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Abstract

Accurate range prediction of an electric vehicle is an important open problem, affecting among others the adoption and market
penetration of electric vehicles. Current range prediction systems suffer several practical limitations. Most critically these systems
employ models in which all vehicle-specific parameters are required to be known. In this paper, we propose a methodology for
predicting power and mission energy of electric vehicles that does not require knowledge of vehicle-specific parameters nor a
drive-train model. The proposed method uses a data-driven approach grounded entirely on available vehicle sensor data. In particular,
the predictive model is obtained by applying machine learning techniques, and in order to adapt to changing conditions in real-time,
the specific class of kernel adaptive filtering algorithms is employed. Kernel adaptive filtering extends the theory of linear filters with
concepts from kernel methods in order to construct nonlinear adaptive filtering algorithms that exhibit properties such as universal
approximation capabilities and convexity in training, requiring only modest computational complexity. After providing an overview
of the most relevant properties of kernel adaptive filters, we evaluate the proposed prediction methodology on data obtained in nine
vehicle trial runs, comparing the performance of one linear adaptive filter, one online trained neural network and two state-of-the-art
kernel adaptive filters.
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1. Introduction

Electric vehicles are regarded as a promising opportunity
to reduce local carbon dioxide emissions in transport and to
increase the overall energy efficiency, since the drive-train com-
ponents of electric vehicles operate more efficiently than those
of conventionally propelled vehicles. Despite the political will
and purchase incentives in many countries, recent studies show
that the registration of new electric vehicles remains at a neg-
ligible level. In most countries, registration is lower than 1 %
of passenger cars Culver (2015). In particular, it is estimated
as 0.7% in the United States, 0.4% in Canada, 1 % in China
and 0.6% in Japan International Energy Agency (2016). In the
European Union, only 2 out of 26 member states exceed 2 %
electric vehicles in passenger car sales Fergusson (2016).

Current batteries of electric vehicles show limited energy
storage capacity with high costs, and the ratio of energy storage
capacity to weight is poor. In addition, users fear limitation
in their operation due to a comparably low maximum range
per charge (≈110 km to 160 km per charge Hayes et al. (2011)).
Therefore, price and range are seen as the main disadvantages of
electric vehicles compared to conventionally propelled vehicles
Carley et al. (2013); Adepetu & Keshav (2017)
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In particular, drivers worry that they will not reach their
desired destination, which is known as “range anxiety” Rauh
et al. (2017). Nevertheless, the average range demand, which
is reported as 30 km to 40 km per day for European drivers
De la Fuente Layos (2007), is easily handled by current electric
vehicles. Because of range anxiety, even experienced users do
not exceed 75 % to 80 % of the electric vehicle’s range Franke
et al. (2012); Franke & Krems (2013). Furthermore, current
systems for range prediction bear too much uncertainty Dütschke
et al. (2012), causing the users’ trust in electric vehicle range to
be below the overall satisfaction with the vehicle. While there
are several ongoing research efforts to reduce this uncertainty
Tannahill et al. (2014); Faraj & Basir (2016); Sarrafan et al.
(2017), car manufacturers accordingly tend to add substantial
range buffers to treat range anxiety. However, these additional
range buffers require extra costs, which, once again, lead to
increased customer dissatisfaction. As analyzed in Wietschel
et al. (2013), customers are only willing to pay little extra money
for electric propulsion systems. Improving the precision of range
prediction systems would result in a substantial increase of real-
world range by using capacity that is already installed. Moreover,
the increased weight and price of additional range buffers could
be avoided. As summarized in Yu et al. (2012), improvements
in range and range prediction systems are crucial for further
adoption of electric vehicles and their market penetration.

The lack of precision in current range prediction systems
can be mainly attributed to two factors, in particular, imprecise
prediction of vehicle operation (predictive vehicle dynamics
and usage of auxiliary power), and imprecise vehicle models
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(drive-train model, vehicle dynamics model). Recent advances
in vehicle dynamics forecasting are discussed in Fünfgeld et al.
(2017) and its references and fall out of scope for this study.

The present study contributes to improve the precision of
vehicle dynamics models, because current vehicle dynamics
models require knowledge of many vehicle-specific parameters,
which limits their practical applicability. Current range prediction
systems utilize white-box vehicle dynamics models Hayes et al.
(2011); Wu et al. (2015); Grunditz & Thiringer (2016); Asamer
et al. (2016), in which all the vehicle-specific parameters of the
adopted model must be known. However, most of the involved
parameters are time-varying, and their estimation has been the
subject of a large body of literature on gray-box approaches
Rhode et al. (2016); Vahidi et al. (2005); Fathy et al. (2008);
McIntyre et al. (2009); De Bruyne et al. (2011); Rhode &
Gauterin (2013), which estimate part of the model based on
empirical data. A few preliminary studies on black-box modeling
for range prediction have been carried out as well, for instance
Chen et al. (2012b); Yu et al. (2012). Nevertheless, as will be
discussed in the next section, these approaches are limited in
scope and present several important issues.

This work introduces kernel adaptive filtering (KAF) algo-
rithms Liu et al. (2011) as black-box modeling techniques for
predicting power and mission energy of electric vehicles. KAFs
are machine learning techniques that present several favorable
properties for the problem at hand. In essence, KAFs are non-
linear extensions of linear adaptive filters, which makes them
particularly suitable for online operation and tracking of time-
varying models. The online learning capability marks a contrast
with neural networks, whose training is generally formulated in
a mini-batch fashion and unsuitable for most online applications
Goodfellow et al. (2016). The capability of adapting to changing
environments is a property that is currently being explored in
several machine learning contexts, for instance in the nascent
field of lifelong machine learning Zhiyuan & Bing (2018). Fi-
nally, KAFs exhibit universal approximation capabilities, and, in
contrast to other black-box non-linear methods such as neural
networks Goodfellow et al. (2016), KAFs are obtained by solving
a convex optimization problem.

To the best of our knowledge, this work represents the first
application of KAFs in electric vehicles, and for this reason,
we include an extensive background on linear filters and the
state-of-the-art in kernel adaptive filtering in the discussion.

The remainder of this paper is organized as follows: Section 2
provides an overview of related work and background on electric
range prediction systems, followed by the motivation to employ
kernel adaptive filters. Section 3 states the power prediction prob-
lem as a black-blox model and discusses the adopted assumptions.
Section 4 reviews well-known linear filtering theory to highlight
some similarities between linear filters and kernel adaptive filters,
which are discussed in Section 5. A set of experiments with data
from an electric vehicle are conducted and discussed in Section 6.
Finally, Section 7 provides concluding remarks and a discussion
of future research questions.

Throughout the discussion, the following notation will be
used: Scalar variables are denoted as lowercase letters, 𝑥, and
vectors as boldface lowercase letters, 𝒙, defined as column

vectors. Matrices are indicated by boldface uppercase letters,
such as 𝑿.

2. Related work and background

A standard principle in design of range prediction systems
is conservation of energy (∑ 𝐸𝑖 = 0). In electric vehicles, this
conservation can be described by an equilibrium between battery
residual energy and mission energy. The battery residual energy
is given by battery models and state-of-charge estimation ap-
proaches, which is an emerging research topic that falls outside
the scope of this paper. The reader is kindly referred to the
extensive overview about state-of-charge estimation in (Cuma &
Koroglu, 2015, Table 1).

