J Supercomput @ CrossMark
https://doi.org/10.1007/s11227-018-2318-5

Load balancing in a heterogeneous world: CPU-Xeon
Phi co-execution of data-parallel kernels

Raiil Nozal!® - Borja Perez! -
Jose Luis Bosque! - Ramén Beivide!

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Abstract Heterogeneous systems composed by a CPU and a set of different hardware
accelerators are very compelling thanks to their excellent performance and energy
consumption features. One of the most important problems of those systems is the
workload distribution among their devices. This paper describes an extension of the
Maat library to allow the co-execution of a data-parallel OpenCL kernel on a hetero-
geneous system composed by a CPU and an Intel Xeon Phi. Maat provides an abstract
view of the heterogeneous system as well as set of load balancing algorithms to squeeze
the performance out of the node. It automatically performs the data partition and dis-
tribution among the devices, generates the kernels and efficiently merges the partial
outputs together. Experimental results show that this approach always outperforms the
baseline with only a Xeon Phi, giving excellent performance and energy efficiency.
Furthermore, it is essential to select the right load balancing algorithm because it has
a huge impact in the system performance and energy consumption.

Keywords Heterogeneous computing - Co-execution CPU-Xeon Phi -
Load balancing - OpenCL - Performance portability - Energy efficiency

B Radl Nozal
raul.nozal @unican.es

Borja Perez
borja.perez@unican.es

Jose Luis Bosque
joseluis.bosque @unican.es

Ramén Beivide
ramon.beivide @unican.es

Computer Science and Electronics Department, University of Cantabria, Santander, Spain

Published online: 17 March 2018 &\ Springer

http://crossmark.crossref.org/dialog/?doi=10.1007/s11227-018-2318-5&domain=pdf
http://orcid.org/0000-0002-4927-9829

R. Nozal et al.

1 Introduction

One of the most important challenges of high-performance computing today is to reach
Exascale computers. Nowadays one of the most promising ways is the use of cluster-
based architectures with nodes that have great computing capacity. These nodes are
based on multi-core processors and include hardware accelerators, such as GPUs or
Intel Xeon Phi.

Nonetheless, these nodes introduce new challenges, because the use of accelerators
turns them heterogeneous. Hence, the software development to efficiently exploit all
the available resources has to take into account this heterogeneity. Therefore, the
use of a portable programming language on heterogeneous platforms is mandatory.
Open Computing Language (OpenCL) [14] is a framework for developing programs
to be executed across heterogeneous platforms such as many-core and multi-core
architectures.

However, when using OpenCL, the programmer is responsible for explicitly select-
ing and managing the devices as well as for partitioning the data among them.
Therefore, load balancing becomes one of the most challenging problems, having
a tremendous impact on performance and programmability. The objective of load
balancing algorithms is distributing the workload proportionally to the devices’ com-
putational power. This problem is more acute in heterogeneous systems with irregular
applications.

This paper extends Maat [12] to allow the co-execution of massively data-parallel
kernels on heterogeneous systems composed by a multi-core CPU and an Intel Xeon
Phi accelerator. Maat is an OpenCL library that provides the programmer with a uni-
fied and abstract view of the heterogeneous system that guarantees code portability.
Furthermore, Maat provides a set of load balancing algorithms that allow the program-
mer to choose the most appropriate depending on the behaviour of the application at
hand. In this paper, a diverse set of applications is considered. They are grouped as
regular, when every work unit represents the same running time, and irregular, if dif-
ferent work units have different running times. This decision is critical in order to
achieve the best performance and energy efficiency, with different applications, as
will be shown in Sect. 6. Experiments show results close to the optimum achievable,
reaching an efficiency of at least 0.97 and 0.85 per benchmark for both regular and
irregular applications, respectively. The power consumption show savings up to 25
and 50% for regular and irregular ones.

The remainder of the paper is structured as follows. Section 2 introduces some basic
concepts that are important to the article. Section 3 describes the main characteristics
of the three load balancing techniques. Section 4 explains the extensions developed on
Maat library. Next, in Sects. 5 and 6 the methodology and evaluation of the algorithms
are explained with a performance and energy evaluation of the three load balancing
algorithms with different benchmarks. Then, in Sect. 7 the state of the art is presented,
and multiple studies have been analysed and compared with our work. Finally, Sect.
8 summarises the main conclusions and future work.

@ Springer

Load balancing in a heterogeneous world: CPU-Xeon Phi...

2 Background

OpenCL is an open standard for portable parallel programming on heterogeneous
architectures, so that applications written in OpenCL can run on different architectures
without code modification. A major benefit of using OpenCL is that the same code
can be easily executed on different platforms.

