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1Faculty of Electrical Engineering and Computer Science, University of Maribor, Koroška cesta 46, 2000 Maribor, Slovenia, 2Dpt. of
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Abstract

The results of evolutionary algorithms depend on population diversity that normally decreases by increasing the selection
pressure from generation to generation. Usually, this can lead the evolution process to get stuck in local optima. This
study is focused on mechanisms to avoid this undesired phenomenon by introducing parallel self-adapted differential
evolution that decomposes a monolithic population into more variable-sized sub-populations, and combining this with
the characteristics of evolutionary multi-agent systems into a hybrid algorithm. The proposed hybrid algorithm operates
with individuals having some characteristics of agents, e.g., they act autonomously by selecting actions, with which they
affect the state of the environment. Additionally, this algorithm incorporates two additional mechanisms: aging, and
adaptive population growth, which help the individuals by decision-making. The proposed parallel differential evolution
was applied to the CEC’18 benchmark function suite, while the produced results were compared with some traditional
stochastic nature-inspired population-based and state-of-the-art algorithms.
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Introduction

Nowadays, nature-inspired population-based algorithms have

achieved an important role in solving real-world problems.

These algorithms typically take the inspiration for their work

either in the evolution theory of Darwin [7] or the intelligent

behavior of social living animals or insects [3]. The former

inspiration has led to emergence of Evolutionary Algorithms

(EA), while the latter to the advent of Swarm Intelligence (SI)

based algorithms. Indeed, the nature-inspired algorithms are

also applicable to domains, where no domain-specific knowledge

has been discovered. Obviously, the quality of solutions are

mainly dependent on the operations of the two components

of the evolutionary search process [9]: exploration and

exploitation. Exploration refers to searching in undiscovered

regions of the search space, while exploitation to discovering

the search in the vicinity of the known good solutions.

Intensification of the exploration component typically causes

losing the diversity of the population, and directs the search

into premature convergence.

This phenomenon is especially undesirable in conditions

of open-ended evolution [13] and artificial life [2], where an

agent must operate continuously without any breaks. Therefore,

a lot of approaches have been proposed for avoiding this

phenomenon, such as, for instance by [19], and [10]. The

further step in mastering the problem in open-ended evolution

and artificial life, obviously, is the development of Parallel

Evolutionary Algorithms (PEA) [12] and of Evolutionary

MultiAgent Systems (EMAS) by [6]. The PEAs decompose

the monolithic population in EAs into more sub-populations,

where selection and reproduction are limited to individuals

inhabiting one region, and a migration operator is used to move

selected individuals from one region to another. The EMAS

maintain a population of agents during an evolutionary cycle.

Each agent represents a solution of the problem to be solved.

During its life-time, starting with birth and ending with death,

the agent is able to reproduce or clone. The reproduction is

similar to crossover while cloning to mutation in classical EAs.

The selection is responsible for preserving the best solution on
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the one hand, and to eliminating the less fit solutions via the

action death from the EMAS on the other.

The purpose of this study is to combine the characteristics

of the PEAs with those of EMAS into a hybrid algorithm that

could confront the problem of premature convergence effectively

on the one hand, and keep the quality of results obtained

by solving the global optimization problems at a sufficiently

high level on the other. Actually, we started with the self-

adaptive Differential Evolution (jDE) [5] using a monolithic

population. In the next phase, the parallel jDE (i.e., PjDE)

was developed, where this population is decomposed into more

sub-populations evolving in parallel. The advantage of using

the jDE in place of the original DE [17] is the fact that the

control of the algorithm’s parameters is moved in jDE from the

algorithm’s level to the individual level. Finally, the concept

of agents is borrowed from EMAS and applied to individuals

in the population of solutions. This means that individuals

in the PjDE have some characteristics of agents, because

they act autonomously in deciding which action to select

in order to affect the current problem state. Consequently,

some components of the classical jDE algorithm are either

eliminated (e.g., survivor selection), or redefined in new way

(e.g., variation operators).

On an individual’s level, the following actions can be

executed: replication, clone, migrate, death, and rebirth. The

actions affect the state of the individual, which is reflected in

its fitness function. In our study, individuals can interact with

all the other individuals within the island, and this topology

determines the neighborhood of each individual. Furthermore,

they are also able to change their relative positions within the

particular island. Using the topology, a parent selection can be

performed using local information only. The parent selection is

necessary for implementation of replication and clone, based on

DE mutation strategies (i.e., variation operators). The migrate

action enables individuals to move from one island to another

according to migration probability.

Indeed, the PjDE incorporates two new mechanisms: aging,

and adaptive population growth. The mechanisms affect the

population model. The former influences the size of island by

action death, and controls decreasing the number of individuals

with regard to the feedback obtained from the population in the

last generation, while the latter helps individuals by deciding

whether to apply a reproduction or a clone action. However, the

reproduction causes growing the population size, while clone

keeps the population size intact.

As a result, the Parallel self-adaptive Differential

Evolution with Variable population size for global optimization

(gPVajDE) was proposed, and applied to the CEC-18

benchmark function suite. The results of comparison with the

classical EAs, like DE, and its self-adaptive variants jDE and

SaDE [16], and the state-of-the-art algorithms, like LShade [18]

and jSO [4], showed the great potential of the proposed system,

especially when comparing them with the traditional ones, and

encouraged us to continue with the research in the direction

of improving them, also in the future. Let us mention that the

purpose of the study was not to improve the results of the state-

of-the-art algorithms at any cost, but to show that the proposed

concept could also be used for solving the hardest optimization

problems.

