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Abstract

Studying the effect of global patterns of wind and pressure gradients on

the sea level variation (storm surge) is a key issue in understanding the recent

climate change effect on the dynamical state of the ocean.

The analysis of the spatial and temporal variability of storm surges from

observations is a difficult task to accomplish since observations are not homoge-

neous in time, scarce in space, and moreover, their temporal coverage is limited.

A recent global surge database developed by AVISO (DAC, Dynamic Atmo-

spheric Correction) fulfilled the lack of data in terms of spatial coverage, but

not regarding time extent, since it only includes the last two decades (1992-

2014).

In this work, we use the 20th Century reanalysis V2 (20CR), which spans

the years 1871 to 2010, to statistically reconstruct daily maximum surge levels

at a global scale. A multivariate linear regression model is fitted between daily

mean ERA-interim sea level pressure fields and daily maximum surge levels

from DAC. Following, the statistical model is used to reconstruct daily surges

using mean sea level pressure fields from 20CR. The verification of the statis-

tical model shows good agreements between DAC levels and the reconstructed
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surge levels from the 20CR. The validation of the reconstructed surge with tide

gauges, distributed throughout the domain, shows good accuracy both in terms

of high correlations and small errors. A time series comparison is also depicted

at specific tide gauges for the beginning of the 20th century, showing a high

concordance.

Therefore, this work provides to the scientific community, a daily database of

maximum surge levels; which correspond to an extension of the DAC database,

from 1871 to 2010. This database can be used to improve the knowledge on his-

torical storm surge conditions, allowing the study of their temporal and spatial

variability.

Keywords:

Climate variability, multiple linear regression, statistical modelling, storm

surge, historical reconstruction

1. Introduction

The storm surge is one of the main variables that describe the dynamical2

state of the ocean. It is defined as the sea level variation due to wind stress and

sea level pressure gradients over the sea surface. The storm surge magnitude4

has a large spatial variability and can reach extremely high values associated to

tropical and extra-tropical storms (extreme storm surge events).6

The storm surge is one of the sea level components, and can be extracted

from tide gauge records; but since many of the world areas are ungauged, the8

global coverage is scarce. Besides, areas where instrumental records are avail-

able, normally present short time records and hence only recent analysis can10

be carried out. Nevertheless, there is a global assessment from long centennial

records (Marcos et al., 2015) focus on sea level extremes, although it is limited12

to areas with available tide gauges. One option to overcome these shortcom-

ings is the use of numerical models. They enable us to simulate the magnitude14

of the storm surges at a global scale or in an specific area. In fact, there

is a global surge database, the Dynamic Atmospheric Correction from AVISO16
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(hereinafter DAC database, http://www.aviso.altimetry.fr/), that provides

global records from 1992 and onwards (a description of the numerical configura-18

tion can be found in Carrère and Lyard 2003). Nevertheless, DAC database is

not long enough to address inter-decadal climate variability or likely long-term20

trends. The numerical modelling at a global scale and for a long period of time

requires an extremely high computational effort.22

An alternative to numerical models is the statistical modelling; different

techniques of statistical reconstruction are widely used in climate or ocean vari-24

ables. Statistical downscaling techniques can be classified into: transfer func-

tions, weather-type approaches and stochastic weather generators (Giorgi et al.,26

2001). Regarding marine climate, linear transfer functions (regression models)

have been applied to downscale the significant wave height at global (Wang28

et al., 2012) and at regional scale (Casas-Prat et al., 2014). Also, a weather-

type model has been proposed to downscale multivariate wave climate (Camus30

et al. 2014b, Espejo et al. 2014).

The application of statistical downscaling approaches is usually limited to32

specific locations. Calafat and Gomis (2009) used a reduced space optimal

interpolation analysis to reconstruct the sea level in the Mediterranean Sea.34

For storm surges specifically, Dangendorf et al. (2014) compared, in the North

Sea, the long-term behaviour of surges to that of reanalysis wind fields by means36

of a statistical-empirical formulation (Müller-Navarra and Giese, 1999).

