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Long-term time series of sea state parameters are required in different coastal engineering applications. In
order to obtain wave data at shallow water and due to the scarcity of instrumental data, ocean wave reanalysis
databases ought to be downscaled to increase the spatial resolution and simulate the wave transformation
process. In this paper, a hybrid downscaling methodology to transfer wave climate to coastal areas has been

developed combining a numerical wave model (dynamical downscaling) with mathematical tools (statistical
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downscaling). A maximum dissimilarity selection algorithm (MDA) is applied in order to obtain a
representative subset of sea states in deep water areas. The reduced number of selected cases spans the
marine climate variability, guaranteeing that all possible sea states are representedy capturing even the
extreme events. These sea states are propagated using a state-of-the-art wave propagation model. The time
series of the propagated sea state parameters at a particular location are reconstructed using a non-linear :
interpolation technique based on radial basis functions (RBFs), providing excellent results in a high
dimensional space with scattered data as occurs in the cases selected with MDA. The numerical validation of 32

the results confirms the ability of the developed methodology to reconstruct sea state time series in shallow
water at a particular location and to estimate different spatial wave climate parameters with a considerable
reduction in the computational effort.

© 2011 Published by Elsevier B.V.

1. Introduction

A number of engineering coastal applications (e.g. the design of a
marine structure, the analysis of equilibrium beach planforms or the
assessment of wave energy resources) require long-term time series
of sea state parameters (e.g. to define the return level value of
significant wave height, the mean wave energy direction) or a long-
term database of spatial wave climate parameters (e.g. mean power to
characterize the wave energy resources).

Buoy measurements are rarely available in the study area, the
nearest buoy is usually located some kilometers from the point of
interest, not being representative of the local wave climate. Even
when such records are available, they usually are missing data and
time series are not sufficiently long in order to correctly define the
long-term distribution of different sea state parameters.

In recent years, many multidecadal numerical simulations (rea-
nalysis or hindcasts) of ocean waves have been developed (e.g. Dodet
et al., 2010; Pilar et al., 2008; Ratsimandresy et al., 2008; Uppala et al.,
2005; Weisse et al., 2002) improving the knowledge of deep water or
large-scale wave climate, especially at locations where instrumental
data is not available. Although large-scale long-term reanalysis
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databases have a high spatial and gemporal theusly} resolution, the
spatial data resolution is not usually enough for coastal applications,
and wave transformation processes nearshore are not accounted for.
The information offered by the wave models in an open area must be
transferred to shallow water, increasing the spatial resolution
(namely downscaling).

Three general approaches have been developed to downscale the
large-scale information: A) A dynamical approach consisting of
nesting higher resolution models that are able to model wave
transformation processes (refraction, bottom friction, shoaling,
diffraction, breaking) in shallow water. B) A statistical approach, in
which an empirical relationship between an open ocean variable and
a nearshore variable affected by the bottom effects is used to obtain
reliable small-scale information for coastal environment. C) A hybrid
approach which combines dynamical (numerical models) and
statistical downscaling (usually an interpolation scheme) in order to
reduce the computational effort.

In the dynamical approach (A) the directional spectra are
propagated from deep ocean to shallow water by nesting a wave
model for coastal areas used for wave transformation in the nearshore
(Rusu et al., 2008). Regarding the statistical approach (B), artificial
neural networks are widely applied to estimate sea state parameters
in shallow water (Browne et al., 2007; Kalra et al., 2005). The common
hybrid methodologies (C) are based on a transfer function (statistical
downscaling) obtained by means of the numerical propagation of a
number of sea state conditions (dynamical downscaling), see for
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instance Groeneweg et al. (2007) and Stansby et al. (2007). A different
technique to obtain high resolution nearshore wave statistics is
proposed by Galiskova and Weisse (2006). In this work, three
different statistical models based on linear regression, canonical
correlation analysis and analogs were built approximating the relation
between instantaneous medium-scale wave fields from a hindcast
database and dynamically obtained wave data in shallow water.
Another statistical-dynamical approach is developed by Herman et al.
(2009) using a combination of a numerical model, principal
component analysis and a neural-network method.