Accordingly, the following discussion of related work focuses
on estimates of the mission energy of electric vehicles. In
addition, we discuss the literature that deals with residual range
estimation of electric vehicles, and we provide related work for
vehicles with combustion engines.

2.1. Related work
Wu et al. Wu et al. (2015) used a well-known vehicle

longitudinal dynamics model for the instantaneous power (𝑝)
and mission energy (𝐸) of an electric vehicle. The power follows

𝑝𝑡 = 𝐹𝑡𝑣𝑡 , (1)

where 𝐹 denotes tractive force, 𝑣 denotes velocity, and the index
𝑡 denotes time. The integral of 𝑝𝑡 yields the mission energy

𝐸 =

𝑡∫
0

𝑝𝑡d𝑡. (2)

The instantaneous tractive force reads

𝐹𝑡 = 𝑚V ¤𝑣𝑡 + 𝑓r𝑚V𝑔 cos 𝜃𝑡 + 𝑚V𝑔 sin 𝜃𝑡 + 𝜌a
2
𝑐𝑤𝐴V𝑣

2
𝑡 . (3)

The terms on the right-hand side of (3) model the acceleration
force, rolling resistance, climbing force, and aerodynamic re-
sistance, respectively. Model (3) requires knowledge of several
vehicle-specific parameters, in particular vehicle mass (𝑚V),
coefficient of rolling resistance ( 𝑓r), drag coefficient (𝑐w), and
vehicle cross-sectional area (𝐴V), as well as knowledge about the
air density (𝜌a) and the instantaneous road angle (𝜃). A parameter
sensitivity analysis was conducted in Asamer et al. (2016). In
conclusion, the uncertainty in drive train efficiency, coefficient
of rolling resistance, and auxiliary power demand should be
reduced to improve mission energy modeling of electric vehicles.
The study in Wu et al. (2015) treated model (3) as a white-box
model, in which all vehicle-specific parameters were assumed
to be known. However, these parameters are time-varying and
usually only approximately known, which gave motivation for the
vast literature on parameter estimators for model (3) Vahidi et al.
(2005); Fathy et al. (2008); McIntyre et al. (2009); De Bruyne
et al. (2011); Rhode & Gauterin (2013).

In addition to model (3), the authors of Wu et al. (2015) used
a vehicle-specific drive-train model which considers losses of
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the electric motor and converter to compute the instantaneous
power (𝑝𝑡 ) of their electric vehicle. Hence, more vehicle-specific
parameters were required, such as the electric motor resistance,
flux, and transmission efficiency. The reported mean absolute
error of the mission energy for 41 trips was 15.6 %.

A black-box model was applied in Chen et al. (2012b) to
predict the residual range of a vehicle with combustion engine.
A neural network (NN) with 21 neurons in a single hidden layer
was trained using fuel volume, engine speed, velocity, vehicle
mass, and road angle as the input data. The output data consisted
of the residual range, and a large training data set was used,
covering more than two months of vehicle data. The largest
range prediction error was ≈4 km. Nevertheless, the NN-based
technique proposed in Chen et al. (2012b) showed several issues,
the major one being that the prediction quality on test data
(unseen data for the NN) was not reported, although it is well
known that NNs easily suffer from overfitting. Furthermore,
the vehicle mass was treated as a known input even though
this quantity is usually unknown. In addition to these issues,
the training of NNs requires non-convex optimization, which is
commonly conducted in batch processing of large data sets, and
for this reason NNs are not recommended for online adaptation
or online implementations on electronic control units.

Based on published vehicle parameters from manufacturers,
Hayes et al. Hayes et al. (2011) derived drive-train models
for two electric vehicles, specifically the Nissan Leaf and the
Tesla Roadster. Some additional parameters such as the vehicle
cross-sectional area or the coefficient of rolling resistance were
estimated to model the range of the electric vehicles. However,
the authors did not elaborate on how these parameters were esti-
mated. Presumably, the additional parameters were empirically
tuned by comparing the predicted range from the model with the
given range from the manufacturers. The model of Hayes et al.
(2011) was further validated with real-world data from trial runs,
where the velocity and road angle from GPS served as model
inputs. Therefore, the model in Hayes et al. (2011) is a white-box
model with additional tuned parameters.

Yu et al. Yu et al. (2012) treat the problem of electric-vehicle
range estimation by performing clustering of driving patterns,
which belongs to black-box modeling. A trial run record was
segmented into clusters with similar mission energy demand.
The velocity, acceleration, road angle, and road curvature served
as features (inputs to the black-box model) in the following
machine learning procedure. The modeled mission energy was
compared to measured mission energy from a trial run. The
mean estimation error was 0.26 kW h.

Different Kalman filter algorithms were compared in Rhode
et al. (2016) to estimate parameters of model (3) aiming to
predict the vehicle tractive force of a vehicle with combustion
engine. Note that the predicted tractive force could be easily
converted into power through (1). Due to the involved parameter
estimator, the approach of Rhode et al. (2016) belongs to gray-
box models. However, the method presented in Rhode et al.
(2016) still requires a vehicle-specific drive-train model, in which
knowledge about several vehicle-specific drive-train parameters
is essential.

Table 1 categorizes all discussed related literature, according

Table 1: Overview of related work for electric vehicles and
vehicles with combustion engine.

Reference model type predicted output

Asamer et al. (2016) white box (3) power, mission energy
Wu et al. (2015) white box (3) power, mission energy
Chen et al. (2012b) black box (NN) residual range
Hayes et al. (2011) white box residual range
Yu et al. (2012) black box (clusters) mission energy
Rhode et al. (2016) gray box (3) tractive force

to the used model type and the predicted output.

2.2. Motivation to apply kernel adaptive filters
A high-level comparison of kernel adaptive filters and other

modeling techniques is provided in (Liu et al., 2011, p. 18).
Kernel adaptive filters combine universal approximation capa-
bility with modest computational complexity. The concept of
“universal approximation capability” indicates that any non-linear
function 𝑓 can be approximated with measured inputs (𝒙) and
measured outputs (𝑦) such that 𝑦 ≈ 𝑓 (𝒙) holds. Hence, kernel
adaptive filters belong to the black-box model type. In contrast to
white-box or gray-box approaches (see examples in Table 1), full
physical understanding of the system is not required. However,
some insight is still needed to select meaningful measured inputs
and measured outputs, and to chose a suitable kernel. Preliminar-
ily, a kernel is a function with specific properties. More details
will be given in Section 5.1.

An important advantage of kernel adaptive filters is that
they are obtained by solving a convex optimization problem,
which is contrary to other non-linear machine learning methods
such as NNs. A convex solution is always preferable, because
only convex solutions allow for the design of algorithms that
operate on fixed evaluation time, which is required for real-time
applications. Also, kernel adaptive filters can easily be made
robust against overfitting by incorporating assumptions about
the covariance of the unknown non-linear function.

