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Abstract

In this paper, a new family of continuous random variables with non-
necessarily symmetric densities is introduced. Its density function can
incorporate unimodality and bimodality features. Special attention
is paid to the normal distribution which is included as a particular
case. Its density function is given in closed-form which allows to easily
compute probabilities, moments and other related measures such as
skewness and kurtosis coefficients. Also, a stochastic representation of
the family that enables us to generate random variates of this model is
also presented. This new family of distributions is applied to explain
the incidence of Hodgkin’s disease by age. Other applications include
the implications of bimodality in geoscience. Finally, the multivariate
counterpart of this distribution is briefly discussed.
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1 Introduction

Bimodal distributions arise naturally in many different scenarios. Perhaps,
as seen above, one of the most relevant phenomena that can be explained
through these distributions is the disease patterns. By understanding the
reason behind the multimodality of some cancer incidence curves, the prac-
titioners may enhance their knowledge of the cancer developmental process
and the potential features that identify cancer and that separate a particular
type of cancer from all other types of cancer. Therefore, the importance of
properly identifying cancer occurrences by age is vital to improve the tumor
diagnosis. There exists some type of cancers where it is observed the exis-
tence of two spikes in occurrences. In this regard, there exists some type
of cancers that have two peaks in occurrences, by age. Examples of rec-
ognized bimodal cancers include Kaposi’s sarcoma and Hodgkin lymphoma.
The latter type of cancer has two peaks in occurrence: in young adults and
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middle-aged adults. Hodgkin’s lymphoma (see MacMahon (1966)) is uncom-
mon cancer that develops in the lymphatic system, which is a network of
vessels and glands spread throughout the organism.

The occurrence of bimodality has also implications in biogeoscience (see
Hirota et al., 2011). Finding appropriate probabilistic models that can ex-
plain bivariate datasets is an issue of vital importance. In this work, we pro-
pose an extension of the normal distribution that may be either unimodal or
bimodal. This new family of distributions arises from the folded normal dis-
tribution suggested by Leone et al. (1961). The latter model that generalizes
the half-normal distribution has probability density function (pdf) given by
the expression,

f(z) =
1

σ

√
2

π
exp

{
− 1

2σ2

[
z2 + (σθ)2

]}
cosh

(
θz

σ

)
, z > 0.

It is worth mentioning that the folded normal distribution has been
scarcely discussed in the literature, see for example Johnson (1962) and
the more recent paper written by Gui et al. (2013). In the last decades,
different techniques to extend the normal family have been deemed in the
statistical literature. The skew-normal distribution in Azzalini (1985) (see
also Azzalini, 1986), the beta-normal distribution suggested by Eugene et al.
(2002) (see also Eugene, 2001, Famoye et al., 2004 and Rêgo et al., 2012), the
Balakrishnan skew-normal density in Sharafi and Behboodian (2008) (more
details in Teimouri and Nadarajah, 2016), the generalization proposed by
Arnold and Beaver (2002), the Sinh-arcsinh family introduced by Jones and Pews
(2009) and the generalized normal one in Garćıa et al. (2010), among others.
For a comprehensive review of the skew normal families the reader is referred
to Azzalini (2013).

In order to make the paper self-contained, we introduce here some func-
tions that will be used throughout the paper. The basic hyperbolic sine and
cosine functions are defined as,

sinh(z) =
1

2
[exp(z)− exp(−z)] , cosh(z) =

1

2
[exp(z) + exp(−z)] . (1)

From these two expressions the hyperbolic secant and tangent functions
given by sech(z) = 1/ cosh(z) and tanh(z) = sinh(z)/ cosh(z) are simply
derived. Additionally, we will use ϕ(z) and Φ(z) to denote the standard
normal (N(0, 1)) density and distribution functions respectively and ϕµ,σ(z)
the normal density with mean µ and standard deviation σ.
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The rest of this paper is structured as follows. In Section 2, the mecha-
nism to derive the new family of distributions from which the proposed model
is derived. Here, expressions for the mean, variance and the third and fourth
standardized cumulative are also provided. In Section 3, the parameter es-
timation problem is discussed. Numerical applications are given in Section
4. The multivariate version of this model is presented in Section 5. Finally,
conclusions and further comments are shown in the last section.