The most accurate solution to solve this problem is the dynamical
downscaling approach (A) but the computational time effort is
usually impracticable. The statistical downscaling (B) only reproduces
the wave parameters, usually the significant wave height, at a specific
location in shallow water. Instrumental data is always required to
validate the wave transference near the coast, independently of the
approach, but in the case of statistical method, this data is necessary in
the nearshore location in order to establish the statistical model. The
transfer function of some hybrid methods (C) usually requires
propagating (dynamical downscaling) a considerable number of sea
states in order to represent the climate variability for deep water
(Chini et al., 2010) or several years of dynamical downscaling to
generate the statistical model and its validation (Galiskova and
Weisse, 2006; Herman et al., 2009). On the other hand, these more
sophisticated methods are able to reproduce spatial wave statistical
parameters.

In this paper, a new hybrid methodology to downscale wave
climate to coastal areas is proposed. The methodology is based on a
reduced number of cases to be dynamically downscaled, while at the
same time representative enough of the wave climate at deep water.
The structure of time series of wave parameters at shallow water is
reconstructed by the new developed methodology and the spatﬁl
wave statistical parameters are estimated with a considerable time
reduction. Therefore, the long-term hourly wave reanalysis data at
deep water is replaced by a small number of representative wave
conditions; these cases are propagated using a state-of-the-art wave
propagation model capable of simulating the most important wave
transformation processes and finally, the complete offshore time
series are transferred by means of an interpolation algorithm.

We describe the proposed methodology and the area of study for
an application of the methodology in Section 2. The proposed
methodology involves three steps: selection, propagation and time
series reconstruction, described in Sections 3, 4 and 5, respectively.
The validation of the methodology is detailed in Section 6. Finally,
some conclusions are given in Section 7.

2. Proposed methodology

The proposed methodology for transferring wave climate from
deep water to shallow water (or to downscale wave climate to coastal
areas increasing the spatial resolution) consists of a dynamical
downscaling of a representative subset of sea state conditions at
deep water or open areas which are obtained using a statistical
downscaling procedure. The methodology steps are: (a) definition of
wave climate at deep water from historical reanalysis databases; (b)
selection of a subset of sea states (open water conditions); (c) deep
water-to-shallow water wave transformation of the most represen-
tative sea states using a wave propagation model; (d) reconstruction
of the time series at shallow water using an interpolation scheme; (e)
validation of the results usually using instrumental data; and (f) once
the time series are defined in the nearshore points of interest,
different statistical models can be applied to characterize the wave
climate at shallow waters. A sketch of the methodology is shown in
Fig. 1. The steps are explained in the following sections. Note that the
proposed methodology can be applied to any area of study with

Historicaloffshore
data bases

Wave
transformation

Fig. 1. Scheme of the methodology to transfer wave climate from deep water to shallow
water.

different wave climate at deep water and different configurations of
the bathymetry and coastal line.

A simple application is considered to show the proposed frame.
The study area is located around the west coast of Spain (upper panel
of Fig. 2). We use the wave reanalysis database GOW (Global Ocean
Waves), developed by IH Cantabria, using WaveWatch III (Tolman,
1999) and forced by 10-m winds from NCEP/NCAR Reanalysis Project
(Kalnay et al., 1996), with a spatial resolution of 1.9"End a 6-hourly
temporal resolution. The temporal coverage spans 61 years (1948-
2008) with an hourly resolution and a spatial resolution of 1°x 1.5° at
a global scale, and a resolution of 0.1°x0.1° along the Spanish coast.
We consider one grid node of the GOW database to characterize the
wave conditions at deep water, and one grid node of the NCEP/NCAR
database to characterize the wind conditions. Each hourly wave data
at deep water is defined by five parameters: significant wave height,
Hs, peak period, T, mean direction, 6, wind velocity, W3¢ and wind
direction, By at point P@ (lower left panel of Fig. 2). The objective of
applying this methodology is to obtain the wave time series at shallow
water (lower right panel of Fig. 2).

