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Simple Summary: Colorectal cancer (CRC) is a major burden of disease worldwide. Increasing
scientific evidence highlights the role of the gut microbiota in the initiation, development and
treatment of CRC. Currently, the analysis of CRC-associated gut microbiota has several limitations
that hinder its implementation in precision medicine, including selection of sample type, sequencing
platform and taxonomic classification. This article aims to address these constraints to provide data on
CRC-associated microbiota and facilitate the implementation of its analysis in personalized medicine.
To this end, mucosa-associated microbiota from paired tumor and non-tumor adjacent tissue samples
from 65 CRC patients was analyzed through V3–V4 region of 16S rRNA gene amplification, MinION
sequencing and NCBI taxonomic classification. Results consistent with available evidence have been
obtained. Moreover, to our knowledge, this is the first study that identifies the possible association
between a higher relative abundance of Streptococcus periodonticum and a lower relative abundance of
Corynebacterium with CRC.

Abstract: Background/Objective: Colorectal cancer (CRC) is one of the most common cancers
worldwide. Increasing scientific evidence supports the idea that gut microbiota dysbiosis accompanies
colorectal tumorigenesis, and these changes could be causative. Implementing gut microbiota analysis
in clinical practice is limited by sample type, sequencing platform and taxonomic classification. This
article aims to address these limitations, providing new insights into the microbiota associated with
CRC pathogenesis and implementing its analyses in personalized medicine. Methods: To that aim, we
evaluate differences in the bacterial composition of 130 paired tumor and non-tumor adjacent tissues
from a cohort of CRC patients from the Biobank of the University of Navarra, Spain. The V3–V4 region
of the 16S rRNA gene was amplified, sequenced using the MinION platform, and taxonomically
classified using the NCBI database. Results: To our knowledge, this is the first study to report an
increased relative abundance of Streptococcus periodonticum and a decreased relative abundance of
Corynebacterium associated with CRC. Genera such as Fusobacterium, Leptotrichia and Streptococcus
showed higher relative abundances in tumor than in non-tumor tissues, as previously described
in the literature. Specifically, we identified higher levels of Fusobacterium animalis, Fusobacterium
nucleatum, Fusobacterium polymorphum and S. periodonticum in tumor tissues. In contrast, genera
such as Bacteroides and Corynebacterium showed lower relative abundances in tumor tissues. There
were also differences at the taxonomic level between tumor locations. Conclusions: These results,
consistent with previous studies, further support the hypothesis that Leptotrichia and Fusobacterium
contribute to CRC progression, with F. nucleatum and F. animalis proposed as key CRC pathogenic
taxa. Overall, these results contribute to a better understanding of the CRC-associated microbiota,
addressing critical barriers to its implementation in personalized medicine.
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1. Introduction

Colorectal cancer (CRC) is one of the most common cancers and a major global burden
of disease. In 2022, more than 1.9 million new cases and more than 900,000 deaths were
estimated worldwide due to this disease. Despite advances in prevention, diagnosis and
treatment, by 2045, the incidence and mortality of CRC are projected to increase by 70.5%
and 83.4%, respectively [1].

Increasing scientific evidence has shown that human gut microbiota plays a critical
role in CRC pathogenesis [2,3]. The gut microbiota, the community of microorganisms
symbiotically inhabiting our gut, can be modulated by several lifestyle factors, among
which diet stands out [4]. It is estimated that a 70% reduction in CRC incidence could be
achieved by following a healthy and balanced diet [5,6]. Scientific evidence suggests that
the key link between CRC and diet may lie in the gut microbiota [7,8].

Gut microbiota composition imbalance, known as dysbiosis, contributes to the start
and progression of CRC. Previous works have identified CRC key pathogens, such as
Fusobacterium nucleatum [9,10], Streptococcus gallolyticus [11], enterotoxigenic Bacteroides
fragilis [12], Peptostreptococcus anaerobius [13] and Clostridioides difficile [14]. These pathogens
may contribute to colorectal carcinogenesis directly by damaging DNA and stimulating
colonocyte proliferation or indirectly by promoting a favorable environment for CRC
development [15,16]. Otherwise, some bacteria in the gut microbiota exert protective
effects against CRC. The main mechanisms by which the gut microbiota plays a key role
in colorectal carcinogenesis include intestinal permeability regulation, inflammation and
immune response modulation, biofilm formation, genotoxin production, virulence factors,
oxidative stress and metabolite production [17].

There are two hypotheses regarding the role of the gut microbiota in colorectal carcino-
genesis. The “alpha-bug” hypothesis suggests that certain pro-oncogenic microorganisms
can displace cancer-protective bacteria and colonize the tumor persistently, creating an
environment favorable for tumorigenesis [18]. On the other hand, the driver-passenger
model suggests that “driver” bacteria that initiate CRC are then replaced by “passenger”
bacteria with growth advantages in the tumor microenvironment (TME) that may exert
promoting or inhibiting effects on the tumor progression [19].

Due to scientific evidence supporting its influence on CRC pathogenesis, gut micro-
biota is becoming increasingly important in personalized medicine, which relies on patients’
genetic and molecular characteristics to adapt the therapeutic strategy [20].

Consequently, we hypothesized that microbiota composition would differ between
paired tumor and non-tumor adjacent tissues of CRC patients and between tumor locations
and that analyzing these possible differences would help better understand how the tumor
microbiota influences the pathogenesis of CRC. Specifically, (1) we compared paired tumor
and non-tumor adjacent tissues from 65 Spanish CRC patients, and (2) we examined
differences in microbial composition concerning the tumor location.

However, several challenges in analyzing the CRC-associated microbiota limit its
implementation in personalized medicine, such as sample type, the sequencing platform,
and the database for bacterial taxonomic classification [21].

