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13 Abstract
14
15 Despite the potential applicability of seasonal forecasting for decision making in construction, 
16 maintenance and operations of coastal and offshore infrastructures, tailored climate services have 
17 yet to be developed in the marine sector. In this work, we explore the potential of a state-of-the-
18 art seasonal forecast systems to predict wave conditions, particularly significant wave height. 
19 Since this information is not directly provided by models, a statistical downscaling method is 
20 applied to infer significant wave height based on model outputs such as sea level pressure, which 
21 drive waves over large wave generation areas beyond the target location over time. This method 
22 may be beneficial for seasonal forecasting since skill from wide generation areas can be 
23 propagated to wave conditions in (distant and smaller) target regions. We consider seasonal 
24 predictions with a one-month lead time of the CFSv2 hindcast in two regions: the Western 
25 Pacific around Indonesia during the June-July-August (JJA) season and the North Atlantic Ocean 
26 during the January-February-March (JFM) season. In the former case, skillful predictions are 
27 found, which are higher during decay years after ENSO warm phases when a negative anomaly 
28 of the significant wave height is expected. In contrast, statistical downscaling in the North 
29 Atlantic Ocean cannot add value to the signal given by the predictor, which is also very weak.
30

31 1 Introduction
32 Seasonal forecasting has great potential for use in a wide range of planning and maintenance 
33 activities that are strongly dependent on seasonal to interannual climate variations. Global 
34 predictions at this time scale are routinely produced by only a few centers around the world using 
35 coupled ocean-atmosphere models, due to both the specialized knowledge and the computational 
36 resources required. Although seasonal predictability over most extratropical regions is still 
37 limited (Doblas-Reyes et al., 2013), more skillful predictions are expected in the near future due 
38 to the recent advances in new potential predictability sources (Dunstone et al., 2016, Clark et al., 
39 2017). The recent adoption of climate services (Hewitt et al., 2013, Bruno Soares et al., 2018) 
40 has boosted the development of tailored products for decision making in different sectors (see, 
41 e.g., the COPERNICUS Sectoral Information System over Europe, 
42 https://climate.copernicus.eu/sectoral-information-system). Sectoral applications of seasonal 
43 forecasting are now being established in several sectors, such as agriculture, energy and water 
44 management (Bruno Soares et al., 2018). Other recently discovered applications are emerging, 
45 including early-warning systems for heat wave-related mortality (Lowe et al., 2016) and fire 
46 danger (Bedia et al., 2018). However, climate services have yet to be developed in other areas, 
47 such as the marine sector, which has several potential applications based on seasonal wave 
48 predictions (significant wave height and others) in planning for the construction, maintenance 
49 and operations of coastal (e.g., ports) and offshore (e.g., wind farms) infrastructures.

50 Two recent studies investigated the skills of global models in predicting significant wave height, 
51 and these studies focused on tropical regions (West Pacific and Indian Oceans) where moderate-
52 to-high skill is expected (Lopez and Kirtman, 2016 and Shukla and Kinter, 2016). These studies 
53 showed that El Niño-Southern Oscillation (ENSO) has a nonlinear influence on a smaller than 
54 normal wave height during summers after the ENSO warm phase. This wave height variability is 
55 due to a reduced atmospheric synoptic activity associated with a strengthening of the West 
56 Pacific subtropical high, which is also related to an ENSO decay (Yun et al., 2015).  One source 
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57 of seasonal forecasts skill in the tropics is the finding that ENSO teleconnections are generally 
58 robust to internal atmospheric variability in this region (Brands, 2017). The ENSO also 
59 dominates the wind variabilities in the equatorial region and swell wave variabilities in the 
60 Southern Hemisphere of the Pacific Ocean (Stopa and Cheung, 2014).

61 In the North Atlantic region, the wintertime mean wind and wave conditions are largely driven 
62 by atmospheric circulation patterns such as the North Atlantic Oscillation (NAO) and the East 
63 Atlantic (EA) and Scandinavian (SCAND) patterns (Trigo et al., 2008). The moderate skill of 
64 global models in predicting these large-scale patterns has motivated the development of 
65 alternative empirical techniques, which rely on the lagged relationships between slowly varying 
66 components of the climate system and the predictand of interest. Colman et al. (2011) predicted 
67 winter ocean wave heights for the preceding month of May in the North Sea based on North 
68 Atlantic Sea surface temperatures (SSTs). As an alternative to this classic predictor, the October 
69 Eurasian snow cover increase was recently found to highly correlate with the DJF mean Arctic 
70 Oscillation (AO) (Cohen and Jones 2011). Based on this hypothesis, Brands (2014) proposed a 
71 statistical technique for forecasting the DJF mean wind and wave conditions in the North 
72 Atlantic based on the Eurasian snow cover increase in October. Castelle et al. (2017) recently 
73 defined a new climate index called the Western Europe Pressure Anomaly (WEPA) based on the 
74 sea level pressure gradient between the Valentia (Ireland) and Santa Cruz de Tenerife (Canary 
75 Islands) stations, and the WEPA explains the greater winter wave height variability along the 
76 Atlantic coast of Europe better than other leading atmospheric modes.

77 The potential value added by using dynamical and statistical downscaling methods to improve 
78 the skill of global forecasts over particular regions of interest was recently explored in a number 
79 of intercomparison studies. Manzanas et al. (2018a) assessed the value added by performing 
80 dynamic and statistical downscaling for seasonal temperature predictions in Europe. Nikulin et 
81 al. (2018) performed a similar study for East African precipitation. The added value of dynamic 
82 downscaling was shown to be limited, whereas statistical downscaling methods (building on the 
83 link between large-scale atmospheric predictors and the local predictand of interest) could yield 
84 significant skill improvements in those cases where the large-scale variables used as predictors 
85 are better predicted by the global model than the local variable of interest (see Manzanas et al. 
86 2018b). These methods are also suitable for predicting variables that are not directly provided by 
87 the model but that can be statistically connected to some model variables.

