
Vol.:(0123456789)1 3

ChemTexts (2020) 6:2 
https://doi.org/10.1007/s40828-019-0097-0

LECTURE TEXT

The extended Kubelka–Munk theory and its application 
to spectroscopy

R. Alcaraz de la Osa1 · I. Iparragirre1 · D. Ortiz1 · J. M. Saiz1 

Received: 15 August 2019 / Accepted: 18 November 2019 / Published online: 9 December 2019 
© Springer Nature Switzerland AG 2019

Abstract
The Kubelka–Munk theory is one of the main theories of light flux through homogeneous isotropic media. In this work, we 
used the extended solution of this theory, applied to a specimen on top of an arbitrary substrate, to obtain the overall spectral 
reflectance and transmittance. A complete colorimetric study can be derived from these calculations and this is shown by 
analyzing the effect of the different properties of the system (scattering and absorption coefficients, thickness, particle radius, 
surrounding medium) on its coordinates on the color space. Along with the analytical solutions to the original two-flux and 
the more modern four-flux models, we present a computing tool based on a Monte Carlo algorithm, which is very adequate 
in this context. In it, both the energy and the media are discretized, and the interaction is converted into probability of scat-
tering and absorption. This numerical procedure also introduces new capabilities in the model, since it admits properties such 
as inhomogeneity in the layers, or more complex light–matter interactions, and offers solutions with temporal resolution, 
something applicable, for example, to pulses or transient states.

Keywords Kubelka–Munk · Dense media · Beer–Lambert law · Reflectance and transmittance spectroscopy · Colorimetry · 
Monte Carlo

Introduction

The propagation of light in scattering/absorbing media is a 
topic that is addressed very often, with different approaches 
and with very diverse interests. Historically it is important 
to mention the bidirectional model of radiation propagation 
proposed by Schuster [1] in the field of astrophysics, a pre-
cursor study of the famous Kubelka–Munk model [2], devel-
oped for paints and applied in areas such as paper [3, 4], 
plastics [5], textiles [6], or the food industry [7], to mention 
just a few examples. In all these applications the propagation 
of light, even being a volume problem, is a key aspect in the 
behavior of surfaces. This is because the surface reflectance 
must be understood as a process that is the sum of two: one 
by which part of the light is returned at the interface, and 
another by which the light enters the medium, travels inside, 
and exits the medium through the same surface. While the 

first one is obtained by application of the boundary condi-
tions on the incident field and depends only on the refractive 
indices and the angle of incidence, the second one is sub-
ject to the ability of the medium to scatter and absorb light, 
and therefore carries the spectral imprint of the composition 
and constitution of the medium. For this reason an adequate 
model of light propagation in the medium can be a tool for 
studying the spectral reflectance of surfaces in relation to the 
properties of the medium.

The more general approach to the propagation of light 
in a medium involves solving the radiative transfer equa-
tion (RTE) [8], but precisely its generality makes it a little 
used tool. A more practical approach for studying surface 
reflectance is to use bidirectional flux models, since the sur-
face itself defines the geometry of both the system and the 
magnitude under analysis [9]. In addition, it is possible to 
demonstrate [10] that the results of a simple bidirectional 
model such as that of Kubelka–Munk converge to those of 
the RTE considering the simple assumptions of the theory, 
specifically bidirectional diffuse light flux, not considering 
polarization effects, homogeneous medium (in its first ver-
sion), isotropic scattering, no specular reflection, and no 
effect of the lateral boundaries. In the case of particulate 
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media, the absence of large particles and clusters is also 
assumed [11, 12].

Therefore, both a two-flux model and a four-flux model, 
if the conditions advise to include the mirror reflections, 
can be considered a good theoretical framework for address-
ing the surface spectroscopy problem. We will depend on 
this for our ability to adequately characterize the medium in 
terms of its absorption and scattering coefficients.

Of course, the media may have special characteris-
tics, which in some cases have required adaptation of the 
most popular models. For example we can have a fluo-
rescent medium [13], a medium sensitive to polarization, 
such as when there is some structural arrangement of the 
medium, a medium with particles of known sizes and con-
centration (Mie theory offers the possibility of “feeding” 
Kubelka–Munk theory with size-dependent values of the 
coefficients [14]), or, more importantly, the medium itself 
can present heterogeneities in the distribution of its proper-
ties, something that was first addressed by Kubelka himself 
in his paper of 1954 [15].

It is precisely the ability to easily adapt to these specifici-
ties of the environment that makes the Monte Carlo simula-
tion methods—in which the medium and energy are discre-
tized and the light–matter interaction translates into events 
with some probability—so attractive. The approach is similar 
to that of multilayer methods, widely used since Stokes used 
this formalism in 1860 [16], and both its validity and the 
convergence criteria have been duly established in recent 
works [17]. In addition to its capacity to deal naturally with 
issues such as heterogeneity [17] or fluorescence [18], the 
Monte Carlo solution offers the possibility of obtaining tem-
poral resolution, allowing the calculation of transients, or the 
behavior of pulses without a large extra computational load.