Regarding sample type, most published studies examining microbiota composition
in CRC have analyzed fecal samples. Although easy to obtain, fecal samples contain
microbiota from different intestinal locations and do not adequately reflect microbiota
interactions within the intestinal epithelium and TME as direct tumor tissue samples do.
However, despite the importance of local CRC tissue-associated microbiota, there is a lack
of solid direct information on tumor tissue samples [21].
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Regarding sequencing platforms, microbiota analysis is limited in personalized medicine
due to the lack of access to expensive and time-consuming conventional technology [22].
In this context, the sequencing platform MinION from Oxford Nanopore Technologies
(ONT) implies a revolution exhibiting translational potential in clinical practice due to its
portability, low cost and real-time sequencing [23,24].

Finally, the taxonomic assignment of 16S ribosomal RNA (rRNA) gene reads is com-
monly carried out by SILVA, RDP or Greengenes. While those tools map well on NCBI, the
contrary is problematic because NCBI comprises more taxa and sequences and is continu-
ously updated and curated. As a result, NCBI shows higher effectiveness in classifying 16S
rRNA gene reads than the other available tools [25].

Overall, this study aims to overcome the main challenges in CRC-associated microbiota
analysis, including sample type, the sequencing platform, and the database for bacterial
taxonomic classification, to enhance our understanding of CRC-associated gut microbiota
alteration and facilitate the implementation of their analysis in personalized medicine.

To this end, we amplified V3–V4 regions of the 16rRNA bacterial gene by the se-
quencing platform MinION and performed the taxonomic assignment using the NCBI
Taxonomy Database.

2. Materials and Methods
2.1. Ethics Statement and Sample Collection

One hundred and thirty paired tumor and non-tumor adjacent tissue samples were
obtained from 65 CRC patients of the Biobank of the University of Navarra, Spain. Sam-
ples and data from patients included in the study were provided by the Biobank of the
University of Navarra and were processed following Standard Operating Procedures
approved by the Ethical and Scientific Committees of Clinica Universitaria de Navarra
(CUN) for the research (REINFORCE_0011-1411-2020-000102). All individuals gave written
informed consent.

Samples from tumor and non-tumor adjacent mucosal tissues were obtained from
each CRC patient by biopsy forceps during endoscopy and tumor removal surgery in the
CUN. The pathologist selected, if possible, a fragment of tumor tissue and a fragment of
non-tumor adjacent mucosal tissues. A Biobank technician, working in sterile conditions
and with the material on dry ice, cut the selected tissue into small 2–3 mm square fragments
placed in a cryotube for immediate freezing in dry ice. All were registered and stored at
−80 ◦C at the Biobank until DNA extraction.

The general information (age and gender) and clinical data (tumor location, tumor
differentiation and tumor stage) of samples are shown in Supplementary Table S1. For the
65 CRC patients, the origin of the paired tissue samples was diverse: the colon for 27, the
rectum for 28, the sigmoid colon for 9 and the cecum for 1.

2.2. DNA Extraction and Quantitation

DNA was extracted using the Danagene Microbiome Tissue DNA kit (Danagen-Bioted
S.L., Barcelona, Spain). DNA quantitation was carried out by fluorometry (Qubit 2.0, Life
Technologies, Carlsbad, CA, USA, Thermo Fisher Scientific, Waltham, MA, USA) using HS
dsDNA Assay (ThermoFisher Scientific, Waltham, MA, USA) and by spectrophotometry
(NanoDrop 2000c, Thermo Fisher Scientific, Waltham, MA, USA). Negative DNA extraction
controls were included.

2.3. PCR Amplification

PCR amplification of the 450 base pair (bp) V3–V4 region of the 16S rRNA gene was
conducted using the Molzym Mastermix 16S complete DNA-free kit (Molzym, Bremen,
Germany). Amplification was performed using an Applied Biosystems VeritiTM Thermal
Cycler (Thermo Fischer Scientific, Waltham, MA, USA) according to the manufacturer’s
protocol. Negative PCR amplification controls were included.
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2.4. Library Preparation and Amplicon Sequencing

PCR products were purified using magnetic beads of the Clean NGS reagent (CleanNA,
Waddinxveen, The Netherlands). Then, each mixture was quantified by fluorometry (Qubit
2.0, Life Technologies, Carlsbad, CA, USA, ThermoFisher Scientific, Waltham, MA, USA)
using HS dsDNA Assay (ThermoFisher Scientific, Waltham, MA, USA) to calculate the
DNA input for library preparation.

Multiplex MinION sequencing was carried out using 16S rRNA gene amplicons
(SQK-NBD114.96; Oxford Nanopore Technologies, Oxford, UK). In addition, 130 ng DNA
per sample was used for amplicon library preparation. As different clinical samples
were combined into pooled libraries to homogenize conditions and obtain comparable
results, barcoded adapters were used. During this process, end-repair procedures and
adapter ligation were carried out. MinIONTM sequencing was performed using a MinION
nanopore DNA sequencer (MIN-101B) and Flow Cell R10 (FLO-MIN114) according to the
manufacturer’s instructions (Oxford Nanopore Technologies, Oxford, UK).

2.5. Data Acquisition and Sequencing Data Analysis

MINKNOW UI software version 23.04.3 (Oxford Nanopore Technologies, Oxford,
UK) was used for data acquisition and base-calling converting sequence reads (i.e., FAST5
data) into FASTQ files by Guppy version 6.5.7 pipeline (Oxford Nanopore Technologies,
Oxford, UK).

The Barcoding workflow in the Metrichor Ltd. analysis platform EPI2ME (Oxford
Nanopore Technologies, Oxford, UK) was used for taxonomic classification. For that pur-
pose, FASTQ files were uploaded to the EPI2ME desktop agent 16S workflow (Oxford
Nanopore Technologies, Oxford, UK), where real-time classification was carried out us-
ing the NCBI 16S rRNA gene blast database. Reads were filtered for Q-score ≥ 9. The
MinION was run for up to 48 h. Results were processed by in-house software to avoid
infra representation of each taxonomical ID and convert reads in relative abundance ac-
cording to the estimated 16S gene copy number (GCN) for each taxon based on the rrnDB
database version 5.9 [26].