The structure of the remainder of the paper is as follows:

Background information is reviewed in Sect. 2. In line with

this, the basics of Differential Evolution and its self-adaptive

variant jDE are highlighted. The design and implementation of

EMAS for global optimization is the subject of Sect. 3. Sect. 4

illustrates experiments and the obtained results. The paper

concludes with Sect. 5, which summarizes the performed work,

and outlines potential directions for the further research.

Basic information

Information needed for understanding the subject that follows

is reviewed in this section. At first, the basics of DE are

discussed, because this is a well-known algorithm for global

optimization, and serves in this study as an inspiration for

implementing the actions of reproduction and cloning. The

section concludes with a description of its self-adaptive variant

jDE, that is capable of storing local copies of control parameters

into representations of individuals.

Differential Evolution

Variation operators in DE base on difference of vectors

maintained in the population of individuals, where each vector

represents a solution of the problem of interest. Despite

its strong mathematical definition, the algorithm belongs

to a class of stochastic nature-inspired population-based

algorithms, because the DE variation operators reflect similar

characteristics as found in crossover and mutation in Darwinian

evolution [7]. It has developed by Storn and Price in 1995 [17]

and was applied quickly for solving many continuous, as well

as discrete problems. Due to its good results, many variants of

this algorithm have arisen since then.

The population in the DE algorithm consists of Np real

valued vectors that undergo operations of variation operators,

like mutation, crossover, and selection. In the basic mutation,

two solutions are selected randomly, and their scaled difference

is added to the third solution, as follows:

u
(t)
i = x

(t)
r0 + F · (x(t)

r1 − x
(t)
r2 ), for i = 1, . . . ,Np, (1)

where F ∈ [0.1, 1.0] denotes the scaling factor that scales

the rate of modification, while Np represents the population

size and r0, r1, r2 are randomly selected values in the

interval 1, . . . ,Np. Note that the proposed interval of values

for parameter F was enforced in the DE community.

The mentioned mutation strategy is dedicated primarily for

exploring a search space. However, the exploitation component

of the search space is also needed for efficient searching of the

solution space. In line with this, the following mutation strategy

has been developed:

u
(t)
i = x

(t)
best + F · (x(t)

r1 − x
(t)
r2 ), for i = 1, . . . ,Np, (2)

where x
(t)
best is the current best individual, and r1, r2 are

randomly selected values in the interval 1, . . . ,Np. Let us

emphasize that a balance between exploration and exploitation

can be achieved by mixed use of both strategies [19].

DE employs a binomial (denoted as ’bin’) or exponential

(denoted as ’exp’) crossover. The trial vector is built from

parameter values copied from either the mutant vector

generated by Eq. (1) or parent at the same index position

laid i-th vector. Mathematically, the binomial crossover can

be expressed as follows:

w
(t)
i,j =

u
(t)
i,j randj(0, 1) ≤ CR ∨ j = jrand,

x
(t)
i,j otherwise ,

(3)

where CR ∈ [0.0, 1.0] controls the fraction of parameters that

are copied to the trial solution. The condition j = jrand ensures
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that the trial vector differs from the original solution x
(t)
i in

at least one element. Mathematically, the selection can be

expressed as follows:

x
(t+1)
i =

w
(t)
i if f(w

(t)
i ) ≤ f(x

(t)
i ),

x
(t)
i otherwise .

(4)

The selection is usually called ’one-to-one’, because both trial

and corresponding vector laid on the i-th position in the

population compete for surviving into the next generation,

where the better according to the fitness function takes wins.

Several ways exist in which operation of variation operators

are applied to the population of solutions. Therefore, a specific

notation was introduced to describe the varieties of these

methods (also mutation strategies), in general. For example,

’rand/1/bin’, defined by Eq. (1), denotes that the base vector

is selected randomly, and one vector difference is added to it,

while ’best/1/bin’, defined by Eq. (2) designates that one vector

difference is added to the current best vector. In both cases,

the number of modified parameters in the trial/offspring vector

follows a binomial distribution.

jDE algorithm

The original DE works with fixed setting of control parameters.

As a matter of fact, the results of optimization can be

improved significantly (especially in dynamic and uncertain

environments), when the parameters are adapted or self-

adapted during the evolutionary run. One of the first self-

adaptive DE variants (jDE) was proposed by Brest et al. [5] that

was applied effectively, especially, on continuous optimization

problems. In this algorithm, two control parameters, i.e., scale

factor F and crossover rate CR, are added to the representation

of an individual, and undergo operation of the variation

operators together with the problem variables.

As a result, the individual in jDE is represented as follows:

x
(t)
i = (x

(t)
i,1, x

(t)
i,2, ..., x

(t)
i,D, F

(t)
i ,CR

(t)
i ).

Let us mention that the variation operators are not controlled

using the parameters F and CR on the algorithm’s level as

in the original DE, but on an individual level. This means

that the jDE maintains parameters Fi and CRi for each i-

th individual separately, and modifies them according to the

following equations:

F
(t+1)
i =

Fl + rand1 ∗ (Fu − Fl), if rand2 < τ1,

F
(t)
i , otherwise ,

(5)

and

CR
(t+1)
i =

rand3, if rand4 < τ2,

CR
(t)
i , otherwise ,

(6)

where randi=1...4 ∈ [0, 1] are randomly generated values drawn

from uniform distribution in the interval [0, 1], τ1 and τ2 are

learning steps, and Fl and Fu lower and upper bounds for

parameter F , respectively.