One year (2008) of the hourly time series of the GOW database and
its corresponding wind conditions E dynamically downscaled
(meaning N=_8784 numerical wave propagations) and downscaled
by the proposed methodology (meaning M numerical propagations
together with the statistical procedure). Several hypotheses are
established in order to simplify the application: the wave boundary
conditions are considered constant along the computational grid, 5
parameters (Hs, Tp, 0m, Wi and f3,,) are considered to define the
uniform offshore boundary condition and the local wind-generated

waves, a stationary version of the wave propagation model are 178

adopted and a standard parameterization of the directional spectrﬁm
is used. Note that the aim of this work is to show the ability of the
proposed methodology to reconstruct the time series of sea state
parameters propagating only a reduced number of sea states.
Therefore, the validation in this example consists of comparing the
reconstructed wave time series by the numerical propagation of the
selected cases (M) and one complete year of sea states (N) propagated
numerically.
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Fig. 2. Study area in the application of the methodology to transfer wave climate from deep water to shallow water.

3. Selection

The aim of the selection process is to extract a subset of wave
situations representative of available ocean conditions from the
reanalysis database. In the development of computer-based methods
to select sets of structurally diverse compounds from chemical
databases, dissimilarity-based compound selection has been sug-
gested as an effective method to identify a subset comprising the most
dissimilar data in a database (Snarey et al., 1997). The subset selected
by the maximum-dissimilarity algorithm (MDA), one subclass of
these selection techniques, is distributed fairly evenly across the space
with some points selected in the outline of the data space. Therefore,
MDA is implemented in the proposed methodology (Camus et al.,
2010) to transfer wave climate from deep water to shallow water. In
the application considered to describe the methodology, the multi-
variate data at deep water is defined as: X*; = {Hs» Tp,is OmiWio,i Bw,i}:

i=1,...,N, where N=28784 sea states, corresponding to year 2008.
Each data is defined by scalar and directional variables of different
magnitudes. On the one hand, vector components must be normalized
in order to be equally weighted in the similarity criterion. On the other
hand, this criterion is defined by the Euclidean distance. Circular
variables entail a problem related with this criterion. The wave
direction 6,, is recorded on a continuous scale, with 360° and 0° being
identical, while it is adapted to an open linear scale. The probTem is
solved by implementing the distance in the circle. We define a
Euclidean-circular (EC) distance (‘E’ for the Euclidean distance in
scalar parameters and ‘C’ for the circular distance in directional
parameters).

The scalar variables are normalized by scaling the variable values
between 0 and 1 with a simple linear transformation which requires
the minimitim and maximum values of the two scalar variables. For the
circular variables, taking into account that the maximum difference
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between two directions in radians over the circle is equal to 1 and the
minimum difference is equal to 0, this variable has been normalized
by dividing the direction values between m, therefore rescaling the
circular distance between [0,1]. The dimensionless input data is
expressed as X;={H;, T; 6;, W; Bi}; i=1, ..., N, after these
transformations.

Therefore, given a data sample X;={H;, T;, 0;, W;, Bi}; i=1, ..., N
consisting of N n-dimensional vectors, a subset of M vectors D;; j=1,
..., M representing the diversity of the data is obtained by applying
this algorithm. The subset is initialized by transferring one vector
from the data sample D;. The rest of the M1 elements are selected
iteratively, calculating the dissimilarity between each remaining data
in the database and the elements of the subset, and then transferring
the most dissimilar one to the subset. The process finishes when the
algorithm reaches M iterations. This algorithm is described in detail in
Camus et al. (2010). In this work, the initial data of the subset is
considered to be the sea state with the largest value of significant
wave height. In the selection process, the dissimilarity between each
remaining vector in the database and each vector in the subset is
calculated, and a unique dissimilarity between each vector in the
database and the subset is established to define the most dissimilar
one. In this work, the MaxMin version of the algorithm has been
considered.

For example, if the subset is formed by R (R<M) vectors, the
dissimilarity between the vector i of the data sample N— R and the j
vectors belonging to the R subset is calculated:

dj = HX,-—Dj

ii=1,..,N—Rjj=1,...,R (1)
where || || stands for the EC distance.