In Sects. “Theoretical review” and “Numerical models” 
we will present, respectively, the theoretical framework of 
this work and the numerical models necessary to address it. 
In Sect. “Spectroscopy of diffuse media” we present some 
results related to spectral reflectance, to first describe the 
influence of scattering on color and then to comment on 
the influence of a lower substrate. Section “Spectroscopy 
of transmittance” will present findings related to transmis-
sion spectroscopy and Sect. “Time dependency” will show 
the potential of calculation methods to investigate the tem-
poral dependence through some selected results. Finally, 
Sect. “Conclusions” presents a summary and the main con-
clusions of this work.

Theoretical review

The Kubelka–Munk (K–M) theory [2] is based on a sim-
plified model of light propagation in a dull painted layer 
that is parallel to a plane support. Among many others, 

the most important assumption involves perfectly diffused 
illumination of a perfectly dull material (see, e.g., [3, 9] 
and references therein). Figure 1 sketches the light path of 
the K–M theoretical model, using the same notation as the 
seminal work of Kubelka from 1948 [19]. A finitely thick 
plane-parallel light-scattering specimen ( thickness ≡ X ) is 
placed in optical contact with an arbitrary substrate with 
known reflectance Rg , transmittance Tg , and absorptance 
Ag = 1 − Rg − Tg . The specimen is illuminated from above 
(I being the intensity of illumination) and ig(x) and jg(x) 
are the intensities of the light traveling inside the specimen 
towards its unilluminated and its illuminated surface, with 
x being the distance from the specimen-substrate interface, 
as shown in Fig. 1. The subindex g always may indicate 
that the specimen is placed in optical contact with an arbi-
trary substrate with known reflectance Rg , transmittance Tg 
and absorptance Ag = 1 − Rg − Tg . Rt represents the total 
reflectance, i.e., the fraction of the incident light reflected 
by the specimen placed in optical contact with an arbitrary 
substrate. On the other hand, T denotes the fraction of the 
incident light transmitted by the specimen, that is, incident 
on the substrate. The total transmittance is thus given by 
Tt = TgT .

Considering a specimen placed in optical contact with 
an arbitrary substrate with known reflectance Rg , transmit-
tance Tg , and absorptance Ag = 1 − Rg − Tg , the fundamen-
tal equations of the K–M theory [2] are

TgTI

(Rg, Tg, Ag)

dx

x

X

TI RgTI

jg(x)

rg(x) = jg(x)/ig(x)

ig(x)

I RtI

Fig. 1  Sketch of the light path of the Kubelka–Munk theoretical 
model showing a finitely thick plane-parallel light-scattering speci-
men ( thickness ≡ X ) placed in optical contact with an arbitrary sub-
strate with known reflectance Rg , transmittance Tg , and absorptance 
Ag = 1 − Rg − Tg
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where K and S are the absorption and backscattering coef-
ficients, respectively, defined by the corresponding thickness 
of layer. After some basic math, the total reflectance, Rt , may 
be obtained:

where a = 1 + K∕S and b =
√
a2 − 1 . It may be shown that 

in the limit of infinite thickness, Eq. (3) reduces to the well-
known K–M function R∞

or

The total intensity of light traveling inside the specimen at 
any given position x may be related to the transverse energy 
density U(x)

The fraction of the incident light transmitted by the speci-
men, that is, incident on the substrate, is given by

which again reduces to Eq. (28) from Kubelka’s paper [19] 
when Rg = 0 . Making use of the transmittance of the sub-
strate, Tg , the total transmittance is thus given by

Equations  (3) and (8) allow us to calculate the total 
absorptance At = 1 − Rt − Tt as well:

It may be shown that, thanks again to Eq. (7), Eq. (9) can 
be split into a contribution from the specimen alone, A, and 
another one coming from the substrate, so that

(1)−di(x) = −(S + K)i(x)dx + Sj(x)dx,

(2)dj(x) = −(S + K)j(x)dx + Si(x)dx,

(3)Rt =

(
1 − aRg

)
sinh bSX + bRg cosh bSX

(
a − Rg

)
sinh bSX + b cosh bSX

,

(4)lim
X→∞

Rt ≡ R∞ = a − b = 1 +
K

S
−

√(
K

S

)2

+ 2
(
K

S

)
,

(5)K

S
=

(
1 − R∞

)2

2R∞

.

(6)

U(x) = I
(a + 1)

(
1 − Rg

)
sinh bSx + b

(
1 + Rg

)
cosh bSx

(
a − Rg

)
sinh bSX + b cosh bSX

.

