefore, the resulting ALD-KRLS algorithm is summarized in Algorithm 3.

Algorithm 3 ALD-Kernel Recursive Least Squares [25]
Input: {xi, yi} with i = 1 . . .N
Initialization: choose kernel type κ, kernel parameter ξ and regularization parameter λ, K̃−1

1 = 1/(λ + κ(x1, x1)),
α1 = (K̃−1

1 y1), center list D1 = {}

1: for i = 2 . . .N do ▷ Iterate over input-output pairs
2: Compute kernel vector k̃i by using Eq. 28
3: ãi = K̃−1

i−1 k̃i

4: δi = λ + κ(xi, xi) − k̃T
i ãi

5: if δi > ν then ▷ ALD Breach Path
6: Di = {Di−1, xi} ▷ Register xi to dictionary
7: mi = mi−1 + 1 ▷ Update number of breaches
8: Compute kernel matrix K̃−1

i by using Eq. 19
9: Compute Pi matrix by using Eq. 24

10: Compute αi by using Eq. 20
11: else ▷ ALD Pass Path (δi ≤ ν)
12: Di = Di−1, mi = mi−1 ▷ Dictionary unchanged
13: Compute q matrix by using Eq. 25
14: Compute Pi matrix by using Eq. 26
15: Compute αi by using Eq. 27 with K̃−1

i = K̃−1
i−1

16: end if
17: end for

5. Sliding-Window and Fixed-Budget Kernel Algorithms

This class of kernel algorithms provides an alternative solution to sparsification procedures introducing a combi-
nation strategy of growing and pruning. This way the growing number of support vectors (directly connected with the
size of kernel matrix) is curbed either by pruning the oldest input sample (sliding-window algorithm) or by pruning
the least significant one (fixed-budget algorithm) at each time step.

8



5.1. Sliding-Window Kernel Recursive Least Squares
The Sliding Window KRLS (SW-KRLS) algorithm has been proposed in [28] combining a sliding window with

fixed length and a L2 regularization. This technique presents low computational complexity and provides a solu-
tion against overfitting that tracks time variations. Also, SW-KRLS presents better performance over RLS, KRLS
and ALD-KRLS when tracking abrupt changes and operating in non-stationary scenarios. However, more recent
extensions achieve better tracking ability in non-stationary environments [56].

The main idea behind sliding window is that only depends on the latest m number of observations for regression.
At every iteration the algorithm stores the new sample into the dictionary, while discards the most outdated (older)
training sample keeping the dictionary at fixed pre-defined size. In the general form in a kernel-based least squares
manner as in Eq. 17, the coefficient can be expressed as α = [λI +ΦTΦ]−1y. Instead of having K = [λI +ΦTΦ]−1 as
in the KRLS case, here α = (λI + K)−1y with K being the m by m kernel matrix. For now on, in this section K̃i will
be the regularized version of kernel matrix:

K̃i = λI +ΦT
i Φi =

[
K̃i−1 k̃i−1(xi)

k̃i−1(xi)T λ + kii

]
(30)

where kii = κ(xi, xi), λ is still the regularization factor and k̃i−1(xi) = k̃i−1 = [κ(xi−m+1, xi), . . . , κ(xi−1, xi)]T =

κ(Di−1, xi). The size of the kernel matrix remains unchanged using the aforementioned operations of growing and
pruning. At time step i the new sample data is used to add one row and one column to the last row and column of the
kernel matrix leading to an upsized matrix K̆i. The inverse matrix K̆−1

i can be computed using the previous inverse
kernel matrix K̃−1

i−1 (inverse kernel matrix before expansion-upsizing) by calculating:

K̆i =

[
K̃i−1 b
bT d

]
⇒ K̆−1

i =

[
K̃−1

i−1 + geeT −ge
−geT g

]
(31)

where b = k̃i−1(xi), d = kii, e = K̃−1
i−1b and g = (d − bT e)−1. After expansion made, the kernel matrix is compressed,

removing the first row and column (most outdated sample) of the upsized kernel matrix K̆i. Thus, the upsized kernel
matrix K̆i is downsized back to matrix K̃i and its inverse matrix can be obtained based on the knowledge of K̆−1

i by
the following calculations:

K̆i =

[
e fT

f G

]
⇒ K̃−1

i = G − ffT /e (32)

where K̃−1
i can be implemented by fast matrix operations as practically the first row and column pruned, i.e., G ←

K̆−1
i (2 : |K̆−1

i |, 2 : |K̆−1
i |), f ← K̆−1

i (2 : |K̆−1
i |, 1) and e ← K̆−1

i (1, 1). The pruning criterion is applied when the size of
the upsized kernel matrix |K̆−1

i | exceeds the memory size (dictionary size) m. Note that in this algorithm, the concept
of dictionary or memory is applied also for y. If the memory size exceeds m, then pruning is applied on the oldest
sample pair (x1, y1) of memory (first row and column of the K̆i are removed). The SW-KRLS approach is summarized
in Algorithm 4.

Algorithm 4 Sliding-Window Kernel Recursive Least Squares [28]
Input: {xi, yi} with i = 1 . . .N
Initialization: choose kernel type κ, kernel parameter ξ and regularization parameter λ, K̃−1

1 = 1/(λ + κ(x1, x1)),
α1 = (K̃−1

1 y1), memory = {(xi, yi)}
1: for i = 2 . . .N do ▷ Iterate over input-output pairs
2: Add pair {(xi, yi)} to memory and calculate K̆−1

i using Eq. 31 ▷ Inverse of Upsized kernel matrix
3: if memory size > m then
4: Prune the oldest pair of data from memory and calculate K̃−1

i using Eq. 32 ▷ The upsized kernel matrix K̆i

is downsized back to K̃i and its inverse matrix is obtained
5: end if
6: The updated solution is calculated using α = K̃−1

i y
7: end for
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5.2. Fixed-Budget Kernel Recursive Least Squares

Fixed Budget KRLS (FB-KRLS) [29] in contrast with SW-KRLS does not prune the most outdated sample. In-
stead, this algorithm omits the least significant center (data sample) at each time step. Also, this algorithm introduces
a label updating procedure enhancing the tracking ability of the overall approach. More specifically, in FB-KRLS a
pruning criterion is applied to determine the index j∗ of the least significant stored sample among all stored j samples
in memory (memory is still of size m). The utilized error is calculated by:

cr(x j, y j) =
|α j

i |

[K̆−1
i ] j, j

(33)

where the index j∗ is obtained as j∗ = arg min1≤ j≤m cr. Then, the Eq. 32 is utilized as in standard SW-KRLS.
Regarding the label updating procedure that is adopted in FB-KRLS, this phase is applied right before the upsizing
operation (as presented in Eq. 31) to adjust the outputs stored in memory and therefore to achieve an enhanced
tracking capability. The updating procedure of all the stored labels, at each step, is given by:

y j ← y j − ηκ(x j, xi)(y j − yi),∀ j (34)

where η is a learning parameter, j is the number of stored samples and i refers to the step when a new input-output
pair sample (xi, yi) is received. The FB-KRLS method is summarized in Algorithm 5.

Algorithm 5 Fixed-Budget Kernel Recursive Least Squares [29]
Input: {xi, yi} with i = 1 . . .N
Initialization: choose kernel type κ, kernel parameter ξ, learning step η and regularization parameter λ, K̃−1

1 =

1/(λ + κ(x1, x1)), α1 = (K̃−1
1 y1), memory = {(xi, yi)}

1: for i = 2 . . .N do ▷ Iterate over input-output pairs
2: Update all stored labels y j using Eq. 34
3: Add pair {(xi, yi)} to memory and calculate K̆−1

i using Eq. 31 ▷ Inverse of Upsized kernel matrix
4: if memory size > m then
5: Determine least significant sample j∗ using Eq. 33
6: Prune j∗th pair of data from memory and calculate K̃−1

i using Eq. 32 ▷ The upsized kernel matrix K̆i is
downsized back to K̃i and its inverse matrix is obtained

7: end if
8: The updated solution is calculated using α = K̃−1

i y
9: end for

6. Quantization in Kernel Adaptive Filtering

As discussed in Section 4, sparsification techniques prune the growth of networks by discarding the redundant
input data and accepting only the most important/informative inputs as new centers. The idea behind quantization
approaches is that even if the input data are identified as redundant they can be utilized to update the coefficients of
the network, then they will be discarded. These data are not important to update the structure of the network adding
new centers, but they can provide a compact network form by being incorporated into the coefficients update. More
specifically, the quantization approach partitions the input space into smaller regions. If the quantized input has already
assigned a center, the input is identified as redundant, i.e. discarded (a new center is not registered), but the coefficient
of the already registered center is updated. This way input data irrespectively of their information quality are utilized
to update the coefficients of the network improving its performance. The main quantization versions in kernel adaptive
filtering context are the quantized KLMS (QKLMS) [26] and quantized KRLS (QKRLS) [27] algorithms.
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6.1. Quantized Kernel Least Mean Square

The QKLMS algorithm is derived directly from KLMS by applying an online vector quantization (VQ) method
[26]. It is reminded that a nonlinear mapping φ(·) transforms the input signal vector xi into the RKHS by Mercer
theorem (Eq. 11) and Eq. 12. Also, the connection between the transformed input (into the high dimensional feature
space H) φ(xi), and the kernel is defined in Eq. 11 as the usual dot product. The weight update equation in KLMS
can be expressed as:

ωi = ωi−1 + ηeiφ(xi) (35)

where ωi denotes the weight vector, η is the learning step and ei is the prediction error written as:

ei = yi − ω
T
i−1φ(xi) (36)

By quantizing the feature vector φ(xi), the weight update equation of QKLMS algorithm is expressed as:

ω0 = 0

ei = yi − ω
T
i−1φ(xi)

ωi = ωi−1 + ηeiQ̃[φ(xi)]

(37)

where Q̃[·] is the quantization operator in the RKHS H. Due to the high dimentionality of the feature space, the
quantization is applied in the original input space U instead of H. Therefore, denoting fi = ωiφ(·) as in Eq. 12 the
QKLMS algorithm yields:

f0 = 0
ei = yi − fi−1(xi)
fi = fi−1 + ηeiκ(Q[xi], ·)

(38)

where i is the step size, xi is the N dimensional input, f is the input-output mapping and Q[·] denotes a quantization
operator in U. The notation of both quantization operators (in feature and input space) can be simplified respectively
as: φq

i = Q̃[φ(xi)], xq
i = Q[xi]. The network size is pruned by the quantization codebook size, where the codebook

Ci is equal with the dictionary Di and the partition depends on the Euclidean distance. Note that the vector quantizer
Q[xi] provides a mapping of the input into one of the m code (support) vectors in D, thus Di−1 = {cn}

mi−1
n=1 . The QKLMS

algorithm is described in Algorithm 6.

Algorithm 6 Quantized Kernel Least Mean Square [26]
Input: {xi, yi} with i = 1 . . .N
Initialization: choose kernel type κ, kernel parameter ξ, learning step η, quantization threshold εU > 0, center

dictionary D1 = {x1} and coefficient vector α1 = [ηy1]
1: for i = 2 . . .N do ▷ Iterate over input-output pairs
2: fi =

∑size(Di−1)
j=1 α j

i−1κ(D
j
i−1, xi) ▷ Filter output

3: ei = yi − fi ▷ Compute error
4: dis(xi,Di−1) = min1≤ j≤size(Di−1)∥xi − D j

i−1∥

5: j∗ = arg min1≤ j≤size(Di−1)∥xi − D j
i−1∥

6: if dis(xi,Di−1) ≤ εU then
7: Di = Di−1 ▷ Di Unchanged
8: Compute α j∗

i by using Eq. 39 ▷ Quantize xi to the closest center through updating the coefficient of that
center

9: else
10: Di = {Di−1, xi} ▷ Register new center
11: αi = [αi−1, ηei] ▷ Assign new coefficient
12: mi = mi−1 + 1 ▷ Update size of Dictionary
13: end if
14: end for

11



More specifically, the dictionary D1 and the quantization size εU > 0 are initialized. At each iteration the filter
output and the error are calculated. Next, the distance between current input sample xi and the dictionary Di−1 is
computed producing two operational cases. In the first case if dis(xi,Di−1) ≤ εU, the dictionary remains unchanged
(Di = Di−1) and xi is quantized to the closest center of the dictionary, i.e., xq

i = D j∗

i−1 with j∗ = arg min1≤ j≤size(Di−1)∥xi−

D j
i−1∥. The coefficient of the closest center is updated as:

α j∗

i = α
j∗

i−1 + ηei (39)

Otherwise, in the second case where dis(xi,Di−1) > εU, the dictionary is updated and new coefficient is assigned.
Finally, the output of the QKLMS can be expressed similar with Eq. 14 as:

f̂ (xi) =
m∑

j=1

α j
i−1κ(D

j
i−1, xi) = αi−1 k̃T

i (40)

where m is the size of the dictionary i.e., m = size(Di−1), the coefficient vector in RKHS is αi−1 = [α1
i−1,α

2
i−1, . . . ,α

m
i−1]

and k̃i = [κ(D1
i−1, xi), κ(D2

i−1, xi), . . . , κ(Dm
i−1, xi)] or simply k̃i = κ(Di−1, xi) as Di−1 contains the support vectors (subset

of input samples) x̃ j until i − 1 and is composed of m quantization regions and D j
i−1 is the jth member of dictionary

Di−1.