Subsequently, the dissimilarity d; supser between the vector i and
the subset R, is calculated as:

digusee = min{|[Xi=Dj{| b1 =1, N=Rij =1,...R 2)

Once the N — R dissimilarities are calculated, the next selected data
is the one with the largest value of d;sypser-

MDA has an expected time complexity of O(M2N) for M-member
subsets from an N-member database. In order to reduce the
computational effort, the more efficient algorithm O(MN) developed
by Polinsky et al. (1996) has been considered. In this case, the
definition of the distance d;gpser does not imply the calculation of
the distance between the different vectors d;;. For example, in the
selection of the #h vector, the distance d;gpser is defined as the
minimum distance between the vector i of the data sample
(consisting of N— R—l-) vectors at this cycle) and the last vector
transferred to the subset R, and the minimum distance between the
vector i and the R —l vectors of the subset determined in the previous
cycle:

&)

min . min
di,subset = mn {dIZR: di,subset(Rfl)]'

The EC distance in the MDA algorithm yields:

(Hi—ij)z n (Ti—TjD)z + ( min(|o,—6P| 2

+ (W,-—WjD)Z + ( min(

6=67)))’

pi—p) 2= [pi—p7])).

o] -

(4)

Finally, applying the opposite transformation of the normalization
step, the denormalization of the subset is carried out. The MDA subset
is therefore defined by D;* ={HE ;, T5 j, 0m. s Wi, Bw, i1 i=1, ..., M.

The MDA is applied to the year 2008 hourly time series of the five
parameters considered in the definition of wave and wind conditions

at deep water. Different sizes of the selected subset have been
performed in order to analyze the influence of the number of
representative cases in the transfer of wave climate from deep
water to shallow water. Fig. 3 shows the time series of the five
parameters {Hs; Tpi 0miWios Bw,i} and MDA subsets of different
sizes, the first M =25 selected data are presented in dark red, the
following 75 selected cases to complete a subset of size M =100 are
shown in red and the following 100 selected data of a subset of size
M =200 are colored in yellow. The procedure of the MDA algorithm
implies that the first R selected data of different subset sizes are the
same.

Fig. 4 shows the distribution of the sample data and the selected
subset of different sizes using same color scheme as Fig. 3 for the
different bidimensional combinations of the analyzed parameters. As
seen, the first 25 selected cases span the space of the input data, trying
to cover it evenly. The following cases are selected uniformly filling
the space of input data. This algorithm adequately covers the outer
borders of the domain space (Camus et al., 2010).

4. Deep to shallow water wave transformation

In deep water, wind waves are not affected by the bathymetry.
However, in their propagation to the coast, waves are transformed
due to the interaction with the bathymetry, inducing variations in the
significant wave height and in the mean wave direction. The most
important transformation processes are refraction and shoaling by
bathymetry or current, diffraction around abrupt bathymetric
features and energy loss through dissipation near the bottom. Besides,
part of wave energy is reflected back to the deep sea. Continuing their
shoreward propagation at a shallower water, the wave profile
becomes steeper with increasing wave amplitude and decreasing
wavelength, the front face of the wave moves at a slower speed than
the wave crest causing the overturning motion of the wave crest. The
turbulence associated with breaking waves produces great amounts
of energy dissipation.

Wave propagation models simulate the wave transformation
processes in their propagation to the coast. There are different wave
models depending on the mathematical equations implemented in
order to describe wave propagation from deep to shallow waters,
which suppose different limitations in the processes they are able to
model. Therefore, none of the existing models considers all involved
physical processes.

Two basic kinds of numerical wave models can be distinguished:
phase-resolving models, which are based on vertically integrated,
time-dependent mass and momentum balance equations, and phase-
averaged models, which are based on a spectral energy balance
equation. The application of phase-resolving models, which require
10;100 time steps for each wave period, is still limited to relatively
small areas, O (1;10 km), while phase averaged models can be
applied in much larger regions (Losada and Liu, 2002).

The wave energy model SWAN (Booij et al., 1999) with Cartesian
coordinates is used due to the size of the propagation domain.
Moreover, a spatial resolution of 2 km is considered, as a certain
number of nodes per wave length are not required with this kind of
numerical models, and one year of sea state parameters in deep water
can be downscaled practically without computational effort. Each
hourly wave and wind condition defined by H,, Ty, 0m, Wi, Bw is
propagated by SWAN model. The boundary conditions are defined
using constant JONSWAP spectrum along all the borders of the grid
characterized by H,, T, and 6,,, with a peak enhancement parameter
y=4 and a directional width expressed in terms of the directional
standard deviation 0=25°. A constant wind field in the computa-
tional domain is defined bwa and By for each hourly sea state. The
stationary SWAN computations imply instantaneous wave propaga-
tion across the domain, as well as instantaneous wave response to
changes in the wind field. These restrictions are obviously inaccurate
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for global or basin-scale models but are reasonable for a smaller
domain (Rogers et al., 2007). Furthermore, one of the requirements of
the proposed methodology is the assumption of stationary propaga-
tions so that the subset of the selected propagation cases can be
considered independent.