Parallel self-adaptive Differential Evolution

The aim of developing the gPVajDE is to combine the best

characteristics of the PEA with those of the EMAS into

one hybrid algorithm. Thus, the authors wish to keep the

performance of this algorithm comparable with the other

nature-inspired algorithms. The development of it can be

divided into two parts: (1) Dividing the monolithic population

of size Np into n interrelated sub-populations such that the sum

of their population sizes is equal to
∑n

i=1 Npi = Np, and (2)

Providing the individuals within the population independently

in decision-making, which action should be the most adequate

answer to the current problem state.

Additionally, two mechanisms are incorporated within the

algorithm, i.e., aging and adaptive population growth. The

former introduces the concept of an individual’s age, replacing

the original ’one-to-one’ selection and changes this with a more

natural paradigm, asserting that when people are old enough

they must die. The latter directs individuals by making the

decision whether replacement or clone should be performed

in a particular situation. In summary, the aging mechanism

takes care about reducing the island size, while the adaptive

population growth enriches the island with the new individuals.

Aging mechanism

The aging mechanism presents one of the more popular

concepts of adapting the population size during the

evolutionary cycle in the EA community, and was used

in the Genetic Algorithm with Varying Population Size

(GAVaPS) [14]. This mechanism introduced the concept of an

individual’s ”age”, which counts the number of generations the

individual stays ”alive”.

The aging mechanism operates as follows: Each individual in

a population lives the number of generations (ages) determined

by its lifetime. This parameter depends on the fitness of

the corresponding individual, i.e., the higher the fitness

of an individual, the higher the lifetime granted to it.

Mathematically, the lifetime LT is defined as:

LT =

{
MinLT + K · fi−MinFit

AvgFit−MinFit
, if AvgFit ≥ fi,

1
2
(MinLT + MaxLT) + K · fi−AvgFit

MaxFit−AvgFit
, if AvgFit < fi,

(7)

where MinLT and MaxLT denotes the minimum and maximum

available lifetime values, respectively, AvgFit, MinFit, and

MaxFit are the average, minimum, and maximum values

of fitness in the current population, while the coefficient is

expressed as K = 1
2 (MaxLT −MinLT).

Adaptive population growth

The adaptive population growth implements the so-called

Non-Linear population Size Reduction (NLSR) mechanism,

where the population size is adapted following the population

dynamics. In population dynamics, the measure of the

uncertainty in the population size is expressed as:

∆H
(t+1)

= log
2 · S(t)

Np(t+1)
, (8)

where ∆H denotes a change in the evolutionary entropy [8], S(t)

is the number of positive variations in the last population, and

Np(t+1) is the effective population size in the next evolutionary

cycle. Entropy influences increasing/decreasing the current

population size regarding the following relations:

∆max =


−rand(1, 2 · (R(t+1) −N(t+1))), if ∆H(t+1) > 0,

+rand(1, 2 · (R(t+1) −N(t+1))), if ∆H(t+1) < 0,

0, if ∆H(t+1) = 0,

(9)

where ∆max denotes a modification in the population size, and

R(t+1) is a decreased, linear, reference function that reduce the
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Fig. 1. The architecture of the proposed gPVajDE.

population size according to:

R
(t+1)

=

(
1−

t+ 1

tmax

)
· (MaxNp −MinNp) + (t+ 1), (10)

where t is the generation number, tmax the maximum number

of generations, MaxNp and MinNp are the maximum and

minimum population sizes, respectively.

Design of gPVajDE

The architecture of the proposed gPVajDE is illustrated in

Fig. 1, from which it can be seen that the algorithm consists of

more islands connected in ring topology that evolve in parallel.

The ring topology enables migration of selected individuals

from a target island to either its predecessor’s or successor’s

island in the ring. Each island hosts its own set of individuals.

These are positioned on random positions on a predefined

topology.

Obviously, there are several topologies available, like ring,

grid, or complete graph, that enable the potential connections

between individuals (also nodes in topology). Indeed, the

topology defines the neighborhood of each node. This consists

of all individuals, which can be achieved by connection locally.

In line with this, the size of the neighborhood depends strongly

on the topology used. For instance, the neighborhood size of

individuals illustrated in the figure is four, due to the grid

topology, where each node is connected with the four neighbors.

However, when complete graph topology is employed, no

restrictions are imposed in interactions among individuals.

Obviously, the positions of individuals are not fixed, because

they are able to change their positions in each generation

randomly.

On the other hand, the individuals can perform autonomous

actions, with which they are able to affect the current problem

state. In summary, the gPVajDE operates on three levels:

algorithm, population, and individual. These levels are labeled

in the legend on Fig. 1.

Agent actions

Individuals use actions to react to events from the current

problem state (also environment) according to the results of

the making-decision process. The proposed gPVajDE supports

the following set of actions:

Act = {REPR,CLONE,MIGR,REBIRTH,DEATH}, (11)

where

REPR − sexual reproduction (crossover),

CLONE − asequal reproduction (mutation),

MIGR − migration of agents,

REBIRTH − regeneration of the agent,

DEATH − killing of the agent.