To be more specific on the instantaneous power prediction
studied herein, KAFs overcome some obstacles which usually
arise when modeling the power or mission energy of electric
vehicles. Kernel adaptive filters ground entirely on available
vehicle sensor data and the model adapts itself online during trial
runs. Hence, the proposed method avoids the need for vehicle-
specific parameters and drive-train models, which usually require
high design effort due to costly drive-train test bench experiments.
Compared to white- or gray-box methods, there is no need to
gather information about vehicle-specific data such as tire radius,
gear-ratio, efficiency maps, vehicle mass and so forth, which
are usually required to design drive train models or to raise the
tractive force model in (3). Kernel adaptive filters avoid the
need for a drive train or tractive force model. Instead, the kernel
adaptive filter allows to include an unknown drive train and
tractive force model as part of the non linear mapping 𝑦 ≈ 𝑓 (𝒙).
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𝑣𝑡

∗𝑎x𝑡

𝑝𝑡

Figure 1: Non-linear black box vehicle model, shown as block
diagram. The aim is to estimate the unknown non-linear mapping
𝑝𝑡 ≈ 𝑓 (𝑣𝑡 , 𝑎x𝑡 ), where 𝑓 depicts the vehicle. ∗Note that the
longitudinal acceleration (𝑎x) from the body-fixed acceleration
sensor considers the road angle. See (6).

3. Problem statement

Figure 1 illustrates the adopted non-linear black-box vehicle
model,

𝑝𝑡 ≈ 𝑓 (𝑣𝑡 , 𝑎x𝑡 ) (4)

which includes two measured inputs, velocity (𝑣) and longitudinal
acceleration (𝑎x), and the measured output power (𝑝), being
the product of the measured electric current and voltage. Our
objective is to approximate the unknown non-linear function
𝑓 (·) of (4) given the measurements 𝑣𝑡 , 𝑎x𝑡 , and 𝑝𝑡 .

The signals from the body-fixed longitudinal acceleration
sensor are corrupted by acceleration due to gravity, cornering,
and pitch. The vehicle acceleration, which is the derivative of
the velocity, reads

¤𝑣𝑡 = 𝑎x𝑡 cos 𝛽 + 𝑎y𝑡 sin 𝛽 − 𝑔 sin(𝜃𝑡 − Θ𝑡 ) (5)

(Kiencke & Nielsen, 2005, p. 353). Therefore, the measured
longitudinal acceleration (𝑎x) is a function of the side slip angle
(𝛽), lateral acceleration (𝑎y), pitch angle (Θ), and road angle
(𝜃). Consequently, model (4) considers longitudinal and lateral
dynamics. Rearranging (5) gives

𝑎x𝑡 =
1

cos 𝛽
( ¤𝑣𝑡 − 𝑎y𝑡 sin 𝛽 + 𝑔 sin(𝜃𝑡 − Θ𝑡 )

)
which can be simplified by assuming 𝛽 and Θ being small to

𝑎x𝑡 = ¤𝑣𝑡 + 𝑔 sin 𝜃𝑡 . (6)

The measured velocity is given by a sophisticated velocity
observer of the electronic stability system. See (Kiencke &
Nielsen, 2005, pp. 351–363) for a detailed review of vehicle
velocity estimation with Kalman filter or fuzzy logic.

In addition to the vehicle dynamics, model (4) also considers
losses that arise inside the drive train. These losses are caused
by acceleration of rotational parts (shafts, wheels), friction, and
losses inside the electric motor and gear-box. Conversely to
conventional approaches, model (4) considers drive-train losses
but does not require efficiency maps of the electric motor and
the gear-box.

Model (4) omits additional inputs for accessory power of
lightning, air conditioning, or heating and assumes that these
accessory power fractions were kept constant or change slowly
during operation. Accordingly, the non-linear function 𝑓 (·) in (4)

accounts additional losses of accessory power. Estimation of the
non-linear function 𝑓 (·) in (4) is therefore a challenging problem,
taking into account that no prior knowledge about vehicle specific
parameters such as vehicle mass, drag coefficient, tire radius,
gear ratio, and efficiency maps, is given.

In order to predict the instantaneous power, future information
of velocity and longitudinal acceleration are required to feed
the right hand side of model (4). While the question of how
to obtain this future information falls outside the scope of this
paper, vehicle dynamics forecasting methods were extensively
discussed in Fünfgeld et al. (2017). The main approaches are
based on time series models, road data, or stochastic models. A
sensible approach based on road data is described by Ziegler et al.
(2014), in which recent (semi) autonomous vehicles use map
data (road angle, road curvature) and plan a velocity trajectory
for a forthcoming routst e. The planned velocity trajectory is
used together with map data and relation (5) (or its simplified
version (6)) to feed the predictive inputs of model (4).

4. Linear regression and adaptive filtering

We now provide a short overview of some basic concepts of
linear regression and adaptive filtering theory, before introducing
the conceptual design of kernel adaptive filters in the next section.

Given a set of 𝑚 measured inputs 𝒙𝑡 ∈ R𝑛×1 and 𝑚 cor-
responding measured outputs 𝑦𝑡 , with 𝑡 = 1, . . . , 𝑚, linear
regression assumes a linear data model

𝑦𝑡 = 𝒘⊤𝒙𝑡 + 𝑒𝑡 , (7)

in which 𝒘 ∈ R𝑛×1 contains the regression coefficients and 𝑒𝑡 is
the residual for the 𝑡-th data pair {𝒙𝑡 , 𝑦𝑡 }.

Linear regression is concerned with estimating the coeffi-
cients 𝒘 that minimize the residual errors 𝑒𝑡 of (7) according to
a suitable cost function. The most prominent approach consists
in minimizing the least-squares cost, which calculates the sum
of the squared errors

min
𝒘

𝐽 =
1
2

𝑚∑︁
𝑡=1

|𝑦𝑡 − 𝒘⊤𝒙𝑡 |2. (8)

The gradient of 𝐽 with respect to 𝒘 is given by

J = −
𝑚∑︁
𝑡=1

(𝑦𝑡 − 𝒘⊤𝒙𝑡 )𝒙𝑡 = −
𝑚∑︁
𝑡=1

𝑒𝑡𝒙𝑡 . (9)

4.1. Least mean squares
Least mean squares (LMS) is a low-complexity algorithm

that computes the weights (𝒘) that minimize the least squares
cost function (8) (Sayed, 2003, p. 212). Instead of making any
statistical assumptions about the data, LMS uses an instantaneous
approximation of the gradient (9) at instant 𝑡,

J𝑡 ≈ −(𝑦𝑡 − 𝒘⊤𝒙𝑡 )𝒙𝑡 = −𝑒𝑡𝒙𝑡 . (10)

Each time a new data pair {𝒙𝑡 , 𝑦𝑡 } is measured, the LMS algo-
rithm performs the following operations in order to update its
solution 𝒘:

𝑒𝑡 = 𝑦𝑡 − 𝒘⊤
𝑡−1𝒙𝑡 , (11a)
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𝒘𝑡 = 𝒘𝑡−1 + 𝜂𝑒𝑡𝒙𝑡 , (11b)

where 𝜂 represents a learning rate.
Since its invention more than half a century ago, the LMS

algorithm has been the workhorse of adaptive filtering, mainly
due to the following interesting properties:

• Complexity: LMS is a simple algorithm with computa-
tional complexity of O(𝑛) per iteration.

• Adaptive filtering: By adapting its estimate of the optimal
weights 𝒘 at each time step, LMS belongs to the family
of adaptive filtering algorithms. These algorithms are
especially suitable for real-time scenarios such as the
current one, in which the solution must be improved as
new data becomes available.

• Tracking: Though LMS is designed to solve (7), which is
a fixed model, its instantaneous gradient update allows it
to track changes that may occur in the this model.

Under the stationarity assumption, the LMS algorithm con-
verges to the Wiener solution in mean (Sayed, 2003, Chapter
2), but the weight vector 𝒘 shows a variance that converges to
a value that is a function of 𝜂. Therefore, low variances are
only achieved at low adaptation speed. A more sophisticated
approach with faster convergence is found in the the Recursive
Least-Squares (RLS) algorithm.