In the left panel of Fig. 5, the propagation of the most energetic sea
state from the SW direction is shown, and corresponds to 13/01/2008,
02:00 defined by Hy=5.29 m; T, =9.26 s, 0;,,= 2341W,D: 18.7 m/s,
Bw= 200.661At the two points considered for the reconstruction of
the time series, the propagated parameters are H;,=3.78 m,
Tmp—7 08s and 0,, =241.92° and Hgp,=1.37m, Tpp=4.265s and

Omp=254.23¢, for P1 and P2, respectlvely In the right panel of Fig. 5,
the propagation of the most energetic sea state from the NW direction
is shown, which corresponds to 10/03/2008, 14:00, defined by
Hy=9.6 m; T,=15.385, Gm_311
At the two points considered for theé reconstruction of the time series,
the propagated parameters are H;,=8.74m, T,,,=11.35s and
Omp=309.87° and Hg,=6.80 m, Tpp=10.77 s and 6,,,, = 324.46°, for
P1 and P2, respectlvely

5. Time series reconstruction

The reconstruction of the time series of wave parameters at the
nearshore is carried out by an interpolation technique based on radial
basis functions (RBF), a scheme which is very convenient for scattered
and multivariate data. The RBF approximation has been applied
successfully in many fields, usually with better results than other
interpolation methods (Hardy,497+). In a comparison of schemes for
interpolating scattered two dimensional data, the most accurate
results have been obtained by RBF method (Franke, 1982).

Wi0=13.04 m/s, Byw= 27838‘L

Suppose that f=f(x) is the real-valued function that we want to
approximate. We are given M scattered data points {xq, ...,
dimension n and the associated real function values {fj, ..., fui}, being
fi=f(x;), j=1,...M. The RBF interpolation method consists of a
weighted sum of radially symmetric basic functions located at the
data points (see Fig. 6). The approximation function is assumed to be
of the form:

M
RBF() = p0x) + 3. g 5)

@ (=)

where @ is the radial basis function, being || || the Euclidian norm; p(x)
is @ monomial basis {po, p1, ...
of degree 1 equal to the data dimension (1) and a monomial of degree
0, being b={by, by, ..., by} the coefficients of these monomials. The

RBF coefficients a; and the monomial coefficients b are obtained by :

enforcing the interpolation constraints RBF(x;) =f;.

There are several expressions for radial basis functions (linear, cubic, :

Gaussian, multiquadric, ... ), some of them containing a shape parameter

that plays an important role for the accuracy of the interpolation :

method. Rippa (1999) proposed an algorithm for choosing an optimal
value of the shape parameter by minimizing a cost function that imitates

, Pn}, formed of a number of monomials :

366

Xy} of 367

368
369
370
371
372

373

the error between the radial interpolant and the unknown function f(x). 385

This cost function collects the errors for a sequence of partial fits to the
data: E=(Ey, ..., Ew)",
function fy at the point x, and the value estimated by jthe RBF function
calculated by removing the point x; from the original data set.

In the implementation of the RBF interpolation technique in the :

sea state time series reconstruction, we have M 5-dimensional points
:{ng, ng, 6,?1']‘, W?O,j) [3‘9\/]},]: ], ceey
cases selected by MDA algorithm and the associated real propagated

doi:10.1016/j.coastaleng.2011.05.007

Please cite this article as: Camus, P., et al., A hybrid efficient method to downscale wave climate to coastal areas, Coast. Eng. (2011),

where E is defined as the error between the :
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394  parameters obtained by the numerical propagation at the shallow water
395 location. These propagated parameters are the propagated significant
396 wave height {HS, ;}, the propagated mean period {T5, ;} and the
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x1

Fig. 6. Sketch of the RBF interpolation methodology for two dimensions. The upper surface is the interpolated RBE,_

Therefore, the aim of the RBF application is the evaluation of the
interpolation function of the propagated significant wave height RBFy;, the
evaluation of the interpolation function of the propagated mean period
RBFr and the evaluation of the interpolation function of the components
x- and y- of the mean wave direction RBF,, RBFy,, respectively.