88 The potential predictability of the wave climate is largely linked to the predictability of the wind 
89 or sea level pressure fields, which is a common predictor used in statistical downscaling 
90 approaches (Wang et al., 2014). On the other hand, the global wave field is found to be 
91 dominated by swell, even along extratropical storm areas, where the relative weight of the wind-
92 sea part of the wave spectra is highest (Semedo et al., 2011). Swells are generated remotely and 
93 are not directly coupled to the local wind field. Therefore, local target waves are strongly 
94 connected to the large-scale predictors of global model simulations. In principle, statistical 
95 downscaling methods could take advantage of atmospheric teleconnections by extending the 
96 predictor region well beyond the target region (Manzanas et al., 2018b). Therefore, there is the 
97 potential to improve the wave seasonal forecast skill as a result of aggregating predictability of 
98 distant wave generation areas. In this paper, we explore this possibility by adapting a statistical 
99 downscaling method for waves recently introduced by Camus et al. (2017) and by assessing the 

100 method’s added value for seasonal forecasting using the retrospective seasonal forecasts 
101 provided by the publicly available CFSv2 seasonal hindcast (Saha et al., 2011). We focus on two 
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102 regions: 1) the Western Pacific around Indonesia during the June-August (JJA) season because 
103 of the wave climate forecast skill associated with the El Niño-Southern Oscillation (ENSO) 
104 variability, which was previously analyzed in Lopez and Kirtman (2016) and Shukla and Kinter 
105 (2016), and 2) the North Atlantic Ocean during the January-March (JFM) season, which is the 
106 period with the highest interannual variability mainly associated with NAO pattern (Woolf and 
107 Challenor, 2002). The experiments are limited to the predictions corresponding to lead month 1 
108 (May/December initializations) for the JJA/JFM season in the Western Pacific and North 
109 Atlantic.

110 This paper is organized as follows. In Section 2, the data used for both the predictand and 
111 predictors and the wave climate characterization of the two regions being studied are introduced. 
112 The statistical downscaling methodology applied in this study and the validation of the statistical 
113 model are described in Section 3. The forecast quality verification is presented in Section 4. 
114 Finally, the relevant conclusions of this study are summarized in Section 5.

115 2 Data
116 Historical predictand (waves) and predictor (sea level pressure) information is required to 
117 calibrate the (perfect prog) statistical downscaling model. In addition, a retrospective forecast 
118 dataset is used to verify the performance of the seasonal forecasts. The historical wave database 
119 is also used to assess the forecast quality of the downscaled wave heights. Historical information 
120 from the El Niño and NAO indices is also used to analyze the connection of these indices to the 
121 summer or winter wave conditions in the Western Pacific and North Atlantic, respectively.
122

123 2.1 Historical data

124 2.1.1 Historical Wave Data

125 The wave hindcast GOW2 was developed by Perez et al. (2017) and provides historical wave 
126 data (i.e., significant wave height, Hs, peak wave period, Tp, and mean wave direction, θ) with an 
127 hourly resolution and spatial resolutions of 0.5° at the global scale and 0.25° along the 
128 worldwide continental shelf coast from 1979 to present. This hindcast uses the wave model 
129 WaveWatch III (version 4.18, Tolman, 2014) with the parameterization TEST451 (Ardhuin et 
130 al., 2010) in a multigrid configuration, which is driven by the wind and ice coverage fields 
131 interpolated from historical CFSR and CFSv2 data, respectively (Saha et al., 2014).

132 Figure 1 shows the mean and 95th percentiles of the JJA Hs in the Western Pacific (upper panels) 
133 and the JFM Hs in the North Atlantic (lower panels). In the Western Pacific, differences in the 
134 spatial patterns of various statistics (mean, and 95th and 99th percentiles) reflect the differences in 
135 wave generation processes. Most extreme events are concentrated around the Philippine Sea, 
136 which matches the high percentile plots obtained by Stopa et al. (2012) and Timmermans et al. 
137 (2017) and the seasonal distribution of the 20-year return level quantile (Izaguirre et al., 2011). 
138 Mean conditions reflect only the wave generation due to local winds (Indonesia) or distant 
139 extratropical storms (eastern Australia and eastern Asia), with the highest mean wave height of 
140 approximately 2.0 m in eastern Australia and 1.6 m in the Northwest Pacific Ocean. The extreme 
141 wave conditions concentrated in the Philippine Sea area can be explained by the larger frequency 
142 and intensity of tropical cyclones (TCs) in this region, reaching values of approximately 4.0 m 
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143 and 6.0-7.0 m for the 95th and 99th percentiles (not shown), respectively. The tracks of the 
144 extratropical storms in the North Atlantic determined the spatial patterns of the waves. The 
145 patterns of the two wave statistics (mean and 95th percentile, 99th percentile is not shown) are 
146 similar in the North Atlantic (see also Stopa et al., 2012), with the highest waves at 
147 approximately 40°N and 65°N and values reaching 5.0 and 9.0 m for the mean and 95th 
148 percentile conditions, respectively (11.0 m for the 99th percentile).

149

150

a1) a2)

b1) b2)

151  Figure 1. JJA Hs (m) in the Western Pacific (a) and JFM Hs in the North Atlantic (b): 1) Mean; 
152 2) 95th percentile as computed from the GOW2 dataset over the 1979-2016 period.