6.2. Quantized Kernel Recursive Least Squares

The Quantized Kernel Recursive Least Squares (QKRLS) algorithm has been proposed in [27] deriving a quanti-
zation approach of KRLS replacing the original input with the quantized one. As in the QKLMS case, the dictionary
Di at time step i is composed of m code (support) vectors, i.e., Di = {cn ∈ U}mi−1

n=1 . The cost function can be expressed
as:

m∑
n=1

( Ln∑
j=1

[
yn j − ω

Tφ(cn)
]2)
+λ∥ω∥2 (41)

where λ is still the regularization parameter, Ln denotes the number of input data that lie in the same quantization
region with its center cn and yn j is the jth desired output within the nth quantization region. The optimal solution, as a
quantized version of Eq. 17, is given by:

ωi =
[
Φ̃iΛiΦ̃

T
i + λI

]−1
Φ̃i ỹi (42)

where Φ̃i =
[
φ(c1), . . . , φ(cm)

]
denoting the centers in the RKHS, Λi = diag

[
L1, . . . , Lm

]
is a diagonal matrix, ỹi is the

vector of quantized desired outputs ỹi =
[∑L1

j=1 y1 j, . . . ,
∑Lm

j=1 ym j
]T . Then, denoting Pi =

[
ΛiK̃i +λI

]−1 with K̃i = Φ̃
T
i Φ̃i

the optimal solution becomesωi = Φ̃iαi. Similar with the QKLMS algorithm, two operational cases emerge regarding
the distance between xi and the dictionary Di−1:

• If distance meets the condition dis(xi,Di−1) ≤ εU the dictionary will remain unchanged (Di = Di−1 and K̃i =

K̃i−1) and the input xi is quantized to the j∗th element (closest center) of the dictionary, i.e., D j∗

i−1 = Q[xi] where
j∗ = arg min1≤ j≤size(Di−1)∥xi − D j

i−1∥. Therefore, in this case distance is dis(xi,Di−1) = ∥xi − D j∗

i−1∥. The updated
forms of Λi and ỹi are given by:

Λi = Λi−1 + θ j∗θ
T
j∗

ỹi = ỹi−1 − yiθ j∗
(43)

where θ j∗ is a column vector of size equal with dictionary (|Di−1|) with the j∗th element being 1 and all other
entries being 0. The matrix Pi can be expressed as Pi =

[
P−1

i−1 + θ j∗θ
T
j∗ K̃i−1

]−1 which can be rewritten, by the
matrix inversion lemma, as:

Pi = Pi−1 −
P j∗

i−1[(K̃ j∗

i−1)T Pi−1]

1 + (K̃ j∗
i−1)T P j∗

i−1

(44)
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where P j∗

i−1 and K̃ j∗

i−1 denote the j∗th columns of Pi−1 and K̃i−1 respectively. Then, the coefficient vector can be
expressed as:

αi = Pi ỹi = αi−1 +
P j∗

i−1[yi − (K̃ j∗

i−1 =
T αi−1]

1 + (K̃ j∗
i−1)T P j∗

i−1

(45)

• If distance meets the condition dis(xi,Di−1) > εU the dictionary is updated Di = {Di−1, xi}. In this case, Λi and
ỹi are given by:

Λi =

[
Λi−1

1

]
, ỹi =

[
ỹi−1
yi

]
(46)

The matrix Pi can be expressed as:

Pi = r−1
i

[
Pi−1ri + zΛi zi

T −zΛi
−zi

T 1

]
(47)

where ri = λ + κ(xi, xi) − hi
T zΛi , zΛi = Pi−1Λi−1hi, hi =

[
κ(D1

i−1, xi), . . . , κ(Dm
i−1, xi)

]T with m being the size of
dictionary at i − 1 and zi = Pi−1hi. Thus, the coefficient vector is obtained by:

αi = Pi ỹi =

[
αi−1 − zΛi r−1

i ei

r−1
i ei

]
(48)

where the prediction error is ei = yi − hi
Tαi−1.

The QKRLS algorithm is summarized in Algorithm 7.

Algorithm 7 Quantized Kernel Recursive Least Squares [27]
Input: {xi, yi} with i = 1 . . .N
Initialization: choose kernel type κ, kernel parameter ξ, learning step η, quantization threshold εU > 0, center

dictionary D1 = {x1}, Λ1 = 1, P1 =
[
λ + κ(x1, x1)

]−1 and coefficient vector α1 = P1y1

1: for i = 2 . . .N do ▷ Iterate over input-output pairs
2: Compute distance between xi and Di−1: dis(xi,Di−1) = min1≤ j≤size(Di−1)∥xi − D j

i−1∥

3: j∗ = arg min1≤ j≤size(Di−1)∥xi − D j
i−1∥

4: if dis(xi,Di−1) ≤ εU then
5: Di = Di−1, mi = mi−1 ▷ Di Unchanged
6: Update Λi using Eq. 43
7: Update Pi using Eq. 44
8: Compute α j∗

i by using Eq. 45 ▷ Quantize xi to the closest center through updating the coefficient of that
center

9: else
10: Di = {Di−1, xi} ▷ Register new center
11: Update Λi using Eq. 46
12: Update Pi using Eq. 47
13: Update αi using Eq. 48 ▷ Quantize xi to itself
14: mi = mi−1 + 1 ▷ Update size of Dictionary
15: end if
16: end for

7. Combined Approaches

Combination of already established mechanisms in the KAF domain has been motivated by the increasing com-
putational complexity and memory requirements. The increase of data size expands the computational complexity
regarding the calculation of kernel inverse matrix. Thus, this challenge leads to the development of combined algo-
rithmic extensions embodying sparsification approaches with the quantization method. In this section, two of these
implementation will be described.
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7.1. QALD-KRLS

This algorithm, QALD-KRLS [30], combines the ALD sparsification criterion with the quantization technique
reducing the kernel structure size. This combination is implemented by the resetting occurred in line 12 of Algorithm
8. In [30], the authors highlight that this resseting has no effect on the operation of the previous mapping procedure.
Parameter θ j∗ is a column vector of size equal with dictionary (|Di−1|) with the j∗th element being 1 and all other
entries being 0 (as presented in the QKRLS case). In rest of the algorithmic procedure the principal matrices and
vectors are calculated as in the ALD-KRLS case.

Algorithm 8 QALD-KRLS [30]
Input: {xi, yi} with i = 1 . . .N
Initialization: choose kernel type κ, kernel parameter ξ and regularization parameter λ, K̃−1

1 = 1/(λ + κ(x1, x1)),
α1 = (K̃−1

1 y1), center list D1 = {}

1: for i = 2 . . .N do ▷ Iterate over input-output pairs
2: Compute kernel vector k̃i by using Eq. 28
3: ãi = K̃−1

i−1 k̃i

4: δi = λ + κ(xi, xi) − k̃T
i ãi

5: Compute distance between xi and Di−1: dis(xi,Di−1) = min1≤ j≤size(Di−1)∥xi − D j
i−1∥

6: if δi > ν, dis(xi,Di−1) > εU then
7: Di = {Di−1, xi} ▷ Register xi to dictionary
8: mi = mi−1 + 1 ▷ Update number of breaches
9: Compute kernel matrix K̃−1

i , Pi and αi as in the ALD-KRLS case by using Eq. 19, 24, 20
10: else
11: if dis(xi,Di−1) ≤ εU then
12: reset: ãi = θ j∗

13: end if
14: Di = Di−1, mi = mi−1 ▷ Dictionary unchanged
15: Compute q, Pi and αi as in the ALD-KRLS by using Eq. 25, Eq. 26 and Eq. 27 with K̃−1

i = K̃−1
i−1

16: end if
17: end for

7.2. ANS-QKRLS

The adaptive normalized sparse QKRLS algorithm (ANS-QKRLS) [31] is a combination of four main components
in order to bring computational efficiency up and enhance the tracking capability of KRLS in time-varying environ-
ments. These combined components are: a) ALD sparsification criterion; b) coherence sparsification criterion; c)
quantization, and; d) dynamic adjustment of weights; More specifically, the first two components are combined to
detect the contribution of input to the current dictionary at each time step. This way, the informative data are regis-
tered when the contribution is higher than specific thresholds reducing the redundant information, while at the same
time the dimension of kernel matrix is effectively reduced. Also, the quantification component serves as a mechanism
that makes full use of the information, exploiting the redundant information to update the algorithm’s parameters (see
Section 6). The last component, dynamic adjustment of weights, enhances the capability of KRLS to track time-
varying characteristics making the algorithm insensitive to outliers or mutations in the environments with noise or
time-varying characteristics. The ALD criterion and the quantization follow the procedures described in Section 4
and Section 6 respectively. The coherence criterion [23] introduces the coherence coefficient µ:

µ = max
j=1,2,...,i−1

|κ(x̃ j), xi)| ≤ µ0 (49)

where x̃ j is the jth support vector in the existing dictionary until i − 1 and µ0 belongs to interval [0, 1]. If coefficient
µ is no more than µ0, then current input xi is added to the dictionary. Regarding the dynamic adjustment of weights,
this is a normalization extension of Eq. 27 leading to the following form:
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αi = αi−1 +
K̃−1

i qi(yi − k̃T
i−1αi−1)

τ +
∥∥∥∥ k̃T

i−1

∥∥∥∥2 (50)

where τ is a small parameter so that the denominator does not become zero.

Algorithm 9 ANS-QKRLS [31]
Input: {xi, yi} with i = 1 . . .N
Initialization: choose kernel type κ, kernel parameter ξ and regularization parameter λ, K̃−1

1 = 1/(λ + κ(x1, x1)),
α1 = (K̃−1

1 y1), P1 = 1, center list D1 = {}

1: for i = 2 . . .N do ▷ Iterate over input-output pairs
2: Compute kernel vector k̃i by using Eq. 28
3: ãi = K̃−1

i−1 k̃i

4: δi = λ + κ(xi, xi) − k̃T
i ãi

5: Compute distance between xi and Di−1: dis(xi,Di−1) = min1≤ j≤size(Di−1)∥xi − D j
i−1∥

6: Compute coherence coefficient µ using Eq. 49
7: if δi > ν, µi ≤ µ0 and dis(xi,Di−1) > εU then
8: Di = {Di−1, xi} ▷ Register xi to dictionary
9: mi = mi−1 + 1 ▷ Update number of breaches

10: Compute kernel matrix K̃−1
i as in Eq. 19,

Ai =

[
Ai−1 0
0T 1

]
, Pi =

[
Pi−1 0
0T 1

]
11: Compute αi as in Eq. 20 ▷ Coefficient vector is calculated as in the standard KRLS
12: else if δi ≤ ν or µi > µ0 then
13: if dis(xi,Di−1) ≤ εU then
14: Di = Di−1, qi =

[K j∗

i−1]−1 ã j∗

i

1+(ã j∗
i )T [K j∗

i−1]−1 ã j∗
i

, ▷ Dictionary unchanged

15: [Ki]−1 = [Ki−1]−1 − qi(ã j∗

i )T [Ki−1]−1,
16: αi = αi−1 + qi(yi − (ã j∗

i )Tαi−1) ▷ Quantize xi to the closest center
17: else
18: Di = Di−1, mi = mi−1, ▷ Dictionary unchanged
19: K̃i = K̃i−1, Ai = [AT

i , ãi]T

20: Compute qi as in Eq. 25
21: Compute αi as Eq. 50 ▷ Dynamic adjustment of coefficients using the normalized version of ALD

Pass Path, i.e., normalized form of Eq. 27
22: end if
23: end if
24: end for

The pseudo-code of ANS-QKRLS is presented in Algorithm 9. Practically, the algorithm is divided into three
operational cases. In the first case, if the ALD criterion breaches (δi > ν), the coherence coefficient µi of the current
input is no more than than µ0 and dis(xi,Di−1) > εU, then the input is added to the dictionary expanding its size. In the
second case, if the ALD criterion holds or the current coherence coefficient µi is less than µ0 but dis(xi,Di−1) < εU,
then the dictionary remains unchanged and xi is quantized to the closest center. Finally, if both of the above cases
are not satisfied, then the current example can be expressed by the combinations of existing mutual independent
components in the dictionary. Therefore, this input sample is discarded but the coefficient weights are adjusted
accordingly.
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Figure 1: Piece-wise linear RUL function.

8. Remaining Useful Life Problem Description

Over the last decades, there has been an intensified research interest in the field of remaining useful life (RUL)
prediction [38]. This term describes the progression of faults in Prognostics and Health Management (PHM) applica-
tions. In the fault detection concept, when a defect has occurred the objective is to identify it accurately from a list of
potential failures. On the other hand, in the prognostics area, the objective is to predict the available time (life-cycle)
before a failure occurs aiming to perform informed maintenance actions that minimize downtime and prevent critical
failures.

