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Abstract: Standard regression models focus on the mean response based on covariates. Quantile
regression describes the quantile for a response conditioned to values of covariates. The relevance of
quantile regression is even greater when the response follows an asymmetrical distribution. This
relevance is because the mean is not a good centrality measure to resume asymmetrically distributed
data. In such a scenario, the median is a better measure of the central tendency. Quantile regression,
which includes median modeling, is a better alternative to describe asymmetrically distributed data.
The Weibull distribution is asymmetrical, has positive support, and has been extensively studied.
In this work, we propose a new approach to quantile regression based on the Weibull distribution
parameterized by its quantiles. We estimate the model parameters using the maximum likelihood
method, discuss their asymptotic properties, and develop hypothesis tests. Two types of residuals
are presented to evaluate the model fitting to data. We conduct Monte Carlo simulations to assess
the performance of the maximum likelihood estimators and residuals. Local influence techniques
are also derived to analyze the impact of perturbations on the estimated parameters, allowing us to
detect potentially influential observations. We apply the obtained results to a real-world data set to
show how helpful this type of quantile regression model is.

Keywords: likelihood methods; local influence diagnostics; Monte Carlo simulation; R software

1. Introduction, Motivations, and Outline
1.1. Bibliographical Review

In the context of usual regression, it is common to model the relationship between a
response variable and covariates by employing the mean response conditioned to such
covariates. In this usual modeling, the normal distribution is often considered. However,
there are many real-world phenomena in which the data follow an asymmetrical distribu-
tion. In this case, the relation between the response and covariates utilizing the mean is
not suitable since it is strongly affected by asymmetry and atypical observations. Another
limitation of the usual regression approach is when we are interested in studying other
parameters in addition to the mean; see [1,2].

Observations that follow an asymmetrical behavior can come from different models,
with the Weibull distribution frequently being considered. This distribution is skewed, has
positive support, and possesses two parameters which modify its shape and scale; for a
detailed description of its main properties and associated inference, see [3] (pp. 629–666)
and [4]. Estimation and testing methodologies based on several data configurations and
situations may be found in [5]. In its origins, the Weibull distribution was used to study the
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breaking strength of materials; see [6]. Simple parsimonious Weibull models were derived
in [7] and applied to fatigue life data of longitudinal elements by considering functional
equations, proportional hazards techniques, and subsequent likelihood analysis. Other ap-
plications include different areas in problemas related to health sciences, lumber industry,
microscopic degradation, migratory systems, quality control, rainfall and flood, reliability,
and wind speed. Details of these and other applications of the Weibull distribution, as well
as data sets described with this distribution, can be found in chapter 7 of [8] (pp. 275–310)
and references therein.

Unlike the mean, which can be challenging to interpret when the distribution of
the response variable is asymmetrical, the median remains highly informative in that
case. Thus, under this scenario, the modeling of the median response based on values of
covariates is more appropriate. The first idea of median regression was presented in [9].
However, quantile regression models have the median regression as a particular case (50th
percentile) and can describe other locations (non-central) of the distribution. In [10], the
authors introduced quantile regression models, and from then, different versions and
applications of these models have been developed; see [11–13]. Therefore, to describe the
relationship between a response variable that follows an asymmetrical distribution and the
covariates, quantile regression is a better alternative to the usual regression.

The standard approach in parametric quantile regression considers a functional equa-
tion that relates the response (say Y), a parametric component (say x>β, which corresponds
also to the modeled quantile of Y), and an error component (say ε) with its associated
assumptions; see [11] (p. 29). The traditional procedure for estimating the model parame-
ters in this approach does not make a distributional assumption for the error component.
However, if we add this assumption, it is natural to incorporate it in the response variable
rather than in the error component. In addition, the maximum likelihood method is often
chosen to estimate parameters because of the good properties of the obtained estimators;
see [14] (pp. 94–125). Based on these two previous considerations, a similar approach to
generalized linear models (GLM) can be used for quantile regression; see [15–17]. In GLM,
the mean is modeled, which is besides one of the parameters of the assumed distribution.
In our approach, the modeled quantile is a parameter of the distribution as well. When us-
ing a parametric distribution, we can develop statistical analysis employing the likelihood
function to perform estimation, hypothesis tests, and local influence analysis.

Diagnostic analytics plays a relevant role in statistical modeling, including global,
local influence methods and goodness of fit. Goodness-of-fit techniques for a determined
model permit us to evaluate the adequacy of the model to the data; see [18]. The pseudo-R2

proposed by [19]—from now denoted as R2
M—and randomized quantile (RQ) and general-

ized Cox–Snell (GCS) residuals are helpful tools for evaluating goodness of fit; see [20,21].
Local influence assesses the effect of small perturbations in the data and/or model assump-
tions on parameter estimates; see [22]. Different scenarios of perturbation are considered
to detect potentially influential cases. Local influence techniques have been developed
for different non-Gaussian and asymmetrical models; see, for example, refs. [16,17,23–25].
As a motivation to develop our work, next, we show the inadequacy of the usual mean
regression when analyzing real-world data with an asymmetrical distribution.

1.2. Limitations of the Usual Regression Model

The usual regression model can be formulated as

Yi = x>i β + εi, i ∈ {1, . . . , n}, (1)

where Yi and xi are the response variable and the vector that contains the values of co-
variates X (with the first component equal to one), respectively, for the ith observation,
and β is a vector of the unknown regression coefficients to be estimated. The errors
ε1, . . . , εn satisfy (i) E[εi] = 0 and Var[εi] = σ2, for all i ∈ {1, . . . , n}; and (ii) Cov[ε j, ε l ] = 0,
for j 6= l. Observe that the structural component formulated in (1) describes the mean
E[Y |X = x] = x>β.
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When the data follow a skew distribution, the mean model is not appropriate. To
demonstrate this fact, consider a data set with n = 41 observations regarding the time
(in hours) to electrical breakdown of an insulating fluid (response variable Y) and the
test voltage in kV (covariate X). This data set is taken from [26] and is available in the R
software by the package survival; see [27,28]. The characteristics of the insulating fluid
defined in various standards can be broadly classified into chemical, electrical, and physical
features. For example, the electrical characteristics (breakdown voltages) of the insulating
fluid are affected by elements such as water content and electrostatic charges, but also
possibly affected by trace components in this fluid.

A descriptive summary of the times to electrical breakdown is presented in Table 1, in-
cluding the median, mean, standard deviation (SD), coefficients of variation (CV), skewness
(CS), and kurtosis (CK), besides minimum (y(1)) and maximum (y(n)) values. Figure 1a
presents a histogram for Y, and Figure 1b shows the corresponding adjusted and usual
boxplots. An adjusted boxplot is used when the data present an asymmetrical distribution;
see details in [29]. In this case, the adjusted boxplot gives a better description to detect
atypical cases.

Table 1. Descriptive statistics for the data of times to electrical breakdown (in hours).