A context in OpenCL is a set of devices of the same vendor that can run OpenCL.
Each device comprises a set of compute units (cores in a CPU and MIC, stream
multiprocessors in GPUs), being the minimum element that can execute work. The
code to be executed on the devices is encapsulated as a data-parallel C-like function
known as kernel. OpenCL launches multiple instances of a kernel when it is offloaded
to a device, each one with a portion of the data. Each instance is called a work-item.
The total number of work-items to be executed is set by the programmer with the value
global work size.

An OpenCL kernel describes the behaviour of a single work-item, and the host
application specifies the total work-items to express the parallelism of the application.
A work-group is a team of work-items that can synchronise and cooperate with each
other. All the work-items in a work-group are launched to the same compute unit.
However, work-groups are run concurrently in the compute units, as a device may not
have enough resources to execute them all at once. Work-group size can be defined
through the local work size. The OpenCL platform consists of a host and a list of
compute devices. The host is responsible for managing resources on compute devices.
A compute device, such as a CPU, GPU or MIC, has a separate device memory and a
list of compute units. By this abstraction, OpenCL enables portable execution.

Computing accelerator devices usually have a differentiated memory address space.
For this reason, kernel launches must be preceded by an input data copy phase, from
the main memory to the device memory, and followed by another in the opposite
direction for the results. For these operations, OpenCL uses the concept of buffers,
which are a host representation of the memory of the devices in a context. These copy
phases must be explicitly instructed by the programmer, which constitutes a tedious
and error-prone task.

The accelerator that has been integrated and supported in Maat in this work is the
Intel Xeon Phi Knights Corner. It is a coprocessor to speed up parallel applications;
therefore, it requires at least one processor in the system. It is a cache-coherent shared
memory many-core processor (SMP) based on the x86 architecture. The coprocessor
is connected via the PCI express bus to other devices and the host, and they are not
hardware cache coherent with other devices in the node. It consists of up to 61 in-
order 1.2 GHz x86 cores, capable of running up to 244 hardware threads and with wide
vectorisation capability via 512-bit vector registers, connected by a high-performance
on-die bidirectional ring interconnect and 8 memory controllers supporting 16 GB of
GDDRS5 channels at most, with up to 352 GB/s bandwidth.

@ Springer

R. Nozal et al.

RAY irregular NBODY regular
CPU J I "
ACC s) . St
CPU BN N NN N N RN N N e e e |
ACC LLLLLR L LR LN Dyn
CPU - | L 1] L J L] L NN
ACC - - L | L N] L] L I L)] Hg

Execution time — Execution time —

Fig. 1 Ray and NBody package distribution for the three load balancing algorithms

3 Load balancing algorithms

Since there is no load balancing strategy for data parallelism that can improve the
execution of all applications, a set of load balancing algorithms is proposed. Figure 1
depicts a comparison among the three load balancing algorithms in real executions.
The Y-axis shows every algorithm and the package distribution per device (CPU and
ACC), while the X-axis reflects the execution time per benchmark (Ray and NBody).
Every rectangle is a work package launched to a specific device. As can be seen, every
algorithm balances perfectly the load.

3.1 Static algorithm

This algorithm works before the kernel is executed by dividing the data set in as many
packages as devices are in the system, as it is shown in St in Fig. 1. The division relies
on knowing the computing power of the devices in advance. Then, the execution time
of each device can be equalised by proportionally dividing the data set among the
devices.

Considering a heterogeneous system with n devices. Each device i has computa-
tional power P;, which is defined as the amount of work that a device can complete
per time unit, including the communication overhead. These powers are parameters
that must be given to the algorithm and can be extracted by profiling. Then, the total
computational power of the heterogeneous system is the sum of the individual powers
of the devices Py =) 1_, Pi.

The application will execute a kernel over W work-items, grouped in G work-
groups of fixed size Ly = % Since the work-groups cannot communicate among
themselves, it makes sense to distribute the workload taking the work-group as the
atomic unit. Each device will have an execution time of 7;. Then, the execution time
of the heterogeneous system will be that of the last device to finish its work, or
Ty = max}_, T;.

The goal of the Static algorithm is to determine the number of work-groups to
assign each device, so that all the devices finish their work at the same time. This
means finding a tuple {«1, ... o,}, where ¢; is the number of work-groups assigned
to the device i. Therefore, the expression used by the algorithm is:

PG 0
Zl}zl Pj

o =

@ Springer

Load balancing in a heterogeneous world: CPU-Xeon Phi...

If there is not an exact solution with integers, then) /', o; < G. In this case, the

remaining work-groups are assigned to the most powerful device.