(7)T =
b

(
a − Rg

)
sinh bSX + b cosh bSX

(8)Tt = TgT =
bTg

(
a − Rg

)
sinh bSX + b cosh bSX

(9)

At =
(a − 1)

(
1 + Rg

)
sinh bSX + b

[(
1 − Rg

)
cosh bSX − Tg

]

(
a − Rg

)
sinh bSX + b cosh bSX

from where

Surface corrections

The original K–M model does not take into account the 
reflections of light at the interface with air, which may be 
important. Saunderson [5] proposed a correction to take 
them into account. For his part, Murphy [20] extended the 
K–M model to the case of collimated illumination of opti-
cally rough surfaces, by modifying the Saunderson exten-
sion to allow treatment of reflection of collimated light from 
optically rough, optically smooth, and intermediate surfaces. 
Furthermore, Murphy introduced an expression for the 
reflection coefficient that allows the separation of reflectance 
into diffuse and collimated (specular) components, taking 
into account the characteristics of the integrating sphere 
used to measure the reflectance.

Other approaches

As previously mentioned, N-flux models allow us to solve 
the RTE in non-emitting plane-parallel media with infinite 
lateral extension, i.e., lateral scattering within the media is 
not taken into account and thus the equation depends only 
on one spatial direction. Indeed, they, the four-flux model 
in particular, can be derived from the scalar RTE. Although 
the vector RTE, which takes into account light polarization, 
has long been derived [21], currently there is no derivation 
of N-flux models from the vector RTE. Therefore, the largest 
source of error of these models arises from neglecting the 
fact that light can be polarized. In N-flux models light inten-
sity is divided into N solid angles in the coordinate system.

We shall focus now in a particular case known as the 
four-flux model, where light propagation within the slab is 
modeled using two collimated and two diffuse fluxes, trave-
ling towards its unilluminated and its illuminated surface. 
As light is scattered within the media, the total diffuse flux 
increases at the expense of collimated fluxes. De la Hoz and 
coworkers [22] provide the solution to the RTE using a four-
flux model for this system when it is illuminated with par-
tially collimated light, i.e., light that has both a collimated 
and a diffuse contribution. Expressions for the reflectance 
and transmittance in the aforementioned system are provided 
in [23] for the case of totally collimated incident light.

(10)At = A + AgT ,

(11)

A =
(a − 1)

(
1 + Rg

)
sinh bSX + b

(
1 − Rg

)
(cosh bSX − 1)

(
a − Rg

)
sinh bSX + b cosh bSX
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Taking into account the energy balances, the differential 
equations describing the system are1

where � and � are the scattering and absorption coefficients 
per unit length, � is the average path length traveled by dif-
fuse light as compared to collimated light, and �c and �d are 
the forward scattering ratio coefficients, i.e., the amount of 
light scattered into the forward hemisphere, for collimated 
and diffuse light respectively.

Explicit expressions for the effective light transfer across the 
system can be found in [22]. The system’s total reflectance and 
transmittance have a specular contribution ( Rc , Tc ), the light 
that has remained collimated, and a diffuse contribution com-
posed of the collimated incident light that is scattered ( Rcd , 
Tcd ) and the diffuse incident light ( Rdd , Tdd ). Therefore, the 
total reflectance and transmittance can be expressed as

where f is the fraction of collimated incident light.2
As previously shown for the case of the two-flux model, 

a method to evaluate the contributions of the substrate to 
the total absorptance can also be derived. Indeed, the total 
absorptance of the system is simply the amount of light that is 
neither reflected nor transmitted. Mathematically is given by

Light can only be absorbed at either the film or the substrate. 
Thus, A can be rewritten as a sum of the light absorbed 
within the film Af and within the substrate As

where Asc and Asd are the specular and diffuse contributions, 
respectively.

(12)
dIc

dz
= −(� + �)Ic,

(13)
dJc

dz
= (� + �)Jc,

(14)

dId

dz
= �[(1 − �d)�(Jd − Id) − �Id] + �c�Ic + (1 − �c)�Jc,

(15)

dJd

dz
= �[�Jd + (1 − �d)�(Jd − Id)] − �c�Jc − (1 − �c)�Ic,

(16)R = fRc +Rd = f (Rc +Rcd) + (1 − f )Rdd

(17)T = fTc + Td = f (Tc + Tcd) + (1 − f )Tdd,

(18)A = 1 −R − T.

(19)A = Af +As = Af + fAsc + (1 − f )Asd,

Of course, the K–M model can be understood as a limit-
ing case of the four-flux model in which the system is shined 
on with only perfectly diffuse light ( f = 0 ), and only the 
film and the substrate are considered. Therefore, applying 
the conditions necessary to satisfy the assumptions made 
in the K–M model, we can recover the K–M expressions 
obtained in [17].