2 The proposed model

Let be G(x) an absolutely continuous distribution function such that G′(x) =
g(x) is symmetric about zero. Then, the following generalization of G(x) is
proposed,

Fθ,λ(x) =
1

2
[exp(−λθ)G(x− θ) + exp(λθ)G(x+ θ)] sech(λθ), (2)

for −∞ < x < ∞, θ ∈ R and λ ∈ R. Obviously, G(x) = F0,λ(x). Natural
choices for G(x) to be plugged into (2) are the Cauchy distribution, the
Student’s t distribution, and the normal distribution that will be the one
considered in the rest of this work, i.e. G(x) = Φ(x).

For this particular member of the family, the resulting pdf is

fθ,λ(x) =
√
2π sech(λ θ)ϕ(θ)ϕ(x)Tθ,λ(x), −∞ < x <∞, (3)

where Tθ,λ(x) = cosh(θ(x−λ)), θ ∈ R and λ ∈ R. Using (1) and the moment
generating function of ϕ(x) it is straightforward to observe that (3) represents
a genuine probability density function in (−∞,∞). Obviously (3) reduces
to the normal distribution, N(0, 1), when θ = 0. Note that apart from the
hyperbolic functions, no other special functions appear in the density (3).
Hereafter, we will denote X ∼ GN(θ, λ) for a random variate X that follows
(3).

Both parameters θ and λ control the unique mode or the two modes
(and the corresponding antimode) of the distribution that can be numerically
obtained by solving the equation

θ tanh(θ(x− λ))− x = 0,

where parameters λ and θ play the role of the shape and location parameters.
When λ = 0, (3) defines a family of symmetric distributions yielding heavier
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tails than the normal distribution. In this case, the distribution is unimodal
when |θ| < 1 and bimodal in the rest of the domain. Furthermore, the degree
of skewness increases when λ grows. Positive skewness corresponds to the
case λ > 0. This is confirmed by Figure 1 below where some plots of the pdf
(3) for special cases of parameters are shown.

Simple calculations provide the moment generating function of theGN(θ, λ)
distribution which is given by

MX(t) = sech(θλ) cosh(θ(t− λ)) exp

(
t2

2

)
. (4)

The latter expression allows us to identify completely this model since
according to Chiogna (1998) the knowledge of the moments of a distribution
is equivalent to a knowledge of the distribution function, in the sense that it
should be possible to exhibit all the properties of the distribution in terms of
the moments. For the distribution introduced in this paper, odd and even
non-central moments, are provided in closed-form. The odd moments are
given by

E(Xr) =
1

2

√
2r

π
[1 + exp(2θλ)] exp

[
−θ
2
(θ + 2λ)

]

×Γ

(
1 + r

2

)
1F1

(
1 + r

2
,
1

2
,
θ2

2

)
, r = 1, 3, . . . ,

whereas the even moments result

E(Xr) =
θ

2

√
2r+1

π
[1− exp(2θλ)] exp

[
−θ
2
(θ + 2λ)

]

×Γ
(
1 +

r

2

)
1F1

(
1 +

r

2
,
3

2
,
θ2

2

)
, r = 2, 4, . . . ,

where 1F1 is the Kummer confluent hypergeometric function.
In particular, the mean and variance of this distribution are given by,

E(X) = −θ tanh(θλ),
var(X) = 1 + (θ sech(θλ))2 .

Although they are not derived in this work, the incomplete moments can
also be obtained in closed-form. The third (skewness) and fourth (kurtosis)
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Figure 1: Plot of the probability density function (3) for selected values of the
parameters. From left to right, panel (a): θ = 1, λ = 0.7, 0.5, 0.3, 0.1; panel
(b): θ = 1, λ = −0.2,−0.4,−0.6,−0.8; panel (c): θ = 1, λ = 3, 2, 1, 0; panel
(d): θ = 2, λ = 0,−1,−2,−3; panel (e): θ = 2, λ = 0.95, 0.65, 0.35, 0.05;
panel (f): θ = 2, λ = 2, 1, 0,−1.
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standardized cumulants are given by,

γ1 = −2θ2sech2(θλ)E(X)

(var(X))3/2
,

γ2 =
8θ4(cosh(2θλ)− 2)

(1 + 2θ2 cosh(2θλ))2
.

The cumulative distribution function (cdf) is given by,

F (x) =
1

2
[exp(−θλ)Φ (x− θ) + exp(θλ)Φ (x+ θ)] sech(θλ).