2.6. Bioinformatics Analysis

For α-diversity analysis, community richness was calculated using the number of
observed Operational Taxonomic Units (OTUs) and the Chao1 index, whereas diversity and
evenness were analyzed by calculating the Shannon–Weaver index [27] and the Simpson
index [28] using Python 3.11. Data visualization for α-diversity results was performed
with box plots using Python 3.11. For β-diversity analysis, two metrics for OTUs relative
abundance were generated: Bray–Curtis dissimilarity and Jaccard index and the corre-
spondent matrices. The β-diversity results were plotted using PAST 4.13 in a Principal
coordinates analysis (PCoA). Bioinformatic analysis was performed to establish specific
qualitative and quantitative microbiota compositions between groups using GraphPad 8.0.
Data visualization for differential abundance analysis was performed with stacking maps
and violin plots using SRPlot [29].

2.7. Statistical Analysis

A two-tailed paired t-test was performed to compare α-diversity mean differences
between tumor and non-tumor tissue groups for the number of observed OTUs, Chao1,
Shannon and Simpson indexes. The Mann–Whitney U test was performed to compare
α-diversity mean differences between colon, rectum and sigmoid colon tumor tissue loca-
tions. A p-value below 0.05 was considered to be statistically significant.

To evaluate differences in β-diversity, we used Analysis of Similarities (ANOSIM) and
Permutational Multivariate Analysis of Variance (PERMANOVA) tests using two metrics,
Bray–Curtis dissimilarity and Jaccard index, in PAST 4.13.
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Multiple t-tests were used to evaluate OTUs relative abundance differences between
tumor and non-tumor tissue groups in GraphPad Prism 8.0. The Benjamini, Krieger and
Yekutieli method for controlling the False Discovery Rate (FDR) was used to consider multiple
comparisons. FDR-adjusted p-values below 0.01 were considered statistically significant.

3. Results
3.1. Sequence Analysis

We analyzed the microbiota composition of paired tumor and non-tumor adjacent
tissue samples from 65 CRC patients. 27,305,189 raw reads were analyzed through 16S
rRNA gene sequencing with a mean length of 637.37 ± 13.2 bp, and an average quality score
of 10 ± 0.36. Two paired tissue samples were excluded because no reads were obtained
for the non-tumor sample. A total of 25,193,582 reads were assigned to the remaining
128 samples. After quality filtering, 18,878,209 high-quality reads from the 128 samples
were obtained. The average reads per sample for the tumor and non-tumor tissues were
155,274 ± 188,803 and 136,836 ± 160,153, respectively (p = 0.421) (Figure 1). Overall,
3879 different OTUs were identified at a 97% similarity threshold.
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Figure 1. Venn diagram of the shared OTUs among tumor and non-tumor adjacent tissue samples.

3.2. α- and β-Diversity
3.2.1. α-Diversity of Microbiota in Tumor Compared to Non-Tumor Adjacent Tissue
Samples of CRC Patients

We observed higher community richness (number of OTUs, Chao1 index) and diver-
sity and evenness (Shannon and Simpson indexes) in the non-tumoral compared to the
tumoral group.

Three thousand eight hundred and seventy-nine OTUs were identified, with 127 OTUs
shared among non-tumor and tumor tissue samples (Figure 1). The average number of
OTUs (mean value ± standard error) in the non-tumor and tumor tissue was 503 ± 180
and 488 ± 178, respectively (p = 0.499).

A comparison between non-tumor and tumor tissue only reported statistically significant
differences for Shannon Index (5.73 ± 0.69 and 5.41 ± 1.03, respectively; p = 0.014), while
no statistically significant differences were reported for Chao1 (277 ± 127 and 268 ± 123,
respectively; p = 0.565) or Simpson indexes (0.93 ± 0.09 and 0.95 ± 0.03, respectively;
p = 0.069) (Figure 2).
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3.2.2. β-Diversity of Microbiota in Tumor Compared to Non-Tumor Adjacent Tissue
Samples of CRC Patients

The present study analyzed β-diversity between tumor and non-tumor tissue using
PCoA of two metrics (Bray–Curtis and Jaccard) and ANOSIM and PERMANOVA analysis
(Figure 3). According to Bray–Curtis dissimilarity, the mucosal microbiota composition
differed between tumoral and non-tumoral groups. No statistically significant differences
were obtained for the Jaccard index. Six samples were classified as outliers by Bray–Curtis
dissimilarity and consequently removed for α-diversity, taxa differential abundance and
different tumor location analyses.
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Figure 3. β-diversity of microbiota in tumoral compared to non-tumoral groups of CRC patients.
The principal coordinates analysis (PCoA) plots were based on two metrics: Bray–Curtis dissimi-
larity and Jaccard index. Ellipses represent the area in which the sample is expected to be with a
95% confidence level.

3.3. Specific Microbiota Compositional Differences Between Tumor and Non-Tumor Adjacent
Tissue Samples

Significant relative abundance variations were observed in the microbiota of tumor
and non-tumor tissue samples at different taxonomic bacterial levels (Tables 1 and 2).
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Table 1. Over-represented bacterial taxa in tumor compared to non-tumor adjacent tissue samples.