Action REPR generates the trial solution using the exploration

DE-mutation strategy (Eq. (2)), and keeps it within the island

beside its parent to evolve into the next generation. With new

individuals, the reproduction contributes to the island’s growth.

Action CLONE, that generates the trial solution using the

exploitation DE-mutation strategy (Eq. (1)), selects the better

between the parent and trial solutions for the next generation,

and, therefore, keeps the island size unchanged.

Interleaving the actions REPR and CLONE, the proposed

hybrid algorithm tries to find a balance between exploration

and exploitation. Interestingly, parent selection in the gPVajDE

bases on the topology in place of implementation of parent

selection in the original DE/jDE. This means that the

selection operator selects the candidate solutions for entering

in the mutation strategies randomly from neighbors in the

neighborhood of the target solution.

Action MIGR enables some individuals in one island to move

to the other island according to the migration probability pm.

This action depends strongly on the topology, in which islands

are arranged in the communication network, and takes place

on the algorithm level. If, for instance, the ring topology is

used, where each node is connected by exactly two nodes, the

particular individual in the target island can be migrated either

to its predecessor or successor island in the ring.

Action REBIRTH is launched when the state of the

environment falls into the condition ”No population diversity”.

The condition arises when the diversity of the island sub-

population is lost. In general, the population diversity is
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calculated according to equation [15]:

I
(t)
c =

Np∑
i=1

D∑
j=1

(xi.j − cj)
2
, (12)

where I(t)c represents an inertia moment, Np the population

size, D the dimension of the problem, and vector c = {cj} is

the mass center expressed as:

c
(t)
j =

1

Np

Np∑
i=1

xi,j , for j = 1, . . . , D. (13)

Actually, this condition arises when the diversity of the k-th

island is lost, in other words, I
(t)
c,k = 0 for k = 1, . . . , n. That is

a typical case for small sized islands, where the search process

achieved its matured phase. Consequently, the action causes

the creation of a new individual that replaces the worst one.

Action DEATH eliminates all outdated individuals from the

island’s sub-population, and is, actually, triggered as the result

of the aging mechanism.

Implementation of gPVajDE

Due to the autonomy of an individual within the gPVajDE, its

representation is richer than those used in the original DE/jDE.

An individual in gPVajDE has its own times of birth and death,

and lives as long as permitted by its quality. Additionally, it is

positioned in a random location within the predefined network

topology, and is capable of performing actions. Therefore, the

individual is represented as a tuple:

Xi = 〈xi, fi,Mi, agei,LT i, acti〉, for i = 1, . . . ,Np, (14)

where

xi − solution with elements {xi,j} for i = 1, . . . , D,

fi − a fitness function of the problem in question,

Mi − location of the individual within the island,

agei − current age of an agent,

LT i − calculated maximum lifetime,

acti − action to be performed by the individual.

Three main algorithms need to be implemented for

covering the proposed three level program architecture of the

gPVajDE. The algorithm Control, covering the algorithm

level, takes care about: creation, termination, and parallel

evolving and synchronization of islands. The population level

algorithm Evolve provides global functions for individuals, like:

positioning on random locations within the network topology,

aging management, and adaptive population growth. The

algorithm MakeDecision working individual level addresses

tasks with which an individual is confronted, such as: decision-

making, and performing actions.

The pseudo-code of the Control algorithm is presented in

Algorithm 1, from which it can be seen that its first task

is creating the island topology (function CreateIslands). In

line with this, the number of islands n and the corresponding

sub-population size Np pass as parameters to the procedure.

The evolutionary cycle that follows is divided into two parts:

(1) parallel evolving of the islands (function Evolve) and (2)

performing migration actions, based on emigrants collected

after finishing the first part (lines 9-14). The evolutionary cycle

is terminated, when the termination condition is satisfied.

The Evolve algorithm illustrated in Algorithm 2 addresses

demands of the algorithm’s level. At first, it implements

Algorithm 1 The Control algorithm.

Require: n - island number, Np - island size

Ensure: alg - evolved set of islands

1: procedure Control(n,Np)

2: alg = CreateIslands(n,Np);

3: t = 0;

4: while termination condition not found do . main loop

5: emg = ∅; . set of emigrants

6: parfor all island ∈ alg do . parallel island execute

7: emg ∪ = Evolve(island); . evolve island

8: end parfor all

9: while emg 6= ∅ do . performing migration actions

10: emg item = Head(emg); . 〈island, item〉
11: emg = Tail(emg);

12: target = Rand(N(emg item.island));

13: DoMigrate(emg item, target);

14: end while

15: t = t+ 1;

16: end while

17: return alg;

18: end procedure

Algorithm 2 The Evolve algorithm.

Require: island - sub-population of individuals

Ensure: emg - set of emigrants

1: procedure Evolve(island)

2: emg = ∅;
3: CalcLifeTimes(island); . update aging data

4: ∆max = EvolutionEntropy(island); . pop. dynamics

5: M = GenerateTopology(island); . set new topology

6: 〈rebirth, avg〉 = PopDiversity(island);

7: parfor all individual ∈ island do

8: 〈∆max, rebirth〉 =MakeDecision(individual,∆max,

9: rebirth, avg);

10: emg ∪ = DoAction; . executing actions

11: end parfor all

12: return emg;

13: end procedure

updating the aging data (function CalcLifeTimes), calculating

the population dynamics (function EvolutionEntropy), generating

random positions of the individuals within the network

topology (function GenerateTopology), and evaluating the

population diversity (function PopDiversity), which returns

either the worst individual in the case of losing diversity or

NULL otherwise, and the average fitness value avg in the

island.