The most widely studied dataset in the RUL domain is called C-MAPSS [46]. This dataset has been created
by NASA simulating the degradation of aircraft engines (turbofan engines) utilizing the simulation tool Commercial
Modular Aero-Propulsion System Simulation. A set of multivariate signals is provided including operational settings,
temperature, pressure and mainly sensory data generated under open-loop system configurations, as depicted in Table
1. In this work, 17 of those measurements will be utilized, as indicated in green color. The C-MAPSS involves four
sub-sets (FD001, FD002, FD003, FD004) that concern different operating conditions and fault modes. Each sub-
dataset includes 21 sensory data and 3 operating settings among a training set and a testing set. These measurements
practically start at a degradation level that is considered as healty and stop when failure is reached. In this work, eval-
uation tests will be performed using FD001 which includes 100 training and 100 testing units with 20631 and 13096
total instances across all engines respectively. Instances are distributed unevenly across the 100 engines, meaning that
the behavior of each engine is represented by a different number of instances. This discrepancy is due to the varied
number of operational cycles each engine undergoes from its healthy state to failure, reflecting the distinct operational
life spans and conditions specific to each engine, thereby showcasing their unique degradation patterns. The objective
is to predict the RUL of each turbofan engine at the end of its testing record. For RUL target label, a piece-wise linear
degradation function is adopted limiting the RUL value at a maximum threshold. The maximum constant value of
RUL is chosen as 125 time cycles and after that value, the engine starts to degrade at a certain point as illustrated in
Fig. 1.

The utilization of a piece-wise linear model for predicting RUL reflects the degradation characteristics typical to
turbofan engines. Initial stage of operation suggests a healthy period for the system, while degradation is increased
towards its end-of-life phase. This justifies setting a piece-wise linear degradation model, aligning with findings from
other works in the literature [57, 58, 59, 60], emphasizing the model’s fidelity in mirroring the engines’ life stages.
Thus, a constant value of RUL is used at 125 cycles for healthy stage based on observed data. This approach mitigates
the risk of RUL overestimation, crucial for ensuring reliable maintenance schedules and operational safety. Moreover,
the linear degradation model represents the most natural choice in scenarios where specific prior knowledge of an
appropriate degradation curve is lacking. By assuming a piece-wise linear degradation, the model offers a pragmatic
balance between simplicity and the ability to reflect real-world engine behavior, particularly when detailed degradation
patterns are unknown or hard to predict accurately.

8.1. Data Pre-processing

In the training stage, we consider two distinct cases where features are scaled using conventional normalization
and standardization (z-score normalization) operations. For data normalization the input data are scaled to [−1, 1],
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whereas data standardization follows classic zero-mean and unit-variance. In both scaling cases, we distinct three
sub-scenarios of handling data based on their sequence length during training phase. It is reminded that 100 engine
cases constitute training data, but each turbofan engine includes different length of records. Thus, the three sub-
scenarios are: a) natural handling of data with engines being unsorted; b) sorted engine instances based on their
sequence length in a descending order; c) sorted engine instances by their sequence length in an ascending order; The
latter two scenarios differ only in the order in which the algorithms will receive the input data (see Figure 2). The
objective is to investigate whether the performance of KAF-based algorithms is affected when more importance is
given during the training process to engines with either larger or smaller number of sequence length. It is important
to evaluate the resiliency of KAF-based models under these cases that may lead them to local-minima, while also
to study their behavior during the process of storing support vectors into their dictionaries. The idea of evaluating
the performance of KAF-based algorithms under different sorted engine data emerged from Convolutional Neural
Network (CNN) implementations that may follow sorting of training data based on engine sequence length in this
application. Sorted data based on length of sequence data in CNNs is a way to reduce the amount of padding choosing
a mini-batch size that divides the training dataset evenly. Therefore, we study the performance of KAF algorithms also
under a recognized technique that enhances the training procedure of CNNs, although intuitively due to the process
of the training mechanism in KAF-based algorithms seems like an extreme case that will degrade the prognostic
performance.

8.2. Evaluation Metrics

The most widely evaluation metrics used in this problem are the root mean square error (RMSE) and an asymmetric
scoring function (Score) [46]:

Table 1: C-MAPSS Dataset overview

Symbol Description details
1 op setting 1 Operational setting 1 (environment variable)
2 op setting 2 Operational setting 2 (environment variable)
3 op setting 3 Operational setting 3 (environment variable)
4 T2 Total temperature at fan inlet
5 T24 Total temperature at LPC outlet
6 T30 Total temperature at HPC outlet
7 T50 Total temperature at LPT outlet
8 P2 Pressure at fan inlet
9 P15 Total pressure in bypass-duct
10 P30 Total pressure at HPC outlet
11 Nf Physical fan speed
12 Nc Physical core speed
13 Epr Engine pressure ratio (P50/P2)
14 Ps30 Static pressure at HPC outlet
15 Phi Ratio of fuel flow to Ps30
16 NRf Corrected fan speed
17 NRc Corrected core speed
18 BPR Bypass Ratio
19 farB Burner fuel-air ratio
20 htBleed Bleed Enthalpy
21 Nf dmd Demanded fan speed
22 PCNfR dmd Demanded corrected fan speed
23 W31 HPT coolant bleed
24 W32 LPT coolant bleed
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where di stands for the prediction error with di = RULpredicted−RULtrue and n is the total number of instances. Positive
prediction error means late prediction, while negative error is connected with early prediction. The RMSE induces
equal penalization to both early and late predictions for the same absolute value of di. On the contrary, the asymmetric
scoring function penalizes more late predictions introducing a more fair evaluation metric (see Fig. 3).

Indeed, from the maintenance point of view and in line with the risk-averse attitude in the aerospace industries,
late forecasts do not allow maintenance to take place (thus more penalty applied), while very early forecasts may not
be associated with major damage although they could waste maintenance resources (hence less penalization compared
with late ones). Although, the scoring function is the most widely used evaluation metric in this application, there
are some drawbacks that have been briefly identified [57]. First and foremost, much late predictions may dominate
the performance of this metric. Also, there is lack of prognostic horizon enabling algorithms to be evaluated at a
specific confidence level. Lastly, the scoring function favors those algorithms that artificially increase the performance
(lowering Score) by underestimating the remaining useful life. For this reason, we utilize a supplementary metric to
assess RUL predictions as {early}, {on time} or {late} as originally presented in [61] and later in [62, 63]. This metric
is used in conjunction with RMSE and Score to provide an oversight and explainable view of the under-examination
algorithms’ behavior. Thus, this metric serves as a measurement of the state of prediction and this is given by:

S tate =


On time, for − 13 < di < 10
Late, for di ≥ 10
Early, for di ≤ −13

(53)

It should be noted that someone could use more strict bounds or alternatively create more levels to discretize State.
However, in this work we do not use solely this metric to evaluate the performance of KAF-based implementations.
We use State as a supplementary metric to explain to some extent the performance difference between RMSE and
Score, if any, while also to explain the behavior of KAF-based algorithms. This is an important feature that shows if
an algorithm underestimates RUL (increased number of early predictions) or if late predictions increase dramatically
the Score metric. Note also that even few but heavily late predictions may dominate the Score leading to a degraded
performance. Figure 3 illustrates the levels of State as shaded areas for a given interval of prediction error, i.e.
[−50, 50].

Figure 2: Three sub-scenarios of handling training data.
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However, there are more evaluation metrics that have been reported in the literature. Prediction interval coverage
probability (PICP) [64] measures whether the observed target RUL lies within the prediction interval with a probability
(1− α) including lower and upper bounds of prediction interval for every test sample. NMPIW [64] is the normalized
version of mean prediction interval width (MPIW) which gives a percentage of a range of expected RUL. PICP and
NMPIW are conflicting, and a higher PICP will result in a wider NMPIW. The continuous ranked probability score
(CRPS) and its weighted extension, CRPS (CRPS W ) [65], are metrics that evaluate the accuracy and sharpness of
the estimated RUL distributions. The α-coverage and reliability score (RS) [65] evaluate the reliability of the RUL
prognostics by quantifying overestimation and underestimation.

9. Evaluating KAF approaches in Remaining Useful Life: Intra-Comparison Analysis

In this work, we distinguish two evaluation cases based on feature scaling operations of normalization and stan-
dardization, as mentioned above. Three sub-scenarios stem under each case based on the method of treating the order
of turbofan engines towards constructing the training data. More specifically, in both scaling cases we handle data ei-
ther as they are given in the dataset (unsorted-natural order of engines) or we sort training examples by their sequence
length in a descending and ascending order as described in 8.1. In all scenarios, 17 features are selected (colored fea-
tures in Table 1). Regarding the selected KAF algorithms for comparison purposes, the most dominant sparsification
candidate is chosen (ALD-KRLS), both strategies of growing and pruning (SW-KRLS and FB-KRLS), both quantifi-
cation approaches (QKRLS and QKLMS) and lastly the two combined approaches that encapsulate sparsification and
quantification (QALD-KRLS and ANS-QKRLS). For each algorithm, we vary the parameters that control the dictio-
nary size. This approach was informed by the direct impact these parameters have on the size of the KAF networks
and their overall performance. It is reminded that the term dictionary size typically refers to the number of basis
functions (kernels) that are used in the model. For KAFs, each entry in the dictionary corresponds to a center of an
RBF unit. The dictionary size therefore determines the complexity of the model: a larger dictionary can capture more
complex functions but may also be more prone to overfitting and will require more computational resources to update
and evaluate. Our evaluation explores these parameters, offering a comprehensive understanding of each algorithm’s
operational details and performance under various configurations. The performance of each KAF-based algorithm is
evaluated using three metrics at different network sizes, with training time also considered as an additional indicative
factor. This multi-metric assessment provides a holistic view of the algorithms’ capabilities, necessary for under-
standing their behavior in practical RUL prediction scenarios. Our extensive evaluation, conducted on a conventional
laptop with an AMD Ryzen 9 4900HS, 16GB RAM, and GeForce RTX 2060 Max-Q, aims not only to benchmark the
current capabilities of KAF architectures in RUL prediction but also to guide future developments in the domain of
predictive maintenance, particularly in scenarios where computational resources are a limiting factor.

9.1. Normalization Scaling Case
Table A.5 provides a comparison study for the case of normalization scaling and natural handling (unsorted data)

of training engine data. The best performed network configurations under Score=650 are indicated in bold. The

Figure 3: Visual representation of Score, RMSE and State (shaded areas) evaluation metrics.
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budget-based approaches (SW-KRLS with m = 1000 and FB-KRLS with m = 450), as well as the ANS-QKRLS
method with m = 1140 produced the best results. Between these three, FB-KRLS produced less {late} and {on
time} predictions leading to an increased underestimation of RUL (37 {early} predictions). Note that QALD-KRLS
balances between two sub-operations (ALD side and Quantization side) based on parameters configuration. Figure 4
illustrates the main Score results of Table A.5 against the network size for all algorithms. As presented, the algorithms
ANS-QKRLS, QKLMS, ALD-KRLS and QALD-KRLS (ALD side) produce less oscillations as dictionary increases
(network size). Moreover, the quantization approaches verify the property of reducing the numerical complexity as
they present better results for smaller network size than the baseline ALD-KRLS algorithm. The fastest training time
is observed in QKLMS as well as the ability of curbing the dictionary growth for the same testing performance.

Figure 4: Score vs Network size for the main results provided in Table A.5 (normalization scaling with unsorted data
handling).

Table A.6 summarizes the performance analysis of all aforementioned algorithms for similar network sizes as
in Table A.5. The specificity here is that the training set has been composed sorting engines’ order, based on their
sequence length, in a descending (results in parentheses) and ascending manner (results in brackets). Take in mind
that for the same amount of data samples considered during training phase, in the ascending sorted case more sub-sets
of engine behaviors have been included (see Fig. 2). A general observation is that when descending sorting is adopted
the algorithms tend to provide more {early} predictions, whereas when training data are sorted in ascending order more
{late} predictions emerge. More specifically, the ALD-KRLS method slightly enhances its performance when using
descending formulated data for training compared with unsorted case and it is strongly affected by ascending sorting
case producing worst results. QKRLS seems to be negatively influenced by both sorting strategies compared with
the unsorted case performance depicted in Table A.5. QKLMS outcomes a slightly enhancement with descending
case while the opposite is observed for the ascending case. Both budget-based approaches (SW-KRLS, FB-KRLS)
produce worse results with data sorting cases. Although, ANS-QKRLS algorithm presented worst results when using
descending sorted training data, in ascending sorted data case produced a level of resiliency and slightly enhancement
(with bigger network size) compared with standard natural (unsorted) data handling case. Finally, QALD-KRLS
(ALD side) produced a slightly better performance when using descending sorted training data. The Quantization
side of QALD-KRLS was negatively affected in both data sorting cases.