The following proposition, which is stated without proof, displays some
important properties of this distribution.

Proposition 1 The GN(θ, λ) distribution satisfies the following properties:

(i) fθ,λ(0) = ϕ(θ).

(ii) fθ,λ(x) = f−θ,λ(x).

(iii) f0,λ(x) = f0,0(x) = ϕ(x).

(iv) If X follows the pdf (3) then −X follows the same distribution but
with the parameter λ replaced by −λ. Thus, we have that Fθ,λ(x) =
1− Fθ,−λ(−x).

(v) fθ,λ(x) + fθ,−λ(x) = fθ,0(x).

(vi) Let θ = λ in (3) and consider the two random variates Z1 and Z2

following the pdf (3) with parameter λ1 < λ2, λ1 < (>)λ2, respectively,
then Z1 <st (>st)Z2. That is, Z1 is stochastically smaller (larger) than
Z2.

Since fθ,λ(0) > 0 then E(X−1) will be infinite. Furthermore, higher
negative moments does not exist. See for example Piegorsch and Casella
(1985).

Figure 2 displays the hazard rate function, rθ,λ(x) = fθ,λ(x)/(1−Fθ,λ(x)),
of the GN(θ, λ) distribution for different values of the parameters θ and λ.
It is observable that this function is monotonically increasing when |θ| <
1 regardless of the values of the parameter λ (see panel (a)). When the
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parameter θ increases (panels (b) and (c)) and λ > 0, i.e. the density is right
skewed, the hazard rate function has a local maximum (then the hazard
rate is initially increasing and later decreasing). Moreover, if λ1 > λ2 then
rθ,λ1(x) > rθ,λ2(x). In addition, when λ < 0, the failure rate is monotonically
increasing.
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Figure 2: Plot of the hazard rate function for selected values of the parame-
ters. From left to right and below to above, panel (a): θ = 0.5, λ = −5, 1, 2;
panel (b): θ = 1, λ = −2, 1, 2; panel (c): θ = 1.5, λ = −5, 1, 2; panel (d):
θ = 2, λ = −2, 1, 2.

2.1 Stochastic representation

The pdf (3) can also be written in the following way,

fθ,λ(x) = pfN(−θ,1)(x) + (1− p)fN(θ,1)(x), x ∈ R, (5)

where
p = sech(λθ) exp(−λθ)/2, (6)
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and fN(µ,1)(x) represents the pdf of a normally distributed random variable
with mean µ and standard deviation one. Note that 0 < p < 1. Then, if
X ∼ GN(θ, λ), it admits the stochastic representation,

X :=

{
N(−θ, 1) w.p. p,

N(θ, 1) w.p. 1− p.

This stochastic representation allows us to simulate random variates from
the model (3) in a straightforward manner.

2.2 Transformations

The family of distributions given in (3) can be generalized to incorporate
a location and scale parameters using a linear transformation. Obviously, a
more flexible model is obtained. For that reason, let us consider the location-
scale generalization of the proposed distribution defined by the following
change of variable Y = µ + σX, where X ∼ GN(θ, λ) given in (3), where
µ ∈ R and σ > 0. Its pdf is given by

f(x) =
√
2π sechψ ϕ(θ)ϕµ,σ(x) cosh (T (x)) , −∞ < x <∞, (7)

where T (x) ≡ Tθ,λ,σ(x) =
θ
σ
(x−λ), ψ ≡ ψ(θ, λ, µ, σ) = θ(µ−λ)/σ, θ ∈ R,

σ > 0, µ ∈ R and λ ∈ R.
Recall that the hyperbolic tangent function can also be written as tanh(z) =

1−2(1+exp(2z))−1 and the hyperbolic secant function as sech(z) = 2(exp(z)+
exp(−z))−1.