The goal of this study is to perform a global reconstruction of the storm surge38

by means of a statistical model in order to extend the DAC temporal coverage.

For achieving this purpose, we define the statistical relationship between the40

storm surges from DAC database and their drivers (pressure and wind fields

from ERA-interim reanalysis, Dee et al. 2011) using multiple linear regression.42

In this work, although using the term storm surge, we are not reconstructing

specific strong events but to a continuous time series of daily values. Once the44

statistical model is calibrated and verified, we use a global atmospheric database

that starts at the end of the 19th century (20th century reanalysis V2, Compo46

et al. 2011) to reconstruct the storm surge at a global scale and for a long period
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of time (1871-2010).48

The work is structured as follows. Section 2 describes the three global

databases and the tide gauges used in this study. The methodology of the50

statistical model is explained in depth in section 3 and its accuracy is shown in

section 4, where the verification results are depicted. Finally, the global recon-52

struction of the surges and its validation with tide gauges is shown in section 5.

Main conclusions are summarised in section 6.54

2. Databases description

The surge database corresponds to the Dynamic Atmospheric Correction56

(DAC), produced by CLS Space Oceanography Division using the MOG2D

model from Legos and distributed by Aviso, with support from Cnes (http:58

//www.aviso.altimetry.fr/). MOG2D (2 Dimensions Gravity Waves model)

is a finite element, barotropic, non-linear, two-dimensional shallow water hydro-60

dynamic model, derived from Lynch and Gray (1979). The model is forced by

pressure and wind fields from the European Centre for Medium-range Weather62

Forecasts (ECMWF) analysis, with a temporal resolution of 6 hours and includ-

ing shallow water areas and marginal seas. Barotropic sea level outputs span64

from September 1992 to present and are provided on a regular grid of 0.25°x0.25°

every 6 h. The operational DAC database is made of the high frequencies (i.e66

less than 20 days) obtained from MOG2D barotropic model and the low fre-

quencies of the inverse barometer (IB) assuming a static response of the ocean68

to the atmospheric forcing, and neglecting wind effects for low frequency (i.e

more than 20 days). Therefore, a 20 days high pass (respectively low pass)70

filtering is applied to separate high and low frequencies (see Eq. 1).

DAC = MOG2D(T < 20days) + IB(T > 20days) (1)

Regarding the atmospheric forcing, sea level pressure fields (SLP) were se-72

lected from two different global atmospheric databases: ERA-Interim reanalysis
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(Dee et al., 2011) from the ECMWF, which is the DAC forcing field, and the74

twentieth Century Reanalysis V2 (20CR, Compo et al. 2011).

SLP fields from ERA-Interim, consist of 6-hourly atmospheric data at 0.75°76

of spatial resolution and spanning from 1 January 1979 to present. In this work,

only data covering DAC period (1992 - 2014) are selected. These data are used78

to calibrate and verify the statistical model (see Section 3).

SLP fields from the 20CR are available every 6 hours at a spatial resolution80

of 2°, covering the period between 1871 and 2010 (i.e. 140 years). These data

are used for the statistical reconstruction of surge levels (see Section 5).82

Concerning instrumental data, all available tide gauges from the University

of Hawaii Sea Level Center (UHSLC, http://uhslc.soest.hawaii.edu/data/84

download/rq) were downloaded at hourly scale. From the total amount of

643 tide gauges, only those with more than one year of data before 2010 are86

used to validate the reconstructed surge from 20CR. In order to compare both

signals, the tide gauge residuals are obtained by subtracting the astronomical88

tide (computed using t-tide, Pawlowicz et al. 2002) to the hourly values, and

subtracting a 30-day moving average to both, modelled and measured data.90

This leads to a validation of the storm surge reconstruction at 386 tide gauge

locations distributed worldwide.92

3. Statistical modelling methodology

3.1. Predictor and predictand definitions94

The aim of the statistical reconstruction is to estimate surge levels (pre-

dictand) from local atmospheric conditions (predictor) based on a statistical96

relationship. Specifically, our interest consists in finding the statistical rela-