153

154 2.1.2 Historical Atmospheric Data

155 Historical sea level pressure (SLP) is obtained from the Climate Forecast System Reanalysis 
156 (CFSR and CFSRv2, Saha et al., 2014), which is the reanalysis corresponding to the seasonal 
157 forecasting systems that are considered in this study (see Sec. 2.2). The temporal coverage spans 
158 from 1979 to present with an hourly temporal resolution and 0.5° spatial resolution.

159

160
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161 2.1.3 Climate Indices

162 The Oceanic Niño Index (ONI), defined as the 3-month running mean of ERSST.v5 SST 
163 anomalies in the Niño 3.4 region (5°N-5°S, 120°-170°W), which is centered on 30-year base 
164 periods that are updated every 5 years (Huang et al. 2017), is used as a measure of the ENSO in 
165 this work. The Climate Prediction Center (CPC), part of the National Ocean and Atmospheric 
166 Administration of the United States (NOAA), has adopted a new updating strategy for the base 
167 period to define El Niño and La Niña episodes and remove warming trends in the Niño-3.4 
168 region 
169 (https://origin.cpc.ncep.noaa.gov/products/analysis_monitoring/ensostuff/ONI_change.shtml). 
170 Warm (El Niño) and cold (La Niña) periods are identified based on a threshold of +/- 0.5°C for 
171 the ONI and when the threshold is met for a minimum of 5 consecutive overlapping seasons. As 
172 a result, El Niño events for the 1982-2010 period are 1982, 1986, 1987, 1991, 1994, 1997, 2002, 
173 2006 and 2009. The ENSO usually begins to increase in spring, peaks during boreal winter and 
174 decreases afterward, becoming much weaker in the following summer. For this reason, the NDF 
175 (November-December-January) ONI is used to analyze the summer wave climate variability in 
176 the Western Pacific. The correlation of the wave climate in JJA in the Western Pacific with the 
177 NDJ ONI for the 1979-2016 period is shown in the upper panels of Figure 2. The spatial patterns 
178 of the correlation with the wave statistics parameters (mean and 95th and 99th percentiles; only 
179 the first two are shown) are quite similar. A high positive correlation is found in nearly the whole 
180 area, while a significant negative correlation is found around New Guinea.

181 The North Atlantic Oscillation (NAO) is traditionally defined as the normalized pressure 
182 difference between two stations: one is in the Azores and the other is in Iceland. An extended 
183 version has been used in this study based on one station in the SW part of the Iberian Peninsula 
184 (Hurrell, 1995), Gibraltar, and the other station is in SW Iceland (Jones et al., 1997), which are 
185 derived for the winter half of the year and calculated by the Climatic Research Unit (CRU) of the 
186 University of East Anglia.The correlation between the JFM Hs and NAO Index is shown in the 
187 lower panels of Figure 2. A positive correlation at the highest latitudes and a negative correlation 
188 at the lowest latitudes can be observed, which is consistent with prior studies (Dodet et al., 2010, 
189 Bromirski and Cayan, 2015). Note than the correlation in some grid nodes over the Gulf of Saint 
190 Lawrence and the western part of Labrador Sea is not represented because the ocean is 
191 sometimes frozen during winter. The developed downscaling technique is not suitable for areas 
192 with sea ice cover as the predictor definition only considers the sea level pressure fields and none 
193 information about ice is introduced. Moreover, seasonal sea ice cover predictions are not 
194 available from the CFSv2 retrospective database. 

195

https://origin.cpc.ncep.noaa.gov/products/analysis_monitoring/ensostuff/ONI_change.shtml
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196

a1) a2)

b1) b2)

197

198 Figure 2. Correlation between the Western Pacific JJA Hs and NDJ ONI: a1) Mean and a2) 95th 
199 percentile of the JJA Hs. Correlation between the North Atlantic JFM Hs and NAO Index: b1) 
200 Mean and b2) 95th percentile of JFM Hs. Stippling represents areas where the correlation is 
201 statistically significant at 5% level.

202

203 2.2 Seasonal forecast data (hindcast)

204 The NCEP CFSv2 seasonal forecasting system is used in this study to evaluate wave climate 
205 predictability at the seasonal scale. The 28‐year (1982-2009) ensemble retrospective forecast, 
206 known as the qua, dataset from CFSv2 with 24 members is provided by NCEP (Saha et al., 
207 2011). The CFSv2 used in the reforecast consists of the NCEP Global Forecast System at T126 
208 (∼0.937° resolution), the Geophysical Fluid Dynamics Laboratory Modular Ocean Model 
209 version 4.0 at 0.25-0.5° grid spacing coupled with a two‐layer sea ice model, and the four‐layer 
210 NOAH land surface model.

211 The NCEP-CFSv2 forecast database is consistent with the reanalysis atmospheric database 
212 (NCEP Global Forecast System) used to calibrate the statistical downscaling model. This forcing 
213 is used to generate the GOW2 database and is publicly available.
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214 This information is retrieved from the ECOMS User Data Gateway (ECOMS-UDG), which is 
215 developed by the Meteorology Group of the Universidad de Cantabria (Cofiño et al., 2018), in 
216 the framework of the European Climate Observations, Modelling and Services initiative 
217 (ECOMS) projects. ECOMS coordinates the activities of three on-going European projects 
218 (EUPORIAS, SPECS and NACLIM), with a focus on seasonal to decadal predictions. The 
219 ECOMS-UDG facilitates harmonized multimodel seasonal forecast data. This information can be 
220 obtained directly from the data providers, but this activity is error-prone and time-consuming 
221 because the resulting formats, temporal aggregations and vocabularies may not be homogeneous 
222 across datasets.