Regarding the behavior of KAF algorithms from the network size evolution perspective, Figure 5 illustrates
the network growth curves for indicative configurations under different preprocessing scenarios (Unsorted, Sorted-
Descending, Sorted-Ascending) within the normalization scaling case. As presented in Figure 5, irrespective of the
KAF-based algorithm, in both sorting preprocessing operations less support vectors are added to the dictionary com-
pared with the unsorted-natural operational case until 10000 training samples, then a “speed-up” is observed ending
up in similar final network sizes. Also, around 6000 training samples an instant increase of network sizes is observed
in the descending sorting preprocessing scenario. It should be reminded that at each iteration the number of samples
investigated by algorithms is the same in all scenarios, but in the ascending sorting case more engines have been
included as the number of iterations increases (see Fig. 2). Note that SW-KRLS and FB-KRLS algorithms have not
been taken into account in Fig. 5 as their mechanism includes a pre-defined fixed dictionary size in which the oldest
input sample and the least significant one is pruned respectively.
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(c)

Figure 5: Network size evolution curves for the normalization scaling case. (a) ALD-KRLS with m = 326, while
QALD-KRLS (ALD side) produces similar network growth behavior; (b) QKLMS and QKRLS with m = 660, while
QALD-KRLS (Quantization side) follows similar behavior; (c) ANS-QKRLS with m=770.

Figure 6: Concentration of individual prediction errors for the two best reported KAF algorithms in the normalization
case. ANS-QKRLS (sorted training data in ascending order with 780 dictionary size and S core = 537.79) vs SW-
KRLS (natural handling of training data with dictionary size of 1000 and S core = 545.82).

The best two performances are selected in order to inspect in more detail their performance outcomes. The first
candidate for this comparison duel is SW-KRLS utilizing natural handling of training data with dictionary size of 1000
that produced S core = 545.82. The second approach is ANS-QKRLS using sorted training data in ascending order
with network size of 780 and S core = 537.79. Figure 6 depicts in an unfolded way the results of both approaches
providing insights about their performance from the Score evaluation perspective along 100 test engines. Although,
ANS-QKRLS presents worse RMSE (18.36) than SW-KRLS case (RMSE=17.83), practically produces better con-
centration of individual predictions with four less {late} predictions. On the contrary, in SW-KRLS case there are 2
{late} predictions that contribute more than 150 to the total Score (the two upper right points contribute 152.85 to the

21



total of 545.82, i.e. around 28% increase in Score from these two {late} predictions).

9.2. Standardization Scaling Case
The same rationale as before is followed aiming to produce the performance of KAF-based algorithms under

different parameter settings for each preprocessing scenario (Unsorted, Sorted-Descending, Sorted-Ascending). The
main reason for adopting this scaling case, apart from an exploratory point of view, is to verify if KAF algorithms
produce similar behavior regarding training data sorting scenarios as in the normalization scaling case. Table A.7
presents the KAF algorithms’ performance for the conventional scenario of handling training data (Unsorted-natural).
Again, the best Score under the level of 650 is given in bold. The best performed method is ANS-QKRLS utilizing
m = 160 providing S core = 468.58. Also, this model provides less oscillations in performance for all network sizes
sustaining dominant performance for all network size configurations.

Compared with Table A.5, ALD-KRLS algorithm provides similar results, QKRLS provides a slightly enhanced
performance, QKLMS similar results, SW-KRLS and FB-KRLS produce worse results, ANS-QKRLS outcomes an
increased performance and QALD-KRLS acts similarly. Table A.8 summarizes the performance of KAF-based ap-
proaches under the two sorting strategies. More specifically, ALD-KRLS provided an increased performance using
descending sorting compared with unsorted scenario, while in the ascending scenario of handling training data no sig-
nificant change is observed. QKRLS presented resiliency for some network sizes in both sorting scenarios, while also
an enhanced performance is produced for small network size (S core = 601.22 and S core = 633.32 for m = 22 and
m = 23 respectively). In the ascending scenario, QKLMS is strongly affected compared to the unsorted one, while in
the descending scenario, an enhanced performance is observed for a small network size, achieving a (S core = 556.1
for m = 22). SW-KRLS and FB-KRLS are both influenced negatively by sorting scenarios, but mainly in the ascend-
ing one. ANS-QKRLS provides a degraded model in the descending scenario, while in the ascending case showed
low level of resiliency for low network sizes but no better performance than the baseline (Unsorted-natural). Fi-
nally, QALD-KRLS follows similar behavior as ALD-KRLS and QKLMS for the corresponding sides (ALD side and
Quantization side) respectively.

The best two models here that formulate the comparison duel are the ANS-QKRLS utilizing unsorted training
data with dictionary size m = 160 producing S core = 468.58 and QKLMS using sorted data in descending order with
dictionary size m = 22 leading to S core = 556.1. Figure 7 illustrates, in an analytical way, the contribution of each
test engine prediction to the Score evaluation metric for the best reported models. QKLMS algorithm slightly pro-
motes {early} predictions in respect to ANS-QKRLS, while the latter presents RUL error concentration in a narrower
band around zero. Also, QKLMS is dominated by one severe {early} prediction (upper left point in Fig. 7) which
corresponds to engine #45 for this algorithm.

Figure 7: Concentration of individual prediction errors for the two best reported KAF algorithms in the standardization
case. ANS-QKRLS (natural handling of training data with 160 dictionary size and S core = 468.58) vs QKLMS
(sorted training data in descending order with dictionary size of 22 and S core = 556.1).

9.3. Performance Comparison within KAF Domain
The predicted RUL for each engine in the testing set, utilizing the best four KAF outcomes, is illustrated in Fig.

8 (a). An indicative comparative example between the predicted RUL values and the actual RUL values is depicted
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(b)

Figure 8: Performance visualization for the best reported KAF approaches. (a) Predicted RUL for each testing en-
gine against actual cycles; (b) Comparison between predicted and actual RUL for testing engine #24; Curve markers:

ANS-QKRLS (normalization), SW-KRLS (normalization), ANS-QKRLS (standardization), QKLMS (stan-
dardization)

in Fig. 8 (b). SW-KRLS method includes most fluctuating values during life cycle evolution compared with the other
approaches, for this engine number. On the contrary, ANS-QKRLS (standardization) case presents the best tracking
performance providing the most smooth curve. In all approaches, during early stage operation the prediction error is
larger than in the late life phase of the engine. This is due to the fact that as the engine operates closer to failure, more
degradation information becomes available, resulting in high late-stage prediction accuracy. Summarizing, Figure 8
(b) shows in higher level of detail the RUL tracking performance produced under testing engine #24, while Fig. 8 (a)
depicts from an oversight perspective, unfolding the cumulative results of evaluation metrics, the overall performance
for all testing engines.

9.4. Hyperparameter Tuning in KAF

Within the framework of KAF algorithms, a typical challenge is related with the proper selection of hyperparam-
eters. One critical parameter is the bandwidth of Gaussian kernels, which significantly affects the smoothness of the
model’s output and its ability to accurately represent complex, non-linear trends in the data. Beyond these, each KAF
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variant operates with intrinsic mechanisms that further influence the model’s dictionary size—essentially the number
of kernels or corresponding weights, given their RBF-like nature. This dictionary size, or network size, is directly
impacted by the adjustment of specific hyperparameters, notably ν for algorithms leaning towards sparsity, and εU
for those inclined towards a quantization approach. Indicatively, Figure 9 demonstrates the primary hyperparameter’s
effect on each algorithm under normalization scaling and natural handling conditions. Through these visual analy-
sis, convergence towards lower Score values is observed as the dictionary size increases, underlining the influence of
primal hyperparameters on the performance and complexity of KAF models.

In contexts where KAF algorithms are treated with a batch learning approach, techniques such as grid search,
random search, and Bayesian optimization with cross-validation serve as standard methods for hyperparameter tun-
ing. Among these, Gaussian process (GP) regression offers a more efficient and principled method, where optimal
hyperparameters are identified by maximizing the log marginal likelihood. In particular maximum likelihood type-II
(marginal likelihood maximisation or evidence maximisation) is a powerful generic way of adjusting hyperparameters
via nonlinear optimization which scales linearly in the number of parameters. Adaptive methods, including adaptive
kernel size [17], multikernel adaptive filtering [18], and Gaussian KAFs with adaptive kernel bandwidth [19], present
tailored solutions in online learning scenarios. These techniques allow for real-time adjustments of the kernel size
or bandwidth, ensuring the KAF model remains optimally tuned to the evolving data stream, thus enhancing both
predictive performance and computational efficiency.

9.5. Impact of Preprocessing Operations on KAF Algorithms Performance

This section examines the influence of preprocessing operations on the performance of KAF algorithms in the
context of RUL prediction. We explore the effects of two feature scaling methods, normalization and standardization,
alongside the three distinct data handling strategies: unsorted (natural handling), descending, and ascending order
sorting of training data. Performance metrics, such as Score distribution and the distribution of {early}, {on-time},
and {late} predictions, are evaluated to establish a comprehensive understanding of these preprocessing operations
on the efficacy of KAF algorithms. More specifically, Figure 10 illustrates the spread and central tendency of final
RUL prediction scores for each KAF algorithm, categorized by natural, descending order, and ascending order data
handling methods, highlighting the influence of preprocessing strategies on algorithmic performance consistency. The
stacked bar charts in Figure 11 present the proportional distribution of {early}, {on-time}, and {late} RUL predictions
for various KAF algorithms under different data handling strategies.

9.5.1. Feature Scaling and Data Sorting Strategy Impact
Normalization and standardization preprocessing operations have been utilized to reshape the data landscape,

impacting the performance trajectory of KAF algorithms. From Figure 10, it is evident that normalization contributes
to a broader spread in final scores for algorithms like SW-KRLS and FB-KRLS. In contrast, ANS-QKRLS and ALD-
KRLS exhibit a more condensed score distribution, which may indicate a more consistent performance across different
dictionary sizes. The Score distribution unveils a more complex narrative: although a similar behavior between
normalization and standardization can be observed in Figure 11, the impact of {late} predictions on the final score
is more pronounced under normalization (Figure 10). This is manifested in the wider interquartile ranges and the
presence of more outliers, indicative of certain late predictions being markedly later in the normalized scenario,
thereby imposing a steeper penalty on the final score. Standardization generally compresses the score distribution, as
observed for all algorithms, particularly in the context of natural handling. This finding suggests that standardization
might be providing a more discriminate feature space, which is especially beneficial for these algorithms even when
operating with smaller dictionary sizes. The stacked bar charts (Figure 11) do not exhibit a stark contrast in the
proportion of {early}, {on-time}, and {late} predictions between normalization and standardization. However, it can be
observed that descending sorting tends to provide more {early} predictions, whereas when training data are sorted in
ascending order more {late} predictions emerge.

9.5.2. Algorithm-Specific Observations, Insights and Implications
The conducted analysis reveals algorithm-specific behaviors under different preprocessing regimes. ANS-QKRLS

demonstrates an enhanced robustness under normalization across varied network sizes, suggesting an adaptive-related
behavior in capturing degradation signals with minimal oscillation. SW-KRLS and FB-KRLS, while exhibiting a
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wider variability in scores, could potentially benefit from tailored preprocessing operations to leverage their algorith-
mic strengths. ALD-KRLS and QALD-KRLS (ALD side) maintain a tighter score distribution, which might indicate

(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 9: Score vs. Dictionary size under Natural handling - Normalization. (a) ALD-KRLS; (b) QKRLS; (c)
QKLMS; (d) ANS-QKRLS; (e) QALD-KRLS (ALD side); (f) QALD-KRLS (Quantization side); (g) SW-KRLS; (h)
FB-KRLS;
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(b)

Figure 10: Boxplot distribution of final Scores across KAF algorithms. (a) Normalization; (b) Standardization;

a resilience to preprocessing variations and an inherent stability across different operational conditions.
The insights produced from this analysis are multifaceted. The choice of feature scaling method has a profound

impact on the KAF algorithms’ ability to generalize across different operational behaviors and to accurately detect
degradation patterns. Normalization, while beneficial for stability, may lead to greater Score variability due to the
magnified impact of late predictions. Standardization, conversely, reduces score dispersion, potentially offering a
more consistent performance benchmark but requiring careful calibration to optimize early degradation detection
capabilities.

Descending order sorting indeed starts with training data sequences that are longer, meaning a larger number of
cycles before reaching the failure point. This approach effectively exposes algorithms to more extensive historical data
right from the start, which can include stages closer to failure towards the end of each sequence but not necessarily
in the initial stages of training. As training progresses with descending order sorting, algorithms are then exposed
to shorter sequences. These shorter sequences, appearing later in the training process, represent engines with fewer
cycles to failure from the outset of their data. This transition from longer to shorter sequences essentially means that,
towards the later stages of training, the algorithms are operating with data that are closer to the failure events in terms
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Figure 11: Distribution of prediction timings for KAF algorithms. (a) Normalization; (b) Standardization;

of operational cycles remaining, which explains the increased number of {early} predictions. This approach contrasts
with ascending order sorting, where algorithms start with shorter sequences, possibly making it harder initially to
learn from more extended historical data since they begin with instances closer to failure, potentially making the
{early} detection of degradation signs more challenging (more {late} predictions in this case overall).