Median Mean SD CV CS CK y(1) y(n) n

7.7400 122.51 430.24 3.51 4.36 20.93 0.09 2323.70 41
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Figure 1. Histogram (a) and boxplots (b) for the data of times to electrical breakdown with the full data set, and histogram
(c) and boxplots (d) for the data set without cases #2 and #3.
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From Table 1, note that the median is noticeably smaller than the mean, whereas
Figure 1a allows us to observe that the empirical distribution of the times to electrical
breakdown is unimodal and positively skewed. Therefore, the assumption of an asym-
metric distribution for the response variable seems to be adequate. This asymmetry is
also evidenced by the values of the CS, which is positive. Furthermore, in Figure 1b,
we highlight two atypical cases (#2 and #3), which can correspond to potentially influential
cases. The possible potential influence of these and other cases is analyzed by using local
influence in Section 6.2. In Figure 1c, we observe the empirical distribution of Y without
cases #2 and #3, whereas the boxplots associated are displayed in Figure 1d. Note that the
asymmetrical behavior of the data is kept. However, now the adjusted boxplot does not
present atypical cases despite the usual boxplots identify some of them.

Next, the model stated in (1) is adjusted to this data set employing the ordinary
least squares method. Then, we obtain the predictive model ŷi = Ê(Yi |X = xi) =
2274.12 − 64.96 xi, for i ∈ {1, . . . , 41}. The fit of the model is evaluated by the usual
standardized Pearson residual, presented in the theoretical quantile versus empirical
quantile (QQ) plot with envelopes in Figure 2. Note that the points follow an irregular
behavior around the straight line, and many observations are outside the bands. Hence,
it is not clear that the usual regression is appropriate for modeling this data set due to the
asymmetry of the response distribution.
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Figure 2. QQ plot with envelopes of the Pearson residual for normal regression with the data of
times to electrical breakdown.

For these data (full set and set without cases #2 and #3), we may assume an asym-
metrically distributed response. In addition, in this case, the modeling of the conditional
median is a better alternative for describing the relation of the response with the covariates
(as we show below) because the median is a robust measure in the presence of atypical ob-
servations. However, the median is a quantile and, in consequence, a description of the full
range of the response based on covariates can be performed by using quantile regression.

1.3. Objective and Outline

The main objective of this work is to propose a new quantile regression model based on
a parameterization of the Weibull distribution, following the approach of [16]; see [30,31]
for similar but not identical models. Our approach intends to be an alternative to the
existing quantile models in the literature. Some characteristics of the proposed Weibull
quantile regression are as follows: (i) flexibility for modeling different types of data, since
the Weibull distribution, as mentioned, has been successfully applied in several areas;
and (ii) easy computational implementation, since the Weibull distribution has a simple
closed-form inverse cumulative distribution function, which facilitates its utilization when
modeling data by a parametric quantile regression with distributional assumption for
the response.
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The maximum likelihood method is used for model parameter estimation. Our study
includes the evaluation of the adequacy of the models to the data by Akaike (AIC), Bayesian
(BIC), and corrected Akaike (CAIC) information criteria; see [1] for details. In addition, R2

M
as well as RQ and GCS residuals are considered in this evaluation. We identify potentially
influential observations under different scenarios of perturbation employing local influence
techniques; see [22]. Moreover, an application to real-world data is discussed to illustrate
the proposed methodology and show how helpful this type of quantile regression model is
in practice.

The rest of this paper proceeds as follows. The new parametric quantile regression
model based on the Weibull distribution is formulated in Section 2. In contrast, in Section 3,
we describe the parameter estimation method, associated inference, and the related RQ
and GCS residuals to evaluate the fit of the model to the data. In Section 4, two Monte
Carlo simulation studies are conducted to evaluate the statistical performance of the
maximum likelihood estimators and the empirical distribution of residuals. In Section 5,
we propose techniques to study potentially influential cases by using local influence and
four perturbation schemes. In Section 6, an illustration of the proposed Weibull quantile
regression models is carried out for the same real-world data set presented in Section 1.
Finally, in Section 7, we present some concluding remarks.

2. A New Weibull Quantile Regression Model
2.1. A Reparameterized Weibull Distribution

The probability density function of a random variable Y that follows a Weibull distri-
bution with shape and scale parameters k > 0 and λ > 0, respectively, is given by

f (y; λ, k) =
k
λ

( y
λ

)k−1
exp

(
−
( y

λ

)k
)

, y > 0. (2)

It is possible to prove that, if q ∈ (0, 1) is a fixed number, the qth quantile of Y
corresponds to

Q = λ (− log(1− q))1/k,

from which we obtain
λ = Q (− log(1− q))−1/k. (3)

For more details about properties of the Weibull distribution, see [3] (pp. 629–666)
and [8]. Replacing the formula stated in (3) for λ in the expression given in (2), we have a
new parameterization of the Weibull distribution based on its quantiles, which is denoted by
Wei(Q, k), and its probability density and cumulative distribution functions are formulated,
respectively, as

f (y; Q, k) = −k yk−1 Q−k log(1− q) exp
(

ykQ−k log(1− q)
)

, y > 0, (4)

and
F(y; Q, k) = 1− (1− q)yk Q, y > 0. (5)

2.2. Shape Analysis

Figure 3 shows the behavior of the reparameterized Weibull probability density
function defined in (4) under different values of the parameters. Note that, as Q decreases,
the kurtosis of the distribution increases; see Figure 3d–i. Thus, when Q increases, the tails
are heavier. Moreover, observe in Figure 3a–c that, when k takes values less or equal to
one, the distribution mode is zero, while if it takes values greater than one, this mode
is positive.
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Figure 3. Plots of the Wei(Q, k) probability density function for q = 0.25 (left), q = 0.5 (center) and
q = 0.75 (right), with Q = 1.0 (a–c), k = 1.0 (d–f) and k = 2.0 (g–i).

2.3. The Weibull Quantile Regression Model

Let Y1, . . . , Yn be independent random variables with Yi ∼Wei(Qi, k), for i ∈ {1, . . . , n}.
Suppose that the quantile parameter Qi can be modeled by

h(Qi) = x>i β, i ∈ {1, . . . , n}, (6)

where β = (β0, β1, . . . , βp−1)
>, for p < n, is a vector of unknown regression parameters and

x>i = (1, xi1, . . . , xi(p−1)) represents the values of p covariates. Note that the link function h
is invertible, at least twice differentiable, and has positive support. The last condition of h
guarantees that the quantile is modeled for a positive expression. Link functions that may
be considered are, for example, h(u) = logk(u) and h(u) = a

√
u, with a ≥ 2 and k being a

positive integer number.
Note that the reparametrization of the Weibull distribution by quantiles is necessary

to formulate the Weibull quantile regression defined in (6), which allows us to model any
quantile value of the distribution. Furthermore, this reparameterization makes it possible to
incorporate directly the regression structure given in (6) into the corresponding likelihood
function. Note that this structure is different from the traditional quantile regression model
with an error component; see [11] (p. 29). Doing that, as mentioned, the distributional
assumption is directly related to the response variable, permitting statistical tools based on
the associated likelihood function to be obtained in a similar form to GLM.
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3. Estimation, Inference and Goodness of Fit
3.1. Parameter Estimation

Let y = (y1, . . . , yn)> be an observation of (Y1, . . . , Yn)>, with Yi ∼Wei(Qi, k), for i ∈
{1, . . . , n}. The log-likelihood function of the model given in (6) for θ = (β>, k)> based on
y can be written as

`(θ) = `(θ; y) =
n

∑
i=1

`i(Qi, k), (7)

where `i(Qi, k) stated in (7) is formulated as

`i(Qi, k) = log(− log(1− q)) + log(k) + (k− 1) log(yi)− k log(Qi) + yk
i Q−k

i log(1− q).