223 Historical reanalysis and retrospective CFSR SLP data are converted to a common 2.0ºx2.0º 
224 latitude-longitude grid. Daily predictor fields are standardized to avoid biased results due to 
225 differences in climate model climatology and variability. In the case of GCMs, standardization is 
226 applied using the simulated seasonal climatological mean and seasonal standard deviation of the 
227 retrospective seasonal forecast database for the historical period covering 1982-2009.

228 3. Seasonal Forecast Downscaling Methodology

229 3.1. Statistical downscaling approach

230 This study was built on the statistical downscaling (SD) method developed by Camus et al. 
231 (2017) based on weather types (WTs) under the so-called perfect prog approach, adapting the 
232 method to the particularities of seasonal forecasting. This downscaling approach relies on a 
233 relationship established between observed large-scale predictors and observed local-scale 
234 predictands. The predictor defined by the daily sea level pressure (SLP) fields from the 
235 reanalysis CFSR atmospheric database over the local wave (predictand) generation area is 
236 classified into a reduced number of WTs (100 in this work). The GOW2 dataset is used as 
237 predictand data. A regression guided classification is applied to a combination of the weighted 
238 predictor and predictand estimations from a regression model, which links the SLP fields with 
239 the local marine climate. First, the statistical relationship is established by identifying hourly sea 
240 state parameters at each location of interest in each daily predictor field within the corresponding 
241 cluster. Then, the empirical probability distribution of each sea state parameter (e.g., significant 
242 wave height) associated with each WT is calculated. Finally, the complete distribution of this 
243 variable for a particular time period can be estimated as the probability sum of each WT during 
244 that period multiplied by the corresponding empirical distribution. As a result, different statistics 
245 (e.g., mean, 95th percentile) can be derived from the estimated distribution.

246 Daily SLP and daily squared SLP gradients (SLPG) are usually taken as atmospheric variables to 
247 define the wave predictor, since SLPG fields are proven to improve the statistical relationship 
248 with waves (Wang et al., 2014). A performance verification of the retrospective SLP and SLPG 
249 seasonal forecasts was carried out (not shown) before establishing the final version of the 
250 predictor for the statistical downscaling model at the seasonal scale. A low predictability of 
251 SLPG is found, which could deteriorate the forecast quality of the seasonal wave climate. 
252 Therefore, this variable is eliminated as a predictor from the statistical downscaling model.

253 The predictor spatial domain for each area of study is based on the wave generation patterns 
254 obtained in Camus et al. (2017). The domain for the Western Pacific Ocean covers a great part of 
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255 the Pacific Ocean from 120°E to 150°W and from 60°N to 54°S. The predictor domain for the 
256 North Atlantic extends from 64°W to 16°E and from 0°N to 76°N. The predictor is defined as the 
257 leading principal components (PCs), which explain 95% of the entire predictor variance of the 
258 m-daily mean SLP, with m=7 days for the Western Pacific and m=3 days for the North Atlantic. 
259 These values were obtained on the same day and the previous m-1 days as the SLP average 
260 throughout the historical time period. PCs are calculated for the seasonal forecasts by projecting 
261 the corresponding standardized fields onto the empirical orthogonal functions obtained from the 
262 reanalysis, which are used for the calibration of the method.

263 Following Manzanas (2016), who obtained a more skillful statistical downscaling model for 
264 seasonal precipitation forecasting using season-specific data in the model calibration, a particular 
265 regression-guided classification is performed at every wave GOW2 grid node at a 1.0⁰ 
266 resolution, considering the multivariate wave conditions (Hs, Tp, θ) independently in each season. 
267 One-hundred SLP field WTs are obtained for every GOW2 grid node. The seasonal empirical 
268 distribution of hourly significant wave height associated with each WT at every grid node of the 
269 GOW2 wave database is calculated.

270 The most similar semiguided WT is identified for each m-daily mean SLP field from the hindcast 
271 database CFSRv2-NCEP to calculate the probability of WTs and infer the seasonal empirical 
272 distribution of the significant wave height at each grid node during the target season. The 
273 seasonal predictions of the mean and the 95th and 99th percentiles of the significant wave height 
274 are obtained to assess the seasonal forecast quality.

275

276 3.2 Statistical model cross-validation

277 The SD model performance must be evaluated to obtain an upper bound for the model’s 
278 generalization capability when applied to new predictor data (large-scale variables from GCM). 
279 The most popular approach used in climate applications to validate an SD model for the 
280 historical period independent of the training period involves data splitting. In particular, in this 
281 work, a k-fold cross-validation, which uses multiple calibration/validation period combinations 
282 to produce a more rigorous validation (see, e.g., Kohavi, 1995 for a general discussion or 
283 Gutiérrez et al. 2013 for an application in statistical downscaling), was performed considering 
284 k=5 to obtain a calibration/test period covering 80%/20% of the full period for each fold 
285 (Casanueva, 2016). As a result, five independent and stratified folds (7/8 years each) covering 
286 the full period have been defined by selecting 1 per 5 years, i.e., the first fold would be formed in 
287 years 1979, 1984, 1989, 1994, 1998, 2004, 2009 and 2014. Using this option, the same 
288 distributions/climatologies are sampled for all folds, and each fold covers a more representative 
289 range of years (Gutiérrez et al., 2013).