Spectrophotometry and colorimetry

From the spectral reflectance and transmittance, XYZ tris-
timulus values can be computed assuming a standard illumi-
nant and a standard observer [24]. XYZ color coordinates can 
then be converted to L∗a∗b∗ color coordinates ( L∗ being the 
luminosity), which allow for the calculation of the chroma 
C∗ , the hue h◦ , and the color difference ΔE.

Numerical models

Computing tools have proved very useful in solving prob-
lems by means of numerical simulations, and they are key in 
finding the behavior of light in dense or layered media [25]. 
Events like absorption or scattering can be implemented as 
events that may happen to each elemental light beam with 
a probability for each path unit. These models have proved 
themselves able to reproduce the analytical solutions given 
by theoretical models, as is the case of K–M’s. This is why 
we are going to use a Monte Carlo simulation to accurately 
reproduce the analytical expressions we have found. In addi-
tion, numerical solutions will offer other results of interest 
for our system. Beyond the confirmation of the theory, it is 
interesting to notice that the agreement involves a mutual 
validation, so that the model can be looked upon as a tool 
with its own enlarged capabilities. Once convergence crite-
ria have been found, the numerical model can be relied on 
as a distinct tool on which we can introduce a number of 
variations that depart notably from the assumptions that we 
required in the pursuit of analytical solutions.

In order to simulate the K–M theoretical model described 
in Sect. “Theoretical review”, we implement a Monte Carlo 
approach. Specifically, we discretize the specimen into N 
layers and couple it to another layer representing the sub-
strate. We assign an absorption and backscattering prob-
ability, PK and PS, respectively, to each layer (including 

(20)ΔE =
√
ΔL∗2 + Δa∗2 + Δb∗2,

(21)C∗ =
√
a∗2 + b∗2,

(22)h◦ = arctan
(
b∗

a∗

)
,

1 Assuming z to be the distance from the illuminated surface (posi-
tive downwards).
2 It is worth noting that the expressions from [23] are recovered if we 
illuminate the system with totally collimated light ( f = 1).
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the substrate). PK and PS are the finite equivalents of the 
absorption and backscattering coefficients K and S, so that 
PK ⋅N = KX and PS ⋅N = SX , or PK ≡ Kdx and PS ≡ Sdx . 
We send NT elemental light beams to the specimen and 
decide their fate according to algorithm 1.

In its current state, the Monte Carlo simulation model 
outputs the total number of reflected, transmitted, and 
absorbed beams, the total number of beams hitting a given 
layer (related to the transverse energy density U(x)), and 
the total number of interlayer jumps of each beam before 
being either reflected, transmitted, or absorbed, which may 
be related to its time-of-flight (ToF). As it will be shown, the 
total number of incoming beams, NT , determines the preci-
sion of the calculation, or the statistical uncertainty, i.e., the 
difference between consecutive realizations under the same 

simulation conditions. For its part, the total number of lay-
ers, N, which is given by

(23)N =
K + S

PK + PS
X,

determines the accuracy of the calculation. The total 
event probability for each layer, PK + PS , directly deter-
mines the number of layers needed to correctly describe 
the physical phenomena taking place, and reproduce the 
theoretical results. In addition the obvious probability limit 
PK + PS ≤ 1 is a criterion that must be established. As our 
Monte Carlo model implements the same assumptions as 
the K–M theory described in Sect. “Theoretical review”, 
for a first verification we compare simulated and theoreti-
cal results of the total reflectance Rt . Figure 2 shows the 
difference (in percentage points) between simulated and 
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theoretical results of the total reflectance ΔRt as a function 
of the number of layers and PK + PS.

As can be seen in Fig. 2, for PK + PS = 0.01 the absolute 
difference between simulated and exact results is around 0.1 
percentage points, so that we take

as a discretization criterion.

(24)PK + PS ≤ 0.01,

Spectroscopy of diffuse media

Scattering, thicknesses, and color

In this section we will use the K–M theory to study the color 
variation when depositing increasing thicknesses of different 
dyes on a given substrate, with special emphasis on the influ-
ence of the scattering coefficient S of the dyes, which charac-
terizes the ability of a medium (dye in this case) to redirect 
a beam of light in directions other than that of incidence.

Figure 3 shows the location of the four different dyes, 
having all of them the same scattering properties, but dif-
ferent absorption properties (randomly selected to cover the 
color space, although all of them having the same chroma 
C∗ = 30 ). These dyes have been deposited in a non-absorb-
ing ( Rg + Tg = 1 ) substrate, with reflectance Rg = 0.1.

In all figures, thin lines correspond to a constant scat-
tering case, whereas thick lines correspond to a wave-
length-dependent scattering case (assuming a Rayleigh-
like—S ∝ 1∕�4—scattering dependance). Figure 4 shows the 
color coordinates L∗ , C∗ , and h◦ in reflection, as a function 
of the thickness X. Figure 5 shows the color coordinates L∗ , 
C∗ , and h◦ in transmission, as a function of the thickness X. 
Figure 6 shows the color difference (between constant S and 
wavelength-dependent S) as a function of the thickness X, 
both in reflection and transmission.