Therefore, the score vector has as components ˙̀
β j , for j ∈ {0, 1, . . . , p− 1}, and ˙̀ k,

expressed as

˙̀
β j =

∂`(θ)

∂β j
=

n

∑
i=1

ziaixij, ˙̀ k =
∂`(θ)

∂k
=

n

∑
i=1

bi, (8)

where

zi = − k
Qi
− k Q−k−1

i yk
i log(1− q),

ai =
1

h′(Qi)
, h′(Qi) =

dh
dQi

,

bi = log(yi)− log(Qi) +
1
k
+

(
yi
Qi

)k
log
(

yi
Qi

)
log(1− q).

The elements of the associated Hessian matrix are written as

῭
βl β j =

∂2`(θ)

∂βl ∂β j
=

n

∑
i=1

cixijxil ,

῭
β jk =

∂2`(θ)

∂β j ∂k
=

n

∑
i=1

miaixij,

῭kk =
∂2`(θ)

∂k2 =
n

∑
i=1

di, (9)

where

ci =

(
k

Q2
i
+ k(k + 1)Q−k−2

i yk
i log(1− q)

)
a2

i − ziai
h′′(Qi)

(h′(Qi))2 , h′′(Qi) =
d2h
dQ2

i
,

mi = − 1
Qi
− yk

i Q−k−1
i log(1− q)

(
1− k log

(
Qi
yi

))
,

di = − 1
k2 + log(1− q)

(
yi
Qi

)k
log2

(
yi
Qi

)
.

To estimate the vector θ of parameters with the maximum likelihood method, we often
solve the equation ˙̀

θ = 0p+1, where 0p+1 is the p + 1 null vector. However, no closed-form
expressions for the maximum likelihood estimates can be obtained, and therefore numeric
procedures must be used to calculate the estimate of θ. For example, the Broyden–Fletcher–
Goldfarb–Shanno (BFGS) method or other quasi-Newton algorithms may be considered;
see [32]. Different algorithms are implemented in the R software, including the BFGS
approach for constrained and unconstrained maximization; see [27].
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3.2. Inference and Hypothesis Testing

Under some regularity conditions [14] (pp. 118–119), it is possible to establish that

θ̂ ∼̇Np+1(θ, (I(θ))−1), (10)

where I(θ) is the expected Fisher information matrix, which may be computed by

I(θ) = E
[
− ∂2`(θ)

∂θ ∂θ>

]
. (11)

We can obtain approximate confidence intervals using the results provided in (10),
whereas for approximating the information matrix defined in (11), we may employ the
observed Fisher information matrix stated as

J(θ) = − ∂2`(θ)

∂θ ∂θ>
, (12)

whose elements established in (12) may be calculated from (9), evaluated at θ = θ̂.
Note that if we want to test the hypothesis H0: θ = θ0 versus the alternative hypothesis

H1: θ 6= θ0, where, as mentioned, θ = (β>, k)>, then we can use the Wald and likelihood
ratio tests. The Wald [33] and likelihood ratio statistics based on the observed Fisher
information matrix [34] are, respectively, given by

W = (θ̂− θ0)
> J(θ̂)(θ̂− θ0), (13)

L = −2
(
`(θ0)− `(θ̂)

)
. (14)

When n→ ∞, both statistics converge to a random variable that follows a χ2 distribu-
tion with r degrees of freedom, χ2

r in short, where r is the number of parameters under H0,
which is rejected, at a nominal level of significance α, if the statistic computed according
to (13) or (14) is greater than χ2

r,1−α, which denotes the 100(1− α)th χ2
r quantile.

3.3. Residuals

To evaluate the model adequacy—that is, to assess the fit of our model to a data
set—we can employ the RQ and GCS residuals. For our reparameterized Weibull model,
these residuals are given, respectively, by

rRQ
i = Φ−1(F(yi; Q̂i; k̂)

)
, rGCS

i = − log(S(yi; Q̂i; k̂)), (15)

where Φ is the standard normal cumulative distribution function; F is given by (5); Q̂i and
k̂ are the maximum likelihood estimates of Qi and k, respectively; and S = 1− F is the
corresponding survival function. The RQ residual is approximately standard normal dis-
tributed, whereas the GCS residual follows a standard exponential asymptotic distribution
when the model is correctly specified, whatever its specification is.

4. Monte Carlo Simulation
4.1. Setting

We present the results of two Monte Carlo simulation studies for the Weibull quantile
regression model. The first scenario considers the evaluation of the statistical performance
of the maximum likelihood estimators, while the second scenario assesses the empirical
distribution of the residuals. Both simulation scenarios consider the following setting:
sample size n ∈ {50, 200, 600}, and combinations of the vector of true parameters stated as
(β0, β1, k) = (0.50, 1.00, 0.50), (β0, β1, k) = (1.00, 0.50, 1.00), (β0, β1, k) = (1.00, 0.50, 2.00),
(β0, β1, k) = (2.50, 1.00, 0.50), (β0, β1, k) = (2.50, 1.00, 1.00), (β0, β1, k) = (2.50, 1.00, 2.00),
including different degrees of asymmetry; and q ∈ {0.10, 0.50, 0.90}, with 1000 Monte Carlo
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replications for each n. The Weibull quantile regression samples are generated using the
inverse transformation method applied to the expression formulated in (5), which gives

Yi = (log(1−Ui)/log(1− q)Qi)
1/k, i ∈ {1, . . . , n}, (16)

where Qi and Ui defined in (16) are specified as Qi = exp(β0 + β1xi) and Ui ∼ Uniform(0, 1),
with xi being the value of a covariate obtained from a standard normal distribution.

4.2. Scenario 1: Maximum Likelihood Estimation

We employ the R software and its maxBFGS function, which implements the BFGS
algorithm with constraints for maximization and requires initial values for estimating
β = (β0, β1)

> and k. We utilize the least square estimator of β assuming a usual linear
regression and the maximum likelihood estimate of k based on the observations y1, . . . , yn
without considering covariates. The maximum likelihood estimates are presented in
Tables 2–7 wherein the empirical mean, bias, variance, root mean squared error (RMSE),
CS, and CK are all reported. A look at the results in Tables 2–7 allows us to conclude that,
in general, as the sample size increases, the bias, variance, and RMSE of the estimators
decrease, as expected. Moreover, β̂0, β̂1, and k̂ seem all to be consistent and asymptotically
normal distributed. Our study was conducted on a Dell Inspirion 5748 personal computer
with an Intel core i7-4510U CPU, 2.00 GHz × 4, and 8 GB of RAM.

4.3. Scenario 2: Empirical Distribution of the Residuals

Now, we report a second Monte Carlo simulation study to evaluate the performance
of the GCS and RQ residuals defined in (15). Tables 8 and 9 present the empirical mean,
SD, CS, and CK for β0 = 0.5 and β1 = 1.0, whose values are expected to be 0, 1, 0, and
3, respectively, for rRQ, and 1, 1, 2, and 9, respectively, for rGCS. From Tables 8 and 9,
we observe that, in general, the considered residuals conform well with the reference
distributions. The same conclusions are obtained for the other values of β0 and β1.