Taxa Name Rank
Mean of Tumor

Relative
Abundance (%)

Mean of Non-Tumor
Relative

Abundance (%)
p-Value Log 2 Fold

Change
Occurrence in

Tumor (%)
Occurrence in

Non-Tumor (%)

Fusobacteriota Phylum 3.49 1.38 <10−6 1.33 100 100

Bacilli Class 4.09 2.47 <10−6 0.72 100 100

Fusobacteriia Class 3.48 1.39 <10−6 1.33 100 100

Fusobacteriales Order 3.49 1.39 <10−6 1.33 100 100

Lactobacillales Order 4.25 2.44 <10−6 0.80 100 100

Fusobacteriaceae Family 2.18 1.01 <10−6 1.11 100 100

Leptotrichiaceae Family 0.91 0.08 <10−6 3.58 66.1 57.6

Streptococcaceae Family 3.17 1.89 <10−6 0.75 100 100

Fusobacterium Genus 2.89 1.34 <10−6 1.10 100 100

Leptotrichia Genus 0.75 0.06 2 ×
10−6 3.59 66.1 57.6

Streptococcus Genus 3.23 1.90 <10−6 0.77 100 100

Fusobacterium nucleatum Species 2.34 1.03 <10−6 1.19 100 100

Fusobacterium polymorphum Species 0.62 0.13 5.3 ×
10−3 2.29 76.3 72.9

Streptococcus periodonticum Species 2.25 0.99 <10−6 1.19 100 100

Taxonomic name refers to the current name in the NCBI Taxonomy Browser (https://www.ncbi.nlm.nih.gov/
Taxonomy/Browser/wwwtax.cgi; accessed on 19 September 2024).

Table 2. Under-represented bacterial taxa in tumor compared to non-tumor adjacent tissue samples.

Taxa Name Rank
Mean of Tumor

Relative
Abundance (%)

Mean of Non-Tumor
Relative

Abundance (%)
p-Value Log 2 Fold

Change
Occurrence in

Tumor (%)
Occurrence in

Non-Tumor (%)

Actinomycetota Phylum 4.76 7.39 <10−6 −0.64 100 100

Bacteroidota Phylum 17.12 20.08 <10−6 −0.23 100 100

Pseudomonadota Phylum 6.60 7.71 <10−6 −0.22 100 100

Actinomycetes Class 2.72 4.39 <10−6 −0.69 100 98.3

Alphaproteobacteria Class 0.50 1.31 <10−6 −1.40 81.4 88.1

Bacteroidia Class 11.42 13.35 <10−6 −0.23 100 100

Betaproteobacteria Class 1.72 2.66 <10−6 −0.62 98.3 98.3

Clostridia Class 18.19 20.25 <10−6 −0.15 100 100

Bacteroidales Order 11.75 13.74 <10−6 −0.23 100 100

Eubacteriales Order 14.16 15.77 <10−6 −0.15 100 100

Mycobacteriales Order 1.08 2.03 <10−6 −0.92 96.6 98.3

Bacteroidaceae Family 4.36 5.32 <10−6 −0.29 100 100

Corynebacteriaceae Family 0.64 1.19 8.6 ×
10−4 −0.89 96.6 96.6

Lachnospiraceae Family 7.48 8.46 <10−6 −0.18 100 100

Propionibacteriaceae Family 1.20 1.85 1 × 10−5 −0.62 88.1 93.2

Bacteroides Genus 5.25 6.41 <10−6 −0.29 100 100

Corynebacterium Genus 0.64 1.19 8.6 ×
10−4 −0.89 96.6 96.6

Taxonomic name refers to the current name in the NCBI Taxonomy Browser (https://www.ncbi.nlm.nih.gov/
Taxonomy/Browser/wwwtax.cgi; accessed on 19 September 2024).

The phylum Bacillota, Bacteroidota, Pseudomonadota (former Proteobacteria) and
Actinomycetota, common members of the human gut microbiota, formed more than 90% of
bacterial phyla in tumor and non-tumor tissue samples (Figure 4a). The relative abundances
at the phylum level in the tumor and non-tumor tissue samples were compared. We

https://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi
https://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi
https://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi
https://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi
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observed a significant difference in four detected phyla between sample groups. The
relative abundance of Actinomycetota, Bacteroidota and Pseudomonadota was significantly
higher in the non-tumor than in tumor samples. In contrast, Fusobacteriota was significantly
higher in tumor samples (Figure 4b).

 
  Figure 4. Different bacterial distribution among tumor and non-tumor adjacent tissue samples at
the phylum level. (a) Stacked bar plots of bacterial taxa distribution at the phylum level. (b) Violin
plot representing the relative abundance of the phylum significantly different between tumor and
non-tumor tissues: Actinomycetota, Bacteroidota, Pseudomonadota and Fusobacteriota.

Seven taxa showed statistically significant differences between tumor and non-tumor
tissue samples at the class level (Tables 1 and 2). The relative abundance of Bacilli and
Fusobacteriia in the tumor tissues was significantly higher than in the non-tumor tis-
sues. The relative abundance was significantly lower for the tumor tissues of Actino-
mycetes, Alphaproteobacteria, Bacteroidia, Betaproteobacteria, and Clostridia than the
non-tumor tissues.

Four taxa showed statistically significant differences between tumor and non-tumor
tissue samples at the order level (Tables 1 and 2). Fusobacteriales and Lactobacillales
were significantly higher in the tumor compared to the non-tumor tissues. In contrast,
Bacteroidales, Eubacteriales, and Mycobacteriales were significantly decreased in tumors
compared to the non-tumor tissues.
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The microbiota composition also differed at the family level, with seven significantly
different families between tumor and non-tumor tissues (Tables 1 and 2). The relative
abundance of Fusobacteriaceae, Leptotrichiaceae and Streptococcaceae was significantly
higher in the tumoral group than in the non-tumoral group. The relative abundance
of Bacteroidaceae, Corynebacteriaceae, Lachnospiraceae and Propionibacteriaceae was
significantly lower in the tumoral than in the non-tumoral group.

Bacteroides, Streptococcus, Fusobacterium, Prevotella and Blautia were the fifth most abun-
dant genus in tumor and non-tumor tissue samples. Interestingly, among the 20 most
abundant genera in tumor and non-tumor tissues, 17 were common, while Leptotrichia,
Granulicatella and Campylobacter were also found in tumor tissues and Lachnospira, Clostrid-
ium and Dorea in non-tumor tissues (Figure 5a). 