The smaller Rg is, the sooner it affects the spectral 
dependance of S the color in reflection. Colors with con-
stant S all end up in a circle with saturation C∗ = 30 , by 
construction.

In transmission we always start from the same grayish 
color of the substrate (as Rg is constant) and we end up in 
black (also in the center of the a∗ − b∗ plane). Saturation 
reaches a maximum, and luminosity ends in 0.

In reflection the color difference becomes more important 
sooner than in transmission.

Note that the scattering coefficient S is always linked to 
the thickness of the medium X, as the product SX. Its influ-
ence depends on how important this SX product is, compared 
to the absorption (KX). The reflectance of the substrate, Rg , 
has a greater influence on the color in transmission, while 
the spectral dependance of S has a greater influence on the 
color difference in reflection than in transmission.

Deviation from Beer–Lambert law

In this section we will analyze the transmittance variation 
when the scattering coefficient S of the media is increased. 
Figure 7 shows the total transmittance as a function of the 
thickness KX for two different values of K/S, with a constant 
value of K.
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Fig. 2  Absolute difference (in percentage points) between simulated 
and theoretical results of the total reflectance ΔRt , as a function of 
N (bottom axis) and PK + PS (top axis). NT = 100 000 , K∕S = 9 , 
SX = 1 . Transparent substrate. The inset shows a zoomed area 
between N = 100 and N = 100 000

Fig. 3  Location of the four different dyes used in this study, all of 
them having the same chroma C∗ = 30
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In the case of a highly absorbent media, K∕S = 100 (blue 
line in Fig. 7), a decreasing curve is observed. In the semi-
logarithmic scale it is almost a straight line, evidencing a 
behavior close to exponential. This is expected, since the 
transmission of a purely absorbent medium should show 
exponential behavior, given by the Beer–Lambert (B–L) 

law. This limiting case (pure absorption) can be obtained 
from Eq. (8) when S → 0:

(25)lim
S→0

Tt = Tge
−KX .

Fig. 4  Color coordinates L∗ , C∗ , and h◦ in reflection, as a function of the thickness X 

Fig. 5  Color coordinates L∗ , C∗ , and h◦ in transmission, as a function of the thickness X 
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When the K/S value decreases, i.e., S increases, the depar-
ture from an exponential becomes obvious ( K∕S = 0.01 , 

green line in Fig. 7). A B–L exponential would require an 
extinction mechanism that is proportional to the intensity 
arriving at each point (like absorption), whereas scattering 
can reintroduce light into the original flux via multiple scat-
tering. Single scattering, although unrealistic, is not a prob-
lem in terms of B–L law, as it contributes to extinction. If 
we only considered the absorption and the single scattering, 
we would obtain an ideal exponential in the form (dashed 
line in Fig. 7):

As it can be observed in Fig. 7 the transmittance in a medium 
with a strong scattering (green line) is higher than the ideal 
single-scattering one (dashed line). In such a dense medium 
light can be scattered many times, introducing scattered light 
into the transmittance flux, and this results in an increase of 
T. Interestingly, for small values of the thickness the curves 
overlap, showing that for very low thickness, for which the 
probability of multiple scattering events becomes negligible, 
the transmission reaches the exponential as a limiting case. 
Thus, when the specimen is either highly absorbent, Eq (25), 
or thin enough, Eq (26), a B–L law can be observed.

Substrate influence

In this section we will study the influence of the substrate 
on the total reflectance. Figure 8 shows theoretical results 
of the total reflectance of a specimen with K∕S = 1 , placed 
in optical contact with a substrate with varying reflectance 
Rg , as a function of SX. It can be seen that the influence of 
the substrate decreased as SX is increased. As expected, all 
results converge to the infinite thickness case (black dashed 
line) where the substrate color gets completely hidden by 
the specimen. Interestingly, there seems to be a special 
value of Rg for which Rt = R∞ regardless of the thickness 
of the specimen. It can be shown that this special value 
is actually Rg = R∞ = a − b , obtained from Eq. (3) when 
Rg → R∞ = a − b.

Figure 8 also shows the simulated results of the total 
reflectance which fits with the theorical curve. For this case, 

(26)Tt = Tge
−(K+S)X .

Fig. 6  Color difference ΔE00 
(between constant S and 
wavelength-dependent S) as a 
function of the thickness X, both 
in reflection and transmission
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Fig. 7  The total transmittance Tt(solid lines), obtained from Eq.  (8), 
as a function of KX (semi-logarithmic scale) for two values of K/S, 
simulating the case of pure absorbant media and a diffuse media. The 
case of absorption plus single scattering is also shown (dashed line), 
obtained from Eq. (26)

Fig. 8  Simulated (markers) and theoretical (solid lines) results of the 
total reflectance Rt for several values of Rg as a function of SX (loga-
rithmic scale). Limit curves (dashed black lines) for the case of infi-
nite thickness are also shown
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the number of layers was N = 20000 in order to still meet 
Eq. (24) for the thickest specimen with SX = 100.