In order to calculate the interpolation functions, the scalar variables
that define the wave and wind conditions at deep water are normalized
using a linear transformation which scales the values between 0 and 1.
The directional variables are normalized by dividing between m and
implementing the circular distance in the norm of RBF method. Therefore
each sea state at deep water is defined as X;={H;, T;, 6;, W;, B:};i=1, ..., N,
while each selected case, where the real propagated parameters are
available, is expressed as D;={HP, TP, 0P, WP, P}, j=1, ..., M.

The interpolation function is calculated by means of this expression:

RBF(X) = p(X) + 3 a([[x—D)) ©

j=1

where p(Xl) = bo + b]Hi + b2T1 + bgoi + b4W,' + bS,Bi and @ is a Gauss-
ian function with a shape parameter c:

offx-nf) = eof-32T) "

The Euclidean distance has been replaced by the distance EC as in
the MDA algorithm. The optimal shape parameter is estimated using
the Rippa (1999) algorithm. The coefficients b;=
of the monomials and the coefficients a;=[ay, ..., ay]” of the radial
basis functions are obtained by the interpolation conditions:

wr(0) =5(0) =y

where the real functions D,, j are defined by the propagated parameters
{Hsp}is {Tmp)i» {6xp); OF {6yp};, corresponding to the selected sea states in
MDA algorithm D;.

Therefore, the time series are transferred from deep water to the point
of interest at shallow water by means of the RBF functions calculated for
each propagated parameter. These functions are defined as:

j=1,..M (8)

Hyp; = RBFH({D,HSI,J(]' =1 ...,M)},x,.);i =1,..,N
Topi = RBFr({Dj Ty () = 1. M)} X, )30 = 1,0000N o
expv,-:RBFex<{Dj,6pr(j:1, .7M)},Xi);i: N
Oypi = RBFy ({Dj, 0y = 1., M) b, X )50 = 1,000 N

[bo, by, ba, b3, ba, bs]"

A general transfer function for a specific location can be defined as: 433

X = RBF({DJ,DPJ(] = 1,...,M)},X,»>: i=1,..N. (10)
438
And the final result is the reconstructed time series at a specific 436
location in shallow water: 437
Xpi = {Hpis T Ompi 3 1= 1,0 N. (11)
438

As an example, the interpolation function for the propagated 440
significant wave height at P1, considering a subset of size M=10 441
selected by MDA algorithm is expressed as the following: 442

H,

spi = RBFy(X;) = by + biH; + byT; + b36; + byW; + bsp;

+ £ a0(x-0])

j=1

where the coefficients are: bo——()j33 b, =8,466; bz——0631 443
b3—0251 b4——1172 b5—0055 a,= 0064 az——0165 445
a3—0636 a4—0734 a5—0 979 as——O 577; a7——0*651 446
a8—0644 ag= —1 012 and am— —0653 For tﬁls particular case the 447

value of the shape parameter is c=0.37687452. 448
6. Validation of the methodology 449
6.1. Time series 450

The proposed methodology is applied to transfer wave climate 451
from deep water to P1 and P2 located near the coast (see Fig. 2). The 452
time series of the propagated parameters Hsp, Tpmp and O, are 453
reconstructed considering a different number of cases selected by 454
MDA algorithm (M =25, M=100 and M= 1000) and compared with 455
the time series obtained from the numerical wave propagation of the 456
complete year of hourly sea states (N =_8784). 457

The scatter plots of the propagated time series and the recon- 458
structed time series of the Hgp, Trnp and 6, are shown in Fig. 7. The 459
root mean square error (rmse) and the scatter index (SI) were 460
computed for the significant wave height, mean period and mean 461
direction. Those statistics are given in Table 1. As we can see in the 462
scatter plots and Table 1, the differences between the propagated time 463
series and the reconstructed ones are relatively small even for a 464
number of cases M =25 (around 0.3 m, 0.8 s and 13° for Hy, T, and 6y, 465
respectively). The quality of the reproduced paramieters, in terms of 466
the rmse, is especially satisfactory for Hs and T, but worse for the 467
wave directions. The reconstruction at the two points improves with 468
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the increase of M. The rmse using M= 100 cases is around 50% smaller
than using M = 25 cases for the three variables considered. However, the
increase in the quality of reconstruction is not as important when using
M =100 or M=1000 cases. The reconstruction of the significant wave
height and mean period is worse at P2, especially for the lowest significant
wave heights. The rmse of Hs and T, using M = 25 cases is double than at
P1. However, the increase of the quality using M= 100 cases is higher
than at P1; being rmse of Hs and T, similar at both points although SI is
higher at P2. The results of the mean direction are slightly better at P2 due
to the narrower range of the propagated directions caused by the higher
refraction at a smaller depth. In the case of the signiﬁfant wave height and
the mean period, the smaller depth at P2 supposes less linearity with
regard to significant wave height at deep water. More cases are therefore
needed to represent the diversity of waves at nearshore and to
reconstruct the time series. The reconstructed time series of Hgy, Tnp
and 6,,,, by M= 25 cases (in dark red) and M= 100 cases (in red) and the
real time series (in Jgkray) at P2 are shown in Fig. 8.