2 

 
Figure 5. Different bacterial distribution among tumor and non-tumor adjacent tissue samples at
the genus level. (a) Stacked bar plots of bacterial taxa distribution at the genus level. (b) Violin
plot representing the relative abundance of the genus significantly different between tumor and
non-tumor tissues: Fusobacterium, Leptotrichia, Streptococcus, Bacteroidetes and Corynebacterium.

The relative abundance of three genera was significantly higher in tumor tissue sam-
ples (Tables 1 and 2): Fusobacterium, Leptotrichia and Streptococcus. In contrast, two genera,
Bacteroides and Corynebacterium, were significantly reduced (Figure 5b).
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In tumor tissue samples, species assigned to F. nucleatum, Fusobacterium polymorphum
and Streptococcus periodonticum had significantly higher relative abundances than non-
tumor samples. Two strains, F. polymorphum ATCC 10953 and Fusobacterium animalis ATCC
51191, were significantly more abundant in tumor samples.

3.4. Tissue-Associated Microbiota Differences Related to Tumor Location in CRC Patients

We observed relevant differences in the composition of the microbiota according to
location: colon, rectum and sigmoid colon. After removing the outliers and the only sample
from the cecum, the analysis included 25 tumor samples from the colon, 24 from the rectum
and 9 from the sigmoid colon. Evaluation of α-diversity between CRC tumor tissue samples
from the colon, rectum and sigmoid colon revealed no significant differences (Figure 6).
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Figure 6. Community richness (number of OTUs, Chao1 index) and diversity and evenness (Shannon
and Simpson indexes) were analyzed between CRC tumor tissue samples from the colon, rectum and
sigmoid colon.

The analysis of the ANOVA test for β-diversity showed significant differences between
colon and rectum tumors, colon and sigmoid colon tumors, and rectum and sigmoid colon
tumors for Jaccard Index but not for Bray–Curtis dissimilarity. No statistically significant
differences were obtained for the PERMANOVA test (Table 3).
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Table 3. ANOVA and PERMANOVA test for β-diversity of microbiota between tumor tissue samples
with different locations.

β-Diversity
Colon vs. Rectum Colon vs. Sigmoid Colon Rectum vs. Sigmoid Colon

Metric ANOSIM PERMANOVA ANOSIM PERMANOVA ANOSIM PERMANOVA

Bray–Curtis
R = 0.02825
p = 0.0978

F = 1.821
p = 0.0624

R = 0.1895
p = 0.054

F = 1.087
p = 0.335

R = 0.099
p = 0.1587

F = 0.7444
p = 0.6527

Jaccard
R = 0.05181
p = 0.0285

F = 1.34
p = 0.0649

R = 0.3916
p = 0.0016

F = 1.422
p = 0.0534

R = 0.2703
p = 0.0095

F = 1.131
p = 0.2193

At the taxonomic level, there were significant differences between colon and rectum
tumors, colon and sigmoid colon tumors, and rectum and sigmoid colon tumors.

Our results indicated that tumoral microbiota from the colon compared to the rectum
was characterized by a preponderance of Prevotella, Roseburia, Granulicatella, Leyella stercorea,
Agathobacter rectalis, Phocaeicola plebeius and Granulicatella elegans (Supplementary Table S2). In
contrast, colon tumors compared to rectum showed a decrease in Alistipes, F. animalis, F. nucleatum,
F. polymorphum, Fusobacterium vincentii and S. periodonticum (Supplementary Table S3).

Concerning tumors from the colon compared to the sigmoid colon, there was an increase
in Roseburia, Prevotella, Granulicatella, L. stercorea and G. elegans (Supplementary Table S4). In
contrast, colon tumors compared to the sigmoid colon showed a decrease in Peptoniphilus,
Staphylococcus, Streptococcus and Fusobacterium. At the species level, colon tumors showed
a decrease in F. nucleatum, F. polymorphum, F. vincentii, Peptoniphilus lacrimalis, Phocaeicola
coprocola, Porphyromonas endodontalis, S. periodonticum and Waltera intestinalis compared to
sigmoid colon tumors (Supplementary Table S5).

For tumors from the rectum compared to the sigmoid colon, there was an increase
in Fusobacterium and F. animalis (Supplementary Table S6). In contrast, rectum tumors
compared to sigmoid colon showed a decrease in Peptoniphilus, Staphylococcus, Streptococcus,
P. lacrimalis, P. coprocola, S. periodonticum and W. intestinalis (Supplementary Table S7).

4. Discussion

The development of CRC is associated with genetic and environmental factors, among
which diet stands out [5,6]. The available scientific evidence suggests that the link between
diet and CRC lies in the gut microbiota [7,8]. A growing body of scientific research has
recently shown that gut microbiota can directly affect colorectal tumorigenesis [30].

In the present research, we analyzed the microbiota composition of the paired tumor
and non-tumor adjacent tissue samples of the large intestine of CRC patients by a large
amplicon, including the V3–V4 regions of 16S rRNA gene with MinION sequencing plat-
form and by NCBI taxonomic classification. This innovative methodology allowed for the
finding of significant variations in the relative abundance of bacteria at different taxonomic
levels between tumor and non-tumor tissues. These findings are largely consistent with
previous studies, and simultaneously, the methodology favors revealing new key taxa even
at lower taxonomic levels, such as species and strains [21,31].