tionship between mean daily atmospheric conditions and maximum daily surge98

levels. Following this purpose, the predictand is defined as the maximum of

the 4 daily DAC values (DAC has a 6-hourly temporal resolution) at each grid100

point. The spatial resolution of the statistical reconstruction is determined by

the 2° resolution of the 20CR. This spatial resolution is considered sufficient102
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to represent the surge variability at a global scale. Therefore, surge levels are

selected from DAC database every 2°.104

As mentioned in Section 2, SLP fields from ERA-interim are used to obtain

the statistical relationship between these atmospheric fields and surge levels.106

Although both, surface wind and pressure fields, are the drivers of the storm

surge, in this work we are only extracting SLP fields from the atmospheric108

reanalysis. This is because in global circulation models, sea wind fields are not

as well reproduced as sea level pressure fields (Wang et al., 2010); but since110

the geostrophic wind speed is proportional to the square pressure gradient, SLP

gradients are calculated, and taken into account in the statistical modelling, to112

also have an estimation of the wind speed.

Although SLP from ERA-interim reanalysis has a horizontal resolution of114

0.75°, SLP fields and the calculated gradients have been re-arranged in a 2°

grid at a daily scale. The final step in the definition of the predictor is the116

establishment of the spatial coverage. Taking each of the predictand grid points,

a local area of 4°x4° enclosing this target point is defined. As a result, the118

predictor is composed of 9 SLP values and 9 SLP gradients (18 components)

centred in the predictand location.120

The same process is carried out for the definition of the predictor from 20CR

SLP fields, with the only difference that in this case, data are already in a 2°122

grid.

Therefore, the predictand consists of daily maximum values of surge levels124

from September 1992 to December 2014 in a 2° global grid; the predictor for

the statistical model configuration consists of daily means of SLP fields and126

square SLP gradients from ERA-interim, covering an area of 4°x4° centred at the

predictand location. Once the statistical model is defined, 20CR daily predictors128

are used to reconstruct surge levels from 1871 to 2010 at each location (10594

locations).130
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3.2. Description of the statistical model

The statistical method chosen to reconstruct surge levels is based on the132

method used in Camus et al. (2014a) to downscale multivariate wave climate.

It comprises a multivariate regression model fitted between daily maximum134

surge level (predictand) and the principal components(PCs) of the mean daily

SLP and gradients (predictor).136

The first step in the methodology consists in performing a principal compo-

nent analysis (PCA) of the predictor to reduce the dimensionality of the problem138

while preserving the maximum variance of the data sample. PCA projects the

original data on a new space, searching for the maximum variance of the sam-140

ple data. The eigenvectors (empirical orthogonal functions, EOFs) of the data

covariance matrix define the vectors of the new space. The transformed com-142

ponents of the original data over the new vectors are the principal components

(PCs). The original predictor, which varies with space and time X(x, t), can be144

expressed as a linear combination of EOFs (accounting for the space variabil-

ity) and PCs (accounting for the time variability). Eq.2 shows that at any given146

time, the predictor can be estimated as the spatial pattern detected (EOF) mul-

tiplied by the corresponding coefficient for that instant (PC), adding all the N148

components (dimensions).

X(x, ti) = EOF1(x)×PC1(ti)+EOF2(x)×PC2(ti)+ ...+EOFN (x)×PCN (ti)

(2)

whereN is the number of dimensions in the data, specifically in this caseN = 18.150

Prior to PCA, SLP and SLP gradients are standardise to avoid attributes

with large values (and larger variances) to dominate the analysis. Then, PCs152

of the predictor have been calculated for the period 1992 - 2014. Following, we

have selected the components that explain the 95% of the variance. The number154

of PCs explaining the 95% of the variance varies spatially between 4 and 12 (not

shown) from the total amount of 18 components. Therefore, although in this156

case the dimension reduction is not highly relevant, PCA is carried out anyway
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so that this methodology could also be applied to wider predictors (i.e higher158

dimensions).