After initialization, the parallel loop is launched, in which

each individual decides (function MakeDecision), which action

is the proper answer to the current problem state. Then,

performing the selected action follows. The algorithm returns

a set of emigrants that are collected throughout the cycle.

Finally, Algorithm 3 depicts the procedure for making

decisions by a particular individual. This algorithm is

controlled by four parameters. Indeed, it consists of a set of

conditions affecting the selection of the proper action. For

instance, the MIGR action is selected in accordance with

the probability of migration pm on individuals with a fitness

function value more, or equal to, the average fitness value.

The REBIRTH action is performed, if the losing of population

diversity condition is detected. The DEATH action is selected,
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Algorithm 3 The MakeDecision algorithm.

Require: individual, ∆max - entropy, rebirth - pop.div., avg

1: procedure MakeDecision(individual,∆max, rebirth, avg)

2: if Rand(0, 1)< pm and individual.f ≥ avg then

3: SetBehavior(individual,MIGR); . migration act.

4: else if rebirth == individual then

5: SetBehavior(individual,REBIRTH); . rebirth

6: rebirth = NULL;

7: else if individual.age ≤ individual.LT then

8: SetBehavior(individual,DEATH); . death

9: else if ∆max < 0 then

10: SetBehavior(individual,REPR); . sexual reprod.

11: ∆max = ∆max − 1;

12: else

13: SetBehavior(individual,CLONE); . asexual repr.

14: end if

15: return 〈∆max, rebirth〉;
16: end procedure

Table 1. Parameter setup of the proposed gPVajDE.

L Parameter Abbreviation Value/Interval

A

Dim. of the problem D [10, 30, 50]

Number of fit. eval. nFEs 1, 000×D
Number of islands n [1, 9]1

Probability of migr. pm [0.001, 0.002, 0.003]2

P

Minimum island size MinNp [10]3

Maximum island size MaxNp [20, 70, 100]2

Minimum life time MinLT [1]3

Maximum life time MaxLT [24, 30, 32]2

I
Initial scale factor F

(0)
i 0.5

Initial crossover rate CR
(0)
i 0.9

1The interval of observed values.

2The best parameter setting according to the dimension.

3Valid for all dimensions.

when the age of an individual individual.age overcomes its

lifetime individual.LT . The selection between sexual REPR

and asexual CLONE reproduction depends on the entropy

∆max that determines the maximum number of newly created

individuals. When this number is decremented to zero, only the

asexual reproduction is allowed.

Experiments and results

The goal of this study was to move the original jDE algorithm

using a monolithic population into the distributed gPVajDE,

and to show that the proposed algorithm is suitable for solving

the hard continuous optimization problems better than the

other algorithms of the same class. Indeed, the purpose of this

work can be condensed into four hypotheses, whose evidence

can be shown that the proposed algorithm:

• is capable of solving the global optimization problems,

• can improve the behavior of classical linear population size

reduction,

• maintains the population diversity better than the

traditional EAs,

• achieves results comparable with the results of some

traditional EAs.

During the experiments, the gPVajDE applied the parameter

setup as illustrated in Table 1, from which it can be seen that

the parameters operate on three different levels as denoted by

the column ’L’ in the table: ’A’ - algorithm, ’P’ - population,

and ’I’ - individual level.

As a termination condition, the maximum number of fitness

function evaluations was employed for all configurations of the

algorithm. In this way, the comparisons with the results among

various algorithms were performed fairly. The number of islands

in the ring topology were varied in the interval n ∈ [1, 9] in

steps of 1, where configuration with n = 1 represents the

original jDE using the monolithic population. Three optimal

values of migration probability pm are documented regarding

the problem dimensions in the table. The island sub-population

size was varied in the interval Np ∈ [MinNp,MaxNp], where

MinNp denote the minimum sub-population size and MaxNp

the maximum one. Indeed, MinNp = 10 was applied for all

configurations, while the maximum sub-population size in the

table designates the best values according to the observed

dimensions as found during the experimental work. The same

is also true for parameters MinLT and MinLT denoting the

minimum and maximum lifetime values, respectively. The

complete graph topology of individuals was applied in our

study. Finally, the initial values of parameters F
(0)
i = 0.5 and

CR
(0)
i = 0.9 were used for the proposed algorithm during the

experiments.

The results obtained by the algorithms were evaluated

according to five standard statistical measures: Best, Worst,

Mean, Median, and StDev values. Friedman’s non-parametric

statistical test [11] was conducted in order to estimate the

quality of the results obtained by various nature-inspired

algorithms for global optimization. This test is a two-way

analysis of variances by ranks, where the null hypothesis

is stated, assuming that medians between the ranks of all

algorithms are equal. The second step is performed only if a

null hypothesis of a Friedman test is rejected. In this step,

the post-hoc tests are conducted using the calculated ranks.

Indeed, the Nemenyi post-hoc test was used for graphical

presentation of the results after determining the control method

(i.e., the algorithm with the lowest rank). The post-hoc test was

conducted using a significance level of 0.05.

The CEC’18 benchmark function suite was employed as

a test-bed. It consists of 30 benchmark functions that are

divided into four classes [1]: (1) unimodal functions (1–3),

(2) simple multimodal functions (4–10), (3) hybrid functions

(11–20), and (4) composition functions (21–30). Unimodal

functions have a single global optimum and no local optima.