The beauty of the Static algorithm is that it minimises the number of synchronisation
points. This makes it perform well when facing regular loads with known computing
powers that are stable throughout the data set. However, it is not adaptable, so its
performance might not be as good with irregular loads.

3.2 Dynamic algorithm

Some applications do not present a constant load during their executions. To adapt
to their irregularities, the Dynamic algorithm divides the data set in small packages
of equal size. The number of packages is well above the number of devices in the
heterogeneous system. During the execution of the kernel, a master thread in the
host is in charge of assigning packages to the different devices, including the CPU,
following the next strategy:

1. The master splits the G work-groups in packages, each with the package size
specified by the programmer. This number must be a multiple of the work-group
size. If the number of work-items is not divisible by the package size, the last
package will be smaller.

2. The master launches one package on each device, including the host itself if it is

desired.

. The master waits for the completion of any package.

4. When device i completes the execution of a package:

(a) The device returns the partial results corresponding to the processed package.

(b) The master stores the partial results.

(c) If there are outstanding packages, a new one is launched on device i.

(d) If all the devices are idle and there are no more packages, the master jumps to
step 5.

(e) The master returns to step 3.

5. The master ends when all the packages have been processed, and the results have
been received.

(O8]

This algorithm adapts to the irregular behaviour of some applications. However,
each completed package represents a synchronisation point between the device and
the host, where data are exchanged and a new package is launched. This overhead
has a noticeable impact on performance. The Dynamic algorithm takes the size of the
packages as a parameter. The time to process a package of equal size is the same in
regular applications, while it is not in irregular ones, like it is depicted in Dyn in Fig. 1.

3.3 HGuided algorithm

The previous strategies have their strong points and their weak spots. Although neither
is the best for every application, both give hints towards an optimal data-division
algorithm. The Heterogeneous Guided algorithm (HGuided) is an attempt to reduce
the synchronisation points of the Dynamic while retaining most of its adaptiveness.

@ Springer

R. Nozal et al.

The same algorithm used in the Dynamic approach is applicable to the HGuided,
except for how the data set is divided. The HGuided algorithm makes larger packages at
the beginning and reduces the size of the subsequent ones as the execution progresses.
This reduces the number of synchronisation points and the corresponding overhead,
while retaining a small package granularity towards the end of the execution to allow
all devices to finish simultaneously, as can be seen in Hg in Fig. 1.

Since it is an algorithm for heterogeneous systems, the size of the packets is also
dependent on the computing power of the devices. The size of the package for device
i is calculated as follows:

. Gr P;
ket i = | ———— 2
packet_size; \\kn Z?:] PjJ 2)

where k is a constant, between 2 and 3, and the smaller the constant, the faster decreases
the packet size. Tweaking this constant prevents too large packet sizes when there are
only a few devices, with cases such as giving half the workload in the first packet to a
device, unbalancing the load. G, is the number of pending work-groups and is updated
with every package launch. The parameters of the HGuided are the computing powers
and the minimum package size of the devices to be used. The minimum package size
is a lower bound for the packet_size;, and the minimum package sizes are usually
dependent on the computing power of the devices, being bigger package sizes in the
most powerful devices.

4 Design and implementation

Maat is a library that acts as an OpenCL wrapper to simplify the programming of
heterogeneous devices and squeeze the performance out of them. Maat is specially
designed to be used in large data-parallel applications, and it provides the three load
balancing algorithms presented previously. While OpenCL forces the programmer to
consider the devices as individual entities (Fig. 2 step 1), Maat defines an abstraction
layer over all the accelerator devices in a machine. It presents a single virtual device
to operate with, hiding the underlying hardware details. Thus, the library effectively
divides a single task among all the real devices based on the load balancing algorithm
selected by the programmer.

This single virtual device is accessed through a super context (Fig. 2 step 2). It
is created by the programmer specifying the target devices. In contrast to OpenCL
contexts, a super context can hold devices from several different manufacturers. Maat
offers a set of functions that resemble typical OpenCL calls, to manage the super
context. The super context transparently manages the data structures of all the target
devices, like the command queues.

While in OpenCL the programmer will need to allocate many buffers to commu-
nicate with the different target devices, Maat simplifies this task with the super buffer
(Fig. 2 step 5). When one of these is created through the super context, the latter trans-
parently allocates the required buffers on each device. If the data will only flow from

@ Springer

Load balancing in a heterogeneous world: CPU-Xeon Phi...