3 Statistical inference

The method of moments can be used to estimate the parameters. Obviously,
since moments are not be obtained in closed-form, numerical methods are
required to solve the resulting equations. For that reason, this method of
estimation is no longer considered in this work. In the rest of this Section,
we will focus on the maximum likelihood method. Let us consider a random
sample of n observations x̃ = (x1, . . . , xn) from the distribution (7) and
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let Θ = (θ, λ, µ, σ) be the vector of parameters to be estimated. The log-
likelihood function for Θ is proportional to

ℓ(x̃; Θ) ∝ −n log coshψ − n log σ − nθ2

2
−

n∑

i=1

(xi − µ)2

2σ2

+
n∑

i=1

log coshT (xi),

from which the normal equations are obtained. These equations are given
by,

∂ℓ(x̃; Θ)

∂θ
= n [µ tanhψ + θ σ]−

n∑

i=1

(xi − λ) tanhT (xi) = 0,

∂ℓ(x̃; Θ)

∂λ
= n tanhψ −

n∑

i=1

tanhT (xi) = 0,

∂ℓ(x̃; Θ)

∂µ
= −x̄+ µ+ θ σ tanhψ = 0,

∂ℓ(x̃; Θ)

∂σ
= nσ (θ µ tanhψ − σ) +

n∑

i=1

(xi − µ)2

−θ σ
n∑

i=1

(xi − λ) tanhT (xi) = 0.

From these equations, the entries of the Fisher’s information matrix can
be simply derived by differentiating these equations with respect to the four
parameters, multiplying by negative one and taking expectation. They are
displayed in the Appendix. Recall that the Fisher’s information matrix of
the skew-normal distribution proposed by Azzalini (1985) is singular for the
skew parameter and, consequently, the maximum likelihood estimate of this
parameter can be infinite with a positive probability.

3.1 Conjugate distribution

It is well-known that if Y ∼ N(µ, σ2) and µ follows also a normal distribution,
N(a, τ 2), then the posterior distribution of µ given the sample information
ỹ = (y1, . . . , yn) is N((aσ2 + nȳτ 2)/(σ2 + nτ 2), (σ2 + τ 2)/(σ2 + nτ 2)). An
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analogue result is sustained when the prior distribution is provided by (7)
always that θ = σ > 0. That is, let Y ∼ N(a, τ 2), a ∈ R, τ > 0 and a ∼
GN(θ, µ, λ), then the posterior distribution of a given the sample information
is also a generalized normal distribution GN(θ∗, λ∗, µ∗) with θ∗

2
= θ2τ 2/(τ 2+

nθ2), λ∗2 = λ2 and µ∗ = (µτ 2 + nȳθ2)/(τ 2 + nθ2).

4 Numerical Illustrations

4.1 Bimodality in Cancer Incidence

The incidence of some type of cancers by age displays a major mode for
young adult and minor mode for older adults (see Anderson et al., 2006).
The contour of the curve of cancer incident by age, for the different types of
cancer, is a compelling puzzle. By understanding the reason behind the mul-
timodality of some cancer incidence curves, the practitioners may enhance
their knowledge of the developmental process of cancer and the potential fea-
tures that identify cancer and that separate a particular type of cancer from
all other types of cancer. Therefore, the importance of properly identifying
cancer occurrences by age is vital to improve the tumor diagnosis

In this regard, there exists some type of cancers that have two peaks in oc-
currences, by age. Examples of recognized bimodal cancers include Kaposi’s
sarcoma and Hodgkin lymphoma. The latter type of cancer has two peaks in
occurrence: in young adults and middle-aged adults. Hodgkin lymphoma is
an uncommon type of cancer that develops in the lymphatic system, which
is a network of vessels and glands spread throughout the organism. According
to the National Health Service (https://www.nhs.uk/conditions/hodgkin-lym
“Hodgkin lymphoma can develop at any age, but it mostly affects young adults
in their early 20s and older adults over the age of 70.” We have downloaded
Hodgkin’s disease incidence by age data in England from the aforementioned
website that correspond to the ICD-9 code 2010-2019 from the period 1971-
1994 and to the ICD-10 code (C810, C811, C812, C813, C817 and, C819)
from the period 1995-2016. The datasets were collected in nine different
regions across England (North East, North West, Yorkshire and The Hum-
ber, East Midlands, West Midlands, East, London, South East and, Sound
West). The first dataset includes 29,187 (17,380 males and 11,807 females)
diagnosed cases whereas the second one contained 30,906 (17,581 males and
13,325 females). In Figure 3, we have plotted the empirical incidence by age
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in the period 1971-1994 (left panel) and 1995-2016 (right panel).
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0.010

0.015

0.020

Hodgkin Disease 1995-2016

Figure 3: Observed incidence of Hodgkin disease in England by age in the
period 1971-1994 (left) and 1995-2016 (right).