The next step consists of establishing the relationship between the predictor160

PCs that explain the 95% of the variance and the surge levels (predictand). The

multivariate regression model is fitted in a forward procedure: first predictor162

PC is obtained from the best fit (smallest sum of squared errors, SSE) among

each of the components separately (PC(1) in Eq.3). The second predictor PC164

(PC(2) in Eq.3) is chosen from the rest of the PCs so that it gives the best

fit with two predictors, the best predictor selected in the previous model plus166

one of the remaining potential predictors. The cycle continues until a more

complex model does not produce a significant improvement (at the 5% level of168

significance) in the multivariate regression fit. This evaluation is based on the F

statistics that compare the SSE of fitting a simpler-parameter model with that170

of a more complex parameter model (Wang et al., 2010). Therefore, although all

PCs explaining the 95% of the variability could be used in the regression model,172

only those that produce a significant improvement are taken into account.

A leave-one-out-cross-validation process is used to set up the statistical174

model: The regression model is fitted for all years except one, which is used

to validate the surge reconstruction. Then, the regression model is fitted 22176

times (there are 22 complete years of surge levels, 1993-2014). Results of the

model verification are shown in Section 4.178

This methodology allows us to estimate surge levels as a linear combination

of the most important PCs. As can be seen from Eq.3, surge levels at any given180

location (xi) can be estimated from a specific number of PCs, which varies

throughout the domain.182

surge(xi, t) = ai+b1,i×PC(1)(xi, t)+b2,i×PC(2)(xi, t)+ ...+bn,i×PC(n)(xi, t)

(3)

where n is the number of PCs that achieved a statistical improvement of the

results (following F statistics) and selected in a forward procedure from the184

8
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PCs that explained the 95% of the variance. ai, b1,i, ..., bn,i are the coefficients

obtained in the regression model.186

Once the statistical model is defined, SLP and gradients from the 20CR

reanalysis are standardised and projected into the EOFs detected for ERA-188

interim to obtain the PCs for the 20CR predictors. Finally, using the coefficients

and the PCs identified as in Eq.3, daily surge values can be reconstructed for190

the 1871-2010 period.

4. Model verification192

The verification of the statistical model shows the quality of the fittings in

terms of correlation coefficient (Pearson coefficient, ρ), root mean square error194

(RMSE), and the RMSE relative to the maximum surge variability at each

location (RMSErelative). Fig.1 shows the spatial distribution of the fitting196

quality. As can be seen from Fig.1a, correlation coefficients are above 0.65 all

along the domain except for the areas located along the north-atlantic coast198

of South America, the area from the Gulf of Thailand through Indonesia to

North Australia, and along the Siberian and Beaufort Seas. An extended area200

of relative low correlations (around 0.7) is located along tropical areas. The

explanation for this lies in the fact that the ocean dynamics at high latitudes202

have smaller space and time scales. The predictor used in the proposed statis-

tical model describes better the dynamical response of the storm surge in those204

areas in comparison with tropical areas. Besides, the small magnitude of the

storm surge in tropical areas is more difficult to reproduce. Fig.1b shows that206

the RMSE is generally higher in the Northern Hemisphere (maximum values of

∼10 cm), specifically in semi-enclosed areas as the Hudson bay or the North208

Sea, as well as along high latitudes of Russian and Siberian coasts. This is be-

cause the storm surge generation at shallow waters, especially in semi-enclosed210

areas, is highly related to local wind conditions and the local bathymetry. The

effect of the bathymetry is taken into account by the statistical model in the212

predictand term (storm surge), although the non-linear interactions of the storm
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surge with the bathymetry can be partially misrepresented. Therefore, a higher214

resolution predictor should be required to improve the skill of the statistical

model at those areas. Nevertheless, a generalised predictor is used in this study216

due to the global scale of the storm surge reconstruction. Fig.1c displays the

RMSE relative to the maximum surge variability detected at each grid point.218

This reveals areas of maximum relative errors of around 10% along equatorial

regions, not detected in Fig.1b due to the small magnitude of the surge levels220

along the tropical areas (see Fig.4).