290 The estimates from the statistical downscaling model are compared against the parameters 
291 obtained from the observations (GOW wave data) at a monthly scale during the JJA season in the 
292 Western Pacific and during the JFM season in the North Atlantic. The monthly mean and 95th 
293 and 99th percentiles of Hs are validated using the corresponding sea-state parameter distribution 
294 associated with each WT during the calibration period of each k=5 test subset. The Pearson 
295 correlation coefficient, normalized root mean square error (NRMSE), which is defined as the 
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296 root mean square error divided by the mean observed value (expressed in %), and bias are 
297 computed for each Hs parameter using the entire 1979-2015 period by joining the test subsets 
298 into a single prediction.

299 3.2.1 Western Pacific

300 The validation scores are shown in Figure 3 for the mean and 95th percentile of the significant 
301 wave height (mean in the left column, 95th percentile in the right column). The skill of the SD 
302 model is considerably high but worsens for higher Hs percentiles. The correlation coefficients are 
303 approximately 0.8-0.95 for the mean Hs in nearly the whole area, except in the most sheltered 
304 part, such as the coast of the China Sea and north of New Guinea, where the value decreases to 
305 0.5. The correlation decreases for extreme wave heights, and there are restricted areas with 
306 coefficients of approximately 0.8. Regarding the NRMSE, the values increase from 
307 approximately 10% for the mean Hs to 20% for the 95th percentile and between 30% and 50% 
308 for the 99th percentile (not shown) in the area with the highest extreme waves generated by TCs. 
309 The bias (not shown) is nearly negligible for the mean significant wave height and small for the 
310 extreme percentiles.

311

%

312 Figure 3. Validation of the SD model during the JJA season for the monthly mean (left column) 
313 and 95th percentile (right column) of Hs in the Western Pacific Ocean by means of the correlation 
314 coefficient (upper row) and normalized root mean square error (lower row). Stippling represents 
315 areas where the correlation is statistically significant at 5% level.
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316

317 3.2.2 North Atlantic

318 Figure 4 shows the correlation coefficient and NRMSE, which are computed for the two 
319 statistics of JFM Hs (in columns) for the entire 1979-2015 period using a 5-fold cross-validation. 
320 The skill of the SD model is considerably high for the mean conditions but worsens as the Hs 
321 percentile increases. The correlation coefficients are approximately 0.9-0.95 for nearly the entire 
322 area (decreasing to values of approximately 0.5 in the western part of the Mediterranean Sea and 
323 Caribbean Sea). Regarding the NRMSE, the values increase from approximately 5% for the 
324 mean Hs to 10% for the 99th percentile. The bias (not shown) does not suggest a clear trend to 
325 over or underestimate Hs.

326

%

327 Figure 4. Validation of the SD model in the JFM season for the monthly mean (left column) and 
328 95th percentile (right column) of Hs in the North Atlantic by means of the correlation coefficient 
329 (upper panel) and normalized root square mean error (lower panel). Stippling represents areas 
330 where the correlation is statistically significant at 5% level.

331

332 4. Seasonal Forecast quality

333 4.1. Verification metrics

334 An assessment of quality based on past performance is required to give value to the prediction 
335 itself (Doblas-Reyes et al., 2013). A range of additional verification measures are applied to 
336 provide a complete description of different quality aspects relevant to users (Jolliffe and 
337 Stephenson, 2003). In this work, the correlation coefficient and the bias are used for a 
338 deterministic verification (ensemble mean). The Ranked Probability Score (RPS), the Ranked 
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339 Probability Skill Score (RPSS) and the Relative Operating Characteristic Skill Score (ROCSS) 
340 are used for probabilistic verification.

341 The bias is a metric of the mean forecast deviation from the observations. On the other hand, the 
342 correlation coefficient measures the temporal correspondence between the forecast and 
343 observational reference, which is insensitive to linear transformations of the data and thus 
344 complementary to the bias. In this study, an ensemble mean interannual series of the mean and 
345 95th and 99th percentiles of the seasonal Hs forecasts is calculated from the predicted time series 
346 for each of the 24 CFSv2 members at each grid GOW2 node of the two study areas. 

347 In addition, a tercile-based approach is used for the probabilistic verification of the prediction 
348 quality (Frías et al. 2010). The interannual series of seasonal predictions of the mean and 95th 
349 and 99th percentiles of the significant wave height are classified into three categories (above, near 
350 or below-normal), according to the respective climatological terciles. The categories were 
351 calculated for each particular grid node and each particular member (24 in the case of NCEP 
352 CFSv2). A probabilistic forecast is computed annually (1982-2009) by considering the number 
353 of members falling within each category (a dataset of 28 probabilistic forecasts for the below, 
354 near and above-normal categories).

355 The ranked probability score (RPS) is a measure of forecast quality based on the squared forecast 
356 probability error, which is cumulative across the three forecast categories from lowest to highest 
357 (3 in a tercile-based system). The error (see equation 1) is the squared difference between the 
358 cumulative forecast probability up to category icat (Pcumfcticat), where icat is the category 
359 number (1 for below normal, 2 for near normal, and 3 for above normal) and the corresponding 
360 cumulative observed “probability” (Pcumobs), where 1 is assigned to the observed category and 
361 0 is assigned to the other categories. Note that a higher RPS indicates a greater forecast 
362 probability error. RPS is defined as follows:

363    𝑹𝑷𝑺 =
𝟏

𝒏𝒄𝒂𝒕 ‒ 𝟏∑𝒏𝒄𝒂𝒕
𝒊𝒄𝒂𝒕 = 𝟏(𝑷𝒄𝒖𝒎𝒇𝒄𝒕𝒊𝒄𝒂𝒕 ‒ 𝑷𝒄𝒖𝒎𝒐𝒃𝒔𝒊𝒄𝒂𝒕)𝟐

364 (1)

365 where ncat is the number of categories (3 in a tercile-based approach).