Spectroscopy of transmittance

In this section, we use the extended K–M theory to perform 
a colorimetric study of colloidal systems, connecting the 
particles’ absorption and scattering cross sections as cal-
culated with Mie theory with the absorption and scattering 
parameters associated with the K–M theory. The optical 
properties of the colloidal system are obtained by consider-
ing the actual size and composition of the particles, as well 
as the density. We consider a free-standing ( Rg = 0 , Tg = 1 ) 
gold colloid (Au, optical constants taken from Babar and 
Weaver [26]), of thickness h, embedded in a surrounding 
medium with refractive index nsm . The parameters that we 
have varied are the radius of the particles R, the particle 
number density n, the thickness of the system h, and the 
refractive index of the surrounding medium nsm . According 
to the model, the system is solved as a multilayer of arbitrar-
ily thin layers, with no lateral boundaries.

In the case of a colloidal medium, the origin of the scat-
tering and absorption is microscopically located in the parti-
cles that have some absorption and scattering cross sections, 
Cabs and Csca.

From Mie theory [27]

where an and bn are the electric and magnetic Mie coeffi-
cients, respectively, and

with k = 2�nsm∕� . The K–M absorption and scattering coef-
ficients are then given by [28]

where n is the particle number density and gsca is the asym-
metry parameter.3 In the context of effective medium theo-
ries, a filling fraction f is usually defined, as f = nv , where 
v is the volume of an individual particle.

Trajectories in the color space are calculated from both 
reflection and transmission spectra, studying the influence 

(27)Csca =
2�

k2

∞∑

n=1

(2n + 1)
(
|
|an

|
|
2
+ |
|bn

|
|
2
)
,

(28)Cabs = Cext − Csca,

(29)Cext =
2�

k2

∞∑

n=1

(2n + 1)ℜ
{
an + bn

}
,

(30)K = 2 × Cabs × n

(31)S =
3

4
× Csca ×

(
1 − gsca

)
× n,

Fig. 9  Color trajectory (thick 
lines → reflection, thin ones 
→ transmission) in the L∗a∗b∗ 
space and evolution of the 
luminosity L∗ , chroma C∗ , 
and hue h◦ as the radius of 
the particles is varied from 
R = 10 nm to R = 103 nm . The 
rest of the parameters are fixed: 
nsm = 1.33 (water-embedding), 
n = 106 mm−3 , and h = 10mm

3 Calculated in terms of the Mie coefficients as well, see, e.g., [27, p. 
120].
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of two parameters: the radius of the nanoparticle and the 
refractive index of the surrounding medium.

Varying the radius of the particles

Figure 9 shows the color trajectory in the L∗a∗b∗ space and 
the evolution of the luminosity L∗ , the chroma C∗ , and the 
hue h◦ as we vary the radius of the particles, R. The rest 
of the parameters are fixed: nsm = 1.33 (water-embedding), 
n = 106 mm−3 , and h = 10mm . The maximum filling frac-
tion achieved is f = 0.0042.

As can be seen in Fig. 9, we start from black in reflec-
tion and white (as D65 represents white light) in transmis-
sion, i.e., for very small particles ( R = 10 nm ), all light is 
transmitted through the system. The opposite happens for 

very large particles ( R = 1 μm ), where all light is reflected, 
reaching an orangish color in reflection and perfect black 
in transmission (no transmitted light at all). In reflection, 
we observe greenish and orangish colors as we increase the 
radius of the particles, whereas more pinkish and reddish 
colors are observed in transmission.

Varying the refractive index of the surrounding 
medium

Figure 10 shows the color trajectory in the L∗a∗b∗ space 
and the evolution of the luminosity L∗ , the chroma C∗ , 
and the hue h◦ as we vary the refractive index of the sur-
rounding medium, nsm (considered dielectric). The rest 

Fig. 10  Color trajectory (thick 
lines → reflection, thin ones 
→ transmission) in the L∗a∗b∗ 
space and evolution of the 
luminosity L∗ , chroma C∗ , and 
hue h◦ as the (real) refrac-
tive index of the surround-
ing medium is varied from 
nsm = 1 to nsm = 1000 . The 
rest of the parameters are fixed: 
R = 100 nm , n = 106 mm−3 , 
and h = 10mm

Fig. 11  Color difference ΔE 
between reflection and transmis-
sion as a function of the particle 
radius R and the refractive index 
of the surrounding medium nsm
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of the parameters are fixed: R = 100 nm , n = 106 mm−3 
, and h = 10mm . The filling fraction is again constant, 
f = 4.19 × 10−6.