Table 2. Statistics from simulated Weibull regression data (q = 0.10, β0 = 0.50, β1 = 1.00).

k = 0.5 k = 1.00 k = 2.00

Statistic n = 50 n = 200 n = 600 n = 50 n = 200 n = 600 n = 50 n = 200 n = 600

β̂0 β̂0 β̂0

True value 0.5000 0.5000 0.5000 0.5000 0.5000 0.5000 0.5000 0.5000 0.5000
Mean 0.6011 0.5491 0.5138 0.5506 0.5244 0.5069 0.5253 0.5122 0.5034
Bias 0.1011 0.0491 0.0138 0.0506 0.0244 0.0069 0.0253 0.0122 0.0034
Variance 0.6747 0.1746 0.0537 0.1687 0.0437 0.0134 0.0422 0.0109 0.0034
RMSE 0.8276 0.4207 0.2322 0.4138 0.2104 0.1161 0.2069 0.1052 0.0581
CS −0.1288 −0.1332 −0.1183 −0.1287 −0.1331 −0.1179 −0.1286 −0.1327 −0.1180
CK 3.1481 3.0124 2.9364 3.1475 3.0105 2.9359 3.1476 3.0094 2.9360

β̂1 β̂1 β̂1

True value 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
Mean 1.0193 0.9831 0.9954 1.0097 0.9915 0.9977 1.0048 0.9958 0.9988
Bias 0.0193 −0.0169 −0.0046 0.0097 −0.0085 −0.0023 0.0048 −0.0042 −0.0012
Variance 0.8966 0.2356 0.0745 0.2241 0.0589 0.0186 0.0560 0.0147 0.0047
RMSE 0.9471 0.4856 0.2730 0.4735 0.2428 0.1365 0.2368 0.1214 0.0682
CS 0.0619 −0.0344 0.1067 0.0621 −0.0347 0.1068 0.0621 −0.0348 0.1067
CK 2.8443 3.0606 3.0311 2.8454 3.0607 3.0311 2.8440 3.0633 3.0311

k̂ k̂ k̂

True value 0.5000 0.5000 0.5000 1.0000 1.0000 1.0000 2.0000 2.0000 2.0000
Mean 0.5210 0.5061 0.5021 1.0419 1.0122 1.0043 2.0838 2.0244 2.0086
Bias 0.0210 0.0061 0.0021 0.0419 0.0122 0.0043 0.0838 0.0244 0.0086
Variance 0.0036 0.0008 0.0003 0.0144 0.0033 0.0010 0.0576 0.0130 0.0041
RMSE 0.0636 0.0292 0.0162 0.1271 0.0584 0.0324 0.2543 0.1168 0.0648
CS 0.5824 0.2446 0.0840 0.5826 0.2450 0.0840 0.5831 0.2447 0.0841
CK 3.7567 2.9277 2.6255 3.7563 2.9247 2.6253 3.7577 2.9246 2.6250
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Table 3. Statistics from simulated Weibull regression data (q = 0.50, β0 = 0.50, β1 = 1.00).

k = 0.5 k = 1.00 k = 2.00

Statistic n = 50 n = 200 n = 600 n = 50 n = 200 n = 600 n = 50 n = 200 n = 600

β̂0 β̂0 β̂0

True value 0.5000 0.5000 0.5000 0.5000 0.5000 0.5000 0.5000 0.5000 0.5000
Mean 0.4963 0.5152 0.5015 0.4982 0.5076 0.5008 0.4991 0.5038 0.5004
Bias −0.0037 0.0152 0.0015 −0.0018 0.0076 0.0008 −0.0009 0.0038 0.0004
Variance 0.3423 0.0885 0.0261 0.0856 0.0221 0.0065 0.0214 0.0055 0.0016
RMSE 0.5851 0.2978 0.1615 0.2925 0.1489 0.0808 0.1463 0.0745 0.0404
CS −0.2084 −0.1717 −0.1039 −0.2085 −0.1716 −0.1039 −0.2084 −0.1715 −0.1038
CK 3.0076 3.1321 2.9602 3.0078 3.1320 2.9601 3.0075 3.1319 2.9600

β̂1 β̂1 β̂1

True value 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
Mean 1.0194 0.9831 0.9954 1.0097 0.9916 0.9977 1.0049 0.9958 0.9988
Bias 0.0194 −0.0169 −0.0046 0.0097 −0.0084 −0.0023 0.0049 −0.0042 −0.0012
Variance 0.8965 0.2355 0.0745 0.2241 0.0589 0.0186 0.0560 0.0147 0.0047
RMSE 0.9470 0.4856 0.2730 0.4735 0.2428 0.1365 0.2368 0.1214 0.0683
CS 0.0619 −0.0343 0.1067 0.0619 −0.0343 0.1068 0.0620 −0.0344 0.1067
CK 2.8447 3.0612 3.0311 2.8448 3.0612 3.0309 2.8450 3.0609 3.0310

k̂ k̂ k̂

True value 0.5000 0.5000 0.5000 1.0000 1.0000 1.0000 2.0000 2.0000 2.0000
Mean 0.5210 0.5061 0.5021 1.0419 1.0122 1.0043 2.0838 2.0243 2.0086
Bias 0.0210 0.0061 0.0021 0.0419 0.0122 0.0043 0.0838 0.0243 0.0086
Variance 0.0036 0.0008 0.0003 0.0144 0.0033 0.0010 0.0576 0.0130 0.0041
RMSE 0.0636 0.0292 0.0162 0.1271 0.0584 0.0324 0.2543 0.1168 0.0648
CS 0.5826 0.2448 0.0841 0.5825 0.2448 0.0840 0.5824 0.2448 0.0840
CK 3.7568 2.9256 2.6256 3.7565 2.9256 2.6254 3.7559 2.9256 2.6255

Table 4. Statistics from simulated Weibull regression data (q = 0.90, β0 = 0.50, β1 = 1.00).

k = 0.5 k = 1.00 k = 2.00

Statistic n = 50 n = 200 n = 600 n = 50 n = 200 n = 600 n = 50 n = 200 n = 600

β̂0 β̂0 β̂0

True value 0.5000 0.5000 0.5000 0.5000 0.5000 0.5000 0.5000 0.5000 0.5000
Mean 0.4295 0.4939 0.4937 0.4648 0.4969 0.4969 0.4824 0.4985 0.4984
Bias −0.0705 −0.0061 −0.0063 −0.0352 −0.0031 −0.0031 −0.0176 −0.0015 −0.0016
Variance 0.3075 0.0794 0.0235 0.0769 0.0198 0.0059 0.0192 0.0050 0.0015
RMSE 0.5590 0.2818 0.1534 0.2795 0.1409 0.0767 0.1397 0.0704 0.0384
CS −0.1501 −0.1109 −0.1234 −0.1505 −0.1108 −0.1234 −0.1504 −0.1109 −0.1234
CK 2.9205 3.1507 2.9856 2.9191 3.1504 2.9857 2.9190 3.1504 2.9857