The bimodality of these datasets can be measured by the maximum differ-
ence, across sample points through the Hartigan’s dip test Hartigan and Hartigan
(1985). This test is available in the ”diptest” package developed for R envi-
ronment. In this test, we test the null hypothesis the distribution is unimodal
against the alternative hypothesis that the distribution is non-unimodal, i.e.
at least bimodal. For incidence by age in the period 1971-1994 dataset, there
is empirical evidence to reject the null hypothesis. In this case, we have ob-
tained a test statistic value of 0.0556 with a p-value less than 0.0001. This
value was calculated via Monte Carlo simulation based on 5000 replications.
Similarly, for the period 1995-2016, the null hypothesis is also rejected, the
value of the test statistic is 0.0511 with a p-value less than 0.0001. There-
fore, it seems reasonable to use a bivariate parametric model to explain these
cancer datasets. We have fitted the four-parameter distribution provided by
expression (7) to the two datasets presented in the first Section. Below in
Figure 4, we have plotted again the empirical incidence by age of this cancer
(solid line) in the period 1971-1994 (left panel) and 1995-2016 (right panel).
The location-scale generalization of the proposed distribution (dashed line)
has been superimposed to the observed data. It is observable that the model
(7) can reproduce the two modes of the age incidence of this cancer for both
periods.
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Figure 4: Observed (solid) and fitted (dashed) incidence of Hodgkin disease
in England by age in the period 1971-1994 (left) and 1995-2016 (right).

4.2 Other applications

The performance of the location-scale generalization of the generalized nor-
mal distribution is tested by using two other datasets. Firstly, we consider
data from the Old Faithful Geyser in Yellowstone National Park. The data
consists of 299 pairs of measurements referring to the time interval between
the starts of successive eruptions and duration of subsequent eruptions in
minutes. See Azzalini and Bowman (1990) for more details. Applications of
Hartigan’s dip test conclude that both datasets are non-unimodal (i.e. bi-
modal) with a value of the test statistics are 0.0390 for the eruption time and
0.1025 for the waiting time between eruptions respectively. The associated
p-values are 0.0030 and less than 0.0001 respectively. This is graphically
confirmed in Figure 5, where we have depicted the distribution of the em-
pirical eruption time (left panel) and waiting time (right panel) by using a
solid line. Again, the four-parameter generalized distribution (dashed line)
captures the bimodality feature of the distribution.

Our third illustrative example consists of an analysis of the breaking
strengths of 63 glass fibres of a length of 1.5 cm. This set of data appears in
Jones and Pewsey (2009). Unlike the previous examples, the Hartigan’s dip
test concludes that there is no empirical evidence to reject the null hypothesis
that this dataset is unimodal. Here a value of 0.0311 was obtained for the
test statistic and with a p-value of 0.9622. However, visual inspection of the
observed data (see Figure 6) reveals that there exists a small bump in the
observed data (solid line) that the model (7) (dashed line) can describe.
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Figure 5: Time interval between the starts of successive eruptions and
duration of subsequent eruptions in minutes of Old Faithful Geyser. See
Azzalini and Bowman (1990) Smith and Naylor (1987).
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Figure 6: Observed (solid) and fitted (dashed) breaking strengths of 63 glass
fibres of a length of 1.5 cm. See Jones and Pewsey (2009).
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4.3 Summary of results

Parameter estimates for the four-parameter generalized normalGN(θ, λ, µ, σ)
and standard errors for the five aforementioned datasets are illustrated in Ta-
ble 1. This Table also included the estimation of the parameters when the
skew-normal distribution with parameters (λ, µ, σ) and a finite mixture of two
skew-normal distributions with the same parameters µ and σ and different
skew parameters, say λ1 ∈ R and λ2 ∈ R are considered. The mixture pa-
rameter is given by p ∈ (0, 1). Observe that for the parameter θ consistently
satisfies that |θ| > 1 to reflect the fact that the bimodality is captured by
the model. Furthermore, the positive skewness of these datasets is explained
by the positive values of the estimates of the parameter λ.
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Table 1: Parameter estimates and standard errors (in brackets) for the dif-
ferent datasets considered.