4.2. Recursive least squares
The RLS algorithm was first introduced by Plackett in 1950

Plackett (1950). In a stationary scenario, it converges to the
Wiener solution in mean and variance, improving also the slow
rate of adaptation of the LMS algorithm. Nevertheless, this gain
in convergence speed comes at the price of a higher complexity,
as we will see below.

A closed-form solution for the least-squares problem (8) can
be obtained by setting its gradient (9) to zero, yielding

𝒘 =

(
𝑚∑︁
𝑡=1

𝒙𝑡𝒙
⊤
𝑡

)−1 𝑚∑︁
𝑡=1

𝒙𝑡 𝑦𝑡 , (12)

given that the matrix
∑𝑚

𝑡=1 𝒙𝑡𝒙
⊤
𝑡 is nonsingular. The recursive

least squares (RLS) algorithm is a well-known recursive estimator
for (12) and gives (contrary to LMS) the optimal solution for 𝒘
under the assumption that 𝑒𝑡 is a sequence of zero-mean white
Gaussian noise. In each iteration, the RLS algorithm performs
the following operations:

𝑒𝑡 = 𝑦𝑡 − 𝒘⊤
𝑡−1𝒙𝑡 , (13a)

𝒈 = 𝑷𝑡−1𝒙𝑡
(
1 + 𝒙⊤𝑡 𝑷𝑡−1𝒙𝑡

)−1
, (13b)

𝒘𝑡 = 𝒘𝑡−1 + 𝒈𝑒, (13c)
𝑷𝑡 =

(
𝑰 − 𝒈𝒙⊤𝑡

)
𝑷𝑡−1, (13d)

where 𝑷 ∈ R𝑛×𝑛 is the covariance matrix, 𝒈 ∈ R𝑛×1 is the gain,
and 𝑰 is the identity matrix, (Sayed, 2003, p. 735).

RLS is an adaptive filtering algorithm, though in its standard
form it is not capable of performing tracking. Several related

algorithms have been proposed to deal with this issue, most
notably RLS with exponential forgetting factor (Ljung, 1999,
p. 365) and extended RLS (Sayed, 2003, Section 12.B), which
is related to the Kalman filter Kalman (1960). In terms of
performance, RLS converges much faster than LMS, though this
gain comes at the expense of a higher computational complexity
O(𝑛2) per iteration.

5. Kernel adaptive filters

A standard procedure to extend the scope of linear filters
to non-linear processing consists in mapping the input data
𝒙 ∈ X to a high-dimensional feature space by means of a
non-linear transformation Φ(·) and then applying the linear
filtering algorithm in that space Broomhead & Lowe (1988). By
operating in a high-dimensional space, more degrees of freedom
are available to formulate a solution for the filtering or regression
problem. Nevertheless, the additional dimensions also increase
the computational load of the algorithm, which may become
excessive.

Kernel methods provide an efficient solution to this problem
by avoiding the explicit mapping of the data (Schölkopf & Smola,
2002, p. 15). Kernel methods exploit a property from the
theory of reproducing kernel Hilbert spaces (RKHS) that allows
to implicitly operate in the high-dimensional feature space by
simply replacing inner products by Mercer kernels in the original
problem formulation.

5.1. Background
A Mercer kernel is any continuous, symmetric and positive

definite function 𝜅 : X × X → R Aronszajn (1950). The most
widely used kernel is the Gaussian or “radial basis function”
kernel,

𝜅(𝒙, 𝒙′) = exp
(
− ∥𝒙 − 𝒙′∥2

2𝜎2

)
, (14)

whose parameter is the kernel width (𝜎). According to Mer-
cer’s theorem, any Mercer kernel 𝜅(𝒙, 𝒙′) induces a mapping
Φ(·) from the input space to a high-dimensional feature space
(F) (which is an inner product space) such that the following
relationship holds Vapnik (1995)

𝜅(𝒙, 𝒙′) = Φ(𝒙)⊤Φ(𝒙′). (15)

In case of the Gaussian kernel, the associated feature space F
is infinitely-dimensional. The property (15), commonly known
as the kernel trick, is the building block of kernel methods. It
implies that by replacing the inner products by kernels in a
linear algorithm, a new algorithm is obtained that is equivalent to
performing the original algorithm in the feature space, without the
need to perform any explicit calculations in this high-dimensional
space.

The output of a linear filtering algorithm in feature space can
be written as

𝑓 (𝒙) = 𝒘⊤
Φ(𝒙), (16)

where 𝒘 contains the coefficients of the filter. In order to avoid
explicitly calculating the involved high-dimensional vectors, one
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Figure 2: A kernel adaptive filter applied to nonlinear system
identification.

can rely on the Representer theorem Schölkopf et al. (2001),
which guarantees that the solution in the feature space, 𝒘, can
be expressed as a linear combination of the 𝑚 transformed data
points,

𝒘 =

𝑚∑︁
𝑡=1

𝛼𝑡Φ(𝒙𝑡 ).

This expression allows to rewrite (16) as

𝑓 (𝒙) =
𝑚∑︁
𝑡=1

𝛼𝑡 𝜅(𝒙𝑡 , 𝒙) = 𝜶⊤𝒌, (17)

in which 𝜶 and 𝒌 are 𝑚-dimensional vectors that hold the
elements 𝛼𝑡 and 𝜅(𝒙𝑡 , 𝒙), respectively. Equation (17) is called
the kernel expansion, and the coefficients 𝛼𝑡 are referred to as
kernel expansion coefficients. A diagram representing a generic
kernel adaptive filter is represented in Fig. 2.

5.2. Kernel least mean squares
The update equations (11) of the LMS algorithm can be

ported directly to the kernel feature space, where they read

𝑒𝑡 = 𝑦𝑡 − 𝒘⊤
𝑡−1Φ(𝒙𝑡 ), (18a)

𝒘𝑡 = 𝒘𝑡−1 + 𝜂𝑒𝑡Φ(𝒙𝑡 ). (18b)

In order to derive a set of update equations for the coefficients 𝜶,
several alternatives have been proposed. The interested reader is
referred to Van Vaerenbergh & Santamarı́a (2014) for an in-depth
discussion. Many of these methods are based on the kernel least
mean squares (KLMS) algorithm (Liu et al., 2011, p. 34), which
performs the following updates:

𝑒𝑡 = 𝑦𝑡 − 𝜶⊤
𝑡−1𝒌𝑡 , (19a)

𝜶𝑡 =

[
𝜶𝑡−1
𝜂𝑒𝑡

]
, (19b)

in which 𝒌𝑡 is a 𝑡 − 1-dimensional vector whose 𝑖-th element
is 𝜅(𝒙𝑖 , 𝒙𝑡 ). In order to calculate 𝒌𝑡 , all previous data 𝒙𝑖 ,
𝑖 = 1, . . . , 𝑡 − 1 need to be stored. The update equations (19)
represent a nonlinear version of LMS that corresponds to linear
filtering in the high-dimensional feature space induced by the
Mercer kernel.

Several interesting observations can be made at this point.
First, the update (19b) implies that the vector of filter coefficients

𝜶𝑡 grows unboundedly over time, and, as mentioned, all data 𝒙𝑖
needs to be stored. Note that this growth stems from the fact that
the kernel expansion (17) relies explicitly on all observed data
𝒙𝑡 . In Section 5.4 we will outline some approaches that allow
to deal with this issue. A second noteworthy observation is that
the computational complexity of KLMS for the 𝑚-th iteration is
O(𝑚), which is linear in terms of the number of “bases” stored.