S—0
SuperKernel SuperArgs SuperBuffers Writing input buffers
@ 1.int n
OpenCL devices SuperContext source _ binaries 2. float in
d (selecting) code é?ig 3. buff in
(discovering) selecting 4. buffin out cpPul ACCL GPUL
CAG
5. buff out in in in
Platform1 Platform1
Host memory in in in
CPU1 CPU1
C MAAT out out out out
ACCl ACCL
A Kernel Scheduling Reading output buffers
(load balancing) CPUL ACC1 GPUl in
Platform2 Platform2
- static |- [L) in
GPU1 GPU1 - dynamic €xec read e ~ \4
G _hguided [CT |
GPU2 GPU2 C A G (Results in)
Every device does two steps per package
enqueued: executing and reading
(scheduler defines behavior) | DT |

Fig. 2 Maat library from a programmer point of view

the host to the device, it is considered an in super buffer (Fig. 2 step 6). Otherwise it
is considered an out super buffer.

The common reading and writing procedure in super buffers assumes that each
work-item will use the position indicated by its index. The copy is not performed until
the kernel is launched in the device. Such behaviour is necessary in Dynamic and
HGuided algorithms where there is no way of knowing in advance which device will
compute what package of data. The out super buffer (Fig. 2 step 8) creation function
requires two extra parameters to be able to automatically copy back the results from the
device to the host: a pointer to where the results should be stored in the host memory
and the size of the result obtained by each work-group. Therefore, the requirement
of writing buffers based on the work-item index denotes the type of applications
supported. This may seem a strong requirement, but not only common benchmarks
but also many kernels widely used in the industry meet this condition.

Maat simplifies the kernel configuration and execution process by using the idea
of super kernel (Fig. 2 step 3). When such an entity is created, the super context
transparently sets up a different kernel instance for each device. Similarly, parameter
assignment (Fig. 2 step 4) to the super kernel is forwarded to all the kernels in the
super context. The super kernel receives exactly the same global work size, local work
size and global work offset it would receive if working with a single device, achieving
an easy portability of common OpenCL applications to Maat.

When a super kernel is enqueued, Maat transparently performs as many executions
of individual kernels as required by the selected load balancing algorithm (Fig. 2 step
7). Each execution will use the adequate OpenCL parameters to represent the correct
package of work. The on-demand launch of additional packages in the Dynamic and
HGuided algorithms has been implemented using OpenCL callbacks.

The callbacks have been adapted to perform non-blocking readings. Most of the
logic has been transferred to functions managed by an independent thread. This
increases the performance because it simplifies the callbacks and the synchronisa-
tions are deadlock-free (host functions are triggered using pthread_cond_wait).

Finally, a function that waits for the completion of every callback guarantees the
correctness of the non-blocking calls and improves the performance due to the max-

@ Springer

R. Nozal et al.

Table 1 Parameters for each benchmark, local work size (LWS), ACC-CPU execution time ratio used
in Static and HGuided, minimum package size for ACC and CPU in HGuided (MinSize) and number of
packages in Dynamic (NumPkg)

Bench Type Problem size LWS Time MinSize NumPkg
acc/cpu acc, cpu
Binomial Reg. 40,960,000 samples, 255 steps 256 2.61 103,40 80
Gaussian Reg. 13,000x 13,000px, 101x 101px filter 128 3.92 98, 24 80
NBody Reg. 1,536,000 bodies 128 4.50 39,8 96
Taylor Reg. 1100x1100px 128 1.63 110,24 96
Mandelbrot Irreg. 30720x30720px, 6144 rounds 256 4.68 104,64 96
Rap Irreg. 2048x2048px, 2,328,576 64 7.16 29,4 96
Rayl Irreg. 12,000x12,000px, 3 lights, 10 objs 64 0.60 15,40 96
Ray2 Irreg. 5000x5000px, 11 lights, 30 objs 64 1.27 51,40 48

imum overlap between computation with communication. This waiting call serves
as a common interface between the load balancing algorithms to monitor every per-
formed callback, follow its event state and wait for its completion, simplifying the
API between the algorithms.

Another API simplification and improvement performed in Maat is the automatic
selection of the minimum package size for the Phi by giving just the value for the
CPU. The best value is proportional to the computing power ratio between Phi/CPU,
as shown in Table 1.

The power consumption of the devices is measured by an independent thread. A
timer awakes the thread based on the configured sampling interval using a STGALARM
POSIX s signal as notification mechanism. The timer is tightly coupled to the lifetime
of the super context. The thread measures the power and energy consumption of the
devices used using vendor-specific APIs, calculates the intervals between measures
and stores the results in memory to be queried at the end.