In sum, preprocessing operations—feature scaling and data sorting—are not merely data manipulation techniques
but pivotal factors that shape the very foundation of algorithmic performance in RUL prediction. They influence the
algorithms’ prediction timing, score variability, and in general their behavior. The insights from this study serve as a
lessons learnt study regarding the importance of an informed selection of preprocessing techniques to harness the full
potential of KAF algorithms in RUL, while also as an analysis to assess the performance of KAF algorithms with an
increased difficulty level through data handling methods.

9.6. Training Time vs. Score Analysis

This analysis aims to unravel the efficiency and efficacy trade-offs inherent in these algorithms, from the perspec-
tive of training time (Figure 12), under various preprocessing schemes (natural, descending, and ascending orders
coupled with normalization and standardization techniques). More specifically, ALD-KRLS showcases a balanced
profile between accuracy and computational demand across preprocessing configurations. This algorithm maintains
robust performance, particularly in scenarios where data normalization is applied, signifying its adeptness at handling
standardized datasets with minimal compromise on training speed. QKRLS demonstrates a noteworthy proficiency in
speed, but this comes at the cost of a slight dip in predictive accuracy. This trade-off is more pronounced under de-
scending order preprocessing, suggesting that while QKRLS accelerates learning, it might miss finer details in rapidly
changing data sequences. QKLMS emerges as the most time-efficient among the assessed algorithms, but with vary-
ing results. Its performance peaks under standardization procedures, indicating a preference for data with consistent
variance, enabling faster convergence without substantial loss in accuracy. SW-KRLS and FB-KRLS both exhibit
a steady increase in performance with increased training time, underscoring their suitability for applications where
longer training periods are permissible for achieving higher accuracy. Specifically, SW-KRLS appears to leverage the
sequential nature of data more effectively in descending order sorting, aligning with its inherent design. ANS-QKRLS
presents an interesting dynamic where it excels in environments with ascending order preprocessing, suggesting an
intrinsic capability to adapt to evolving data trends, which could be pivotal for real-time applications requiring timely
updates. QALD-KRLS (ALD side) and QALD-KRLS (Quantization side) both illustrate distinct advantages in terms
of precision and training duration. The ALD aspect enhances adaptability, making it well-suited for datasets exhibit-
ing gradual degradation patterns, whereas the Quantization facet emphasizes speed, ideally servicing scenarios with
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Figure 12: Training time vs. Score comparison for KAF algorithms. (a) Natural handling - Normalization; (b)
Natural handling - Standardization; (c) Descending - Normalization; (d) Descending - Standardization; (e) Ascending
- Normalization; (f) Ascending - Standardization;

stringent time constraints.
The insights from this analysis underscore the balance between training time and prediction accuracy across dif-

ferent KAF algorithms and preprocessing methods. The observed trends advocate for a tailored approach in selecting
the appropriate KAF algorithm based on the specific requirements of the task at hand, such as urgency (reflected in
training time) versus precision (mirrored in the Score). Furthermore, this examination aids in establishing a more
informed framework for future research and practical applications, especially in areas demanding quick and reliable
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predictions, like Remaining Useful Life (RUL) estimation.

9.7. Advantages and Limitations of KAF Algorithms in RUL Prediction

An extensive evaluation study has been conducted regarding the predicting properties and learning capabilities of
KAF-based algorithms in a well-known RUL application. Seven candidates have been selected for intra-comparison
purposes within KAF universe in terms of performance, behavior, training time, smoothness and reliability. Also,
the impact of different feature scaling scenarios and diverse preprocessing methods has been assessed, presenting
ANS-QKRLS as the most resilient approach.

Generally, online learning algorithms operate adapting their weights, in real-time, per training sample. This leads
to requirements regarding computational and memory resources, especially in large time series applications. While
KRLS is a straightforward extension of the RLS method, it faces scalability issues due to its computational and mem-
ory burden, which scale linearly with the dataset size. To address these challenges, the ALD-KRLS variant enhances
KRLS by introducing a sparsification mechanism that limits the growth of the dictionary. Several research efforts
led to sparsification, quantization, dictionary budget and combined approaches, as presented in previous sections,
overcoming scaling limitations.

For instance, quantized algorithms streamline parameter count and training duration at a slight accuracy cost.
Budget-based methods behave similarly, and have the advantage that they may be suited for tracking changes in
the model underlying the observed data. Notably, SW-KRLS has demonstrated strong performance in this context,
though its reliance on a fixed dictionary size increases its sensitivity to data preprocessing techniques. In general,
ALD-KRLS outperforms quantized variants by optimizing a square cost function directly on input data, leading to
more judicious center selection. However, quantized versions still deliver adequate outcomes with reduced training
time. The hybrid models, QALD-KRLS and ANS-QKRLS, amalgamate ALD-KRLS’s efficient center selection with
the reduced parameterization of quantized methods, offering an improved balance between computational efficiency
and performance. A summary table (Table 2) and the following discussion outline the advantages, limitations, and
situational suitability of each KAF algorithm:

• ALD-KRLS is recognized for its stability and adaptability across diverse operational conditions, effectively
capturing degradation patterns in RUL prediction tasks. Despite its robustness, ALD-KRLS may not always
achieve the highest performance levels compared to other algorithms and requires more computational re-
sources, which could be restrictive in time-sensitive or resource-limited settings. This algorithm is ideally suited
for scenarios where consistent and reliable performance is prioritized over computational efficiency, particularly
in complex environments where accurate degradation tracking is crucial.

• QKRLS offers good approximation abilities with reduced computational complexity through its quantization
feature, which controls dictionary size growth. However, quantization can lead to a loss of information, im-
pacting the precision and reliability of predictions. While QKRLS provides some computational advantages, its
operational complexity is higher than that of QKLMS, as its computational demands scale quadratically with
the dictionary size. This characteristic makes it less ideal for extremely resource-limited applications. QKRLS
is suitable for applications that can handle its computational requirements.

• QKLMS excels in computational efficiency and simplicity of implementation, characterized by rapid update
rules and no need for matrix inversion, making it highly scalable and suitable for non-stationary environments
and incremental learning. However, it tends to exhibit lower prediction accuracy and is more sensitive to outliers
compared to more complex KAF models. Furthermore, its quantization process can compromise data integrity,
especially in noisy settings. QKLMS is most effective in large-scale systems requiring swift processing and
real-time updates, where its operational speed and efficiency are crucial advantages.

• SW-KRLS effectively adapts to rapid changes by using a sliding-window mechanism that prioritizes recent
data, making it ideal for environments with time-varying data models. This focus on new information, however,
can reduce consistency and obscure long-term trends, potentially compromising overall accuracy. SW-KRLS is
best suited for applications with limited memory where immediate responsiveness is more critical than historical
precision.
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• FB-KRLS maintains effective dictionary management with a fixed size, ensuring stable computational demands
and optimizing vector selection over time, unlike the potentially still unbounded dictionary growth in ALD-
KRLS. Its fixed-budget nature, however, may limit flexibility in adapting to new and diverse data trends. FB-
KRLS is best suited for stable environments where computational predictability and maintaining performance
with known overheads are crucial, without the need to handle highly dynamic data shifts.

• ANS-QKRLS balances computational efficiency with prediction accuracy and is equipped with sparsification
and quantization techniques suitable for time-varying environments. It maintains stable performance across
various network sizes and adapts effectively to new data, making it practical for RUL prediction tasks. The
algorithm keeps a manageable dictionary size, optimizing efficiency without significantly impacting accuracy.
However, ANS-QKRLS requires careful tuning of its adaptive techniques to maintain performance. It is well-
suited for environments with changing operational conditions and complex degradation patterns, where stability
and adaptability are necessary.

• QALD-KRLS combines quantization and ALD to balance efficiency with accuracy, suitable for dynamic en-
vironments with variable data. However, tuning complexity and potential information loss from quantization
may impact precision. This model is ideal for large-scale systems where adaptability must align with limited
computational resources.

Table 2: Summary of advantages, limitations, and contextual fit for each KAF algorithm

Algorithm Advantages Limitations Contextual Fit
ALD-KRLS Robustness, adaptability Computational demand Complex environmnets needing re-

liability
QKRLS Good approximation, low computa-

tional complexity
Higher computational demand than
QKLMS, potential information loss

Suited for systems that can manage
higher computational needs

QKLMS Computational efficiency, scalabil-
ity

May produce lower accuracy, out-
lier sensitivity

Effective in large-scale systems re-
quiring fast processing

SW-KRLS Adapts quickly to changes, priori-
tizes recent data

May obscure long-term trends, less
historical precision

Best for environments needing im-
mediate responsiveness with lim-
ited memory

FB-KRLS Stable computational demands, op-
timized vector selection

Limited flexibility in adapting to
new data trends

Ideal for stable environments where
predictability is crucial

ANS-QKRLS Robustness, balance between accu-
racy and computational efficiency

Requires careful tuning Varied operational conditions, com-
plex degradation patterns

QALD-KRLS Robustness, computational effi-
ciency

Tuning complexity, potential infor-
mation loss

Dynamic scenarios, Efficiency-
required scenarios

10. Comparisons with Other Approaches and Discussion: Inter-Comparison Analysis

An inter-comparison analysis is needed to rank KAF performance with other machine learning (ML) and deep
learning (DL) approaches reported in literature. For this reason, Table 3 summarizes KAF-based and other, mostly
network-based approaches, providing a comprehensive performance report in terms of RMSE and Score evaluation
metrics. It is evident from Table 3, that KAFs outperform more than half of the neural network models in terms of
Score. The average Score of the 12 KAF-based approaches presented in Table 3 is around 579. Especially, ANS-
QKRLS algorithm is ranked as 21st among 58 neural network approaches in terms of Score metric. It should be
underlined that in this work, a plain window size of just 1 is used (no time window), while most approaches in the
literature reported in Table 3 use a sliding window with length equal to 30. Moreover, Fig. 13 illustrates a visual-
ization mapping of different methods applied in RUL problem across Score metric. Note that the training time is not
included in Table 3 due to the different simulation equipment adopted in each literature reported case. Moreover, most
approaches reported in literature do not provide information regarding training time. Indicatively, the best performed
KAF algorithm (ANS-QKRLS with network size 160) used 34.53 seconds for training utilizing a conventional laptop
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Figure 13: Visualization of Table 3 in terms of Score in logarithmic scale. KAF family ML and DL approaches

with AMD Ryzen 9 4900HS and 16GB RAM. At the same time, AGCNN [66], one of the most dominant models in
terms of Score, used 475.47 seconds for training, in the same C-MAPSS sub-dataset (FD001), utilizing a much better
desktop simulation machine with Intel Xeon W-2155 CPU and 64GB RAM. Indeed, the performance difference be-
tween these two models exists, while also complexity resulting in training time gap difference. Other approaches adopt
more exhaustive training mechanisms that apply genetic algorithm to tune the diverse amount of hyper-parameters re-
sulting in 60 hours of training time [67]. KAF architectures follow a simple RBF network topology, while also they
are suitable for online applications.

Compared with deep learning, kernel-based methods do not utilize a large number of weight parameters. Their
trainable parameters are mainly related with the dictionary length m, i.e., the network size reported in Table 3. Note
that, in the context of KAFs the dictionary size means the number of kernel centers or basis functions that are actively
used in the model. In RBF-like networks, each of these centers corresponds to the center of an RBF kernel. At the same
time, the coefficients or weights are multiplied by the kernel functions’ outputs before being summed to form the final
output of the KAF. There is typically one weight per kernel function, so while “dictionary size” technically refers to
the number of kernels, it also dictates the number of weights since each kernel will have one associated weight. In deep
neural network implementations, the trainable parameters typically range from thousands to even millions of weights
for prediction purposes. For this reason, we illustrate indicatively in Table 4 the number of trainable parameters for a
set of neural network-based approaches applied in FD001 set of C-MAPSS. Also, a qualitative comparison in terms
of the number of trainable weights is depicted in Fig. 14, in logarithmic scale, serving as a visualized form of Table
4. Note that, if Fig. 14 were in linear scale with points being proportional to the size of trainable weights, then a
few of the orange rectangles would be larger than the page itself. Indeed, the number of trainable weights in KAF
approaches is significantly lower. In KAF-related algorithms, higher training throughput can be obtained regarding
online learning problems due to the lower number of trainable weights.

It is important for future KAF implementations to exploit more weights in providing an enhanced performance,
as a consequence of a more balanced trade-off between the competing objectives of computational burden and per-
formance. Before examining the potential future directions for KAF architectures, it is pertinent to highlight their
key advantages over neural network approaches, which are fundamental to understanding their role in prognostic
engineering. The merits of KAF in comparison to neural networks are encapsulated in several key aspects:

1. Computational Simplicity: KAFs typically require fewer parameters, simplifying model complexity and com-
putational demands.