The relative abundance of phylum Fusobacteriota (p < 10−6), genera Fusobacterium
(p < 10−6), Leptotrichia (p = 2 × 10−6), and Streptococcus (p < 10−6) was significantly higher
in tumor samples. On the other hand, the relative abundance of phyla Actinomycetota, Bac-
teroidota, and Pseudomonadota (p < 10−6), and genus Bacteroides (p < 10−6) and Corynebac-
terium (p = 8.6 × 10−4) was significantly lower in tumor samples. Moreover, although it is
necessary to approach these results cautiously, this study showed a higher abundance in
tumor samples of F. nucleatum (p < 10−6), F. polymorphum (p = 5.3 × 10−3), S. periodonticum
(p < 10−6) species and F nucleatum subsp. polymorphum ATCC 10953 and F. animalis ATCC
51191 strains (p < 10−6) compared to non-tumor tissue samples. Despite the scientific
interest of those results, those at species and especially at strain levels should be taken
cautiously and replicated in future studies, considering the limitations inherent to the
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available amplicon length and the sequence databases resolution. To the best of our knowl-
edge, the present study is the first to identify the possible increased relative abundance of
S. periodonticus and decreased Corynebacterium association with CRC.

On the other hand, bacteria of the phylum Fusobacteriota were more predominant
among the tumor tissue than non-tumor tissue samples, as previously reported [32–34].
Fusobacteriota is an understudied phylum of bacteria, including Fusobacteriaceae and
Leptotrichiaceae families, both enriched in tumor compared to the non-tumor tissues,
consistent with past studies [35]. Fusobacterium is a genus included in the first family and
Leptotrichia in the second one, which was also increased in tumor tissue [36,37]. Notably,
several studies have pointed out that the combination of Fusobacterium and Leptotrichia may
contribute to the progression of CRC [38].

The molecular mechanisms through which Fusobacterium and especially genus mem-
bers, such as F. nucleatum and F. animalis, influence CRC are increasingly well described,
whereas the ones for Leptotrichia are still poorly known [39]. Leptotrichia invasive infections
have been reported in patients receiving high-dose chemotherapy [40] and in oral disease
in immunocompromised patients [41]. One of the most studied species from the genera is
Leptotrichia trevisanii, an anaerotolerant, anaerobic, opportunistic gram-negative pathogen.
Its ability to produce mainly lactic acid from glucose fermentation distinguishes it from
closely related Fusobacterium species [41]. Leptotrichia trevisanii has been described as a
causal agent of severe sepsis in immunocompetent patients, particularly in patients with
hematological malignancies receiving chemotherapy [42].

According to previous studies, F. nucleatum was significantly enriched in the tumor
compared to the non-tumor tissues [32,43,44]. F. nucleatum is an anaerobe gram-negative
opportunistic pathogen ubiquitous in the human oral microbiota [45]. The oral cavity con-
tributes to CRC tumor seeding [46]. Independently of clinical, pathological and molecular
features, the amount of F. nucleatum in CRC tissue has been positively associated with
mortality [47]. F. nucleatum has been related to genetic and epigenetic lesions in CRC tissues.
F. nucleatum is an invasive and proinflammatory microorganism capable of stimulating
CRC cell proliferation through different mechanisms: proliferation and metabolism pro-
motion, immune microenvironment reprogramming, proinflammatory microenvironment
creation, anticancer immune responses inhibition and metastasis and chemoresistance
promotion in CRC [48]. These carcinogenic effects could be mediated by components
such as lipopolysaccharides and adhesins like FadA and Fap2 [35]. Hence, F. nucleatum
is considered a diagnosis biomarker, a prognostic predictor and a promising target in
CRC treatment [35,36].

The F. nucleatum subspecies genetic and phenotypic heterogeneity has prompted
research into differential genetic attributes among species contributing to CRC initiation
and progression [49]. In this regard, currently, there is a controversy about the taxonomic
classification of F.nucleatum. Previous genetic analyses have reported that it comprises
five subspecies usually found in oral microbiota: F. nucleatum subsp. nucleatum, subsp.
polymorphum, subsp. vincentii, subsp. fusiforme, and subsp. animalis [50]. However, the
taxonomic positions of members have been under discussion. In 2010, it was proposed that
F. nucleatum subsp. vincentii and subsp. fusiforme could be classified into one subspecies [51].
In 2017, it was proposed to elevate the four F. nucleatum subspecies (subps. nucleatum,
subps. polymorphum, subps. vincentii, and subps. animalis) to species-level status with a
wide diversity of significant strains [52].

In the present study, F. polymorphum showed higher relative abundance in tumor than
non-tumor tissue samples. Recently, F. polymorphum has been isolated from CRC patients
in their tumor tissue and oral cavity [53] and pre-CRC patients’ saliva [54]. Therefore, to
our knowledge, F. polymorphum has not been reported to be significantly enriched in CRC
tissue compared to non-tumor tissue, and hence, more studies are needed to confirm these
findings. The information scarcity could be because it was only in 2017 that F. polymorphum
was considered a species rather than a subspecies of F. nucleatum [52].
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On the other hand, F. animalis is considered the most common and pathogenic species
in CRC [55,56]; it also presented a higher relative abundance in tumor tissue than in non-
tumor tissue in our study. The presence of F. animalis has been previously associated with
right-sided tumor location and advanced tumor stages (stages II and III), with higher
CRC-specific mortality, and with specific mutations in somatic genes in CRC. In contrast,
Fusobacterium vincentii or F. nucleatum was not and may be driven by a stage shift and
chemoresistance [55]. The interaction of F. animalis ATCC 51191 with human intestinal
epithelial and tumor cells has been verified [57]. Recently, F. animalis has been suggested as
a primary target for mechanistic and therapeutic studies in CRC [49].

We observed that Streptococcus and S. periodonticus relative abundance was higher in
tumor than in non-tumor tissue samples. To the best of the author’s knowledge, this is the
first time that the association of S. periodonticus in CRC has been found. S. periodonticus
is a gram-positive coccus within the genus Streptococcus that has been recently isolated
from human subgingival dental plaque of periodontitis lesion [58]. S. periodonticus has
been associated with a pediatric case of bacterial meningitis after cranial surgery [59].
Interestingly, Streptococcus spp. internalization into epithelial cells could be facilitated by
the effect of Fusobacterium, which promotes coaggregation and facilitates internalization
processes in these normally non-invasive bacteria [60,61]. Interestingly, a bacterium of
the genus Streptococcus, S. gallolyticus, is a proinflammatory species remarkably associated
with CRC. This bacterium can express collagen-binding proteins such as Pil 1, allowing
it to colonize tissues and induce the secretion of proinflammatory mediators that can
promote CRC [11].