As can be seen in Fig.  10, when varying the refrac-
tive index of the surrounding medium, we start from our 
well-known orangish and pinkish colors, in reflection and 
transmission, respectively, corresponding to spherical par-
ticles of radius R = 100 nm with a particle number density 
n = 106 mm−3 and a thickness h = 10mm . As the refrac-
tive index of the surrounding medium is increased, color in 
reflection loses chroma, slightly increasing its hue (turning 
yellowish) until all color is lost, ending in a medium gray 
( L∗ ≈ 50 ). In transmission, however, we go from pink to 
almost white, passing through light green and yellow, which 
implies a dramatic variation in hue.

Color difference between reflection 
and transmission

Figure 11 shows the color difference ΔE between reflection 
and transmission as we vary the particle radius R and the 
refractive index of the surrounding medium nsm.

When varying either the radius of the particles, the parti-
cle number density, or the thickness of the system, we always 
start from the maximum color difference ( ΔE = 100 ), as we 
are comparing black (reflection) and white (transmission). 
A similar result is obtained at the other end ( ΔE around 
80), where we are comparing orange (reflection) and black 
(transmission).

The minimum color difference ( ΔE ≈ 40 , still huge4) 
is found for values R ≈ 100 nm , n ≈ 106 mm−3 , and 
h ≈ 10mm . These are the values that have been used for 
studying the evolution of the color when the refractive index 
of the surrounding medium is increased. Figure 11 shows 
that the color difference between reflection and transmis-
sion is reasonably constant as nsm is increased, reaching its 
maximum value ( ΔE = 46.99 ) for nsm = 1.876.

Time dependency

As a result of the way in which a Monte Carlo model handles 
the propagation of light in the form of elemental beams that 
make their progress through the system in discrete steps, it 
is possible to analyze the output not just as a purely cumula-
tive mechanism to construct the reflectance or transmittance 
factors but also in terms of their history.

A very simple example of this is shown in Fig. 12, where 
the histogram of the number of interlayer jumps (pro-
portional to the time of flight, ToF), is represented for an 
almost transparent medium, with KX = 1 and S = 0 (small 
absorption and no scattering). The substrate is chosen here 
as totally transparent (Rg, Tg,Ag) = (0, 1, 0) and the discre-
tization is N = 102 layers and NT = 105 elemental beams. In 
these conditions the system works in an extremely simple 
single-flux fashion. The result is an exponentially decreas-
ing curve that can be easily fitted with the parameters of the 
problem (red line). For the proposed conditions the number 
of jumps before being absorbed is proportional to the pen-
etration depth, so that this histogram is just a representation 
of the B–L law, Eq. (25).

This Monte Carlo simulation could be helpful, by chang-
ing the desired parameters, to understand the origins of the 
deviations from B–L law, a classical problem that keeps 
attracting the interest of researchers in chemistry and physi-
cal optics [29].

Fig. 12  Histogram of the number of interlayer jumps (ToF) of the 
absorbed beams where we have sent NT = 105 beams to a system with 
KX = 1 and S = 0 discretized with N = 102 layers, placed on top of a 
perfectly transparent substrate (Rg,Tg,Ag) = (0, 1, 0)

Table 1  System properties

Physical properties of the two coatings ( i = 1, 2 ), and the substrate 
( i = 3 ) of the system under study. n is the refractive index, � ( � ) is the 
scattering (absorption) coefficient per unit length, h is the width of 
the layer, and l is the number of layers into which the corresponding 
medium has been discretized

i n � (mm
−1) � (mm

−1) h (mm) l

1 1.5 0.1 0.1 1 502
2 1.8 1 1 1 502
3 1.5 0 0 2 1004

4 In this case we are comparing orange and pink, which are two per-
fectly distinguishable colors.
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Another less simple example of the ability of Monte Carlo 
simulations to deal with time variations is the propagation of 
pulses through stratified translucent media. Let us consider 
an ultrashort collimated pulse (modelled as a �(t = 0) func-
tion with NT elemental beams) and a system consisting of 
two coatings applied to a transparent substrate.

The properties of the three regions are shown in Table 1, 
the second layer being a denser one with higher values 
of scattering and absorption. The system is discretized 
into N = 2008 layers, satisfying convergence criteria, and 
NT = 5 × 107 , enough to get stable results. The basic time 
unit Δt corresponds to the collimated beam crossing a layer 
of index n = 1 . For other indices the time increases accord-
ingly ( nΔt for a collimated elemental beam, �nΔt for a dif-
fuse one, � being the increase of path due to the obliquity of 
diffuse light).The part of the beam that remains collimated 
(ballistic light) produces sharp peaks at fixed times in both 
reflectance and transmittance, while the diffuse magnitudes 
appear spread over time.