366 The ranked probability skill score (RPSS) is based on a comparison of the ranked probability 
367 score (RPS) for an actual set of forecasts (RPSfct), where the RPS corresponds to constant 
368 climatology (0.333/0.333/0.333) forecasts (RPSclim). A positive RPSS implies that the RPS is 
369 lower for the forecasts than it is for the climatology forecasts. Higher scores indicate forecasts 
370 with higher skill levels.

371    (2)𝐑𝐏𝐒𝐒 = 𝟏 ‒
𝐑𝐏𝐒𝐟𝐜𝐭

𝐑𝐏𝐒𝐜𝐥𝐢𝐦

372 The relative operating characteristic (ROC) curve measures forecast quality in terms of 
373 discrimination ability. The ROC is constructed by plotting the hit rate against the false alarm rate 
374 using a set of increasing probability thresholds (e.g., 0.05, 015, 0.25), which define the 
375 probability bins. A hit implies an accurate forecast (true positive) of a particular event, such as 
376 below normal wave severity, while a false alarm implies a false positive for the nonoccurrence of 
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377 such an event. The ROC curve involves subdividing the probabilistic forecast dataset (i.e., 28 
378 seasonal predictions for the 1982-2009 period) into separate probabilistic bins (defined by the 
379 probability thresholds). The points on the ROC curve are initially created using only those 
380 predictions within the bin with highest forecast probabilities and sequentially adding predictions 
381 in successively decreasing forecast probabilities. A hit implies an accurate forecast (true 
382 positive) of a particular event, such as below normal wave severity, while a false alarm implies a 
383 false positive for the nonoccurrence of such an event. A ROC curve is calculated individually for 
384 each forecast tercile.

385 The ROC skill score (ROCSS, the area under the ROC curves) characterizes the system’s ability 
386 to correctly anticipate the occurrence or nonoccurrence of predefined events. An ROCSS above 
387 0.5 reflects a positive discrimination skill, and 1.0 represents a perfect forecast system. A value 
388 of zero indicates no skill with respect to a climatological prediction. This skill measure is 
389 independent of the model bias.

390 4.2. Forecast verification
391 4.2.1 Western Pacific

392 The correlation coefficient is a simple metric that is used to assess the ability of the downscaled 
393 24-member ensemble JJA wave height to reproduce the observed interannual variability of the 
394 significant wave height over the 28 year period (1982-2009). The correlation coefficient is 
395 shown in the upper panels of Figure 5 for the mean and 95th percentile significant wave height. 
396 In general, the correlation coefficients are found to be significant (values of approximately 0.4-
397 0.6). The TC frequency is related to the ENSO, and therefore, the JJA interannual variability in 
398 terms of higher wave heights, which increases the predictability of these extremes. The JJA 
399 climatology bias of the mean and 95th percentile wave height is depicted in the lower panels of 
400 Figure 5. The bias is negligible for the mean Hs, slightly negative (5%) for the 95th percentile, 
401 and mostly limited to the TC region.

402
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a1) a2)

b1) b2)

404 Figure 5. Upper panels: Correlation coefficient between the observed and predicted JJA Hs in 
405 the Western Pacific Ocean: a1) mean and a2) 95th percentile. Lower panels: Bias (in %) of the 
406 predicted JJA significant wave height climatology: b1) mean and b2) 95th percentile. Stippling 
407 represents areas where the correlation is statistically significant at 5% level.

408 As an illustrative example of the tercile-based probabilistic validation approach, Figure 6 shows 
409 the 1979-2010 standardized historical time series of the 95th percentile of the JJA Hs observations 
410 and NDJ ONI with correlation coefficients and tercile validation plots for several grid points 
411 with different wave climate and forecast skills (see Frías et al., 2018 for a detailed description of 
412 the tercile plot). The standardized Hs time series provides information about the high interannual 
413 variability in the seasonal wave climate in this area. Higher waves are observed during strong 
414 warm ENSO phases (high values of the NDJ ONI) and a wave height decrease is seen the 
415 following summer season. The tercile plot represents the interannual (1982-2009) time series of 
416 probabilistic predictions from the 24 members of the CFSR-v2 seasonal database as the number 
417 of members falling in each tercile, which are arranged by rows with the probability represented 
418 in grayscale, and the binary occurrence/nonoccurrence calculated from the observations is shown 
419 for the three terciles (marked by a dot inside the box).

420
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421 The best relationship with ONI is found at location [Lon=132.0°; Lat=9.0°] (panel a), with the 
422 smallest waves are usually found in the summer following El Niño years (1982, 1986, 1987, 
423 1991, 1994, 1997, 2002, 2006 and 2009 with the highest NDJ ONI values marked in pink). The 
424 forecast resolution generally increases during El Niño years (see lower tercile with the highest 
425 forecast probabilities and the observed occurrence marked with a green dot in panel 2 of Figure 
426 6), especially after the strongest El Niño events (1987 and 1997). Most of the years with high 
427 negative wave anomalies (1983, 1988, 1995, 1998, 2007, and 2010) are connected to the QB-
428 type ENSO cases. These types of ENSO events are characterized by a rapid change from El Niño 
429 in the preceding winter to La Niña in the following summer or SST differences that are greater 
430 than 2.0º C between the preceding winter and ensuing summer (i.e., 1982/1983). The QB-type 
431 ENSO is also related to the strengthening of the subtropical highs located in the western North 
432 Pacific (Yun et al., 2014). These results suggest that the predictability signal in this region and 
433 season is linked to this variability mode. Years with observed upper terciles (i.e., 1997, 2002, 
434 2006 and 2009, marked with blue dots) are well predicted, indicating a certain predictability of 
435 the SLP fields transferred to downscaled wave heights. These years with waves within the 
436 above-normal category coincide with El Niño years. The TC genesis tends to have longer 
437 lifetimes, be more intense and form in greater numbers over the central Pacific region during 
438 warm ENSO phases (Camargo et al., 2007), which begins to increase during the spring of those 
439 years. In addition, this higher TC activity is reflected in higher waves, mainly in the area of the 
440 Philippine Sea, where the wave severity is associated with TCs.