5 Methodology

The machine on which the experimentation was carried out has two processor chips
and one Intel Xeon Phi. The CPUs are Intel Sandy Bridge Xeon E5-2620, with six
cores that can run two threads each at 2.0 GHz and 16 GB of DDR3 main memory. The
CPUs are connected via QPI, which allows OpenCL to detect them as a single device;
therefore, any reference to the CPU includes both processors. The Intel Xeon Phi
coprocessor is a Knights Corner 7120P which consists of up to 61 cores connected by
a high-performance on-die bidirectional ring interconnect and 8 memory controllers
supporting 16 GB of GDDRS5 channels at most, with up to 352 GB/s bandwidth.
Seven applications have been chosen for the experiments. Two are in-house imple-
mentations of well-known algorithms (Gaussian and Taylor), while the rest are part
of the AMD APP SDK [2]. While Binomial, Gaussian, NBody and Taylor are regu-
lar applications, Mandelbrot, Rap and Ray Tracing are irregular. Two different scenes

@ Springer

Load balancing in a heterogeneous world: CPU-Xeon Phi...

with different complexities (resolution, lights and objects), referred as Ray1 and Ray?2,
have been considered.

The parameters for each of the applications are shown in Table 1. Local work size
has been set so the performance of the fastest device is maximised. The reason for this
is that almost no performance difference was detected when varying local work size
for the CPU.

The metric used to evaluate the performance of the algorithms is the total response
time, including the input data and results communications. From that, the speedup is
calculated as the ratio between the execution time on the Phi and on the heterogeneous
system. Due to the heterogeneity of the system and the different behaviour of the
benchmarks, the maximum achievable speedups depend on each benchmark. These
values were derived from the response time 7; of each device:

1 n
Smax = ———— T; 3
max max:?:l {7—;} ; 1 ()

Additionally, the efficiency of the heterogeneous system has been computed as the
ratio between the maximum achievable speedup and the empirically obtained speedup
for each benchmark. Eff = g:n—eji Also, the energy consumption has been calculated
for each algorithm normalised to the baseline consumption. This gives an idea of
the energy saving that comes through the usage of the whole heterogeneous system,
instead of the baseline system that only uses the ACC, while the other devices are idle.

The performance and the energy consumption can be combined in a single metric
representing the energy efficiency of the system. This paper uses the energy delay
product (EDP) [4] for this purpose.

The computational power needed for the Static and HGuided algorithms has been
computed for each benchmark. The response times of the benchmark have been mea-
sured in both the CPU and Phi. Then, considering the computational power of the CPU
equal to 1, the computational power of the Phi is calculated, as the ratio between the

CPU time and the Phi time: Ppp; = TTCP%

6 Evaluation

This section presents the performance results and energy savings achieved in the
heterogeneous system with different load balancing algorithms. The baseline is the
total response time (or energy consumption) of the benchmarks with only one Xeon
Phi. Therefore, the benefits presented in this section are due to the co-execution of the
benchmarks on the CPU and the Phi simultaneously.

To give an idea of performance of the load balancing algorithms, Fig. 3 shows the
speedups reached by the Maat implementation of the benchmarks, compared with the
baseline. The theoretical maximum speedup that can be obtained with each benchmark
is shown as a horizontal line above the bars of each benchmark. The figures reveal that,
for all benchmarks, there is at least one algorithm that gives excellent results close to
the maximum, except for Ray1, where the efficiency is up to 0.85. Therefore, Maat
can adapt to different kinds of loads obtaining outstanding performance.

@ Springer

R. Nozal et al.

Regular Irregular
Smax =267
224 [RXil
2
Smax =179
o Smax = 1.61
3 Smax =139 156 s 16 16 [l
@ P ———— Smax = 1.26 = 2 =
g T] - Smax =123 Smax=122 Smax= 114
& 1 122 K 121 119 s T s
5 U 097
o087
0
s om Hg st om Hg st om Hg st om Hg st om Hg s on H st om Hg st on Hg
Binomial Gaussian NBody Taylor Mandelbrot Rap Ray1 Ray2
Regular Irregular

Efficiency
o
3

o7 0% 099 097 X 099
0% ywm 097 O 9 097 0% s -
: 088 ce
(Y7l o025
0.75
071
065
08
054

0.25

0.00 s._om ng St__Dm kg SO Hg

] n n s om ot S on ng S__on kg S__om S on H
Binomial Gaussian NBody Taylor Mandelbrot Rap Ray1 Ray2

Fig. 3 Speedups and efficiency of the heterogeneous system (more is better)

Analysing the speedups in detail, it can be seen that Static and HGuided deliver
excellent results in regular applications. The Dynamic algorithm achieves decent
results in most of the applications, but suffers the overhead of communication in
benchmarks like NBody and Taylor.