A comparison, between the reconstructed surge and DAC, at a few specific222

points is also carried out (red dots in Fig.2). Fig.3 shows the time series compar-

ison and the scatter plots at these 6 locations, contrasting DAC data (red lines)224

with the statistical reconstruction using ERA-interim predictors (blue lines). It

can be seen how the equatorial area (point 4) presents the lowest correlations226

and the highest relative errors, even so, ρ reaches a 0.86 value and the relative

error is around 6%. A general good fitting to the bisector can be seen at all228

grid points. Fig.3 confirms that the poorest agreement is located at equatorial

areas, but although absolute values are not exactly reproduced at grid point 4,230

mean levels are well represented. It is also important to notice that the surge

magnitude at these tropical zones is about one order of magnitude lower than232

at the points located in other areas. Time series at the rest of grid points follow

DAC data properly.234

Last comparison between DAC data and the statistical reconstruction using

ERA-interim predictors is represented in Fig.4. It shows the spatial value of236

the 99.5% percentile obtained from the complete daily surge series. As can be

seen, the spatial pattern is almost identical; main differences are found along238

the North European coastline, where the statistical reconstruction does not

reach the values displayed in the original data. As we mentioned previously,240

the generation of the storm surge at coastal areas is mainly forced by local

winds, for which the resolution of the predictor is not sufficient to resolve local242

features. Maximum surge values are present in these areas, reaching magnitudes

of about 1 m. As already remarked, smallest surges are located around the244

10



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT

Figure 1: Spatial verification of the statistical reconstruction. a) correlation coefficient(ρ). b)

RMSE (cm). c) RMSE relative to the maximum surge variability(%).
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Figure 2: Selected points where a point comparison is carried out. Red grid points are used

to validate the statistical model and to compare with the 1871-2010 reconstruction. Blue grid

points are compared with tide gauges. Black dots show the spatial resolution of 2°.

equatorial area, where 99.5% is even negative due to the fact that these areas

have high mean pressure conditions (permanent anticyclonic conditions). The246

extratropical Southern Ocean (40°S - 60°S) is an area with relatively higher

values, where the 99.5% percentile is above 60 cm. Wind conditions at high248

latitudes of the Southern Hemisphere are the most energetic at a global scale;

the general conditions of low pressures present in this area also contribute to250

maintain high surge levels.
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Figure 3: Surge (m) time series comparison and scatter plots at the 6 grid points defined in

Fig.2. Red line represents DAC data, blue line corresponds to the statistical reconstruction

using ERA-interim predictors. (1): ρ = 0.98 RMSE = 1.7 cm; (2): ρ = 0.93 RMSE = 2.7

cm; (3): ρ = 0.96 RMSE = 1.4 cm; (4): ρ = 0.86 RMSE = 1 cm; (5): ρ = 0.95 RMSE =

3.6 cm; (6): ρ = 0.93 RMSE = 1.2 cm
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Figure 4: Value (m) of the 99.5% percentile for DAC data (top) and for surge reconstruction

using ERA-interim predictors (bottom).

14
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5. Global reconstruction of surges (1871-2010)252

In this section, a global statistical surge reconstruction is performed using

20CR predictors, obtaining maximum daily surge levels for the period 1871-254

2010.