Hodgkin’s disease Old Faithful Breaking stress
1971-1994 1995-2016 Eruption Time Waiting Time of glass fiber

GN θ̂ 1.687 1.590 1.953 3.090 1.765
(0.011) (0.011) (0.112) (0.148) (0.276)

λ̂ 47.813 50.001 67.041 188.330 1.136
(0.114) (0.132) (0.568) (1.496) (0.066)

µ̂ 46.549 48.326 68.168 190.364 1.243
(0.090) (0.100) (0.484) (1.419) (0.054)

σ̂ 10.607 11.416 6.596 21.838 0.205
0.053 (0.057) (0.299) (0.947) (0.021)

SN λ̂ -1.9E-4 -3.2E-4 5.4E-4 -0.020 -2.679
(0.872) (1.0E-6) (4.9E-5) (0.213) (0.802)

µ̂ 43.005 45.180 72.308 3.479 1.850
(14.309) (1.0 E-6) (5.4E-5) (0.189) (0.049)

σ̂ 20.500 20.029 13.867 1.146 0.470
(0.094) (2.1E-4) (5.8E-6) (0.050) (0.055)

MSN p̂ 0.305 0.305 0.464 0.996 0.721
(0.008) (0.008) (0.062) (0.004) (0.248)

λ̂1 -5.823 -5.810 11.689 38.373 -11.992
(0.466) (0.469) (7.742) (21.387) (19.563)

λ̂2 0.688 0.690810 -0.851 -5.988 -1.220
(0.021) (0.021) (0.248) (10.712) (1.097)

µ̂ 40.097 40.021 72.309 1.651 1.837
(0.183) (0.128) (0.767) (0.033) (0.047)

σ̂ 20.704 20.606 13.867 2.141 0.461
(0.087) (0.086) (0.566) (0.091) (0.050)

Comparisons of this distribution with the three-parameter skewed nor-
mal distribution (SN) and the finite mixture of two skew-normal distribu-
tions with the same location and scale parameters µ and σ and different
skew parameters, say λ1 ∈ R and λ2 ∈ R (MSN) are displayed in Table
2 for the five datasets considered. We have used the following measures
of model selection, the negative of the maximum of the likelihood function
(−ℓmax), Akaike’s information criterion (AIC), Bayesian information crite-
rion (BIC) and consistent Akaike’s information criterion (CAIC). A lower
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value of these measures of model selection is desirable. It is observable that
the generalized-normal (GN) distribution is preferable to the SN and MSN
models for the five datasets considered. We have also fitted a finite mix-
ture of two skew-normal distributions with the different location parameters
µ1 and µ2, different scale parameters σ1 and σ2 and different skew param-
eters λ1 and λ2. The following values for the consistent Akaike’s informa-
tion criterion (CAIC): 252333.850 (Hodgkin’s disease:1971-1994), 269746.656
(Hodgkin’s disease:1995-2016), 2355.511 (eruption time), 623.015 (waiting
time) and 56.302 (breaking stress of glass fiber). It can be seen that the
GN distribution provides a better fit than the seven-parameter mixture for
the eruption time and breaking stress of glass fiber datasets in terms of this
measure of model selection.

Table 2: Different measures of model selection for the generalized normal
(GN) and skewed-normal (SN) distributions for the different datasets con-
sidered.

Hodgkin’s disease Old Faithful Breaking stress
1971-1994 1995-2016 Eruption Time Waiting Time of glass fiber

GN −ℓmax 126430.807 1352605.502 1161.709 305.538 10.334
AIC 252869.615 270529.004 2331.419 619.076 28.669
BIC 252902.741 270562.359 2346.220 627.649 37.241
CAIC 252906.741 270566.359 2350.220 631.649 41.241

SN −ℓmax 129571.764 137996.198 1210.488 465.005 13.957
AIC 259149.528 275998.396 2426.977 936.010 33.914
BIC 259174.372 276023.412 2438.078 947.111 40.344
CAIC 259177.372 276026.412 2441.078 950.111 43.344

MSN −ℓmax 128876.013 137325.559 1192.415 457.297 12.361
AIC 257762.027 274661.118 2394.830 924.594 34.722
BIC 257803.434 274702.811 2413.330 943.096 45.437
CAIC 257808.434 274707.811 2418.330 948.096 50.437

5 Multivariate version

A multivariate version of (3) arises naturally using the representation (5).
We define the vector (X1, . . . , Xm)

⊤ with joint density
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f(x) =
p