On the other hand, the analysis of the irregular benchmarks shows that the HGuided
method obtains the best results, followed nearly by the Dynamic. This method achieves
a better load balance and reduces the communication overhead, because it divides the
workload between a smaller number of packets than in the Dynamic algorithm. The
Static is the worst algorithm for irregular applications because it is not adaptive, and
benchmarks purely irregular like Ray suffer the most. Coming up with a balanced
work distribution is significantly harder for Ray due to the complexity of interaction
between the input scene and the ray tracing algorithm.

There is almost no difference between Dynamic and HGuided because the former
has been tweaked with near-optimum number of packages, having a small overhead
of communication. The Dynamic algorithm is sensible to this parameter, and if the
programmer does not choose the number of packages well, the results get worse
quickly. This can be seen in NBody and Taylor. These benchmarks have not enough
computation compared with the transference of data; therefore, the communication
overhead affects more, given sometimes even worse results than only using the Phi.
Nevertheless, the HGuided is robust to the computing power given, and even with
disparate values the algorithm converges to good results.

Finally, the load balancing efficiency gives an idea of how well a load is balanced.
A value of 1.0 represents that all the devices have been working all the time, thus
achieving the maximum obtainable speedup. As shown in Fig. 3, the regular applica-
tions reach at least 0.97 of efficiency, while the irregular ones achieve an efficiency
between 0.85 and 0.99.

However, it should be noted that if the correct load balancing algorithm is not used
for each benchmark, the results can be quite bad. Thus, we can see efficiencies around
0.50 in some cases, which imply a very poor use of resources.

@ Springer

Load balancing in a heterogeneous world: CPU-Xeon Phi...

Regular Irregular

Normalized Energy
o
>

i
0.0 St__om_ Hg St__Dp hg

S om g S _on rg S _on rg St om g S Dn g St__om g
Binomial Gaussian NBody Taylor Mandelbrot Rap Ray1 Ray2

Regular Irregular

122
12
1.0
101
084 0.89
08 . 087
079 079 078 079 05
06] oss 066
0.4 047 @2
04 [9M
0.32
02 021
00
om e S om H

St o Hg st n st Dm Hg St Dm Hg st om Hg St Dm Mg St Dm Hg
Binomial Gaussian NBody Taylor Mandelbrot Rap Ray1 Ray2

Normalized EDP

Fig. 4 Normalised energy and EDP of the heterogeneous system (less is better)

Nowadays, performance is not the only figure of merit used to evaluate computing
systems. Their energy consumption and efficiency are also very important. Figure 4
gives an idea of the energy saving that comes through the usage of the whole het-
erogeneous system, instead of the baseline system. Therefore, the figure shows, for
each benchmark, the energy consumption of each algorithm normalised to the baseline
consumption (less is better.)

Analysing the results, there is a strong correlation between performance and energy
saving. Consequently, the best algorithms for regular applications are the Static and
HGuided, saving an average of 0.05 and up to 0.25 in benchmarks like Taylor. The
saving with irregular applications can be even more further in cases like Ray, being up
to 0.50. This is to the high adaptability of HGuided and Dynamic to irregular loads.

Although the Dynamic power consumed at an instant of time is greater in the
heterogeneous system, because more devices are used, this increase is compensated
by the reduction in execution time. Therefore, a remarkable energy saving is achieved
with respect to using the baseline. However, there are types of computations, such
as Mandelbrot, with efficiencies between 0.91 and 0.95 but consuming more energy,
regardless of whether it runs in less time. On the other hand, the case of NBody with
Dynamic occurs because the communication overhead makes it take longer than in
the baseline, leading to a higher energy expenditure as well.

Another interesting metric is the energy efficiency, which combines performance
with consumption. The EDP is the product of the consumed energy and the execution
time of the application. Figure 4 shows the EDP of the algorithms normalised to
the EDP of the baseline. Since the EDP is a combination of the two above metrics,
the relative advantage of the different algorithms is maintained. Both the Static and
HGuided algorithm on regular applications and the HGuided and Dynamic on irregular
sensibly reduce the EDP, in relation to the baseline. This leads to an improvement of
the energy efficiency of 1.34 x for the Static and HGuided in regular applications and
1.53x for HGuided and Dynamic for irregular ones. Considering all the benchmarks,

@ Springer

R. Nozal et al.

the average improvement observed is 1.43 X, if the best algorithm for each benchmark
is selected.