5.3. Kernel recursive least squares
In a similar fashion, a nonlinear “kernelized” version of

the RLS algorithm can be obtained. The least-squares cost
function (8) is transformed into feature space and extended with
a regularization term to avoid overfitting1,

min
�̃�

𝐽 =
1
2

𝑚∑︁
𝑡=1

|𝑦𝑡 − 𝒘⊤
Φ(𝒙𝑡 ) |2 + 𝜆

2
∥𝒘∥2,

where 𝜆 is a regularization constant. By introducing the kernel
matrix 𝑲 with elements 𝑲𝑖 𝑗 = Φ(𝒙𝑖)⊤Φ(𝒙 𝑗 ) = 𝜅(𝒙𝑖 , 𝒙 𝑗 ), a
matrix-based expression of the cost function is obtained as

min
𝜶

𝐽 =
1
2
∥𝒚 − 𝑲𝜶∥2 + 𝜆

2
𝜶⊤𝑲𝜶. (20)

Equation (20) represents the regularized kernel least-squares
problem, also known as kernel ridge regression (KRR) Shawe-
Taylor & Cristianini (2004). The closed-form solution to this
problem is found by setting its gradient w.r.t. 𝜶 to zero and by
solving for 𝜶,

𝜶 = (𝑲 + 𝜆𝑰)−1 𝒚. (21)
The kernel recursive least squares (KRLS) algorithm Engel

et al. (2004a) is concerned with retrieving the solution (21) in a
recursive manner: Given the solution 𝜶𝑡−1 for a set of 𝑡 − 1 data
pairs {𝒙𝑖 , 𝑦𝑖}, KRLS updates this solution in order to incorporate
a new data pair {𝒙𝑡 , 𝑦𝑡 }. The update equations, which are derived
for instance in (Liu et al., 2011, p. 101), read

𝒌𝑡 = [𝜅(𝒙1, 𝒙𝑡 ), . . . , 𝜅(𝒙𝑡−1, 𝒙𝑡 )]⊤, (22a)
𝑒𝑡 = 𝑦𝑡 − 𝜶⊤

𝑡−1𝒌𝑡 , (22b)
𝒒𝑡 = 𝑲−1

𝑡−1𝒌𝑡 , (22c)
𝑟𝑡 = 𝜅(𝒙𝑡 , 𝒙𝑡 ) + 𝜆 − 𝒒⊤𝑡 𝒌𝑡 , (22d)

𝑲−1
𝑡 =

[
𝑲−1
𝑡−1 0

0⊤ 0

]
+ 1
𝑟𝑡

[
𝒒𝑡
−1

] [
𝒒𝑡
−1

]⊤
, (22e)

𝜶𝑡 =

[
𝜶𝑡−1

0

]
− 𝑒𝑡

𝑟𝑡

[
𝒒𝑡
−1

]
. (22f)

It is immediately observed that the matrices and vectors involved
in the KRLS updates represent growing structures, as was the
case for KLMS. Furthermore, the computational complexity for
the 𝑚-th iteration of KRLS is even higher, O(𝑚2), due to the
growing matrix 𝑲−1

𝑡 in (22e). While the algorithm described in
(22) may be used to solve modestly-sized nonlinear regression
problems in a recursive manner, it is not suitable for continued
operating on long data sequences. In the sequel we will deal
with this issue.

1Interestingly, overfitting is typically not an issue in KLMS algorithms.
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5.4. Practical machine learning with kernel adaptive filters
The KLMS and KRLS algorithms described in the previous

discussion are powerful non-linear adaptive filtering techniques.
However, in practice they present several issues, such as un-
bounded growth, that prevent them from being used. After their
original formulations were proposed, several more sophisticated
algorithms have been designed that extend the basic KLMS and
KRLS algorithms with mechanisms to overcome these different
practical issues. Here, we will discuss these issues and their
solutions.

5.4.1. Fixing the budget
Adaptive filters should be capable of operating during ex-

tended periods of time, processing large amounts of data. Kernel
methods rely on the functional representation (17), which grows
as the amount of processed observations 𝑚 increases. A naı̈ve
implementation of an online kernel adaptive filter will therefore
require growing computational resources during operation, lead-
ing to performance issues once either the available memory is
insufficient to store the training data or once the computations for
one update take more time than the interval between incoming
data Van Vaerenbergh & Santamarı́a (2014). The observations
stored in memory are referred to as the dictionary, and in this
case the dictionary will be growing without limit during online
operation, as illustrated in Fig. 3 (left).

The standard approach to overcome this issue is to construct
an approximate kernel expansion that only includes the most
relevant terms through a process called sparsification. This pro-
cess leads to smaller dictionary sizes, and, accordingly, a lower
computational complexity. Practical kernel adaptive filters start
with an empty dictionary and gradually add more observations.
One way of limiting the dictionary size, and thus the algorithm’s
complexity, is by restricting its growth: an observation is only
added to the dictionary if it fulfills a certain sparsification crite-
rion. The online sparsification procedure process is illustrated
in Fig. 3 (center), and it can be found in the KLMS algorithms
Richard et al. (2009); Chen et al. (2012a) and the original KRLS
algorithm Engel et al. (2004a).

In many occasions it is also necessary to remove older
observations from the dictionary, for instance when the observed
model is changing over time. In this case a pruning action
is required. Furthermore, by carefully controlling the growth
and the pruning it becomes possible to design kernel adaptive
filters whose dictionary size remains fixed, called “fixed-budget”
algorithms. These are of specific interest in practical scenarios,
as they guarantee that their required resources will not surpass a
fixed limit. An example of a fixed-budget dictionary construction
is provided in the last plot of Fig. 3. Several fixed-budget KRLS
algorithms have been proposed, most notably Van Vaerenbergh
et al. (2010, 2012a). Optimal pruning is a more complicate
manner for KLMS algorithms, since these algorithms’ low
complexity makes it harder to determine which observations are
least relevant. Nevertheless, a fixed-budget KLMS algorithm
was recently proposed in Zhao et al. (2013).

5.4.2. Tracking capability
LMS and KLMS algorithms provide tracking capability out-

of-the-box. This is not the case, however, for neither the standard
RLS algorithm nor the original KRLS algorithm Engel et al.
(2004b). As a matter of fact, KRLS is based on the assumption
of a stationary model (7).

In order to endow a KRLS algorithm with tracking capability,
two successful approaches have appeared in the literature. The
first approach uses a sliding-window that prunes all data older
than a certain threshold age Van Vaerenbergh et al. (2006).
The resulting algorithm is called sliding-window KRLS, and
it consists of a small set of update equations that are easy
to implement. Recently, a more sophisticated algorithm was
proposed, called kernel recursive least-squares tracker (KRLS-
T) Van Vaerenbergh et al. (2012a). This algorithm achieves
tracking capability by modifying the underlying data model
into a time-varying probabilistic model using Gaussian process
theory.

5.4.3. Hyperparameter selection for kernel adaptive filters
Kernel adaptive filtering algorithms require to determine

several parameters, such as Gaussian kernel width, amount of
regularization, etc., which are commonly referred to as “hyper-
parameters” to distinguish them from other parameters such as
expansion coefficients.