Unimodal functions in this suite are non-separable and rotated.

Multi-modal functions are either separable or non-separable. In

addition, they are also rotated and/or shifted. To develop the

hybrid functions, the variables are divided randomly into some

sub-components and then different basic functions are used

for different sub-components. Composition functions consist

of a sum of two or more basic functions. In this suite,

hybrid functions are used as the basic functions to construct

composition functions. The characteristics of these hybrid and

composition functions depend on the characteristics of the basic

functions. The functions of dimensions D = 10, D = 30, and

D = 50, were used in our experiments, while the search range

of the problem variables was limited to xi,j ∈ [−100, 100].

Results

In order to confirm our hypotheses, the results of four tests are

illustrated in detail:
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a. Dimension D = 10. b. Dimension D = 30. c. Dimension D = 50.

Fig. 2. Influence of maximum lifetime MaxLT by controlling the aging mechanism.

• influence of the aging mechanism,

• influence of the adaptive population growth,

• searching for the best algorithm parameter setting,

• comparative analysis.

In the remainder of the paper, the mentioned tests are described

in detail.

Influence of the aging mechanism

The experiment was aimed at establishing the characteristics of

the parameter MaxLT by controlling the aging mechanism. The

aging mechanism replaces the selection operator in traditional

EAs, and favors those individuals that have the better function

values. However, the mechanism depends on the lifetime

parameter LT , based on minimum and maximum lifetime

values, where the minimum lifetime was fixed to MinLT = 1,

while the maximum lifetime was varied in the set of feasible

values:

MaxLT ∈ {7, 10, 15, 20, 24, 30, 32, 36}.

Obviously, the initial value of this parameter is determined

for each individual at the birth time randomly using the set

of feasible values, while its optimal value is adapted by the

evolutionary search process during the run. It turned out that

the optimal value of the MaxLT parameter depends strongly

on the dimension of the problem in question.

The other parameters in the test were fixed as follows:

n = 1, Np(0) = 55, Np(t) ∈ [10, 100] for t > 0, and

migr rate = 0.000. This means that searching for the optimal

value of the parameter MaxLT proceeded by the gPVajDE

using the monolithic population and without migration. Due

to the fact that the experiments were conducted for all three

observed dimensions of the benchmark functions, there were

conducted 8 × 3 × 25 = 600 independent runs. In this term,

the number 8 denotes the size of the domain values |MaxLT |,
3 the different number of dimensions, and 25 the number of

independent runs per instance.

The results of experiments are depicted in Fig. 2,

that consists of three diagrams according to the observed

dimensions. Each graph presents the results of the Nemenyi

post-hoc tests, obtained after conducting the Friedman non-

parametric test, where each statistical classifier consists of

5 × 30 = 150 statistical measures (i.e., 5=the number of

statistical measures, and 30=the number of functions) obtained

after optimization of the proposed algorithm.

As can be seen from Fig. 2, the best results were obtained by

searching for the parameter controlling the maximum lifetime

to the value MaxLT = 24 by optimizing the CEC’18 benchmark

functions of dimension D = 10. However, the value of the

parameter maximum lifetime increased to MaxLT = 32 and

MaxLT = 36 by dealing with functions of dimension D = 30

and D = 50, respectively.

Influence of the adaptive population growth

The purpose of the experiment was to establish the behavior of

the Non-Linear population Size Reduction mechanism (NLSR),

and to show that using it within the gPVajDE can also

improve their results. This mechanism distinguishes itself from

the famous Linear population Size Reduction (LSR) used

in more popular stochastic nature-inspired population-based

algorithms. Actually, while the LSR is capable of uniform

decreasing of population size, when the search process becomes

matured, the population size can also be increased by the

NLSR imposing the new individuals via sexual reproduction.

The population size reduction is called non-linear, because the

relationship between the number of generations and population

size is modeled non-linearly.

In order to show the advantage of NLSR, the various

configurations of gPVajDE with different numbers of islands

varying from one to six (denoted as c−1 to c−6) were

compared with their counterparts using the LSR. However, the

other parameters were set similar as in the last experiment.

The results of the tests are depicted in Table 2, where the

Table 2. Indicating the influence of the population diversity on the

best results by gPVajDE.

Dim. Meth. c−1 c−2 c−3 c−4 c−5 c−6 Sum.

10
LSR + − − − + = 2

NLSR − + + − + = 3

30
LSR − = − − = + 1

NLSR + = + + = − 3

50
LSR − = = = = = 0

NLSR + = = = = = 1

achievements obtained by gPVajDE of different configurations

are compared according to the Wilcoxon 2-paired non-

parametric statistical test using a significance level of 0.05.

In summary, it can be seen from the table that, the results

obtained by the gPVajDEs using LSR were significantly better

than those obtained by their counterparts using NLSR three

times (i.e., for D = 10 and D = 30), while, in contrast, the

results of the latter were even seven times better. This means

that applying the NLSR in place of LSR is reasonable.

In the next test, the behavior of the NLSR feature was

observed, where a composition function f21 of dimension
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a. c−1 with one population. b. c−2 with first island. c. c−2 with second island.

d. c−3 with first island. e. c−3 with second island. f. c−3 with third island.