2. Adaptability in Online Learning: KAFs are inherently suited for online learning environments, providing effi-
cient real-time data processing and model adaptability.

3. Efficient Nonlinear Modeling: The kernel trick in KAFs facilitates effective handling of nonlinear relationships
without the need for deep or complex architectures.
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Figure 14: Qualitative representation of total number of trainable parameters versus Score in logarithmic scale. KAF
family DL approaches

4. Reduced Overfitting Risks: The lower number of parameters in KAFs can lead to less overfitting, particularly
in limited data scenarios.

5. Efficient Use of Training Data: KAFs can often generalize effectively from smaller datasets, an advantage in
cases where data collection is challenging or limited.

6. Rapid Training and Robustness: KAFs offer quicker training times and robustness to data variability, crucial in
non-stationary environments.

These advantages not only underscore the potential of KAFs in applications where computational efficiency and
adaptability are crucial but also open exciting avenues for future research.

However, while the comparative efficiency and simplicity of KAF architectures are apparent, it is critical to identify
inherent challenges and limitations when juxtaposed against more complex neural network models. The simplicity
of KAFs, primarily reflected through their straightforward RBF network topology and lower number of trainable
weights, while advantageous for online applications and computational demands, may also constrain the depth of
data representation and the produced performance compared to deep learning approaches. This limitation is particu-
larly pronounced in scenarios requiring the capture of detailed, multi-dimensional relationships within large datasets,
where neural networks, with their extensive trainable parameters, can produce higher performance results. While
KAFs can scale to a degree by increasing their dictionary size, this scalability doesn’t fully bridge the substantial gap
in model complexity when compared to neural networks. Essentially, even as KAFs grow in size and capability, they
may still fall short of achieving the same level of detailed data representation and processing power that is inherent to
neural network models, particularly those with deep architectures and vast numbers of trainable parameters. Further-
more, the training mechanisms of KAFs, though generally less resource-intensive, might not afford the same level of
optimization granularity provided by the extensive hyperparameter tuning and deep architectural configurations char-
acteristic of advanced neural network models. Therefore, the merits of KAF models in conjunction with the decent
produced performance may be further exploited in hybrid implementations with neural networks and the exploration
of deep-learning-inspired hierarchical KAF structures arises. Such approaches could leverage the strengths of both
KAFs and neural networks, potentially leading to more sophisticated and efficient prognostic tools. For instance,
the conceptual idea of reorganizing the typical single-layer kernel-based model into a deep hierarchical structure has
been implemented in [87] proposing deep kernel recursive least squares for two- and three-dimensional problems. In
summary, the evaluation results pave the way for establishing KAF-based implementations in prognostic engineering
applications, promoting an intensified interest in formulating KAF algorithms in hybrid structures or exploring deep
learning-inspired KAF architectures. These developments could enhance the performance of KAFs while maintaining
their advantageous trade-off between computational efficiency and prediction accuracy, potentially leading to more
dominant models in the prognostics area.
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11. Conclusion

This study has presented a comprehensive evaluation of Kernel Adaptive Filtering (KAF) algorithms in the context
of Remaining Useful Life (RUL) prediction for aircraft engines, juxtaposed with an extensive range of neural network
approaches, encompassing around 60 different models. The experiments are performed on the well-known, and pub-
licly available, C-MAPSS dataset. Our findings reveal that KAF algorithms outperform more than half of the neural
network models reported in the literature, with ANS-QKRLS outperforming two-thirds of those models in terms of
Score metric. However, it is crucial to acknowledge the inherent limitations associated with KAFs, particularly when
faced with the requirement to capture complex, multidimensional data relationships, a domain where deep learning
models often exhibit superior performance due to their extensive parameter sets and deep architectures. Although,
KAF architectures may not surpass the most advanced neural networks in performance metrics, they demonstrate
decent prognostic accuracy that is coupled with important merits in terms of computational efficiency and training
time. The evaluation of seven KAF variants highlighted the resilience and adaptability of these algorithms, with
ANS-QKRLS emerging as a notably robust approach within the KAF family. The study’s comparative analysis un-
derscores the trade-offs between computational burden and predictive accuracy, showcasing KAFs as a viable option
in applications where model simplicity and rapid training are advantageous.

Our research enriches the field with a detailed analysis of the operational spectrum of KAF algorithms, shedding
light on their efficacy and applicability. The inherent characteristic of KAFs, having fewer trainable parameters, in
conjunction with their commendable performance, renders them particularly suitable for prediction contexts where
computational resources are constrained. Looking ahead, the results from this study pave the way for future research
into hybrid models that blend the strengths of KAFs with the depth and complexity of neural networks. Such ex-
plorations could potentially lead to the development of more sophisticated prognostic tools, enhancing performance
while maintaining computational efficiency. The possibility of deep-learning-inspired hierarchical KAF structures
presents an intriguing avenue for further investigation, promising advancements in the field of prognostic engineering.
In conclusion, this study not only benchmarks the current state of KAF architectures in RUL prediction but also opens
up new horizons for their application in prognostic engineering, advocating for their consideration in hybrid and ad-
vanced algorithmic structures. The balance between computational efficiency and prediction accuracy that KAFs offer
is likely to make them an increasingly relevant choice in the evolving landscape of machine learning applications in
mechanical systems.
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Appendix A. Comparative Results of Feature Scaling Techniques and Engine Data Ordering by Sequence
Length Across Various KAF Algorithms

34



Table 3: Comparison of best performed KAF-based algorithms with other approaches reported in the literature re-
garding FD001 dataset.

KAF-based approaches

Algorithm Scaling mode Data handling Network size TW RMSE Score

SW-KRLS Normalization Unsorted-Natural 1000 1 17.83 545.82
FB-KRLS Normalization Unsorted-Natural 450 1 19.14 622.99

ANS-QKRLS Normalization Unsorted-Natural 1140 1 18.62 627.55
ALD-KRLS Normalization Sorted-Descending 341 1 17.18 571.81

ANS-QKRLS Normalization Sorted-Ascending 780 1 18.36 537.79
QALD-KRLS Normalization Sorted-Descending 341 1 17.18 571.72
ANS-QKRLS Standardization Unsorted-Natural 160 1 17.58 468.58

QKRLS Standardization Sorted-Descending 22 1 19.02 601.22
QKLMS Standardization Sorted-Descending 22 1 19.28 556.1
QKRLS Standardization Sorted-Ascending 23 1 18.95 633.32

ANS-QKRLS Standardization Sorted-Ascending 172 1 18.22 626.45
QALD-KRLS Standardization Sorted-Descending 22 1 18.23 586.5

Machine learning and Deep learning approaches reported in literature

Algorithm TW RMSE Score

SVM [68] 30 40.72 7703.33
Echo State Network with Kalman Filter [69] - 63.46 -

DW-RNN [70] 20 22.52 -
ESN-FCN [71] 1 21.67 3555

SVR [72] 1 21.74 2394
LR [72] 1 23.45 2200

MTL-RNN [70] 20 21.47 -
ETR [68] 30 23.76 1667.86
RVR [57] 1 23.79 1502.9
SVR [57] 1 20.96 1381.5
CNN [72] - 19.7 1372
ETR [68] 1 22.05 1359.38

First CNN attempt [57] 15 18.45 1286.7
AE-FCN [71] 1 19.28 1014

DBN [68] 1 18.48 1001.44
LSTM [72] - 18.98 983
MLP [68] 1 18.48 959.63

LASSO [68] 1 22.43 894.21
SVM [68] 1 20.58 852.07

CNN+RNN [73] 31 16.89 820.67
Random Forest [68] 1 20.23 802.23

Multi-Stage-RUL GB [72] - 17.92 772
Multi-Stage-RUL SVM [72] - 17.12 765

SKF [68] 1 19.24 762.85
Multi-Stage-RUL LSTM [72] - 17.26 748

Extreme Learning Machine [68] 1 19.40 740.52
Multi-Stage-RUL CNN [72] - 16.89 732

KNR [68] 30 20.46 729.32
CNN-FCN [71] 1 16.35 706

LASSO [68] 30 19.74 653.85
MODBNE [68] 1 17.96 640.27

KNR [68] 1 19.73 604.26
GB [68] 1 18.80 575.04

MLP [68] 30 16.78 560.59
Extreme Learning Machine [68] 30 17.27 523

LSTMBS [74] 31 14.89 481.1
Random Forest [68] 30 17.91 479.75

GB [68] 30 15.67 474.01
DBN [68] 30 15.21 417.59

2-layer LSTM [75] 31 16.74 388.68
Deep LSTM [76] - 16.14 338

Trend attention Fully Convolutional Network [77] 31 13.99 336
MODBNE [68] 30 15.04 334.23

Attention-Based LSTM [78] 30 14.53 322.44
BiLSTM [79] 30 13.65 295

CNN-LSTM [80] 32 14.40 290
GHDR-FL [81] 30 11.58 281.65
CapsNet [82] 30 12.58 276.34
DCNN [58] 30 12.61 273.7

GHDR+LSTM+FC [81] 30 11.45 268.72
LSTM-MLSA [83] - 11.57 252.86

Embedded Attention-based Parallel Network-ResLSTMa [84] 40 12.11 245.32
HDNN [60] 30 13.02 245

LSTM-RBM [67] - 12.56 231
Distributed Attention-Based TCN [59] 40 11.78 229.48

AGCNN [66] 30 12.42 225.51
HAGCN [85] 30 11.93 222.3

BiGRU-TSAM [86] 30 12.56 213.35
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Table 4: Total number of trainable parameters for a sub-set of DL approaches reported in Table 3.

Neural Network approaches reported in literature Trainable weights
First CNN attempt [57] ≈ 15,000

CNN-FCN [71] ≈ 566,000
LSTMBS [74] ≈ 28,000

2-layer LSTM [75] ≈ 20,000
Deep LSTM [76] ≈ 55,000

BiLSTM [79] ≈ 75,000
CNN-LSTM [80] ≈ 60,000
GHDR-FL [81] ≈ 1,205,000

DCNN [58] ≈ 45,000
GHDR+LSTM+FC [81] ≈ 1,208,000

LSTM-MLSA [83] ≈ 42,000
Embedded Attention-based Parallel Network-ResLSTMa [84] ≈ 90,000

HDNN [60] ≈ 51,000
LSTM-RBM [67] ≈ 67,000

Distributed Attention-Based TCN [59] ≈ 105,000
AGCNN [66] ≈ 17,000

BiGRU-TSAM [86] ≈ 2,825,000
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Table A.5: Performance comparison of the KAF-based algorithms using normalization scaling method and natural
handling of engine order in the training phase.

Algorithm h λ ν η εU µ0 τ m RMSE Score Early - On time - Late Training Time (sec)
ALD-KRLS 1 0.01 0.5 - - - - 73 18.56 1080 13-59-28 2.29

1 0.01 0.4 - - - - 122 17.32 979.89 10-65-25 4.46
1 0.01 0.3 - - - - 187 17.36 1090 10-65-25 9.36
1 0.01 0.2 - - - - 326 17.73 1178 9-65-26 33.79
1 0.01 0.1 - - - - 776 17.6 1052 8-63-29 304.78
1 0.01 0.08 - - - - 993 17.34 910.7 10-62-28 616.84

QKRLS 1 0.01 - - 2 - - 21 20.89 1154 18-38-44 0.64
1 0.01 - - 1 - - 129 21.08 1742 8-47-45 4.75
1 0.01 - - 0.8 - - 262 18.78 985.43 9-53-38 14.53
1 0.01 - - 0.6 - - 660 17.62 779.83 8-62-30 165.6
1 0.01 - - 0.5 - - 1127 17.43 894.3 10-60-30 672.35

QKLMS 1 - - 0.01 2 - - 21 19.85 803.67 28-53-19 0.35
1 - - 0.01 1 - - 129 19.81 884.27 30-53-17 0.84
1 - - 0.01 0.8 - - 262 18.86 811.3 29-53-18 1.19
1 - - 0.01 0.6 - - 660 18.6 758.19 25-57-18 2.1
1 - - 0.01 0.5 - - 1127 18.59 807.77 26-58-16 2.87
1 - - 0.01 0.45 - - 1576 18.58 744.9 25-58-17 3.63

SW-KRLS 1 0.1 - - - - - 100 31.49 8693 47-37-16 2.44
1 0.1 - - - - - 200 22.64 1354 25-41-34 6.6
1 0.1 - - - - - 600 23.88 1308 42-44-14 90.3
1 0.1 - - - - - 770 23.06 1125 43-43-14 144.5
1 0.1 - - - - - 1000 17.83 545.82 23-54-23 242.8
1 0.1 - - - - - 1500 17.02 930.19 13-58-29 525.1