The optimal values for the hyperparameters are typically
determined before running the online experiment, on a separate
validation data set. The standard way to determine these optimal
values is by performing a grid search using cross-validation.
Obviously, this approach is only valid when only a few values are
considered for each hyperparameter, as the amount of scenarios
to consider grows exponentially with the number of values to
consider. A more sensible approach is described in the literature
on Gaussian processes (GP) Rasmussen & Williams (2006).
In particular, Gaussian processes allow to obtain the optimal
hyperparameters by maximizing the marginal likelihood of the
hyperparameters given the training data data. Thanks to the
equivalence between KRR and GP regression, the values obtained
through this approach are valid for KRR and KAF algorithms
as well. More details can be found in (Rasmussen & Williams,
2006, Chapter 5) and Van Vaerenbergh et al. (2012b).

5.4.4. Kernel adaptive filters used in the experiments
A decade of research on kernel adaptive filtering has produced

several state-of-the-art algorithms. For a detailed overview,
the interested reader is kindly referred to Van Vaerenbergh &
Santamarı́a (2014). The experiments of the next section will focus
on the two algorithms that show the best empirical performance,
one based on KLMS and the other one based on KRLS.

For the family of KLMS algorithms, the best performance is
obtained by the fixed-budget quantized kernel least mean squares
(QKLMS-FB) algorithm Zhao et al. (2013). QKLMS-FB uses
a quantization mechanism based on the coherence criterion for
deciding which data to add to the dictionary, and a measure of
data significance to decide which data to prune.

For the family of KRLS algorithms, the best performance
is obtained by the KRLS-T algorithm Van Vaerenbergh et al.
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Figure 3: Different approaches to online dictionary construction. Each horizontal line marks the presence of a center in the
dictionary. Left: The evergrowing dictionary construction, in which the dictionary contains 𝑛 elements in iteration 𝑛; Center: Online
sparsification, which slows down the dictionary growth; Right: Fixed-budget approach, in which the pruning criterion discards one
element per iteration, displayed with dictionary size 10.

Table 2: Computational complexity of algorithms. 𝑛 denotes
the number of inputs, 𝑚 the samples (which grows over time,
𝑚 → ∞), and 𝑚 the user-defined fixed dictionary size.

Algorithm O(·)
LMS 𝑛

RLS 𝑛2

KLMS 𝑚

KRLS 𝑚2

QKLMS-FB 𝑚

KRLS-T 𝑚2

(2012a), which was devised by constructing standard KRLS
theory from a Bayesian probabilistic point of view. KRLS-T
is a sequential Gaussian-process based algorithm that allows
for variations in the underlying data model. In addition to
predictions, it also provides confidence intervals.

Both selected algorithms combine all of the discussed fa-
vorable properties, i.e. they are nonlinear adaptive filtering
algorithms, capable of tracking time-varying models, and they
operate on a fixed budget per iteration. Table 2 summarizes the
computational complexity of these algorithms w.r.t. their linear
counterparts and the theoretical, evergrowing algorithms KLMS
and KRLS.

6. Experiments

Nine trial runs on public roads were conducted with a pro-
totype electric vehicle, and signals of the velocity, longitudinal
acceleration, electric current and voltage, and brake pressure
were recorded. The vehicle signals were read at 100 Hz on the
rapid prototype control unit ETAS ES-910. All signals were
smoothed by a Savitzky-Golay filter of third order with a span of
50 to remove noise. In practice, there is no need to predict the
power of an electric vehicle at 100 Hz. Accordingly, all signals
were down-sampled to 2 Hz prior model estimation. Additionally,
driving states where the vehicle brakes through mechanical disc
brakes were removed from the training and test data, because
model (4) does not consider brake pressure or other inputs that
depict the mechanical breaking power. The final number of
samples in each trial run is shown in Table 3.

Table 3: Size of the data sets corresponding to the trial runs,
after resampling at 2 Hz.

№ 𝑚

1 2,204
2 1,916
3 1,166
4 1,325
5 1,559
6 1,053
7 2,673
8 2,886
9 2,417

In the first experiment, each record was divided into a training
and a test data set. The latter, which was used for measuring the
performance of the compared algorithms, consisted of the last
(𝜏) samples of the trial run. Here, (𝜏) was fixed at 200 samples
(at 2 Hz frequency). Accordingly, the size of the training data
varies over the trial runs. Figure 4 shows three vehicle states
of the training data from trial run № 1. The electric power
(the measured output of model (4)) is shown as the normalized
quantity (𝑝/max 𝑝) in Figure 4a. Figure 4b and Figure 4c show
the longitudinal acceleration and velocity, respectively. Both
signals build the measured inputs in (4).

6.1. Adaptive filter setup
Two fixed-budget kernel adaptive filters were used to estimate

the non-linear vehicle model (4). Specifically, we selected
KRLS-T Van Vaerenbergh et al. (2012a) and QKLMS-FB Zhao
et al. (2013) given their state-of-the-art performance in online
and adaptive learning tasks. Both algorithms are implemented
in the Kernel adaptive Filtering Toolbox Van Vaerenbergh &
Santamarı́a (2013), which is used to conduct the experiments in
this section and which is maintained by one of the authors of this
paper. Additionally, two benchmark algorithms were applied to
estimate model (4): Firstly, the linear RLS filter from (13) was
included to evaluate the benefit of kernel adaptive filters over
linear filters. Secondly, a neural network that is trained online
was included, motivated by the wide range of machine learning
applications in which neural networks currently achieve excellent
results. The four compared algorithms (KRLS-T, QKLMS-FB,
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Figure 4: Characteristic vehicle states from trial run№ 1. All
signals were smoothed and resampled at 2 Hz.

RLS, and NN) were trained online with the training data of trial
runs№ 1–9. The respective kernel expansion coefficients (𝜶),
filter weights (𝒘), and NN weights were stored and subsequently
used to predict the electric power for the test data.

Both kernel adaptive filters used the Gaussian kernel, defined
in (14). For KRLS-T, the optimal kernel width was estimated
empirically using the hyperparameter optimization technique
described in Section 5.4.3 Van Vaerenbergh et al. (2012b), which
is also available within the Kernel Adaptive Filtering Toolbox.
For QKLMS-FB, a limited grid search with cross-validation was
conducted to select the optimal kernel width.

The specific KRLS-T parameters were: dictionary size
𝑚 = 50, kernel width 𝜎 = 2.5, and regularization parame-
ter 𝜆 = 2 × 10−4. The learning rate of QKLMS-FB was adjusted
to 𝜂 = 0.7, the dictionary size (𝑚) was limited to 500, and
the kernel width was 𝜎 = 1.118. Additionally, QKLMS-FB
requires a quantization threshold, which was adjusted to 0.1
and its significance forgetting factor was set to 𝛽 = 0.95. The
dictionary sizes for KRLS-T and QKLMS-FB were chosen such
that both algorithms obtained similar execution times. RLS was
initialized with 𝑷𝑡−1 = 1 × 104𝑰 and 𝒘𝑡−1 =

[
0 0

]⊤. The
neural network contained a single hidden layer with 100 neurons
and it was trained through backpropagation using stochastic
gradient descent with learning rate 0.02. The weights of the
neural network were initialized using Xavier initialization Glorot
& Bengio (2010).