441 The correlation with the Niño 3.4 index is smaller for location [Lon=114.0°; Lat=9.0°] (see panel 
442 b). However, the relationship between the high index values and small waves (below tercile) can 
443 still be detected, with significant forecasting skill after El Niño years (1982, 1988, 1995 and 
444 1998). Regarding the upper tercile (above-normal), the forecast predictions reached values of 
445 approximately 0.5-0.6, especially during the 1999-2002 period. In the case of location 
446 [Lon=129.0°; Lat=9.0°], shown in panel c of Figure 6, almost no skill (ROCSS is near zero) is 
447 found. This grid is located in an area with high differences between spatial patterns of the mean 
448 and high percentiles because of high extreme waves resulting from TC generation. Therefore, the 
449 lack of forecast quality at this location may be related to errors in GCMs when simulating TCs. 
450 Despite the generally nonsignificant skill throughout the historical years (1982-2009), the 
451 observed below-normal terciles after the strongest QB-type ENSO cases are well predicted 
452 (1987/1988, 1994/1995, and 1997/1998).

453
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a1) a2)

b1) b2)

c1) c2)

455 Figure 6. Detail of forecast skill for the following locations: a) [Lon=132.0°; Lat=9.0°]; b) 
456 [Lon=114.0°; Lat=9.0°]; and c) [Lon=129.0°; Lat=24.0°]. 1) Historical standardized time series 
457 of Hs observations and Niño 3.4 index. 2) Tercile validation plot of the 95th percentile of JJA Hs 
458 with terciles arranged by row. The number on the right shows the ROCSS for each tercile. Blue 
459 (green) dots mark the observed tercile during El Niño (La Niña) years. Red dots are the observed 
460 terciles for the rest of the years during the 1982-2009 period.

461 Figure 7 shows the ROCSS for the mean (upper panels) and the 95th percentile (lower panels) for 
462 the three categories: below-normal in the left column, normal in the middle column and above-
463 normal in the right column. ROCSS scores of approximately 0.4-0.6 suggest skillful predictions 
464 for the lower and upper categories. The lack of skill for the normal category agrees with previous 
465 studies (Manzanas, 2016). The significant ROCSS indicates that forecasts in the highest 
466 probability bin have a greater hit rate than those in the lower probability bin, which can be 
467 observed in the above and below-normal categories in the tercile plot shown in panel a2 of 
468 Figure 6.
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469

470 Figure 7. ROC Skill Score of the seasonal JJA wave height predictions in the Western Pacific 
471 Ocean (mean in the upper panels and 95th percentile in the lower panels) for the below normal, 
472 normal and above-normal terciles (left, middle and right column, respectively).

473

474 Figure 8 shows the maps of the ROCSS for El Niño events in the below-normal category. 
475 Negative anomalies are expected after the peak phase of NDJ ONI as a result of reduced 
476 atmospheric synoptic activity associated with an anomalous anticyclone that strengthens the 
477 West Pacific subtropical high (Lopez and Kirtman, 2016). An increase in the skill of these wave 
478 predictions is obtained, where the ROCSS is close to 1 over a wider area, and this result confirms 
479 that the warm phase of ENSO (El Niño events) is a source of skill for the JJA Hs anomalies 
480 (Lopez and Kirtman, 2016).
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482 Figure 8. ROC Skill Score of the seasonal JJA wave height predictions in the Western Pacific 
483 Ocean (mean in the left panel, 95th percentile in the middle, and 99th percentile in the right panel) 
484 for the below-normal category.

485

486 4.2.2 North Atlantic

487 The correlation coefficient is shown in the left column of Figure 9 for the mean and 95th 
488 percentile of the JFM Hs. In general, correlation coefficients are smaller than 0.4 with an 
489 analogous spatial pattern for the different wave statistics. The bias (not shown) is negligible for 
490 the mean Hs and the 95th percentile, and the bias is slightly positive (<5%) for the 99th percentile. 
491 The forecast probability error, quantified by means of the RPS, is shown in the middle column of 
492 Figure 9. The RPS value is approximately 0.2-0.3, indicating a small probability error for the two 
493 wave height statistics. This finding could mean that the JFM forecast can discriminate among 
494 outcomes. However, the RPS strongly depends on the probability distribution among categories, 
495 which is lower when adjacent categories (e.g., normal and high) receive higher probabilities than 
496 when this occurs for the opposite categories (e.g., low and high). The analysis of the tercile plot 
497 in several locations along the North Atlantic Ocean (not shown) reveals that the ensemble mean 
498 predicted time series lies mostly in the normal category, with no category with a probability 
499 significantly larger than the rest. As a result, when above or below-normal categories occur, the 
500 opposite category is not predicted with high probability by the seasonal forecast, so the RPS is 
501 not penalized, which partially explains the obtained results. The RPSS is compared to the actual 
502 forecasts to the constant climatology forecasts. The RPSS is the opposite of RPS, where higher 
503 scores mean forecasts having higher skill levels. The RPSS is presented in the left panels of 
504 Figure 9. The values obtained are nonsignificant, ranging between -0.2 and 0.2 for almost the 
505 whole North Atlantic Ocean, except in the western part, where this verification score presents a 
506 higher negative value; this finding indicates an unsuccessful ability of the forecasts to 
507 differentiate among dissimilar observed outcomes compared to constant climatology forecasts 
508 (0.333/0.333/0.333). A similar forecast probability for all three categories is most likely to occur 
509 in the Western North Atlantic Ocean.
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a1) a2)

b1) b2)

a3)

b3)