Table 1
The mean square error (RMSE) and the scatter index (SI) for H, T}, and 6,,.
H; (m) T,n RMSE (s) 0m RMSE (°2
25 100 1000 25 100 1000 25 100 1000
P1 0207 0.120 0.062 0573 0300 0.223 14708 7.554 5.809
P2 0375 0.124 0.086 1.147 0405 0310 12472 8.444 6.008
H; SI T SI Om SI
P1 0.081 0.047 0.024 0.0845 0.044 0.033 0.0478 0.024 0.019
P2 0.189 0.062 0.043 0.185 0.065 0.050 0.038 0.026 0.019

The accuracy of the reconstruction of the time series depends on the
number (M) of cases selected and propagated. We have analyzed the
error obtained in the wave climate reconstruction at coastal areas using
the proposed methodology with different numbers of selected cases.
Fig. 9 shows the root mean square error in the reproduction of the
parameters H;, T;,, and 6,, at the two points considered near the coast (P1
and P2). We can observe that with a number of selected cases M= 100,
the errors are stabilized and are quite similar for the two points at shallow
water. The M =100 selected cases span the wave climate variability at
deep water properly and the results are hardly influenced by the non
linearity of the wave propagation. Therefore, in this application of the
proposed methodology on the west coast of Spain, a number of cases
M =100 are enough for a good transformation of wave climate from deep
water to shallow water. If we analyze more in detail the error of the 90th
and 99th of H;, T;;, (not shown), we observe how the decrease of the error
is almost insignificant with a number of cases M > 200. The small errors
confirm the excellent representation of the selected sea states by MDA in
order to reproduce the extreme wave statistical parameters with great
accuracy. Although this result of the optimal number of cases (M) is not
generalizable, our tests for this kind of problems reveal that M-100-200
is an adequate number of propagations to cover the diversity of sea states.
Further research is still required to generalize the selection of parameter
M depending on the number of degrees of freedom and the complexity of
the bathymetry and local boundaries.

6.2. Spatial fields

The subset of the M propagated cases selected by MDA algorithm
defines a library of M hourly wave parameters: significant wave
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height (H,p), mean period (Tp,,) and mean direction (6,,,) at the nodes
of the computational grid, corresponding to the associated deep water
conditions. Although MDA algorithm is not a clustering technique, we

can consider that each data is represented by the closest vector of the 516
selected subset (see Camus et al., 2010). Therefore, each selected case 517
has an associated probability, a function of the number of similar deep 518
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Fig. 9. The root mean square error (rmse) of Hy, T, and 6,,, obtained by the proposed methodology for different numbers of selected cases (M) and the dynamical downscaling at P1
A

and P2.
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water conditions represented by each one. An easy spatial definition
of wave climate statistics is possible by means of the results of the
propagation of the M cases and the corresponding probability without
applying the most time consuming RBF interpolation scheme.