6.2. Performance measure
The normalized root mean squared error (NRMSE)

NRMSE = 100
(
1 − ∥𝒆∥

∥𝒚 − 𝜇(𝒚)∥

)

gives a meaningful scalar performance index that allows to
compare the prediction quality of KRLS-T, QKLMS-FB, RLS,
and NN. 𝜇(·) denotes the mean and 𝒆 denotes the error vector.
A NRMSE of 100 % indicates that the model explains the data
perfectly. The lower the NRMSE, the poorer the model quality.
Note that in extreme cases NRMSE becomes negative.

The error vectors for the compared algorithms were computed
with the stored kernel expansion coefficients and estimated
weights from the last time step of the training data (𝑡 = 𝑚 − 𝜏).

Specifically, the 𝑖-th element of 𝒆 follows

𝑒𝑡=𝑚−𝜏+𝑖 = 𝑦𝑡=𝑚−𝜏+𝑖 − 𝜶⊤
𝑡=𝑚−𝜏 𝒌𝑡=𝑚−𝜏+𝑖 ,

for KRLS-T and QKLMS-FB, whereas the errors of RLS follow

𝑒𝑡=𝑚−𝜏+𝑖 = 𝑦𝑡=𝑚−𝜏+𝑖 − 𝒘⊤
𝑡=𝑚−𝜏𝒙𝑡=𝑚−𝜏+𝑖 .

6.3. Power prediction results
Figure 5 shows the estimated normalized electric power

(denoted by �̂�/max 𝑦) of KRLS-T, QKLMS-FB, RLS, and NN
together with the measured output of the test data (𝑦), for the
first three trial runs. Most strikingly, RLS shows the poorest
performance in all panels. This result was expected because RLS
is a linear filter, which is not designed to map the non-linear input-
output relation of model (4). The NN performs only slightly
better compared to RLS: While the NN learns a nonlinear model,
its weak performance is due to the fact that convergence in neural
networks is very slow when trained on a single datum at a time. In
practice, neural networks are trained using batches of data in each
iteration to speed up convergence, and they are rarely used for
online machine learning as in the present scenario. Comparing
the two kernel adaptive filters, KRLS-T outperforms QKLMS-
FB in all three trial runs (Figure 5a–Figure 5c). However, the
precision of the predicted electric power of QKLMS-FB improves
in Figure 5c.

A similar observation can be drawn by inspecting the values
of NRMSE, which are represented for all trial runs in Table 4.
The performance of KRLS-T is superior, followed by QKLMS-
FB and NN. Again, RLS gave the poorest results.

Figure 6 shows scatter plots of the measured and predicted
electric power for trial run№ 3. A perfect model would show
markers on a straight diagonal line that crosses the origin. The
result of KRLS-T in Figure 6a shows high precision, whereas
the non-linear shape of the markers of QKLMS-FB in Figure 6b
indicate that some non-linearities of model (4) were not properly
mapped by QKLMS-FB. Again, RLS and NN fail to find a proper
solution for model (4), which is visible in the non-linear and
somewhat random dispersed markers in Figure 6c and Figure 6d.
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Figure 5: Online electric-power prediction on test data recorded
at 2 Hz. The dictionary size of QKLMS-FB and KRLS-T was
adjusted to 500 and 50, respectively.

6.4. Predicted mission energy
Table 5 shows the measured and predicted mission energy (2)

of the test data for all trial runs. Predominantly, RLS gives the
poorest estimate for the predicted mission energy. The results
of NN are not stable: The predicted mission energy of NN
distributes from very poor in trial run№ 6, to good precision in
trial run№ 3, which indicates that NNs are not robust enough
to be applied in practice for the problem herein. Comparing
both kernel adaptive filters, KRLS-T is superior in all trial runs,
closely followed by QKLMS-FB. Since the mission energy is the
integral of the instantaneous power (2), the symmetrical dispersed
modeling error of QKLMS-FB vanishes and therefore the gap in
terms of precision to KRLS-T shrinks. In conclusion, QKLMS-
FB may be preferred over KRLS-T in mission-energy prediction
when the available computational power is very limited.

The algorithm complexity depends on the dictionary size 𝑚
(as shown in Table 2) and can be reduced largely by setting the
dictionary size small enough. In this experiment, the dictionary
size of QKLMS-FB was adjusted to 500. This setting is a
compromise between speed and precision, though, as analyzed
in the sequel.

6.5. Dependence of the dictionary size
The computational complexity of KRLS-T and QKLMS-FB

grows with the dictionary size (𝑚). Hence, the dictionary size

Table 4: Normalized root mean squared error for test data of
each trial run. The first column shows the trial run number,
while columns 2–5 point normalized root mean squared error of
KRLS-T, QKLMS-FB, RLS, and NN.

Normalized root mean squared error in %
№ KRLS-T QKLMS-FB RLS NN

1 93.42 69.49 32.81 45.08
2 89.39 81.23 43.88 33.07
3 95.01 88.15 51.35 71.30
4 94.90 73.98 60.18 81.25
5 92.29 40.00 28.51 35.46
6 89.88 82.35 52.52 65.08
7 92.24 84.06 49.02 68.57
8 88.71 33.36 43.99 47.36
9 94.35 63.93 32.32 41.17
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Figure 6: Scatter plots of electric power prediction from trial
run№ 3. The NRMSE of KRLS-T, QKLMS-FB, and NN were
95 %, 88.2 %, and 71.3 %, respectively. RLS delived the poorest
result with NRMSE = 51.3 %. The dictionary size of KRLS-T
and QKLMS-FB was adjusted to 50 and 500, respectively.
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Table 5: Mission energy for test data of each trial run. The first column shows the trial run number. Column 2 provides the measured
mission energy, and columns 3–6 show the predicted mission energy of KRLS-T, QKLMS-FB, RLS, and NN.

Mission energy (𝐸) in J
№ measured KRLS-T QKLMS-FB RLS NN

1 5.17 · 106 5.17 · 106 5.85 · 106 2.65 · 106 4.35 · 106

2 2.78 · 106 3.02 · 106 2.46 · 106 1.53 · 106 3.30 · 106

3 2.49 · 106 2.43 · 106 2.64 · 106 5.03 · 105 2.58 · 106

4 −3.70 · 105 −3.89 · 105 −2.04 · 105 −7.01 · 105 −4.45 · 105

5 4.60 · 106 4.73 · 106 6.58 · 106 2.80 · 106 3.94 · 106

6 −4.44 · 105 −5.22 · 105 −6.43 · 105 −1.06 · 106 −9.85 · 105

7 2.41 · 106 2.25 · 106 2.28 · 106 3.92 · 105 1.80 · 106

8 3.85 · 106 3.92 · 106 3.40 · 106 1.63 · 106 4.56 · 106

9 4.62 · 106 4.63 · 106 3.25 · 106 2.45 · 106 3.83 · 106

Table 6: Normalized root mean squared error for power predic-
tion with 450 prediction steps of KRLS-T and QKLMS-FB on
different dictionary size (𝑚). The computational complexity of
KRLS-T and QKLMS-FB is O(𝑚2) and O(𝑚), respectively.

KRLS-T QKLMS-FB
𝑚 NRMSE in % 𝑚 NRMSE in %

10 79.04 74.07 200 57.45 61.66
15 90.40 77.87 300 42.60 61.46
20 91.68 87.25 400 77.11 75.24
50 92.49 89.59 500 63.35 76.02
70 92.66 89.55 700 63.35 76.02

100 92.45 89.47 1,000 63.35 76.02
150 92.55 89.53 1,500 63.35 76.02
200 92.53 89.54 2,000 63.35 76.02

№ 1 № 2 № 1 № 2

should be chosen as small as possible. Table 6 lists the NRMSE
for KRLS-T and QKLMS-FB as a function of the dictionary size,
for trial run№ 1 and№ 2. The test data size (𝜏) was fixed at 450
samples in this experiment.