(2π)m/2|Σ1|1/2
exp

{
−1

2
(x− µ−θ)

⊤Σ−1
1 (x− µ−θ)

}

+
1− p

(2π)m/2|Σ2|1/2
exp

{
−1

2
(x− µθ)

⊤Σ−1
2 (x− µθ)

}
, (8)

where p is defined as in (6), µ−θ = (−θ, . . . ,−θ)⊤, µθ = (θ, . . . , θ)⊤ are the
mean vectors, and both covariance matrices Σi, i = 1, 2 have unit variances.
Then, by construction, the marginal distributions in (8) are dependent and
identically distributed Xi ∼ GN(θ, λ), i = 1, 2, . . . ,m.

Figure 7 and 8 below shows the three-dimensional density plots and the
contour plots respectively for the bivariate case and different values of the
location-shape parameter θ, shape parameter λ, and the correlation coeffi-
cients associated to Σ1 and Σ2, ρ1 and ρ2 respectively. The situation θ = 0,
ρ1 = 0 and ρ2 = 0 corresponds to the case that X and Y are jointly normal
and uncorrelated, i.e. independent. Note that this bivariate model can be
either unimodal or bimodal.

We have implemented the method of maximum likelihood estimation for
the bivariate case. For that reason, the Old Faithful geyser dataset that
includes 272 pairs of measurements, about the time interval between the
starts of successive eruptions and the duration of the subsequent eruption is
considered. We have considered four different versions of our model: the first
model includes the extra location parameters µ1 and µ2 and scale parameters
σ1 and σ2; the second one location parameters µ1 and µ2 and scale parameters
σ1, σ2, σ̃1 and σ̃2; the third one contains the location parameters µ1, µ2,
µ̃1 and µ̃2 and scale parameters σ1 and σ2 and finally the fourth model
has location parameters µ1, µ2, µ̃1 and µ̃2 and scale parameters σ1, σ2, σ̃1
and σ̃2. The result is shown in Table 3. It can be seen that the model
with 12 parameters provides the best fit to this dataset in terms of the four
measures of model validation. By comparing these results in terms of the
BIC with the mixture of two-component skew-normal bivariate distribution
provided in Prates et al. (2013) (see also Jain et al., 2013), model 3 and
model 4 have better performance than the FMNOR distribution. On the
other hand, FMSN, FMST and FMSCN provide a slightly better fit for this
dataset.
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Figure 7: Three-dimensional density plots for the bivariate case of (8) and
different values of θ, λ, ρ1 and ρ2. From top to bottom and left to right:
θ = 3.5, λ = 0.05, ρ1 = 0.4, ρ2 = 0.5; θ = 0.75, λ = 2, ρ1 = 0.075, ρ2 = 0.05;
θ = 5, λ = 0.015, ρ1 = 0.15, ρ2 = 0.015 and θ = 0.75, λ = 2, ρ1 = 0.9, ρ2 =
0.5.
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Figure 8: Contour plots for the bivariate case of (8) and different values of θ,
λ, ρ1 and ρ2. From top to bottom and left to right: θ = 3.5, λ = 0.05, ρ1 =
0.4, ρ2 = 0.5; θ = 0.75, λ = 2, ρ1 = 0.075, ρ2 = 0.05; θ = 5, λ = 0.015, ρ1 =
0.15, ρ2 = 0.015 and θ = 0.75, λ = 2, ρ1 = 0.9, ρ2 = 0.5.
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Table 3: Parameter estimates and standard errors (in brackets) for the dif-
ferent bivariate models considered.

Estimate Model 1 Model 2 Model 3 Model 4
(S.E.)

θ̂ 6.8707 1.0089 0.2207 0.7907
(0.1368) (0.0531) (1.3211) (8.6092)

λ̂ 9.2711 -0.3288 -1.3061 -0.3751
(0.6211) (0.0685) (7.8184) (4.0838)

µ̂1 -22.3299 3.2356 4.0761 3.4990
(2.7274) (0.0672) (1.3215) (8.6093)

µ̂2 -4.3391 77.7687 79.8243 79.1775
(0.1903) (0.7111) (1.3971) (8.6213)

̂̃µ1 2.2680 2.8271
(1.3217) (8.6092)

̂̃µ2 54.8258 55.2649
(1.4549) (8.6295)

σ̂1 13.5688 0.4411 0.3642 0.4123
(0.5781) (0.0418) (0.0158) (0.0229)