7 Related work

This topic has given rise to an interest in both understanding how to efficiently use this
kind of devices and making their programming easier. The work presented in [9] and
[17] studies the performance of the Xeon Phi through the use offload directive-based
approaches in a single heterogeneous node, while this work uses Static and Dynamic
approaches with OpenCL. Lastovetsky et al. [6] focus on improving the performance
of an application running on a Xeon Phi, but they propose a load imbalancing-based
optimisation technique. To the problem of cooperatively executing a single task among
the available devices, Zhang et al. [18] proposes an analytical model to identify when
co-execution is worth it in terms of performance. Finally, [11] presents a Dynamic
load balancing for the co-execution of a single data-parallel kernel. However, both do
not consider the Xeon Phi.

Some studies [13,16] analyse many accelerators including the Xeon Phi with dif-
ferent programming models, but not the OpenCL. Notable studies like [3] and [15] are
centred on the workload distribution among CPU and GPU. Belviranli et al. provide an
online 2-phase algorithm; the adaptive phase calculates the block size, while the com-
pletion phase process the most workload with the parameters obtained from the first
phase. Its work is centred on CUDA, while we simplify the programming effort and
promote portability by using OpenCL. Also, we provide an energy analysis of the load
balancing algorithms for multiple benchmarks. Vilches et al. propose two load bal-
ancing algorithms in TBB for regular and irregular applications when CPU-integrated
GPUs are co-executed, while we exploit OpenCL and the Xeon Phi.

Related to the programmability, there are some works [1,8]. Li et al. propose a new
programming tool along with a new domain-specific language designed to simplify
the development of an application for multiple accelerators but uses a fixed algorithm
focused on stencil applications , while Maat allows the programmer to choose three
different load balancing algorithms for data-parallel applications and it uses pure C
API function calls that follow the same conventions as the OpenCL standard. Aji et
al. address the problem of load balancing while abstracting the underlying system,
but they focus on task parallelism instead of data parallelism. Related to the Static
approach, in [7] the focus is on the distribution of a single kernel execution to the
devices, but use code modifications. Zhong et al. [19] use performance models. Both
works are not adaptable, and Maat has a simpler APL.

Regarding power, GreenGPU dynamically distributes work to GPU and CPU, min-
imising the energy wasted on idling and waiting for the slower device [10]. SPARTA
is a throughput-aware runtime task allocator for heterogeneous many-core platforms
[5]. Both studies are not centred in the Xeon Phi.

All the above mentioned works are just partial solutions to the problem of per-
formance portability, which includes load balancing and system abstraction. They all
fail to address the importance of irregular applications or loads that are limited in the

@ Springer

Load balancing in a heterogeneous world: CPU-Xeon Phi...

number or type of devices that they can manage. On the contrary, Maat does not suffer
from these constraints and constitutes a performance portable solution.

8 Conclusions and future work

This paper extends the Maat library to allow the co-execution of massively data-
parallel OpenCL kernels on heterogeneous systems composed by an Intel Xeon Phi
coprocessor. A set of load balancing algorithms has been implemented, in order to give
the best performance and energy efficiency to both regular and irregular applications.

From the experimental results presented in this paper, a set of conclusions can be
remarked. The use of the whole heterogeneous system is always beneficial, from the
performance point of view, at least with one of the load balancing methods. Regarding
savings in energy consumption and energy efficiency, generally is advised, but in a few
specific cases should be discarded. A second conclusion is that applications with dif-
ferent behaviours, regular or irregular ones, need different load balancing algorithms
to get the best efficiency on the heterogeneous system. With respect to the algorithms,
the Static and HGuided approach is the most adequate for regular applications as it
minimises overheads. In the case of irregular applications, the HGuided and Dynamic
method excels because of their adaptiveness, although the HGuided is robust inde-
pendently of the “regularity” of an application. Lastly, the Dynamic algorithm is an
acceptable all-around option when a-priori information of the computing powers of
the system is not available, but at the cost of more modest speedups and suffering
penalties in some applications.

Future work includes new load balancing algorithms, a completely rewrite of the
library to provide a new architecture to support new load balancing algorithms and
tweak the implementation design to reduce synchronisation and communication over-
head. Also, new abstractions would be included to improve the programmability while
preserving performance portability.

Acknowledgements This work has been supported by the Spanish Ministry of Education, FPU grant
FPU16/03299, the University of Cantabria, grant CVE-2014-18166, the Spanish Science and Technology
Commission under contracts TIN2016-76635-C2-2-R and TIN2016-81840-REDT (CAPAP-H6 network),
the European Research Council (G.A. No. 321253) and the European HIPEAC Network of Excellence. The
Mont-Blanc project has received funding from the European Unions Horizon 2020 research and innovation
programme under Grant Agreement No. 671697.