FB-KRLS 1 0.1 - 0.00001 - - - 100 21.79 1737 31-43-26 3.24
1 0.1 - 0.00001 - - - 200 22.34 1420 30-42-28 7.33
1 0.1 - 0.00001 - - - 450 19.14 622.99 37-47-16 55.63
1 0.1 - 0.00001 - - - 600 20.51 644.22 41-45-14 95.8
1 0.1 - 0.00001 - - - 1000 21.71 660.09 49-41-10 252.5
1 0.1 - 0.00001 - - - 1500 23.5 765.83 55-37-8 536

ANS-QKRLS 1 0 0.4 - 0.05 0.95 0.00001 115 17.71 753.62 17-61-22 17.94
1 0 0.2 - 0.05 0.95 0.00001 293 18.25 890.71 19-60-21 65.83
1 0 0.1 - 0.05 0.95 0.00001 624 18.62 629.68 25-51-24 253.92
1 0 0.08 - 0.05 0.95 0.00001 770 18.9 634.4 28-53-19 400.88
1 0 0.065 - 0.05 0.95 0.00001 926 18.78 630.38 26-55-19 628.33
1 0 0.05 - 0.05 0.95 0.00001 1140 18.98 627.55 31-52-17 1046.1

QALD-KRLS 1 0.01 0.4 - 0.1 - - 122 17.32 979.89 10-65-25 5.41
1 0.01 0.2 - 0.1 - - 326 17.73 1178 9-65-26 35.73
1 0.01 0.1 - 0.1 - - 776 17.6 1052 8-63-29 309.77
1 0.01 0.04 - 2 - - 21 19.86 1168 17-55-28 0.95
1 0.01 0.04 - 1 - - 129 19.46 1518 10-60-30 4.82
1 0.01 0.04 - 0.8 - - 262 18.5 1047 11-59-30 16.69
1 0.01 0.04 - 0.6 - - 659 18.1 1487 12-57-31 159.87
1 0.01 0.04 - 0.5 - - 1107 18.12 901.83 13-54-33 642.37
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Table A.6: Performance comparison of the KAF-based algorithms using normalization scaling method and sorted
training examples by their sequence length in a descending (·) and ascending order [·].

Algorithm h λ ν η εU µ0 τ m RMSE Score Early - On time - Late Training Time (sec)
ALD-KRLS 1 0.01 0.5 - - - - (75) [77] (18.39) [18.5] (1000) [1099.2] (17-59-24) [16-55-29] (1.96) [2.06]

1 0.01 0.4 - - - - (113) [123] (17.36) [18.16] (707.95) [1131.4] (19-56-25) [14-59-27] (3.67) [4.22]
1 0.01 0.3 - - - - (189) [194] (17.49) [18.45] (900.57) [1284.5] (13-62-25) [11-56-33] (8.59) [9.17]
1 0.01 0.2 - - - - (341) [343] (17.18) [18.02] (571.81) [963.67] (16-60-24) [7-58-35] (33.42) [32.9]
1 0.01 0.1 - - - - (793) [786] (17.38) [18.41] (792.51) [1461] (16-60-24) [10-56-34] (317.5) [294.75]
1 0.01 0.08 - - - - (1023) [1021] (17.47) [18.61] (729.24) [1552.5] (13-64-23) [11-57-32] (631.13) [588.53]

QKRLS 1 0.01 - - 2 - - (18) [20] (23.75) [23.13] (1483.5) [1325.4] (33-25-42) [24-43-33] (0.58) [0.54]
1 0.01 - - 1 - - (128) [140] (21.61) [21.42] (2898.2) [2450.4] (7-49-44) [11-46-43] (3.99) [4.45]
1 0.01 - - 0.8 - - (288) [271] (19.74) [19.69] (1707.6) [1670.3] (9-49-42) [8-56-36] (16.52) [15.44]
1 0.01 - - 0.6 - - (655) [656] (17.94) [17.94] (1025.7) [878.1] (10-60-30) [11-61-28] (156.08) [146.38]
1 0.01 - - 0.5 - - (1131) [1159] (17.33) [17.26] (787.32) [747.23] (10-62-28) [11-63-26] (663.86) [683.77]

QKLMS 1 - - 0.01 2 - - (18) [20] (22.24) [26] (755.99) [5120.3] (41-42-17) [11-33-56] (0.31) [0.31]
1 - - 0.01 1 - - (128) [140] (20.66) [24.94] (744.81) [4405.7] (39-46-15) [8-35-57] (0.84) [0.86]
1 - - 0.01 0.8 - - (288) [271] (20.67) [24.84] (737.21) [4951.8] (37-51-12) [5-38-57] (1.2) [1.22]
1 - - 0.01 0.6 - - (655) [656] (20.41) [25.06] (707.91) [5257.9] (39-47-14) [5-39-56] (2.02) [2]
1 - - 0.01 0.5 - - (1131) [1159] (20.54) [25.02] (725.23) [5479.2] (40-48-12) [4-40-56] (2.87) [2.95]
1 - - 0.01 0.45 - - (1564) [1560] (20.37) [25.1] (699.16) [5681.7] (39-50-11) [4-40-56] (3.54) [3.75]

SW-KRLS 1 0.1 - - - - - 100 (28.46) [33.81] (8962.8) [12996] (44-40-16) [40-27-33] (2.49) [2.46]
1 0.1 - - - - - 200 (27.32) [30.25] (7100.4) [12572] (21-35-44) [10-36-54] (5.76) [5.64]
1 0.1 - - - - - 600 (26.16) [24.74] (1299.9) [2998.7] (48-40-12) [4-44-52] (90.04) [89.58]
1 0.1 - - - - - 770 (26.81) [24.28] (1421) [2827.5] (51-37-12) [3-42-55] (145.78) [144.38]
1 0.1 - - - - - 1000 (24.86) [23.81] (1270) [2557] (50-36-14) [3-43-54] (258.62) [244.66]
1 0.1 - - - - - 1500 (25.48) [22.98] (1437.6) [2029.4] (52-38-10) [14-45-41] (533.57) [524.07]

FB-KRLS 1 0.1 - 0.00001 - - - 100 (23.6) [22.45] (1372.4) [2643.6] (42-38-20) [13-35-52] (3.2) [3.12]
1 0.1 - 0.00001 - - - 200 (23.87) [23.5] (868.4) [4935.9] (55-30-15) [11-44-45] (6.31) [6.55]
1 0.1 - 0.00001 - - - 450 (24.75) [23.77] (870.54) [4930.7] (58-30-12) [10-35-55] (53.36) [53.78]
1 0.1 - 0.00001 - - - 600 (25.72) [20.91] (1051.7) [2772.4] (56-35-9) [11-46-43] (92.89) [92.51]
1 0.1 - 0.00001 - - - 1000 (29.36) [21.43] (1391.3) [2510.8] (70-24-6) [11-44-45] (249.77) [257.69]
1 0.1 - 0.00001 - - - 1500 (31.87) [20.03] (1825.2) [1128.3] (74-22-4) [22-42-36] (534.13) [543.08]

ANS-QKRLS 1 0 0.4 - 0.05 0.95 0.00001 (108) [111] (20.21) [17.85] (2212.9) [647.52] (7-55-38) [20-60-20] (16.65) [16.9]
1 0 0.2 - 0.05 0.95 0.00001 (300) [298] (20.67) [17.66] (1856.2) [608.82] (6-50-44) [20-58-22] (62.29) [60.43]
1 0 0.1 - 0.05 0.95 0.00001 (642) [624] (22.44) [18.55] (2800.5) [685.86] (5-44-51) [23-59-18] (265.29) [243.22]
1 0 0.08 - 0.05 0.95 0.00001 (782) [780] (23.01) [18.36] (3018.5) [537.79] (6-39-55) [26-55-19] (405.46) [388.7]
1 0 0.065 - 0.05 0.95 0.00001 (945) [940] (22.93) [19.6] (2531.4) [776.55] (5-42-53) [25-55-20] (640.65) [602.82]
1 0 0.05 - 0.05 0.95 0.00001 (1159) [1162] (23.52) [20.24] (2902.7) [814.92] (5-42-53) [28-56-16] (1051.03) [999.44]

QALD-KRLS 1 0.01 0.4 - 0.1 - - (113) [123] (17.36) [18.16] (707.99) [1131.6] (19-56-25) [14-59-27] (4.3) [4.98]
1 0.01 0.2 - 0.1 - - (341) [343] (17.18) [18.02] (571.72) [963.59] (16-60-24) [7-58-35] (36.33) [34.92]
1 0.01 0.1 - 0.1 - - (793) [786] (17.39) [18.4] (791.24) [1461.2] (16-60-24) [10-56-34] (320.17) [298.88]
1 0.01 0.04 - 2 - - (18) [20] (21.2) [20.54] (1072.1) [1371.7] (23-49-28) [19-56-25] (0.79) [0.73]
1 0.01 0.04 - 1 - - (128) [140] (20.62) [21.84] (2284.9) [7863.3] (19-55-26) [11-54-35] (4.67) [5.02]
1 0.01 0.04 - 0.8 - - (288) [271] (19.46) [20.16] (1558.6) [2233.9] (13-59-28) [13-56-31] (20.06) [16.84]
1 0.01 0.04 - 0.6 - - (655) [656] (19.43) [19.1] (1105.1) [1369] (16-55-29) [14-58-28] (151.69) [139.6]
1 0.01 0.04 - 0.5 - - (1111) [1126] (18.2) [18.74] (957.95) [977.42] (14-62-24) [14-55-31] (618.73) [623.46]
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Table A.7: Performance comparison of the KAF-based algorithms using standardization scaling method and natural
handling of engine order in the training phase.

Algorithm h λ ν η εU µ0 τ m RMSE Score Early - On time - Late Training Time (sec)
ALD-KRLS 7 0.01 0.1 - - - - 77 18.3 1145.2 13-61-26 2.41

7 0.01 0.07 - - - - 120 17.92 1132.4 9-64-27 4.46
7 0.01 0.05 - - - - 180 17.68 1092.9 10-65-25 9.3
7 0.01 0.03 - - - - 355 17.88 1146.6 8-63-29 52.26
7 0.01 0.02 - - - - 736 17.88 1177.3 10-62-28 306.84
7 0.01 0.017 - - - - 1052 17.79 1121 9-65-26 767.9

QKRLS 7 0.01 - - 25 - - 21 19.5 861.21 19-42-39 1.1
7 0.01 - - 13 - - 127 17.83 719.08 12-52-36 5.95
7 0.01 - - 10 - - 307 17.77 948.69 9-65-26 25
7 0.01 - - 8 - - 635 17.64 917.81 10-59-31 146.35
7 0.01 - - 7 - - 966 17.64 861.9 10-66-24 468.57
7 0.01 - - 6.8 - - 1059 17.51 778.89 11-66-23 574.52
7 0.01 - - 6.5 - - 1190 17.1 677.49 9-67-24 778.3

QKLMS 7 - - 0.01 25 - - 21 19.24 779.78 17-59-24 0.31
7 - - 0.01 13 - - 127 18.4 758.38 25-55-20 0.79
7 - - 0.01 10 - - 307 18.52 794.75 22-58-20 1.31
7 - - 0.01 8 - - 635 18.3 772.9 23-57-20 1.92
7 - - 0.01 7 - - 966 18.27 772.3 22-58-20 2.6
7 - - 0.01 6.8 - - 1059 18.28 756.06 23-58-19 2.78
7 - - 0.01 6.5 - - 1190 18.28 751.04 23-58-19 3
7 - - 0.01 6 - - 1504 18.33 795.72 23-57-20 3.65

SW-KRLS 7 0.1 - - - - - 100 24.38 993.47 45-31-24 4.07
7 0.1 - - - - - 200 23.2 1706 20-43-37 8.77
7 0.1 - - - - - 600 21.79 818.6 39-48-13 94.8
7 0.1 - - - - - 770 21.26 736.8 37-49-14 151
7 0.1 - - - - - 1000 17.85 685.44 22-59-19 248.09
7 0.1 - - - - - 1500 17.51 949.43 10-64-26 540.8

FB-KRLS 7 0.1 - 0.00001 - - - 100 20.11 1500.2 20-42-38 5.35
7 0.1 - 0.00001 - - - 200 20.3 1133.4 28-38-34 9.81
7 0.1 - 0.00001 - - - 450 22.16 756.05 43-43-14 56.37
7 0.1 - 0.00001 - - - 600 24.22 846.5 48-38-14 98.3
7 0.1 - 0.00001 - - - 1000 28.39 1268.3 65-28-7 257.6
7 0.1 - 0.00001 - - - 1500 35.91 2713.6 86-11-3 568.84

ANS-QKRLS 7 0 0.05 - 0.005 0.99 0.00001 114 18.19 562.17 27-56-17 23.91
7 0 0.03 - 0.005 0.99 0.00001 160 17.58 468.58 24-57-19 34.53
7 0 0.004 - 0.005 0.99 0.00001 598 20.59 644.7 35-46-19 283.77
7 0 0.003 - 0.005 0.99 0.00001 700 20.91 664.74 37-45-18 398.71
7 0 0.0025 - 0.005 0.99 0.00001 773 20.73 673.43 39-41-20 472
7 0 0.0015 - 0.005 0.99 0.00001 999 20.65 652.37 37-45-18 828.46

QALD-KRLS 7 0.01 0.07 - 0.1 - - 120 17.92 1132.4 9-64-27 5.32
7 0.01 0.03 - 0.1 - - 355 17.88 1146.6 8-63-29 47.81
7 0.01 0.02 - 0.1 - - 736 17.88 1177.3 10-62-28 296.87
7 0.01 0.017 - 0.1 - - 1058 17.79 1121 9-65-26 764.5
7 0.01 0.01 - 25 - - 21 18.35 828.42 20-53-27 0.8
7 0.01 0.01 - 13 - - 127 19.32 1533.6 12-54-34 4.51
7 0.01 0.01 - 8 - - 635 19.22 1754 11-57-32 141.47
7 0.01 0.01 - 6.8 - - 1059 17.73 1111.3 11-62-27 559.62
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Table A.8: Performance comparison of the KAF-based algorithms using standardization scaling method and sorted
training examples by their sequence length in a descending (·) and ascending order [·].