In Fig. 13 the reflectance and transmittance of the system 
are represented separately for the collimated and diffuse out-
put beams. These histograms represent the impulse–response 
of the system. For any other pulse with a time depend-
ence f(t) these impulse–response distributions should be 

convoluted with f(t) in order to obtain the actual collimated 
and diffuse outputs. The addition of both would produce 
the overall transmittance and reflectance. For the case of 
the ultrashort pulse represented by the function �(t = 0) , 
both the reflectance and transmittance contain a sequence 
of peaks—coming from the reflections produced at different 
boundaries—plus a background light corresponding to the 
scattered light. In the reflectance signal just four peaks could 
stand out clearly ( SNR > 2 ) from the noisy background, 
none of them later than t = 7 × 103Δt , after which the diffuse 
tail is dominant. For transmission, the peak at t = 3163Δt 
(direct collimated transmission: t = (n1l1 + n2l2 + nsls)Δt ) 
is the dominant one (see arrow in Fig. 13). Another peak, 
slightly later than t = 6 × 103Δt , would be the last one to 
stand out clearly over the background light (see other arrow).

An interesting aspect that is worth explaining is the time 
delay between the first collimated and diffuse transmitted 
beams ( t = 3163Δt for the collimated and t = 4670Δt for 
the diffuse). This is really an artifact of the model: all the 
diffuse beams are supposed to travel in the same oblique 
trajectory: the one that doubles the path ( � = 2 ) of the col-
limated beams. This value is correct as an average, but we 
take it for every beam for the sake of simplicity. Selecting � 
for each scattering event would soften the sharp variations 
in the diffuse distribution and match the resulting tails with 
their corresponding collimated beams.

For instance, the origin of the sharp edge observed in 
t = 10693Δt is closely related to the specular transmission 
peak at t = 6175Δt . This specular peak represents transmis-
sion with only one internal reflection taking place in the 
third layer (substrate). Under this transmission mechanism, 
when forward scattering appears, it has to occur while pass-
ing through the first and second coatings, because there is no 
scattering in the third one (the substrate is transparent). In 
other words, scattering can occur as early as the first contact 
with the specimen and as late as the last contact with the sec-
ond coating, producing total transient times in the interval 
t = (10693, 12350)Δt . All remarkable features in these plots 
can be explained in similar terms.

Finally, it is worth commenting that other events can be 
time-resolved by this description, like the transient states before 
reaching stationary solutions for R(t) and T(t), or the case of 
fluorescence and phosphorescence equilibria [18], where some 
additional probabilities have to be introduced to account for 
both the “charging” process (specific absorption and transfer 
to metastable states) and the emission in longer wavelengths.

Conclusions

In this article we have reviewed the fundamentals of the 
Kubelka–Munk theory, a very interesting framework 
for solving the problem of the propagation of light in an 

Fig. 13  Response function of the system to a delta-like pulse. His-
togram showing the ratio of collimated and diffuse beams that have 
been either reflected or transmitted as a function of time. The bin 
width is equal to a time element Δt . The total number of incident 
beams utilized in this simulation is NT = 5 × 107 . The arrows show 
two important peaks that are discussed in the text
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absorbent/scattering medium. We have presented it in an 
extended version that includes the existence of a substrate 
underneath, showing its main analytical results, conditions 
of validity, and the main variations that allow you to imple-
ment the problem of boundaries in a realistic way. Both the 
original two-flux and the more modern four-flux formalisms 
have been included in the study. The importance of these 
solutions has been underlined by their application to the cal-
culation of spectral transmittance and reflectance curves. 
This has been shown for several examples, like analyzing the 
impact of the scattering coefficient and the thickness on the 
spectral reflectance of diffuse media, or the effect of the scat-
tering properties of suspended particles on the spectral trans-
mittance of colloids. An interesting addition to these results 
is the color analysis, or the possibility of summarizing the 
evolution of the spectral response with just a few parameters, 
easily interpreted by our perception (color difference is often 
mentioned as a tool for the diagnosis of many processes) 
and very often it is directly accessible for our instruments. 
Another aspect that has been examined is the numerical 
resolution of this problem, which is very important since 
the analytical solution is available only under very specific 
conditions. When the medium is not homogeneous, the dif-
fusing element is not isotropic, or if complex light–matter 
interactions appear (inelastic scattering, photoluminescence, 
non-linear phenomena), it may happen that we need numeri-
cal solutions of the equations or even that we need to rethink 
new balance equations. For all these situations, the Monte 
Carlo approach has proved to be ideal. Once you have an 
adequate discretization of the medium and light, the passage 
of time is discretized and the interaction translates into prob-
abilities of events for each interval. This way of proceed-
ing not only allows a cumulative record of magnitudes like 
the spectral reflectance but also a temporary solution that 
allows one to resolve transient states, pulses, etc., giving an 
added value to this method. As an example of this we have 
shown the time histogram of “photons” in a purely absorbent 
medium, showing the expected fit to a Beer–Lambert law.
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