β̂1 β̂1 β̂1

True value 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
Mean 1.0194 0.9831 0.9953 1.0097 0.9915 0.9977 1.0048 0.9958 0.9988
Bias 0.0194 −0.0169 −0.0047 0.0097 −0.0085 −0.0023 0.0048 −0.0042 −0.0012
Variance 0.8965 0.2355 0.0745 0.2241 0.0589 0.0186 0.0560 0.0147 0.0047
RMSE 0.9470 0.4856 0.2730 0.4735 0.2428 0.1365 0.2368 0.1214 0.0682
CS 0.0617 −0.0343 0.1067 0.0620 −0.0343 0.1067 0.0619 −0.0342 0.1067
CK 2.8453 3.0612 3.0310 2.8448 3.0612 3.0311 2.8447 3.0609 3.0311

k̂ k̂ k̂

True value 0.5000 0.5000 0.5000 1.0000 1.0000 1.0000 2.0000 2.0000 2.0000
Mean 0.5210 0.5061 0.5021 1.0419 1.0122 1.0043 2.0838 2.0243 2.0086
Bias 0.0210 0.0061 0.0021 0.0419 0.0122 0.0043 0.0838 0.0243 0.0086
Variance 0.0036 0.0008 0.0003 0.0144 0.0033 0.0010 0.0576 0.0130 0.0041
RMSE 0.0636 0.0292 0.0162 0.1271 0.0584 0.0324 0.2543 0.1168 0.0648
CS 0.5825 0.2448 0.0840 0.5825 0.2449 0.0840 0.5825 0.2447 0.0840
CK 3.7567 2.9257 2.6254 3.7567 2.9258 2.6255 3.7566 2.9257 2.6254
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Table 5. Statistics from simulated Weibull regression data (q = 0.10, β0 = 1.00, β1 = 2.50).

k = 0.5 k = 1.00 k = 2.00

Statistic n = 50 n = 200 n = 600 n = 50 n = 200 n = 600 n = 50 n = 200 n = 600

β̂0 β̂0 β̂0

True value 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
Mean 1.1013 1.0493 1.0138 1.0506 1.0244 1.0069 1.0253 1.0122 1.0034
Bias 0.1013 0.0493 0.0138 0.0506 0.0244 0.0069 0.0253 0.0122 0.0034
Variance 0.6747 0.1747 0.0537 0.1687 0.0437 0.0134 0.0422 0.0109 0.0034
RMSE 0.8276 0.4208 0.2322 0.4138 0.2104 0.1161 0.2069 0.1052 0.0581
CS −0.1295 −0.1353 −0.1183 −0.1290 −0.1330 −0.1180 −0.1292 −0.1332 −0.1185
CK 3.1489 3.0134 2.9364 3.1480 3.0104 2.9358 3.1485 3.0116 2.9364

β̂1 β̂1 β̂1

True value 2.5000 2.5000 2.5000 2.5000 2.5000 2.5000 2.5000 2.5000 2.5000
Mean 2.5193 2.4830 2.4954 2.5097 2.4915 2.4977 2.5048 2.4958 2.4989
Bias 0.0193 −0.0170 −0.0046 0.0097 −0.0085 −0.0023 0.0048 −0.0042 −0.0011
Variance 0.8962 0.2358 0.0745 0.2241 0.0589 0.0186 0.0560 0.0147 0.0047
RMSE 0.9469 0.4859 0.2730 0.4735 0.2428 0.13657 0.2368 0.1214 0.0682
CS 0.0622 −0.0376 0.1068 0.0619 −0.0346 0.1066 0.0621 −0.0336 0.1070
CK 2.8454 3.0685 3.0310 2.8447 3.0617 3.0290 2.8452 3.0608 3.0310

k̂ k̂ k̂

True value 0.5000 0.5000 0.5000 1.0000 1.0000 1.0000 2.0000 2.0000 2.0000
Mean 0.5210 0.5061 0.5021 1.0419 1.0122 1.0043 2.0838 2.0243 2.0086
Bias 0.0210 0.0061 0.0021 0.0419 0.0122 0.0043 0.0838 0.0243 0.0086
Variance 0.0036 0.0008 0.0003 0.0144 0.0033 0.0010 0.0576 0.0130 0.0041
RMSE 0.0636 0.0292 0.0162 0.1271 0.0584 0.0324 0.2543 0.1168 0.0648
CS 0.5824 0.2461 0.0840 0.5826 0.2453 0.0829 0.5824 0.2456 0.0836
CK 3.7574 2.9265 2.6256 3.7571 2.9272 2.6223 3.7563 2.9261 2.6256

Table 6. Statistics from simulated Weibull regression data (q = 0.50, β0 = 1.00, β1 = 2.50).

k = 0.5 k = 1.00 k = 2.00

Statistic n = 50 n = 200 n = 600 n = 50 n = 200 n = 600 n = 50 n = 200 n = 600

β̂0 β̂0 β̂0

True value 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
Mean 0.9963 1.0152 1.0015 0.9982 1.0076 1.0008 0.9991 1.0038 1.0004
Bias −0.0037 0.0152 0.0015 −0.0018 0.0076 0.0008 −0.0009 0.0038 0.0004
Variance 0.3423 0.0885 0.0261 0.0856 0.0221 0.0065 0.0214 0.0055 0.0016
RMSE 0.5851 0.2978 0.1615 0.2925 0.1489 0.0807 0.1463 0.0745 0.0404
CS −0.2084 −0.1718 −0.1039 −0.2083 −0.1716 −0.1038 −0.2084 −0.1715 −0.1044
CK 3.0076 3.1324 2.9603 3.0073 3.1323 2.9601 3.0069 3.1312 2.9588

β̂1 β̂1 β̂1

True value 2.5000 2.5000 2.5000 2.5000 2.5000 2.5000 2.5000 2.5000 2.5000
Mean 2.5194 2.4831 2.4954 2.5097 2.4916 2.4977 2.5049 2.4958 2.4989
Bias 0.0194 −0.0169 −0.0046 0.0097 −0.0084 −0.0023 0.0049 −0.0042 −0.0011
Variance 0.8964 0.2355 0.0745 0.2241 0.0589 0.0186 0.0560 0.0147 0.0047
RMSE 0.9470 0.4856 0.2730 0.4735 0.2428 0.1365 0.2368 0.1214 0.0682
CS 0.0619 −0.0343 0.1067 0.0618 −0.0343 0.1066 0.0618 −0.0342 0.1060
CK 2.8447 3.0612 3.0310 2.8448 3.0615 3.0307 2.8453 3.0600 3.0309

k̂ k̂ k̂

True value 0.5000 0.5000 0.5000 1.0000 1.0000 1.0000 2.0000 2.0000 2.0000
Mean 0.5210 0.5061 0.5021 1.0419 1.0122 1.0043 2.0838 2.0243 2.0087
Bias 0.0210 0.0061 0.0021 0.0419 0.0122 0.0043 0.0838 0.0243 0.0087
Variance 0.0036 0.0008 0.0003 0.0144 0.0033 0.0010 0.0576 0.0130 0.0041
RMSE 0.0636 0.0292 0.0162 0.1271 0.0584 0.0324 0.2543 0.1168 0.0648
CS 0.5825 0.2447 0.0838 0.5824 0.2446 0.0838 0.5825 0.2446 0.0820
CK 3.7565 2.9255 2.6254 3.7563 2.9257 2.6253 3.7571 2.9255 2.6247



Mathematics 2021, 9, 2768 12 of 21

Table 7. Statistics from simulated Weibull regression data (q = 0.90, β0 = 1.00, β1 = 2.50).