When given a larger dictionary size, and thus a larger
memory, the algorithm’s performance should increase. This
behavior is correctly observed in the results of KRLS-T for
𝑚 = 10, 15, 20 and 50. Note that the performance of KRLS-T
converges for 𝑚 > 50. However, we did not find a parameter
setting for QKLMS-FB that led to the same desirable behavior in
all trial runs. In particular, in trial run№ 1, QKLMS-FB obtains
its best results with a dictionary of 400 elements, and increasing
the dictionary somewhat decreases its performance.

6.6. Large-scale learning experiment
In the final experiment, we analyze the performance of the

described methods on a larger database, which we simulate by
concatenating the data of all nine measured trial runs. We split
the obtained data set in a training set, containing the first 16199
data, and a test set consisting of the last 1000 data. We then
perform online machine learning on the training data set. In
particular, each training step receives one input-output data pair
and performs a single model update. After every 50 training

steps we test the NRMSE performance of each method on the
1000 samples of the test data set.

Figure 7 illustrates the NRMSE learning curves of each of
the algorithms. All methods start with a fairly low NRMSE and
then show a certain convergence. The RLS benchmark method
converges quickly to a stable regime after 3000 training samples:
Nevertheless, this filter yields the poorest results with NRMSE ≈
34 %. The NN shows a slow convergence, fluctuating around
an NRMSE value of 40 % during the first 8000 training steps.
Eventually, the NRMSE of the NN improves to roughly 70 %
and becomes comparable with QKLMS-FB from 12 000 training
samples onwards. However, the precision of NN shows a large
dispersion, demonstrating that the algorithm lacks robustness
in this application. QKLMS-FB converges faster than NN, but
shows the same high fluctuation in NRMSE compared to NN.
During the last third of the experiment, QKLMS-FB maintains
an average precision level of 70 %. The best performance is
obtained by KRLS-T, in terms of fast convergence, high precision,
and most stable results, making it clearly the superior learning
algorithm in this experiment. In particular, KRLS-T converges
to NRMSE ≈ 90 % after 8000 training steps, and it does so in a
robust manner.

7. Conclusions and Discussion

We studied the application of real-time capable machine
learning techniques to the problem of power and mission energy
prediction of an electric vehicle. First, we posed the problem as a
black-box prediction scenario, which allows to operate directly on
vehicle sensor data. Compared to conventional white-box or gray-
box models from the literature, the proposed approach allows us
to formulate the problem as a non-linear mapping of the measured
inputs (velocity and longitudinal acceleration) to the measured
power. Because of this direct non-linear mapping, knowledge of
vehicle-specific parameters (vehicle mass, coefficient of rolling
resistance, gear ratio, etc.) or efficiency maps is not required,
and the costly process of building a drive-train model can be
avoided.

Then, we applied two state-of-the-art machine learning meth-
ods from the class of kernel adaptive filters to this problem. The
prediction accuracy for power and mission energy of both kernel
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Figure 7: Learning curves, presented in terms of NRMSE, for KRLS-T, QKLMS-FB, RLS, and NN in the large-scale learning
experiment. The NRMSE values are plotted after every 50 training steps and the last 1000 samples of the large-scale data served as
the test set.

adaptive filters is superior to the benchmark of a standard linear
filter and a neural network. In particular, the kernel recursive
least-squares tracker algorithm obtains the best performance for
power prediction, whereas the computationally cheaper fixed-
budget quantized kernel least mean squares algorithm is worth
considering in mission energy prediction applications.

The application of kernel adaptive filters in vehicle control
units is novel. In order to apply kernel adaptive filters safely to
control units of vehicles that operate in changing environmental
conditions, many research questions lie open. In the remainder
of this section we briefly point out some of these future research
questions.

The applied fixed-budget kernel adaptive filters (KRLS-T
and QKLMS-FB) are real-time capable. However, numerical
analysis is required to study the behavior of these algorithms in
single precision control units. In the field of Kalman filtering
such studies have been carried out by comparing the standard
Kalman filter implementation (Ljung, 1999, p. 369) and the
numerous variants (square root form, Potter’s algorithm, regular-
ized versions (Simon, 2006, Chapter 6)) that were specifically
designed to apply the Kalman filter in electronic control units.
In the present work, KRLS-T and QKLMS-FB were trained in a
double precision machine.

Furthermore, in order to guarantee safe operation, any algo-
rithm applied in this context should provide a confidence measure
in addition to the estimated output. While KRLS-T already de-
livers such a confidence measure Van Vaerenbergh et al. (2012a),
QKLMS-FB does not and therefore requires further study. In
practice, the confidence measure allows to decide if the adapted
model is reliable enough or if the decision should switch back

to some more traditional method. The latter may occur when
there is a substantial mismatch between the estimated model and
the reality, which could be detected in real-time by employing
changepoint detectors Tartakovsky et al. (2014).

12



References

References

Adepetu, A., & Keshav, S. (2017). The relative importance of price and driving
range on electric vehicle adoption: Los angeles case study. Transportation,
44, 353–373. doi:10.1007/s11116-015-9641-y.

Aronszajn, N. (1950). Theory of reproducing kernels. Transactions of the
American Mathematical Society, 68, 337–404. doi:10.2307/1990404.

Asamer, J., Graser, A., Heilmann, B., & Ruthmair, M. (2016). Sensitivity
analysis for energy demand estimation of electric vehicles. Transportation
Research Part D: Transport and Environment, 46, 182 – –199. doi:10.1016/
j.trd.2016.03.017.

Broomhead, D. S., & Lowe, D. (1988). Multivariable functional interpolation
and adaptive networks. Complex Systems, 2, 321–355.

Carley, S., Krause, R., Lane, B., & Graham, J. (2013). Intent to purchase a
plug-in electric vehicle: A survey of early impressions in large US cites.
Transportation Research Part D: Transport and Environment, 18, 39–45.
doi:10.1016/j.trd.2012.09.007.

Chen, B., Zhao, S., Zhu, P., & Prı́ncipe, J. C. (2012a). Quantized kernel least
mean square algorithm. IEEE Transactions on Neural Networks and Learning
Systems, 23, 22–32.

Chen, Y., Huang, C., Kuo, Y., & Wang, S. (2012b). Artificial neural network for
predictions of vehicle drivable range and period. In 2012 IEEE International
Conference on Vehicular Electronics and Safety (ICVES) (pp. 329–333).
doi:10.1109/ICVES.2012.6294324.

Culver, M. (2015). Norway leads global electric vehicle market, IHS
says. URL: http://press.ihs.com/press-release/automotive/
norway-leads-global-electric-vehicle-market-ihs-says

accessed 2015/09/28.
Cuma, M., & Koroglu, T. (2015). A comprehensive review on estimation

strategies used in hybrid and battery electric vehicles. Renewable and
Sustainable Energy Reviews, 42, 51–531. doi:10.1016/j.rser.2014.10.
047.

De Bruyne, S., Van der Auweraer, H., Diglio, P., & Anthonis, J. (2011).
Online estimation of vehicle inertial parameters for improving chassis control
systems. In Proceedings of the 18th World Congress, The International
Federation of Automatic Control (pp. 1814–1819). volume 18. doi:10.3182/
20110828-6-IT-1002.03379.
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