5.1. Comparison during the control period (1992-2010)256

A comparison between DAC data and the reconstructed 20CR surge is car-

ried out for a control period (1992-2010) where data from both sources coincide.258

Fig.5 shows the spatial comparison, same as in Fig.1 but using 20CR predictors

instead of those from ERA-interim. The spatial pattern of both figures is very260

similar for the 3 statistical indicators. Main differences between Fig.1 and Fig.5

are located in the Southern Hemisphere, specifically in the Pacific Ocean close262

to Antarctica, where the correlation coefficient decreases from 0.95 (Fig.1a) to

0.85 (Fig.5a) and the relative error is doubled (even so, barely an 8%). These264

differences with the statistical verification can only be due to the quality of

the 20CR reanalysis. The higher quality of the 20CR upper-air fields over the266

whole Northern Hemisphere and the mid-latitudes of the Southern Hemisphere

has been highlighted when comparing with ERA-40 reanalysis (Compo et al.,268

2011). Fig.6 shows the time series comparison between DAC data (red lines)

and the statistical reconstruction using 20CR predictors (black lines) for the 6270

grid points numbered in Fig.2. Grid points 4 (equatorial area) and 6 (Indian

Ocean) show extreme storm surge events in the reconstruction that are not272

present in the original data. This can also be seen from the scatter plots; for

those points, an overestimation of the reconstructed surge values regarding DAC274

data is noticed. The rest of the points show a good agreement, with correlation

coefficients and errors of about the same magnitude as in Fig.3.276

Comparing SLP data from 20CR and ERA-interim (not shown) we verified

that the aforementioned extreme surges are due to extreme falls in the SLP278

of 20CR reanalysis that are not consistent with the SLP in ERA-interim. A

brief study has shown us that those drops in the SLP correspond to tropical280

15
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cyclones (TC), included in 20CR but not in ERA-interim. In the 20CR, the

estimated minimum central pressure observations for TCs from the International282

Best Track Archive for Climate Stewardship (IBTrACS) are assimilated into

the reanalysis model. This assimilation may justify the more intense minimum284

pressures found in 20CR, when comparing to ERA-Interim.

5.2. 99.5% percentile of daily surge levels286

The value of the 99.5% percentile is calculated for the statistical reconstruc-

tion using 20CR predictors (see Fig.7). It is done for two periods, one which288

corresponds to the control period (1992-2010) and that will allow us to compare

the results with the DAC data and the other one which covers the complete290

20CR period (1871-2010). As can be seen from Fig.7, the 99.5% spatial pattern

for the control period (top panel) is very similar to the one corresponding to292

DAC (top panel in Fig.4). When taking into account the complete period, surge

levels decrease generally throughout the domain. The decrease is obvious in the294

Antarctic surrounding area, where the 99.5% value decreases from around 80

cm to 60 cm. A decrease of 10 cm is found around Canada Arctic coasts. The296

lower magnitude of the storm surge 99.5% percentile, for the period 1871-2010,

is in agreement with positive trends in the extra-tropical cyclone activity in298

the Northern Hemisphere and significantly in the Southern Hemisphere (Wang

et al., 2013). However, long-term trends in northeast Atlantic storminess de-300

rived from 20CR and observations are found to be inconsistent in the first half of

the twentieth century due to inhomogeneities in 20CR, mostly caused by lower302

data assimilation (Krueger et al., 2013). Inconsistencies between storm surge

record and storm surge reconstruction using 20CR are detected only before 1910304

in the North Sea (Dangendorf et al., 2014).

5.3. Validation with tide gauges306

The surge reconstruction from 20CR predictors has also been compared to

measures from tide gauges. The closest grid point to each tide gauge has been308
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Figure 5: Spatial comparison during the control period between DAC levels and the recon-

structed surge using 20CR predictors. a) correlation coefficient(ρ). b) RMSE (cm). c) RMSE

relative to the maximum surge variability(%).
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Figure 6: Surge (m) time series comparison at the 6 grid points defined in Fig.2. Red line

represents DAC data, black line depicts the surge reconstruction using 20CR predictors. (1):