k = 0.5 k = 1.00 k = 2.00

Statistic n = 50 n = 200 n = 600 n = 50 n = 200 n = 600 n = 50 n = 200 n = 600

β̂0 β̂0 β̂0

True value 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
Mean 0.9295 0.9938 0.9937 0.9648 0.9969 0.9969 0.9824 0.9985 0.9984
Bias −0.0705 −0.0062 −0.0063 −0.0352 −0.0031 −0.0031 −0.0176 −0.0015 −0.0016
Variance 0.3074 0.0794 0.0235 0.0769 0.0198 0.0059 0.0192 0.0050 0.0015
RMSE 0.5589 0.2818 0.1534 0.2795 0.1409 0.0767 0.1397 0.0705 0.0384
CS −0.1500 −0.1104 −0.1234 −0.1505 −0.1111 −0.1234 −0.1504 −0.1107 −0.1230
CK 2.9199 3.1514 2.9857 2.9190 3.1513 2.9857 2.9190 3.1501 2.9853

β̂1 β̂1 β̂1

True value 2.5000 2.5000 2.5000 2.5000 2.5000 2.5000 2.5000 2.5000 2.5000
Mean 2.5194 2.4832 2.4954 2.5097 2.4916 2.4977 2.5048 2.4958 2.4988
Bias 0.0194 −0.0168 −0.0046 0.0097 −0.0084 −0.0023 0.0048 −0.0042 −0.0012
Variance 0.8963 0.2355 0.0745 0.2241 0.0589 0.0186 0.0560 0.0147 0.0047
RMSE 0.9469 0.4856 0.2730 0.4735 0.2428 0.1365 0.2368 0.1214 0.0683
CS 0.0615 −0.0349 0.1067 0.0620 −0.0343 0.1068 0.0619 −0.0341 0.1064
CK 2.8454 3.0617 3.0310 2.8448 3.0610 3.0311 2.8448 3.0609 3.0310

k̂ k̂ k̂

True value 0.5000 0.5000 0.5000 1.0000 1.0000 1.0000 2.0000 2.0000 2.0000
Mean 0.5210 0.5061 0.5021 1.0419 1.0122 1.0043 2.0838 2.0243 2.0086
Bias 0.0210 0.0061 0.0021 0.0419 0.0122 0.0043 0.0838 0.0243 0.0086
Variance 0.0036 0.0008 0.0003 0.0144 0.0033 0.0010 0.0576 0.0130 0.0041
RMSE 0.0636 0.0292 0.0162 0.1271 0.0584 0.0324 0.2543 0.1168 0.0648
CS 0.5825 0.2448 0.0840 0.5825 0.2449 0.0840 0.5825 0.2448 0.0838
CK 3.7566 2.9255 2.6255 3.7567 2.9257 2.6254 3.7566 2.9256 2.6257

Table 8. Summary statistics of the GCS residuals (β0 = 0.5; β1 = 1.0).

Statistic k = 0.50 k = 1.00 k = 2.00

n = 50 n = 200 n = 600 n = 50 n = 200 n = 600 n = 50 n = 200 n = 600

q = 0.10

Mean 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
SD 0.9882 0.9963 0.9986 0.9882 0.9963 0.9986 0.9882 0.9963 0.9986
CS 1.5711 1.8525 1.9394 1.5710 1.8524 1.9394 1.5711 1.8524 1.9394
CK 5.7186 7.6584 8.3894 5.7185 7.6578 8.3894 5.7187 7.6580 8.3895

q = 0.50

Mean 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
SD 0.9882 0.9963 0.9986 0.9882 0.9963 0.9986 0.9882 0.9963 0.9986
CS 1.5711 1.8524 1.9394 1.5711 1.8524 1.9394 1.5711 1.8524 1.9394
CK 5.7189 7.6577 8.3894 5.7188 7.6577 8.3895 5.7188 7.6577 8.3895

q = 0.90

Mean 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
SD 0.9882 0.9963 0.9986 0.9882 0.9963 0.9986 0.9882 0.9963 0.9986
CS 1.5711 1.8524 1.9394 1.5711 1.8524 1.9394 1.5711 1.8524 1.9394
CK 5.7189 7.6577 8.3895 5.7188 7.6577 8.3895 5.7189 7.6577 8.3895
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Table 9. Summary statistics of the RQ residuals (β0 = 0.5; β1 = 1.0).

Statistic k = 0.50 k = 1.00 k = 2.00

n = 50 n = 200 n = 600 n = 50 n = 200 n = 600 n = 50 n = 200 n = 600

q = 0.10

Mean 0.0012 0.0004 0.0001 0.0012 0.0004 0.0001 0.0012 0.0004 0.0001
SD 1.0134 1.0033 1.0011 1.0134 1.0033 1.0011 1.0133 1.0033 1.0011
CS 0.0142 0.0026 0.0009 0.0142 0.0027 0.0009 0.0142 0.0027 0.0009
CK 2.7487 2.9258 2.9774 2.7486 2.9258 2.9774 2.7487 2.9258 2.9774

q = 0.50

Mean 0.0012 0.0003 0.0001 0.0012 0.0004 0.0001 0.0012 0.0003 0.0001
SD 1.0134 1.0033 1.0011 1.0134 1.0033 1.0011 1.0134 1.0033 1.0011
CS 0.0142 0.0027 0.0009 0.0142 0.0027 0.0009 0.0142 0.0027 0.0009
CK 2.7487 2.9258 2.9774 2.7487 2.9258 2.9774 2.7487 2.9258 2.9774

q = 0.90

Mean 0.0012 0.0004 0.0001 0.0012 0.0003 0.0001 0.0012 0.0003 0.0001
SD 1.0134 1.0033 1.0011 1.0134 1.0033 1.0011 1.0134 1.0033 1.0011
CS 0.0142 0.0027 0.0009 0.0142 0.0027 0.0009 0.0142 0.0027 0.0009
CK 2.7487 2.9258 2.9774 2.7487 2.9258 2.9774 2.7487 2.9258 2.9774

5. Local Influence
5.1. Perturbation Matrix and Potentially Influential Cases

Local influence techniques examine the effect of small perturbations in the model data
and/or assumptions regarding the estimated parameters. Let `(θ) be the log-likelihood
function for the parameter θ of the model defined by (6), which is named the non-perturbed
model. Consider a vector of Rn, ω namely, called the vector of perturbation, and we define
`(θ; ω) as the log-likelihood function of the perturbed model and θ̂ω as the maximum
likelihood estimate of θ obtained from `(θ; ω). Further, let ω0 ∈ Rn be a non-perturbation
vector such that `(θ) = `(θ; ω0). The likelihood displacement function (LD) defined as

LD(ω) = 2
(
`(θ̂)− `(θ̂ω)

)
(17)

is used to detect the impact of ω. We study the local behavior of the surface plot (ω>, LD(ω))>

around ω0. The direction in which the LD locally changes most rapidly is evaluated; that is,
the maximum curvature of the surface. For LD(ω) given in (17), the maximum curvature
is established as

Cmax = max‖d‖=12|d>Bd|, (18)

where B defined in (18) is given by B = −∆> ῭
θ̂θ̂∆ and d is a unit-length direction vec-

tor; see [22]. The expression ῭
θ̂θ̂ is the Hessian matrix of `(θ) evaluated at θ̂ and ∆ is a

(p + 1)× n perturbation matrix also evaluated at θ = θ̂ and ω = ω0. Hence, the elements
of ∆ are stated as

∆ij =
∂2`(θ; ω)

∂θi∂ωj

∣∣∣∣∣
θ=θ̂, ω=ω0

, i ∈ {0, 1, . . . , p}, j ∈ {1, . . . , n}. (19)

Then, dmax is a unit-length eigenvector associated with the maximum absolute eigen-
value of B. The plot of dmax versus the index i may be considered to detect whether case
i is potentially influential on θ̂. The direction d = ei, where ei is an n× 1 vector of zeros,
with one at the ith position, is another relevant direction to analyze. For such a direction,
the normal curvature is Ci(θ) = 2|bii|, where bii is the ith element of the diagonal of the
matrix B. If

Ci(θ) > 2
n

∑
i=1

Ci(θ)

n
= 2C, (20)
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then the case i is potentially influential; see [35]. Next, we describe the matrix ∆ for different
perturbation schemes with its elements defined in generic terms in (19).