For example, the M values of the significant wave height Hsp = {Hsp1,
Hgpa, ..., Hopu) and its corresponding probability p={ps, pa, ..., pm} are
available at each node of the computational grid. The mean significant
wave height can be calculated by means of the following expression:

o M
Hy, = Z] Hgy-pj-
i=

On the other hand, a given percentile of the significant wave height
can be calculated applying the following steps:

* The Hy,, ; values are sorted in ascending order:
Y= {Hspm’Hspaw ~~~~Hsp<M>}‘

 The associated cumulative probabilities are calculated:

M
2 by = 1}»

X= {P(1)7P(1) Rl JCITRRE

* Interpolation to find the gth percentile Y, = Hy,, the value of the
underlying function Y for the non-exceedance probability at the
point P, =q/100.
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Fig. 10 shows the mean significant wave height at the area of study :

(upper left panel) and the error in % between the mean significant
wave height calculated using the N=8784 propagations and the

approximated significant wave height calculated by M =25 cases :

selected by MDA algorithm and the corresponding probability (upper
right panel), by means of M=100 cases (lower left panel) and
M=200 cases (lower right panel). As seen, the mean errors
considering M=25 cases are around 1-2% at deep water while the
errors are around 5-6% at shallow water. In the case of M=100,
the errors are around 2% practically for the whole computational grid. The
errors are lower than 0.63% considering M =200 cases, showing the
ability of this approach to evaluate spatial wave climate parameters.
The 95th percentile of the significant wave height and the errors

(%) considering M =25, 100 and 200 cases are shown in Fig. 11. The :

errors are around 8% at deep water and around 15-20% at shallow
water for M=25 cases. In the case of M =100 cases, the errors are
lower than 2% at deep water and around 7% at shallow water. In the
case of M=200 cases, the errors are lower than 2%, reinforcing the
methodology proposed in this work.

7. Conclusions

A hybrid methodology to transfer wave climate from deep water to
shallow water (or to downscale wave climate increasing the spatial
resolution) has been developed. The methodology is based on a
selection of M sea states representative of wave climate at deep water
by MDA algorithm, the dynamical propagation of these selected cases
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Fig. 10. a) Mean significant wave height; b) differences in % between the annual mean significant wave height field and the approximation by the M = 25 cases selected by MDA and
their corresponding probability; ¢) the differences in the case of the approximation by M= 100 cases and d) the differences in the case of the approximation by M= 200 cases.
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and a multidimensional RBF interpolation to reconstruct the time
series of wave parameters at shallow water.

The proposed methodology has been applied to wave data around
the west coast of Spain with the objective to analyze its ability to
reproduce the dynamical downscaling, the most accurate approach to
transfer wave climate to coastal areas. One year of hourly time series
has been considered to represent the variability of wave climate at the
study area and has been propagated both dynamically and with the
proposed methodology using different sizes of subsets of sea states
selected by MDA. The validation of results confirms that the proposed
methodology is able to reproduce the time series of wave parameters
at coastal areas. The good performance of the methodology is due to
the goodl)ehavior of MDA selection and RBF interpolation. The MDA
automatically selects M multivariate sea states uniformly distributed
over data, covering the edges and samples-ef the variability of deep
water wave climate, which is very convenient in the RBF interpola-
tion. The RBF technique, improved by the Rippa (1999) algorithm, has
proved to be a powerful technique to reconstruct time series of sea
state parameters being, in this example, each sea state at deep water
defined by five parameters. The very good representativeness of wave
climate at deep water by the selected cases using MDA can be
observed in the reproduction of the extreme sea state statistical
parameters.

The accuracy of the methodology to reconstruct sea state time
series at shallow water depends on the number (M) of cases selected

and propagated. In the example used to explain the methodology, the
errors in the estimation of wave parameters at shallow water are
almost negligible with only M=100 cases. We observe from the
analysis of the estimation of some wave statistical parameters
considering different Eumbers of selected cases that the error of
these parameters tends to stabilize. There is a threshold in the number
of cases which entails a small decrease in the errors of the sea state
parameters. Therefore, the analysis of the error evolution informs
about an appropriate number of cases in the proposed methodology
for each case of study.

Besides, another different approach is possible by means of the
library of M propagations and its corresponding probabilities.
Although this approach is less accurate than the RBF reconstruction,
it supposes an efficient and easy method to estimate high resolution of
spatial wave climate statistics. The selected cases by MDA are so
representative of the wave climate that the reconstruction of the
extreme values of the statistical parameters is correctly achieved.

Although this methodology is presented assuming a number of
simplifications, we believe that this method opens the possibility to be
applied to more complex sea state definitions (spatial variability in
the boundaries, directional spectra) helping to transfer wave climate
to coastal areas with a small computational effort. Moreover, although
our test in this work is restricted just to one year it is clear that the
method can be applied to transfer long-term series (>20 years) to
coastal areas.
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