ρ = 0.97 RMSE = 1.8 cm; (2): ρ = 0.92 RMSE = 2.8 cm; (3): ρ = 0.95 RMSE = 1.7 cm;

(4): ρ = 0.71 RMSE = 1.4 cm; (5): ρ = 0.93 RMSE = 4.3 cm; (6): ρ = 0.9 RMSE = 1.4

cm
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Figure 7: 99.5% percentile value (m) of the statistical reconstruction using 20CR for the

period 1992-2010 (top) and for the complete 20CR period 1871-2010 (bottom)
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selected from the reconstructed surge database. Fig. 8 presents the valida-

tion results for all available tide gauges, where the size of each coloured dot310

depends on the length of the tide gauge record; small dots, as for example

Ammassalik in Greenland, correspond to tide gauges with less than 5 years of312

measures; medium size dots, as for instance Reykjavik in Iceland, correspond

to tide gauges with more than 5 but less than 50 years of records; large dots,314

as Lerwick in Scotland, are tide gauges with more than 50 years of measures.

The correlation coefficient depicted in Fig. 8a shows that minimum values are316

above 0.5 except for the tide gauges located in tropical zones. The lowest val-

ues are found in Central America, the north of South America and the Gulf318

of Thailand. Higher correlations are found in extra-tropical areas with values

that are generally above 0.7. RMSE (see Fig. 8b) are low at equatorial areas,320

due to small magnitude of the surge, and up to 15 cm at the south-east coasts

of South America and semi-enclosed areas of the North Sea. Relative errors322

shown in Fig. 8c reach higher values (up to 20 %) in islands mainly spread

through tropical areas, while at the coasts of the Northern Hemisphere, relative324

errors are below 5 %. This spatial pattern follows the previously found during

the verification process, strengthening the fact that the storm surge in tropical326

zones is more difficult to reproduce. It is worth noting that these differences

can also be due to the different dynamics that are gathered in each surge series.328

The reconstructed signal represents the sea level variation due to meteorolog-

ical factors only, while the daily measures from tide gauges also account for330

signals due to oceanographic processes (non-tidal residual). The importance of

the oceanographic processes is spatially variable throughout the global ocean332

(Woodworth and Menéndez, 2015).

A time series comparison is also shown (see Fig.9) for six of the longest334

UHSLC records (blue dots in Fig.2. i: Cuxhaven, ii: Brest, iii: Newlyn, iv:

San Francisco, v: Honolulu, vi: Fort Denison, Sidney), where daily maximum336

of the tide gauges (red line) are compared to the reconstructed daily maximums

from 20CR (black line) for the end of the nineteen century or the beginning of338

the twenty century. Time series from Brest and Newlyn coincide extremely well,
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both in the timing and the magnitude, with a correlation coefficient of 0.89, and340

a RMSE of 6 cm; Cuxhaven, San Francisco and Fort Denison show a slightly

lower agreement (ρ is 0.8, 0.75 and 0.6, respectively. RMSE is about 25, 5 and342

7 cm, respectively); Honolulu shows periods where the concordance is low (ρ is

0.41 and RMSE is 3 cm). Assuming that DAC is of high quality all over the344

domain, this is the expected result since Brest and Newlyn are located in areas

with remarkably high levels of agreement (see Fig.5); Cuxhaven in the North346

Sea and San Francisco, are placed in areas with slightly smaller correlation

coefficients and higher relative errors; Honolulu is located in an area where the348

lower agreements are found. Besides, DAC performances are also better for

coastal tide gauges rather than islands tide gauges (Carrère and Lyard, 2003).350

From the comparison with these six tide gauges, it can be seen that the

reconstructed storm surge database is able to represent the measured surge352

signal, also from periods back at the end of the nineteen century with relatively

high accuracy.354
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Figure 8: Validation of the reconstructed surge with tide gauges. a) correlation coefficient(ρ).