Fig. 3. Characteristics of the population size reduction obtained by optimizing CEC’18 benchmark function f21 of dimension D = 50 by gPVajDE of

various configuration.

D = 50 was taken into consideration. The function was

optimized by the proposed gPVajDE algorithm of three

different configurations, i.e., using one (c−1), two (c−2), and

three islands (c−3). Actually, one typical run of the function

optimization was selected for each algorithm in question, where

no optimal solution was achieved. Thus, the behavior of the

algorithm can be monitored during the whole run. The result of

the test is illustrated in Fig. 3 that is divided into six diagrams

according to the particular configuration and the behavior of

the population size in each island.

As can be seen from the diagrams in Fig. 3, the population

size oscillated around the reference line, representing a

traditional linear population size reduction. Typically, the

population size increase is followed by size reduction. The

increase is launched by imposing a sexual reproduction. On the

other hand, reducing the population size is a consequence of

the aging mechanism. Actually, this mechanism can introduce

such a high selection pressure that it can eliminate the major

part of individuals from the agent’s population in only one cycle

(e.g., look Fig. 3c). Consequently, imposing the new individuals

by sexual reproduction in the next cycle causes replacing the

vacant places in the island’s sub-population.

Searching for the best gPVajDE parameter setting

As can be seen from Table 1, there are four algorithm

parameters: While the first two (i.e., dimensions of the

functions D and the maximum number of fitness function

evaluations nFEs) are prescribed by the benchmark suite, the

last two (i.e., the number of islands n and migration probability

pm) depend on the algorithm’s configuration and, therefore,

their proper setting is the subject of experimental work.

Indeed, this test focused on finding the gPVajDE

configuration with the optimal number of islands n, migration

probability pm, and parameters MaxNp and MaxLT ,

respectively. The best parameter setting was searched in two

phases: After conducting the first test, in which the optimal

values of the MaxLT parameters were determined for each of

the observed function dimensions, the second phase launched,

where the parameter MaxNp was varied in the set of the

following values:

MaxNP ∈ {20, 30, 40, 50, 60, 70, 80, 90, 100, 110, 130, 150, 170},

and the parameter was fixed to MinNp = 10. Thus, the initial

value of the sub-population size was calculated as:

Np
(0)

=
MaxNp −MinNp

2
. (15)

The other parameters, i.e., n and pm, were varied as illustrated

in Table 1. In summary, 9 × 3 × 13 × 6 = 2.106 different

instances were taken into consideration. If we assume that each

instance demanded 25 independent runs, the total number of

independent runs was increased to 52, 650.

The huge number of results obtained after optimization were

compared using the Friedman non-parametric statistical tests.

Indeed, the results of these tests (i.e., ranks) were analyzed

as follows: At first, the best interval of sub-population sizes

Npk ∈ [MinNp,MaxNpk] for k = 1, . . . , |MaxNp| needed to

be calculated for each of the observed number of islands n,

and migration probabilities pm. Then, the corresponding ranks

obtained by the particular pairs of parameters 〈n, pm〉 was put

into 3-dimensional space. In this manner, the so-called rank

landscape was constituted with peaks and valleys. Obviously,

the best ranks were identified as valleys.

The rank landscapes obtained using Friedman non-

parametric statistical tests by optimization of CEC’18

benchmark functions of dimensions D = 30 and D = 50
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a. Dimension D = 30 (Np ∈ [10, 150], lt ∈ [1, 32]).
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b. Dimension D = 50 (Np ∈ [10, 170], lt ∈ [1, 36]).

Fig. 4. Rank landscape based on the Friedman non-parametric test obtained by optimizing the CEC’18 benchmark function suite.

are illustrated in Fig. 4, from which it can be seen that

the best results were obtained using the sub-population sizes

Np(0) ∈ [10, 150] and Np(0) ∈ [10, 170] by D = 30 and

D = 50, respectively. The regions of the best results (i.e., the

valleys in the rank landscapes) are found for the numbers of

islands n ∈ {2, 3, 4}, while a breakaway from these numbers

of islands caused bigger changes in the rank landscapes.

This means that they became more hilly with increasing or

decreasing the number of islands. Interestingly, the landscapes

were also changed slightly according to the different migration

rates. Similarly, values in the middle of the observed domain

(i.e., pm ∈ {0.001, 0.002, 0.003}) led to the better results.

When comparing the landscape obtained by optimizing the

benchmark functions of dimension D = 30 with the same of

dimension D = 50, it can be seen that the landscape of the

former was smoother than the latter.

The best parameter settings found during the experimental

work are summarized in Table 3, where the results of optimizing

the CEC’18 benchmark functions of all observed dimensions are

shown. As can be seen from the table, the presented parameter

Table 3. The best parameter settings of gPVajDE obtained by

optimizing the CEC’18 benchmark functions.

D n pm MinLT MaxLT Np(0) Np−domain

10 2 0.002 1 24 80 [10, 150]

30 3 0.001 1 32 80 [10, 150]

50 2 0.002 1 36 90 [10, 170]

settings justify the findings of the last test. This means that

the best results were identified by gPVajDE using the smaller

number of islands, except one. Also, the smaller probabilities

of migration different than zero improved the results obtained

by the algorithm. On the other hand, the optimal values of

parameters MinLT and MaxLT , as well as the optimal intervals

of the sub-population sizes Np−domain and the corresponding

initial values Np(0) are illustrated in the table.