We observed that the relative abundance of phylum Actinomycetota, Bacteroidota and
Pseudomonadota was significantly higher in non-tumor than in tumor tissues. Past studies
have reached similar results [33,62–64]. However, some studies have reported enrichment
of the phylum Pseudomonadota in tumor tissue [65,66]. Although a Pseudomonadota
increase is generally considered an intestinal dysbiosis marker and gut commensals with
pathogenic potential [67], bacteria of the same taxonomic group may exert different effects
depending on functional characteristics, interactions and environment [63].

We observed that Bacteroides was enriched in non-tumor compared to tumor tissues,
which is in coherence with several previous studies [68–70]. However, Gao et al. observed
that Bacteroides was highly enriched in tumor tissues [63]. Bacteroides is thought to have both
positive and negative impacts on host health via their colitogenic or probiotic effects [71].

Corynebacterium genus showed higher relative abundance in non-tumor compared to
tumor tissues. To the best of our knowledge, there is no previous information related to this
genus in CRC tissue. Regarding cancer, the evidence is scarce and contradictory; one study
reported that oxidative tryptamine dimers from Corynebacterium durum exert anticancer
properties [72], whereas another study reported its contribution to induced colitis [73].

Differences in the microbial profiles observed between tumor and non-tumor tissues
could reflect the role of certain microbiota members in the initiation and development of
CRC or changes associated with the TME. Two main hypotheses have been proposed to
explain these interactions.

The “alpha-bug” hypothesis proposed by Sears and Pardoll suggests that detrimental
members of the microbiota, such as enterotoxigenic Bacteroides fragilis (ETBF), S. gallolyticus,
superoxide-producing Enterococcus faecalis and Escherichia coli, may act as cancer initiators
by directly inducing alterations in colonic epithelial cells and remodeling the colonic
microbial community to promote these alterations and disrupt immune responses [18].

In contrast, the bacterial driver-passenger model proposed by Tjalsma et al. suggests
that certain commensal bacteria (bacterial drivers), such as Enterococcus faecalis, can cause
epithelial DNA damage, leading to CRC initiation. Next, the process of tumorigenesis
induces modifications in the microenvironment that benefit relatively poor colonizing
bacteria (bacterial passengers) [19]. Bacterial passengers have been proposed to include
opportunistic pathogens that feed in the tumor (Fusobacterium or Streptococcus spp.), intesti-
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nal commensal or probiotic bacteria (Coriobacteriaceae family), and bacteria that have a
competitive advantage in the TME [19].

The microbial α-diversity refers to within-sample diversity. Although no significant
differences between groups were obtained for observed OTUs, Chao1 and Simpson in-
dices, the Shannon index was significantly reduced in tumor than in non-tumor tissue
samples. From our study, we can conclude that tumor samples present a lower microbial
diversity. Previous studies revealed similar results [33,65,74], no statistically significant
differences [68,75–77], and even reported that microbial α-diversity was significantly higher
in the tumor samples [78]. Therefore, there is no consensus between α-diversity metrics
behavior in tumor vs. non-tumor tissues.

The microbial β-diversity refers to between-sample diversity. In this study, Bray-
Curtis dissimilarity based on OTUs revealed that the microbiota composition of the tumor
tissues could be differentiated from non-tumor tissues. In contrast, no statistically sig-
nificant differences were observed with the Jaccard index. Some previous studies have
revealed similar results [33,64,66,69], while others reported no statistically significant
differences [74,76,79,80]. These discrepancies could be caused by the Bray–Curtis dissimi-
larity being based on the relative abundances of the OTUs, while the Jaccard index is based
on their presence/absence.

On the other hand, we identified associations between gut microbiota composition
and tumor location. Although there were no significant differences in α and β-diversity
analysis, we identified an enrichment of L. stercorea and G. elegans in colon tumors com-
pared to the rectum and the sigmoid colon. Likewise, the sigmoid colon showed a higher
relative abundance of Peptoniphilus, Staphylococcus, Streptococcus, P. lacrimalis, P. coprocola,
S. periodonticum and W. intestinalis than the colon and the rectum. The rectal tumors were
enriched in F. animalis compared to the colon and the sigmoid colon. Our results align
with previous evidence, supporting that characterization of the microbiota composition at
different sites in the large intestine can contribute to a better description of the molecular
subtypes of CRC [81,82].

As mentioned, CRC-associated microbiota research has key limitations, such as the sam-
ple type selection, the sequencing platform used and the taxonomy classification employed.

Regarding sample type, the present study analyzed the tissue CRC-associated mi-
crobiota from 130 paired tumor and non-tumor adjacent tissue samples, in contrast to
traditional microbiota analysis from fecal samples [21]. Fecal samples are commonly used
because they are easy to collect, non-invasive and repeatable, which makes them potential
tools for CRC screening and early detection. In addition, they are less likely to be con-
taminated by eukaryotic DNA [83,84]. Fecal microbiota can provide valuable information,
but it primarily reflects the composition of the intestinal lumen microbiota, and it does
not capture the same perturbations and interactions with the colonic mucosa critical to
CRC pathogenesis [85,86].