5.2. Perturbation Schemes
5.2.1. Case-Weight Perturbation

Consider ω = (ω1, . . . , ωn)> as a weight vector. Then, the perturbed log-likelihood
function is defined by `(θ; ω) = ∑n

i=1 ωi`i(Qi, k), where 0 ≤ ωi ≤ 1, for i ∈ {1, . . . , n}.
Therefore, the n columns of ∆ are given by

δi =

(
xiai zi

bi

)∣∣∣∣
θ=θ̂, ω=(1,...,1)>

, i ∈ {1, . . . , n}.

5.2.2. Perturbation on the Response

Now, consider an additive perturbation on the response i by making yi(ωi) = yi +
ωisY, where ωi ∈ R and sY is a scale factor that can be the sample SD of Y, for i ∈ {1, . . . , n}.
Then, the perturbed log-likelihood function corresponds to `(θ; ω) = ∑n

i=1 `ωi (Qi, k), with

`ωi (Qi, k) = log(− log(1− q)) + log(k) + (k− 1) log(yi(ωi))− k log(Qi) + (yi(ωi))
kQ−k

i log(1− q),

for i ∈ {1, . . . , n}. The column vectors of ∆ may be expressed as

δi =

(
xiaiφiρi

τiρi

)∣∣∣∣
θ=θ̂, ω=(0,...,0)>

, i ∈ {1, . . . , n},

where

φi = −k2Q−k−1
i yk−1

i log(1− q),

τi =
1
yi

+
yk−1

i

Qk
i

(
k log

(
yi
Qi

)
+ 1
)

log(1− q),

ρi = sY.

5.2.3. Perturbation in the Continuous Covariate

Consider an additive perturbation on a particular continuous covariate, xt namely,
with t ∈ {1, . . . , p− 1}, by making xti(ωi) = xti + ωisXt , where sXt is, again, a scale factor,
which can be taken as the sample SD of Xt, and ωi ∈ R, for i ∈ {1, . . . , n}. Therefore,
the perturbed log-likelihood function is given by `(θ; ω) = ∑n

i=1 `ωi (Qi, k), where

`ωi (Qi, k) = log(− log(1− q)) + log(k) + (k− 1) log(yi)− k log(Qi(ωi)) + yk
i Qi(ωi)

−k log(1− q),

with Qi(ωi) = h−1(x>i (ωi)β) and x>i (ωi) = (1, xi1, . . . , xit(ωi), . . . , xi(p−1))
>, for i ∈

{1, . . . , n}. Hence, the perturbation matrix takes the form given by

∆ =

(
∆β

∆k

)∣∣∣∣
θ=θ̂, ω=(0,...,0)>

,

where ∆β = (∆βij) is a p× n matrix defined as

∆βij =

{
sXt βta′iaixijzi + sXt βtxija2

i ci, j 6= t, i ∈ {1, . . . , n},
sXt aizi + sXt βta′iaixitzi + sXt βtxita2

i ci, j = t, i ∈ {1, . . . , n},

with a′i being the derivative of ai defined in (8). Here, ∆k = (ζ1, . . . , ζn), with ζi = sXt βtaimi.
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5.2.4. Perturbation of the Parameter k

In this case, the perturbation scheme consists of changing k by making ki = k/ωi,
with ωi > 0. Then, the perturbed log-likelihood is `(θ; ω) = ∑n

i=1 `ωi (Qi, ki), where

`ωi (Qi, ki) = log(− log(1− q)) + log(ki) + (ki − 1) log(yi)− ki log(Qi)

+yki
i Q−ki

i log(1− q), i ∈ {1, . . . , n}.

The column vectors of ∆ can be expressed as

δi =

(
xiaiξi

ηi

)∣∣∣∣
θ=θ̂, ω=(1,...,1)>

, i ∈ {1, . . . , n},

where ξi = −k mi and ηi = −k di.

6. Illustrative Example
6.1. The Adjusted Weibull Quantile Regression

To illustrate the use of the Weibull quantile regression formulated in this paper,
we assume Yi ∼ Wei(Qi, k) and that our goal is to model the median. Consider two link
functions (logarithm and square root) for a systematic component of the regression model,
which are respectively stated as

(L1) log(Qi) = x>i β, (21)

(L2)
√

Qi = x>i β,

for i ∈ {1, . . . , 41}, where β = (β0, β1)
> is the vector of regression coefficients, and x>i =

(1, xi) is the vector of values of X>i = (1, Xi).
We implement the function quant.weibull.reg() in the R software, which allows us

to fit Weibull quantile regression models to a data set, computing information criteria and
residuals. To select the best model amongst a set of options, the AIC, BIC, and CAIC can
be used. These information criteria assume the existence of an unknown “true model”.
The AIC chooses the model whose divergence in relation to the “true model” is the mini-
mum within the competing models and may be computed by

AIC = −2`(θ̂) + 2m, (22)

where `(θ̂) is the log-likelihood function evaluated at θ = θ̂ and m is the number of
parameters of the proposed model, in our case m = p + 1. When the number of parameters
is large, the AIC can have a deficient behavior. For this reason, a correction to the AIC is
proposed as

CAIC = AIC +
2m(m + 1)
n−m− 1

, (23)

where n is the sample size. The BIC is another information criterion for model selection
based on maximizing the probability of choosing the true model and corresponds to

BIC = −2`(θ̂) + m log(n). (24)

In all these criteria, the best model, among a set of candidates, has the smallest value.
Another measure to be employed to choose among competing models is R2

M, which
works similarly to the usual R2 measure in mean regression and is defined as

R2
M = 1− exp

(
2
n

(
`(θ̃)− `(θ̂)

))
, (25)

where `(θ̃) and `(θ̂) are the maximized log-likelihood for the regression model without
any covariate and with all covariates, respectively.
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Values of the AIC, BIC, and CAIC defined in (22), (23), and (24), R2
M stated in (25)

and the corresponding log-likelihood functions are reported in Table 10. We conclude that
the model with the logarithm link function (L1) should be used to describe the median.

Table 10. Values of AIC, BIC, CAIC, and log-likelihood function for Weibull median-regression
models with the data of time to electrical breakdown of an insulating fluid.

Model AIC CAIC BIC R2
M Log-Likelihood

L1 327.07 327.71 332.21 0.71 −160.53
L2 351.63 352.28 356.77 0.47 −172.81

Now, we compare model L1 with the proposed model in [10]. This comparison is
not obvious since the construction of both models is different. Then, we compare both
models in terms of R2

M defined in (25) and the pseudo-R2 proposed for the Koenker–Bassett
model [11] given by

R2
KB = 1− V1(q)

V0(q)
, (26)

where V1(q) is the sum of weighted distances for the full qth quantile regression model and
V0(q) is the sum of weighted distance for the model that includes only an intercept; that is,
with no covariates. For our data, using (25) and (26), we obtain R2

M = 0.71 and R2
KB = 0.03,

allowing us to conclude that our model is a better option for describing this data set.
Another relevant comparison is to consider a GLM-type model based on the Weibull

distribution and reparameterized by its mean. We fit this model to our data taking the
logarithmic link function. The value of the mean squared prediction error for the Weibull
mean regression is 425,939.8, and for the median regression it is 231,845.7, meaning that,
in terms of prediction error, our adjusted quantile model outperforms a GLM-type model
based on the Weibull distribution.