Comparative analysis

The goal of the test was to show that the results of the

proposed gPVajDE algorithms were comparable with the

results of the traditional stochastic nature-inspired population-

based algorithms, like DE [17], jDE [5], and SaDE [16], and

the state-of-the-art algorithms, like jSO [4] and LShade [18].

Thus, even nine configurations of gPVajDE algorithms with

varying the number of islands from one (denoted as c−1) to

nine (denoted as c−9) were taken into consideration. All the

mentioned algorithms were applied for solving the CEC’18

benchmark function suite.

The results obtained from the particular algorithm were

compared using the Friedman non-parametric statistical tests

and refined by a Nemenyi post-hoc statistical test. In summary,

the results of a comparative analysis are depicted in Fig. 5

that is divided into three diagrams according to the two

parameters: the dimension of the functions D, and the

corresponding migration rate pm. However, only those settings

of the parameter pair where the best results were obtained, are

considered in the table.

As can be seen from Fig. 5, the quality of the proposed

gPVajDE algorithm depends on the number of islands. In

line with this, the smaller number of islands was better

than the higher. However, the gPVajDE using monolithic

population (i.e., c−1) was not a preferable configuration, and

must be excluded from the former assumption. The cause for

this finding lies in the fact that all gPVajDE configurations

used the same number of fitness function evaluations in one

algorithm’s run. Consequently, the gPVajDE configurations

using more islands demand more small-sized sub-populations

that are inefficient for the search process due to suffering a lack

of population diversity. On the other hand, the configuration

using a monolithic population maintains the higher population

diversity, but suffers a lack of selection pressure. As a result,

the proper bias between the population diversity and selection

pressure ensure the optimal results of the configured gPVajDE

algorithm. In our case, the reasonable number of islands must

be higher than, or equal to two, but lower than, or equal

to six. Increasing the population size over the maximum,

or decreasing the minimum values deteriorated the results of

gPVajDE drastically.

Discussion

Four hypotheses were set at the beginning of the section and

showing their validity was the subject of our experimental
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a. Dimension D = 10 (pm = 0.002). b. Dimension D = 30 (pm = 0.001). c. Dimension D = 50 (pm = 0.002).

Fig. 5. The results of comparative analysis using the Nemenyi post-hoc statistical test.

work. The following conclusions are summarized based on the

performed work:

1. The results of applying the different gPVajDE configurations

showed that this evolutionary algorithm is capable of

solving the global optimization problems. However, the

quality of the results depends on the proper parameter

setting. Because this setup is not known in advance,

extensive searching is needed for the optimal parameters.

2. Using the NLSR feature within the gPVajDE improves

the results compared with its counterpart using the LSR

irrespective of the problem dimension.

3. According to population diversity, it was found out

that the proposed gPVajDE consisting of two and three

islands maintains the population diversity longer than

the traditional algorithms by optimizing the unimodal

and simple multimodal functions, while the gPVajDE

maintaining the monolithic population produced worse

results than the traditional ones by optimizing all

four groups of benchmark functions. Interestingly, the

traditional algorithms, especially DE, are competitive

according to the results achieved with the proposed

gPVajDE, also by optimization of both hybrid and

composition functions. Obviously, the main advantage of

different configurations of the proposed algorithms presents

the explicit control of losing the population diversity that

can cause the algorithm to climb out from the local optima

in certain situations.

4. In terms of comparison with the other traditional and

state-of-the-art algorithms, it was found that the proposed

gPVajDE algorithms are comparable, if not better, than

the traditional stochastic nature-inspired population-based

algorithms, like DE, jDE, and SaDE, but the results of the

state-of-the-art algorithms, like jSO, and L-Shade, stayed

an unreachable goal for the gPVajDE at the moment.

Under the aforementioned assumptions, the posted hypotheses

hold for gPVajDE using more than one agent and less than six

agents.

Conclusion

The question of how to maintain the diversity of population

has been followed by researchers in the evolutionary community

from the beginning. In this study, this problem is addressed

by introducing the parallel gPVajDE algorithm, where the

individuals are capable of executing some actions, with

which they modify their programming environment and,

thus, have more autonomy than those in the classical EAs.

Additionally, the algorithm incorporates two mechanisms:

aging, and adaptive population growth. While the former

controls the action death, the latter navigates between the

actions reproduction and clone implemented as different DE

mutation strategies.

The proposed gPVajDE was applied for solving the CEC’18

benchmark function suite of three dimensions (i.e., D =

10, D = 30, and D = 50) representing a test-bed for

global optimization. During huge experimental work, the

influence of the aging and the new adaptive population growth

mechanisms were discovered in detail. Then, the configuration

of the gPVajDE with the optimal setting of parameters was

searched for. Finally, the results produced by various gPVjaDE

configurations were compared with some traditional stochastic

nature-inspired population-based algorithms, like DE, jDE, and

SaDE, and some state-of-the-art algorithms, like jSO, and L-

Shade. From the comparative analysis, it can be seen that

the results of the proposed gPVajDE are comparable with

those of the traditional algorithms in question, while needing

some improvements to become also more competitive with the

state-of-the-art ones.

In the future, we would like to build the gPVajDE with

pure agents capable of decision-making at the individual’s level.

Applying the algorithm for solving the other hard optimization

problems seem to be a very challenging task for the future.
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8. Lloyd Demetrius, Stéphane Legendre, and Peter Harremöes.
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