b) RMSE (cm). c) RMSE relative to the maximum surge variability(%).
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Figure 9: Time series comparison of the reconstructed daily maximum surges (black line) with

daily values from tide gauges (red line) at 5 locations (blue dots in Fig.2).
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6. Conclusions

This study shows a novel combination of the use of numerical and statistical356

models, providing a global storm surge database that estimates daily maximum

surge levels from 1871 to 2010, at a spatial resolution of 2°. It has been carried358

out using a statistical model, based on multiple linear regression, that relates

the mean SLP and gradients from ERA-interim reanalysis with daily maximum360

surge levels from DAC database. The model is calibrated and validated, and

then used to reconstruct daily maximum surge levels, taking the atmospheric362

SLP fields from the 20CR as predictors.

The verification of the model showed an extremely high performance all364

over the world, with minimum agreements (maximum RMSErelative of 10%

and minimum ρ of 0.65) around equatorial zones and semi-enclosed areas. Two366

different reasons explain these lower performance areas. In the case of semi-

enclosed areas, a finer predictor resolution would be needed to capture the368

variability of the atmospheric structures and hence to properly reproduce the

surge; in equatorial areas, the small surge magnitude and also the large temporal370

and spatial scales of the ocean dynamics make more difficult for the statistical

model to accurately reproduce the surge.372

The comparison between the 20CR reconstructed surge and the original

data for the control period, shows a decrease in the agreement at the Southern374

Hemisphere, specially around the Antarctic area. This is explained in terms

of the lower quality of the 20 Century Reanalysis in the Southern Hemisphere376

(Compo et al., 2011). Around tropical zones, we find extreme data in the

reconstruction using 20CR, that correspond to tropical cyclones and that are not378

present in the DAC database. This is due to the fact that the 20CR assimilates

information about tropical cyclone tracks that are not gathered in the ERA-380

interim reanalysis, since the detected minimum pressures are more noticeable

in 20CR than in ERA-interim.382

The validation with a large number of tide gauges has shown the variable

spatial quality of the reconstructed surge, and the time series comparison with384
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specific tide gauges has also proven the ability of the model to reproduce the

surge signal far from the control period. Nevertheless, the extreme values are386

often underestimated. This because, although not shown, the comparison of

the tide gauge residuals with DAC, gives us a very similar picture to the one388

presented in Fig.8, meaning that the selected predictand database does not

reproduce maximum values accurately.390

It is important to note, that at high latitudes there is a variable ice coverage

that would eliminate the surge signal, but since DAC database provides sea level392

data throughout all the domain, the statistical model presented here also finds

the relationship between the atmospheric forcing and the oceanic response at394

those areas.

All in all, we have proved here the good ability of the statistical model to396

reproduce daily maximum surges. The global obtained database provides daily

surge values for 140 years, and can be freely used by the scientific community398

to study, for instance, the long term-variability (decadal variations) during the

20th Century, similarly to what it is done by Marcos et al. 2015 for tide gauge400

extremes. An interesting application would also be the use of these data as hy-

drodynamic boundary conditions for numerical downscaling studies. An added402

value of this method is not only the database but also the tailor-made pre-

dictors for each specific location worldwide; meaning that this study provides404

daily sea level pressure-induced predictors that can be used as covariates in

non-stationary or time-dependent models (Méndez et al. 2007; Menéndez and406

Woodworth 2010; Serafin and Ruggiero 2014), or that can also be used to set the

statistical model using surge results from regional models that would estimate408

maximum values with more accuracy.

Future work regarding the improvement of the predictor’s resolution will be410

carried out at specific areas to show how this affects the predicted surge. This

methodology could also be applied to regional climate projections of surge levels412

for different climate change scenarios.
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Highlights 

· Novel combination of numerical and statistical modelling to reconstruct storm 

surges. 

· Global reconstruction of storm surges for 140 years from 20
th

 Century Reanlaysis 

(1871-2010). 

· Global validation of the reconstructed storm surge with the non tidal residual from 

tide gauges. 