σ̂2 13.1392 6.4008 5.9573 6.0025
(0.0488) (0.6924) (0.2610) (0.3277)

̂̃σ1 0.3156 0.2631
(0.0819) (0.0201)

̂̃σ2 23.1677 5.8042
(1.8057) (0.4180)

ρ̂1 0.8336 0.4464 0.3295 0.3800
(0.0033) (0.1185) (0.0657) (0.0667)

ρ̂2 0.9008 0.6781 0.4039 0.2855
(0.0117) (0.1774) (0.1059) (0.0949)

−ℓmax -1289.7887 -1266.8696 -1139.9866 -1130.2640
AIC 2595.5775 2553.7393 2299.9733 2284.5280
BIC 2624.4239 2589.7973 2336.0313 2327.7977
CAIC 2632.4239 2599.7973 2346.0313 2339.7977

6 Final comments

In this paper, a new family of continuous random variables with non-necessarily
symmetric densities has been introduced that is useful to explain the inci-
dence by age of the Hodgkin’s disease. This parametric family of distribu-
tions can include unimodality and bimodality features. The distribution,
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which generalizes the normal distribution, depends on four parameters and
it improves the performance of the normal distributions and other related
models available in the statistical literature. Some basic properties of the
new distribution are examined, including moments, connections with other
distributions and transformations. The maximum likelihood estimators were
derived straightforwardly. The versatility of this model is confirmed through
other applications in the field of geoscience. Of course, this new family of
distributions might be employed in other areas. In this regard, we believe
that this family could be useful to derive new stochastic frontier models (see
Aigner et al., 1977, Battese and Coelli, 1988 or Gómez-Déniz and Pérez-Rodŕıgue
2015).
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Appendix

Here we provide the entries of the Fisher’s information matrix.

E

(
−∂

2ℓ(x̃; Θ)

∂θ2

)
=

nµ2

σ2
sech2ψ + n− 1

σ2

n∑

i=1

(xi − λ)2sech2T (xi),

E

(
−∂

2ℓ(x̃; Θ)

∂θ∂λ

)
= − n

σ2

[
θµsech2ψ + σ tanhψ

− 1

n

n∑

i=1

θ(xi − µ2)sech
2T (xi) + σ tanhT (xi)

]
,

E

(
−∂

2ℓ(x̃; Θ)

∂θ∂µ

)
=

n

σ2

(
θµsech2ψ + σ tanhψ

)
,

E

(
−∂

2ℓ(x̃; Θ)

∂θ∂σ

)
= − nµ

2σ3
sech2ψ [2θµ+ σ sinh(2ψ)

+
1

σ3

n∑

i=1

(xi − λ)sech2T (xi) + σ tanhT (xi)

]
,

E

(
−∂

2ℓ(x̃; Θ)

∂λ2

)
= −nθ

2

σ2

[
1− sech2ψ − 1

n

n∑

i=1

tanh2 T (xi)

]
,

E

(
−∂

2ℓ(x̃; Θ)

∂λ∂µ

)
= −nθ

2

σ2
sech2ψ,

E

(
−∂

2ℓ(x̃; Θ)

∂λ∂σ

)
=

nθ

σ3

(
µ θ sech2ψ + σ tanhψ

)

+
θ

σ3

[
θ(λ− xi)sech

2T (xi)− σ tanhT (xi)
]
,

E

(
−∂

2ℓ(x̃; Θ)

∂µ2

)
=

n

σ2

(
1 + θ2sech2ψ

)
,

E

(
−∂

2ℓ(x̃; Θ)

∂µ∂σ

)
=

nθ

σ3

(
σ tanhψ − θµsech2ψ

)
,

E

(
−∂

2ℓ(x̃; Θ)

∂σ2

)
=

n

σ4

[
2µσ θ tanhψ + θ2µ2sech2ψ + 3µ2 − θ2µ2

2 − σ2

−2(3µ− θ2µ2) (µ+ σθ tanhψ)

+
1

n

n∑

i=1

x2i (3− θ2) + θ ((xi − λ) tanhT (xi))

× (−2σ + θ(xi − λ) tanhT (xi)))] ,
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From the inverse of the matrix evaluated at the corresponding maximum
likelihood estimates, asymptotic standard errors can be derived in the usual
way.
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