511 Figure 9. Verification of the JFM Hs: (a) mean and (b) 95th percentile in the North Atlantic 
512 Ocean using the 1) correlation coefficient; 2) RPS; and 3) RPSS.

513 ROCSS spatial maps of the JFM Hs and SLP means are shown in Figure 10 for the below-
514 normal, normal and above-normal categories (left, central and right columns, respectively). The 
515 area [40°W-20°W; 20°N-40°N] shows the highest predictability, especially for the lower tercile. 
516 Other locations in the North Sea and Western Mediterranean Sea also show high predictability. 
517 A similar ROCSS spatial distribution is obtained for the 95th percentile and nearly disappears for 
518 the 99th percentile (not shown). The ROCSS analysis of the JFM SLP predictions (input 
519 variable) shows a skillful area centered between the latitudes of 35°N and 55°N and the 
520 longitudes of 15°W and 55°W, which is reflected in the areas with higher JFM Hs prediction 
521 skill.

522
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523 Figure 10. ROCSSs of the seasonal mean of JFM Hs predictions in the North Atlantic Ocean for 
524 the below normal, normal and above-normal terciles (left, central and right column, respectively) 
525 in the upper panels and of the mean winter sea level pressure fields in the lower panels.
526
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527 5 Conclusions

528 The marine sector has not yet made use of climate services despite the broad range of potential 
529 applications in this sector, which includes but is not limited to seasonal forecasts. In this work, 
530 we have adapted the statistical downscaling framework proposed by Camus et al. 2017 for 
531 application to seasonal forecasting. The downscaled wave climate is obtained from the seasonal 
532 CFSv2 hindcast, which was analyzed and verified using the quasi-observational GOW2 wave 
533 database and a variety of deterministic and probabilistic metrics.

534 First, the suitability of a statistical downscaling approach to generate seasonal wave forecasts of 
535 the mean and 95th and 99th percentiles for the JJA season in the Western Pacific Ocean and for 
536 the JFM season in the Northern Atlantic Ocean were tested in perfect-prog conditions (i.e., using 
537 reanalysis data in the test period). With this aim, the quality of the NCEP-CFSv2 ensemble 
538 retrospective forecast (1982-2009) was assessed by validating the performance of the seasonal 
539 wave forecasting in the past, which was completed one month before the beginning of the 
540 validation period.

541 The statistical downscaling model in the Western Pacific shows a certain lack of skill due to 
542 differences in wave generation processes in this tropical area. This model configuration is 
543 considered to be as representative as possible of the main wave characteristics (swell component 
544 generated from distant storms that determinate the spatial domain of the predictor). The 
545 downscaled wave estimates in this region can be improved locally using particular predictors to 
546 represent wave generation from local winds or distant storms. Despite these limitations, 
547 downscaled seasonal JJA wave predictions in the Western Pacific show some predictability skill 
548 when assessed with the ROCSS probabilistic metric. The skill is higher during the decay years 
549 following the ENSO warm phases when a negative significant wave height anomaly is expected. 
550 Although years with large wave heights are related to ENSO because of the increase in TCs, a 
551 restricted performance of the statistical relationship is found. Scarce extreme events associated 
552 with TCs and the intrinsic limitations of the GCMs to reproduce the intensity of these 
553 atmospheric conditions lead to prediction failures in terms of detecting the positive wave height 
554 anomalies during these ENSO phases.

555 Statistical downscaling in the North Atlantic Ocean can capture the predictive signal in the 
556 global hindcast CFSR, but no relevant added value is found in terms of aggregating the 
557 predictability of the input atmospheric variable. The JFM wave forecast quality shows a similar 
558 performance to that of the SLP predictor. The low skill in this area is conditioned to the limited 
559 seasonal predictability over Europe in the retrospective database used. The skill pattern 
560 (evaluated by means of the ROCSS) of the seasonal wave forecast resembles the skill pattern of 
561 the seasonal SLP predictions. By applying the statistical downscaling model, the (low) predictor 
562 predictive skill is not lost.

563 Although the skill determined by the North Atlantic results was low to moderate (Kim et al., 
564 2012), this experimental development opens the possibility of new applications to marine 
565 sectors. The new seasonal forecast system from the UK Met Office, GloSea5, has shown 
566 promising skill in predicting the NAO due to a considerable increase in resolution (Scaife et al., 
567 2014). The emerging Copernicus Climate Change Service is expected to provide reliable and 
568 credible sources of free climate information in Europe in the coming years (EC, 2015), and 
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569 therefore, this forecasting improvement combined with increased access to seasonal forecast data 
570 may lead to the application of these climate products within an operational framework in the near 
571 future.

572 The conclusions obtained in this work are only for summer wave heights in the Western Pacific 
573 and winter wave heights in the North Atlantic and may not be extended to other regions of the 
574 global ocean or seasons. Further investigation is still required to provide a more conclusive 
575 overview of the merits and limitations of statistical downscaled seasonal wave predictions.

576
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