Algorithm h λ ν η εU µ0 τ m RMSE Score Early - On time - Late Training Time (sec)
ALD-KRLS 7 0.01 0.1 - - - - (76) [79] (18.37) [19.16] (1321.6) [1395.5] (13-63-24) [9-55-36] (2.26) [2.21]

7 0.01 0.07 - - - - (116) [122] (17.97) [19.08] (1018.9) [1212.7] (11-61-28) [13-54-33] (4.13) [4.12]
7 0.01 0.05 - - - - (181) [186] (17.28) [17.28] (691.07) [1259.1] (14-63-23) [8-58-34] (8.33) [8.52]
7 0.01 0.03 - - - - (369) [370] (17.07) [18.3] (677.58) [1145] (14-66-20) [7-61-32] (48.26) [45.13]
7 0.01 0.02 - - - - (777) [758] (17.19) [18.12] (663.46) [1205] (14-63-23) [8-62-30] (329.57) [294.38]
7 0.01 0.017 - - - - (1110) [1083] (17.39) [18.15] (710.83) [1160.5] (15-63-22) [8-60-32] (842.03) [742.84]

QKRLS 7 0.01 - - 25 - - (22) [23] (19.02) [18.95] (601.22) [633.32] (23-43-34) [25-42-33] (0.59) [0.59]
7 0.01 - - 13 - - (128) [131] (18.08) [18.46] (1017.2) [950] (11-61-28) [10-57-33] (4.09) [4.16]
7 0.01 - - 10 - - (297) [302] (18.95) [18.25] (1341.1) [901.95] (13-54-33) [12-56-32] (19.62) [19.38]
7 0.01 - - 8 - - (621) [623] (17.69) [18.01] (890.87) [880.09] (11-61-28) [12-57-31] (136.74) [135.05]
7 0.01 - - 7 - - (956) [943] (17.88) [17.71] (831.6) [801.52] (14-59-27) [11-57-32] (425.66) [393.35]
7 0.01 - - 6.8 - - (1040) [1038] (17.98) [18.27] (944.04) [896.04] (13-58-29) [9-63-28] (548.68) [520.42]
7 0.01 - - 6.5 - - (1203) [1197] (17.6) [17.94] (822.87) [952.84] (11-65-24) [11-61-28] (806.08) [722.42]

QKLMS 7 - - 0.01 25 - - (22) [23] (19.28) [25.36] (556.1) [3098.4] (31-52-17) [3-38-59] (0.3) [0.3]
7 - - 0.01 13 - - (128) [131] (20.25) [24.77] (686.23) [3737] (37-48-15) [6-34-60] (0.81) [0.8]
7 - - 0.01 10 - - (297) [302] (20.16) [24.57] (644.3) [3705] (36-49-15) [6-33-61] (1.25) [1.27]
7 - - 0.01 8 - - (621) [623] (20.31) [24.8] (664.55) [3825.3] (39-46-15) [6-32-62] (1.9) [1.99]
7 - - 0.01 7 - - (956) [943] (20.39) [24.78] (674.41) [3751.7] (38-48-14) [6-31-63] (2.5) [2.58]
7 - - 0.01 6.8 - - (1040) [1038] (20.3) [24.73] (671.01) [3842.6] (37-48-15) [6-31-63] (2.63) [2.65]
7 - - 0.01 6.5 - - (1203) [1197] (20.31) [24.71] (679.96) [3948.1] (35-50-15) [6-31-63] (3.1) [3.02]
7 - - 0.01 6 - - (1521) [1485] (20.21) [24.65] (663.97) [3818.2] (38-47-15) [6-31-63] (3.58) [3.48]

SW-KRLS 7 0.1 - - - - - 100 (23.32) [23.34] (1039.2) [1687.4] (32-38-30) [19-34-47] (2.52) [2.53]
7 0.1 - - - - - 200 (32.06) [31.31] (13580) [8916.8] (16-31-53) [3-26-71] (5.77) [5.74]
7 0.1 - - - - - 600 (22.61) [25.55] (771.55) [3567.3] (42-44-14) [4-38-58] (100.61) [91.88]
7 0.1 - - - - - 770 (23.66) [25.05] (909.5) [3310.4] (47-39-14) [4-39-57] (142.85) [147.82]
7 0.1 - - - - - 1000 (22.2) [24.6] (874.63) [3037.1] (46-42-12) [4-39-57] (242.83) [253]
7 0.1 - - - - - 1500 (23.88) [23.69] (1164.2) [2904.6] (53-37-10) [12-46-42] (537.33) [535.02]

FB-KRLS 7 0.1 - 0.00001 - - - 100 (24.32) [24.12] (864.3) [5074.3] (48-29-23) [7-40-53] (3.22) [3.24]
7 0.1 - 0.00001 - - - 200 (26.2) [23.13] (1014.5) [2767.2] (52-35-13) [8-38-54] (6.28) [6.46]
7 0.1 - 0.00001 - - - 450 (28.9) [21.12] (1393.6) [1520.5] (65-28-7) [24-38-38] (53.61) [56.3]
7 0.1 - 0.00001 - - - 600 (30.82) [20.92] (1651.5) [1194.8] (73-22-5) [27-40-33] (98.43) [96.17]
7 0.1 - 0.00001 - - - 1000 (39.12) [22.52] (3676) [825.2] (88-10-2) [41-41-18] (267.93) [254.94]
7 0.1 - 0.00001 - - - 1500 (43.53) [29.27] (5755.3) [1464.8] (95-3-2) [74-21-5] (532.2) [618.98]

ANS-QKRLS 7 0 0.05 - 0.005 0.99 0.00001 (107) [120] (22.39) [18.94] (2411.5) [645.43] (6-41-53) [24-56-20] (17.31) [18.44]
7 0 0.03 - 0.005 0.99 0.00001 (166) [172] (22.62) [18.22] (2670.6) [626.45] (5-38-57) [20-59-21] (27.79) [28.88]
7 0 0.004 - 0.005 0.99 0.00001 (621) [617] (24.67) [21.6] (2888.5) [1242.7] (4-35-61) [29-49-22] (267.46) [255.58]
7 0 0.003 - 0.005 0.99 0.00001 (727) [722] (24.71) [21.56] (3213.6) [1451.9] (4-37-59) [29-50-21] (373.62) [373.44]
7 0 0.0025 - 0.005 0.99 0.00001 (794) [800] (24.66) [20.75] (3096.9) [846.05] (4-41-55) [27-52-21] (461.2) [447.04]
7 0 0.0015 - 0.005 0.99 0.00001 (1025) [1027] (24.89) [22.64] (3461.9) [1490.7] (4-43-53) [24-51-25] (836.54) [797.43]

QALD-KRLS 7 0.01 0.07 - 0.1 - - (116) [122] (17.97) [19.08] (1018.9) [1212.7] (11-61-28) [13-54-33] (5.13) [5.39]
7 0.01 0.03 - 0.1 - - (369) [370] (17.07) [18.3] (677.58) [1145] (14-66-20) [7-61-32] (50.39) [46.62]
7 0.01 0.02 - 0.1 - - (777) [758] (17.19) [18.12] (663.45) [1205] (14-63-23) [8-62-30] (328.79) [294.48]
7 0.01 0.017 - 0.1 - - (1110) [1083] (17.39) [18.15] (710.83) [1160.5] (15-63-22) [8-60-32] (843.54) [752.04]
7 0.01 0.01 - 25 - - (22) [23] (18.23) [19.25] (586.5) [728.46] (22-52-26) [24-46-30] (0.82) [0.8]
7 0.01 0.01 - 13 - - (128) [131] (18.01) [20.43] (1060.4) [1350] (12-64-24) [11-56-33] (4.77) [4.83]
7 0.01 0.01 - 8 - - (621) [623] (17.84) [18.58] (753.7) [1148.9] (20-60-20) [11-55-34] (131.78) [131.2]
7 0.01 0.01 - 6.8 - - (1040) [1038] (17.81) [19.22] (857.55) [1506.6] (18-59-23) [8-56-36] (515.63) [502.6]

40



References

[1] T. Hofmann, B. Schölkopf, A. J. Smola, Kernel methods in machine learning, The Annals of Statistics 36 (3) (2008) 1171 – 1220.
[2] J. Shawe-Taylor, N. Cristianini, et al., Kernel methods for pattern analysis, Cambridge university press, 2004.
[3] N. Aronszajn, Theory of reproducing kernels, Transactions of the American mathematical society 68 (3) (1950) 337–404.
[4] A. J. Smola, B. Schölkopf, Learning with kernels, Vol. 4, Citeseer, 1998.
[5] W. S. Noble, What is a support vector machine?, Nature biotechnology 24 (12) (2006) 1565–1567.
[6] J. Q. Shi, T. Choi, Gaussian process regression analysis for functional data, CRC press, 2011.
[7] B. Schölkopf, A. Smola, K.-R. Müller, Kernel principal component analysis, in: International conference on artificial neural networks,

Springer, 1997, pp. 583–588.
[8] M. Tipping, The relevance vector machine, Advances in neural information processing systems 12 (1999).
[9] J. C. Prı́ncipe, W. Liu, S. Haykin, Kernel adaptive filtering: a comprehensive introduction, John Wiley & Sons, 2011.

[10] S. Garcia-Vega, X.-J. Zeng, J. Keane, Stock returns prediction using kernel adaptive filtering within a stock market interdependence approach,
Expert Systems with Applications 160 (2020) 113668.

[11] L. Shi, J. Tan, J. Wang, Q. Li, L. Lu, B. Chen, Robust kernel adaptive filtering for nonlinear time series prediction, Signal Processing 210
(2023) 109090.

[12] H. Zhou, J. Huang, F. Lu, Reduced kernel recursive least squares algorithm for aero-engine degradation prediction, Mechanical Systems and
Signal Processing 95 (2017) 446–467.

[13] H. Zhou, J. Huang, F. Lu, J. Thiyagalingam, T. Kirubarajan, Echo state kernel recursive least squares algorithm for machine condition
prediction, Mechanical Systems and Signal Processing 111 (2018) 68–86.

[14] W. Ma, J. Duan, W. Man, H. Zhao, B. Chen, Robust kernel adaptive filters based on mean p-power error for noisy chaotic time series
prediction, Engineering Applications of Artificial Intelligence 58 (2017) 101–110.

[15] A. S. Eltrass, Novel cascade filter design of improved sparse low-rank matrix estimation and kernel adaptive filtering for ecg denoising and
artifacts cancellation, Biomedical Signal Processing and Control 77 (2022) 103750.

[16] S. An, W. Liu, S. Venkatesh, Fast cross-validation algorithms for least squares support vector machine and kernel ridge regression, Pattern
Recognition 40 (8) (2007) 2154–2162.

[17] B. Chen, J. Liang, N. Zheng, J. C. Prı́ncipe, Kernel least mean square with adaptive kernel size, Neurocomputing 191 (2016) 95–106.
[18] M. Yukawa, Multikernel adaptive filtering, IEEE Transactions on Signal Processing 60 (9) (2012) 4672–4682.
[19] J. Zhao, H. Zhang, J. A. Zhang, Gaussian kernel adaptive filters with adaptive kernel bandwidth, Signal Processing 166 (2020) 107270.
[20] K. Slavakis, S. Theodoridis, I. Yamada, Online kernel-based classification using adaptive projection algorithms, IEEE Transactions on Signal

Processing 56 (7) (2008) 2781–2796.
[21] J. Platt, A resource-allocating network for function interpolation, Neural computation 3 (2) (1991) 213–225.
[22] W. Liu, I. Park, J. C. Principe, An information theoretic approach of designing sparse kernel adaptive filters, IEEE transactions on neural

networks 20 (12) (2009) 1950–1961.
[23] C. Richard, J. C. M. Bermudez, P. Honeine, Online prediction of time series data with kernels, IEEE Transactions on Signal Processing 57 (3)

(2008) 1058–1067.
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