References

1. Aji AM et al (2016) MultiCL: enabling automatic scheduling for task-parallel workloads in OpenCL.
Parallel Comput 58:37-55

2. AMD Accelerated Parallel Processing (APP) Software Development Kit (SDK) V3. Last accessed
January 2018. https://developer.amd.com/amd- accelerated- parallel- processing-app-sdk/

3. Belviranli ME, Bhuyan LN, Gupta R (2013) A dynamic self-scheduling scheme for heterogeneous
multiprocessor architectures. ACM Trans Archit Code Optim 9(4):1-20

4. Castillo E et al (2014) Financial applications on multi-CPU and multi-GPU architectures. J Supercom-
put 71(2):729-739

@ Springer

https://developer.amd.com/amd-accelerated-parallel-processing-app-sdk/

R. Nozal et al.

10.

12.

13.

14.

15.

16.

17.

18.

19.

Donyanavard B, Miick T, Sarma S, Dutt N (2016) SPARTA: runtime task allocation for energy effi-
cient heterogeneous many-cores bryan. In: Proceedings of the 11th IEEE/ACM/IFIP International
Conference on Hardware/Software Codesign and System Synthesis, pp 1-10

Lastovetsky A, Szustak L, Wyrzykowski R (2017) Model-based optimization of eulag kernel on intel
xeon phi through load imbalancing. IEEE Trans Parallel Distrib Syst 28(3):787-797

Lee J, Samadi M, Park Y, Mahlke S (2015) Skmd. ACM Trans Comput Syst 33(3):1-27

Li P, Brunet E, Trahay F, Parrot C, Thomas G, Namyst R (2015) Automatic OpenCL code generation for
multi-device heterogeneous architectures. In: Proceedings of the International Conference on Parallel
Processing, pp 959-968

Lopez et al (2016) Towards achieving performance portability using directives for accelerators. In:
Third workshop on accelerator programming using directives, pp 13-24

Ma K, Li X, Chen W, Zhang C, Wang X (2012) GreenGPU: a holistic approach to energy efficiency
in GPU-CPU heterogeneous architectures. In: Proceedings of the International Conference on Parallel
Processing, pp 48-57

. Pandit P, Govindarajan R (2014) Fluidic kernels: cooperative execution of opencl programs on multiple

heterogeneous devices. In: Proceedings of Annual IEEE/ACM International Symposium on Code
Generation and Optimization, pp 273-283

Pérez B, Bosque JL, Beivide R (2016) Simplifying programming and load balancing of data parallel
applications on heterogeneous systems. In: Proceedings of the 9th Annual Workshop on General
Purpose Processing using Graphics Processing Unit, ACM, pp 42-51

Salehian S, LiuJ, Yan Y (2017) Comparison of threading programming models. In: Proceedings IEEE
31st International Parallel and Distributed Processing Sym. Workshops, pp 766-774

Stone JE, Gohara D, Shi G (2010) OpenCL: a parallel programming standard for heterogeneous
computing systems. IEEE Des Test 12(3):66-73

Vilches A, Asenjo R, Navarro A, Corbera F, Gran R, Garzaran M (2015) Adaptive partitioning for
irregular applications on heterogeneous CPU-GPU chips. Procedia Comput Sci 51(1):140-149
Wienke S, Terboven C, An Mey D, Muller MS (2013) Accelerators, quo vadis? Performance vs.
productivity. In: Proceedings of the International Conference on High Performance Computing and
Simulation, pp 471-473

Xiao X, Hirasawa S, Takizawa H, Kobayashi H (2016) The importance of dynamic load balancing
among openmp thread teams for irregular workloads. In: 4th International Symposium on Computing
and Networking, pp 529-535

Zhang F, Zhai J, He B, Zhang S, Chen W (2017) Understanding co-running behaviors on integrated
cpu/gpu architectures. IEEE Trans Parallel Distrib Syst 28(3):905-918

Zhong Z, Rychkov V, Lastovetsky A (2015) Data partitioning on multicore and multi-GPU platforms
using functional performance models. IEEE Trans Comput 64(9):2506-2518

@ Springer

	Load balancing in a heterogeneous world: CPU-Xeon Phi co-execution of data-parallel kernels
	Abstract
	1 Introduction
	2 Background
	3 Load balancing algorithms
	3.1 Static algorithm
	3.2 Dynamic algorithm
	3.3 HGuided algorithm

	4 Design and implementation
	5 Methodology
	6 Evaluation
	7 Related work
	8 Conclusions and future work
	Acknowledgements
	References