In contrast, as analyzed in the present study, mucosa-associated microbiota interacts
more closely with colonocytes and host local immunity, possibly playing a greater role in
CRC initiation and development than luminal microbiota. These interactions can lead to
gene expression modifications and inflammation, which may influence colorectal tumorige-
nesis [87]. Therefore, tissue samples are ideal for investigating the pathogenesis of CRC.
Moreover, tissue samples are considered more accurate for bacterial detection, show higher
microbial diversity than fecal samples, and are more suitable for identifying potentially
minor alterations in the microbiota of precancerous colorectal lesions [84]. Despite the
potential importance of tissue samples, studies examining the differential abundance of
associated microbiota in tumor and non-tumor tissue in CRC patients are scarce [21].

However, the analysis of tissue samples showed additional practical challenges. While
in fecal samples, our group usually analyzed the whole 16S rRNA gene (approximately
1500 bp) from fecal samples [88], after several attempts in tissue samples, the maximum am-
plicon size reached was approximately 450 bp corresponding V3–V4 region of the 16SrRNA
gene. Similar limitations have been observed when investigating mucosal microbiota with
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shotgun metagenomics [89]. We hypothesized that studying the complete 16SrRNA gene
amplicon in tissue samples is unfeasible due to human DNA’s high presence and the target
gene’s fragmentation. Nevertheless, the 450 bp reached in the current article comprises
significantly larger amplicons than those usually obtained by sequence platforms different
from MinION (200–300 bp), improving the potential taxonomic profiling [90]. The larger
read size combined with NCBI taxonomic classification improves the taxonomic profiling.

On the other hand, due to operative limitations, the present study did not include a
CRC-free control group because of the difficulty in obtaining colon samples from healthy
people. However, using paired tumor and non-tumor samples avoids the potential con-
founding factors when analyzing CRC and healthy controls, such as age, sex, body mass
index, diet and other characteristics [21,82].

Otherwise, tissue sampling is more invasive than fecal, limiting the number of samples
collected from the tumor and non-tumor tissues in the present study. It would be advisable
to analyze more samples from each patient for future research to examine the possible
heterogeneity of the microbiota composition associated with CRC tumor tissue [76]. In
addition, future longitudinal studies looking at changes in the microbiota over time would
provide a better understanding of whether specific bacteria play a role in the initiation
and progression of CRC or whether they are responding to TME. Finally, considering the
pros and cons of analyzing fecal or tissue samples, combining both seems valuable for
future research.

On the other hand, selecting a taxonomic classification database is essential for ana-
lyzing CRC-associated microbiota. The most used taxonomic classifications for 16S rRNA
gene studies vary in size (taxa amount) and resolution capacity (classification level). The
current scientific evidence shows that the taxonomic classification at the genus and species
level is essential to decoding the role of microbiota composition in CRC. In the present
article, we have selected the NCBI database because it contains the largest number of nodes
and the highest resolution. Thus, NCBI allows a more thorough classification, going down
to the species rank and below and offering several intermediate ranks [25].

In contrast, SILVA and RDP are limited to classifying the genus level as the lowest
rank. Although Greengenes goes down to species, the comparative analysis carried out
by Balvočiūtė & Huson showed that SILVA, RDP and Greengenes map well with NCBI
but not vice versa. Hence, they recommended using the NCBI taxonomy as a common
framework for 16S rRNA gene studies [25]. In addition, the NCBI taxonomy is manually
curated, covering more than 150 sources, and updated daily [91].

Nevertheless, taxonomy selection up to date is generally determined by the pipeline
used, and most studies that analyze tumor microbiota composition in CRC patients use
SILVA, RDP or Greengenes. Therefore, it dramatically limits the resolution and amplitude
of the previous results and reanalyzing them using the NCBI database could improve the
available scientific evidence regarding CRC-associated microbiota.

Regarding sequence platform selection in CRC research, access to sequencing technol-
ogy is an important limitation for implementing CRC-associated gut microbiota analysis in
precision medicine [22]. MinION from ONT is a revolutionary sequencing platform because
of its small size and portability, and it allows real-time sequencing of various samples on
demand at a competitive cost [23,24]. In the present article, MinION is used for its potential
to facilitate the implementation of microbiota analysis in precision medicine strategies for
CRC. Despite its advantages, to the best of our knowledge, the previous evidence using
the MinION sequencer for microbiota analysis of paired tumor and non-tumor tissues in
CRC patients is limited to a single article [22]. In this article, the authors did not carry out
16S rRNA gene amplicon sequencing with MinION but used MinION sequencing using
genomic DNA to analyze the microbiota. They conclude that long-read sequences gener-
ated using MinION allow differentiation between bacterial strains and plasmids, and as a
cost-effective and rapid sequencing tool, it has the potential for use in clinical settings [22].
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5. Conclusions

In this study, we detected an enrichment in genera such as Fusobacterium, Leptotrichia
and Streptococcus in tumor compared to non-tumor tissue samples. In addition, species
such as F. nucleatum, F. polymorphum, S. periodonticus and strains such as F. polymorphum
ATCC 10953 and F. animalis ATCC 51191 were also enriched in tumor tissue. On the other
hand, genera such as Bacteroides and Corynebacterium were enriched in non-tumor tissues.
In addition, differences in microbiota composition were observed between tumor locations
(colon, rectum and sigmoid colon).

The present study faces the main technical challenges in CRC-associated microbiota
regarding sample type, sequence platform, and taxonomic database. It comprises the
analysis of 130 paired tumor and non-tumor adjacent tissue samples in different locations by
larger amplicon sizes, including the V3–V4 region of 16S rRNA gene analyzed by MinION
suitable sequence platform, and using NCBI database, that increases the amplitude and
resolution in sequence taxonomy classification. These methodological advances agree
with earlier findings of microbiota composition differences between tumor and non-tumor
tissues. They also reveal the possible involvement of specific taxa, such as S. periodonticus
and Corynebacterium, in CRC biology for the first time.

Therefore, the results obtained in this study facilitate the implementation of individual
gut microbiota analysis in personalized medicine. This approach allows the development
of therapeutic strategies for CRC that consider this essential component of TME [20].
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