Table 11 reports the maximum likelihood estimates for the model parameters, their
approximated standard errors (SEs), and p-values based on the Wald test (described in
Section 2). Thus, the predictive model is given by log(Q̂) = 20.97− 0.56x, for x > 0.

Table 11. Estimate, SE, and p-value of the indicated parameter for the data of time to electrical
breakdown of an insulating fluid.

Statistic β̂0 β̂1 k̂

Estimate 20.97 −0.56 0.82
SE 1.86 0.06 0.10

p-value <0.01 <0.01 <0.01

We evaluate the distributional assumption of the model by using the RQ and GCS
residuals; that is, rRQ

i and rGCS
i , respectively. The QQ plots with envelopes for these

residuals are presented in Figure 4, where all points are inside the bands. Therefore,
rRQ

i (a) and rGCS
i (b) follow approximately standard normal and standard exponential

distributions, respectively. This result allows us to validate that the response variable
follows a Weibull distribution.

To compare the Weibull quantile regression model with other direct competing models,
we adjust the Birnbaum–Saunders quantile regression model [2,16] with logarithm link
function, which considers a response variable with an asymmetric distribution. For the
Birnbaum–Saunders model with our data, the CAIC, BIC, and R2

M values are 334.96,
339.45 and 0.67, respectively. Note that the CAIC and BIC values are greater than the
corresponding values for model L1; see Table 10. Furthermore, the value of R2

M is less
than for model L1. The CAIC and BIC values are 531.31 and 535.80 for the normal model
given in (1). Additionally, the residual rRQ

i has been computed for the Birnbaum–Saunders
model, and the QQ plot with envelopes is shown in Figure 4c. We observe that, compared
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with the QQ plot in Figure 4a, the behavior is less homogeneous around a straight line,
and there are points outside of the bands. Therefore, by considering the CAIC, BIC, and
QQ plots of residuals, we conclude that the Weibull quantile regression outperforms the
Birnbaum–Saunders quantile regression as well.
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Figure 4. QQ plot with envelope of rRQ
i (a) and rCGS

i (b) for the Weibull median regression and of rRQ
i for the Birnbaum–

Saunders quantile regression model with logarithm link (c), using the data of the time to electrical breakdown of an
insulating fluid.

6.2. Local Influence Analysis

Next, we analyze potentially influential cases by their local influence for the Weibull
quantile regression with link L1, considering the four perturbation schemes as described in
Section 5. In Figure 5, we show the index plots of Ci(θ) defined in (20) for each of them.
Note that five cases are indicated as potentially influential, namely cases #1, #2, #3, #32,
and #33. Observe that the local influence technique detects some atypical cases identified
previously. From Figure 5d, note that small values for covariate X influence the estimates.
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Figure 5. Index plots of Ci(θ) under case-weight perturbation (a), response perturbation (b), per-
turbation of the parameter k (c), and covariate perturbation X (d) for the data of time to electrical
breakdown of an insulating fluid and the Weibull quantile regression.
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We study the impact on the model inference considering the three cases most repeated
in the index plots of Figure 5, which are cases #1, #3, and #33. The sets of cases {#1}, {#3},
{#33}, {#1, #3}, {#1, #33}, {#3, #33}, and {#1, #3, #33} are removed and the model parame-
ters are re-estimated. To determine the variation in the estimates of model parameters and
in the associated SEs, we use the value of the relative changes (RCs) for each component of
the parameter vector θ; that is,

RCθj(i)
=

∣∣∣∣∣ θ̂j − θ̂j(i)

θ̂j

∣∣∣∣∣× 100%, RCSE(θ̂j)(i)
=

∣∣∣∣∣ ŜE(θ̂j)− ŜE(θ̂j)(i)

ŜE(θ̂j)

∣∣∣∣∣× 100%,

where θ̂j(i) and ŜE(θ̂j)(i) denote the maximum likelihood estimates of θj and the estimated
SE of the associated estimator, respectively, obtained after removing case i, for j ∈ {1, 2, 3}
and i ∈ {1, . . . , 41}, with θ1 = β0, θ2 = β1, and θ3 = k.

Table 12 reports the values of RCs for the data of time to electrical breakdown of an
insulating fluid and the Weibull quantile regression. Note that the largest values of RCs
are obtained when we remove cases #1 and #33, with the highest change occurring in the
parameter k. The RCs of all parameters show a change close to 20%. However, we do
not find any inferential change. Therefore, our study of local influence measures derived
in this paper allows us to detect potentially influential cases, but these do not affect the
model inference. Thus, the analysis of local influence presented with the data of the time to
electrical breakdown of an insulating fluid permits us to conclude that the Weibull quantile
regression model is nonsensitive to the atypical cases detected and exhibits an excellent
performance to model this data set.

Table 12. RCs of maximum likelihood estimates and of the associated estimated SEs for the indicated
cases, and respective p-values for the data of time to electrical breakdown of an insulating fluid and
the Weibull quantile regression.

Parameter

Removed Case(s) β0 β1 k

None RC(θ̂) N/A N/A N/A
RC(ŜE) N/A N/A N/A
p-value <0.01 <0.01 <0.01

{#1} RC(θ̂) 3.41 3.41 5.81
RC(ŜE) 2.52 2.78 5.38
p-value <0.01 <0.01 <0.01

{#3} RC(θ̂) 4.87 5.23 0.77
RC(ŜE) 18.86 18.31 0.14
p-value <0.01 <0.01 <0.01

{#33} RC(θ̂) 1.46 1.98 8.16
RC(ŜE) 13.23 13.26 12.43
p-value <0.01 <0.01 <0.01

{#1, #3} RC(θ̂) 0.45 0.71 4.74
RC(ŜE) 12.25 11.37 5.15
p-value <0.01 <0.01 <0.01

{#1, #33} RC(θ̂) 4.46 4.92 15.72
RC(ŜE) 15.21 15.50 20.27
p-value <0.01 <0.01 <0.01

{#3, #33} RC(θ̂) 3.28 3.11 7.54
RC(ŜE) 3.65 4.11 12.51
p-value <0.01 <0.01 <0.01

{#1, #3, #33} RC(θ̂) 0.56 0.76 14.77
RC(ŜE) 5.40 6.19 20.12
p-value <0.01 <0.01 <0.01
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6.3. Coefficients across Quantiles

Quantile regression gives us a full description of how the covariates can affect the
different values of the response variable. To show this, we consider the model given by
log(Q) = β0 + β1x. If the covariate X increases from x0 to x1 = x0 + 1, then the value
of modeled quantile changes from Q0 = exp(β0 + β1x0) to Q1 = exp(β0 + β1(x0 + 1)),
and then we have (Q1 − Q0)/Q0 = exp(β1)− 1. Therefore, the coefficient β1 is related
to the percentage of change in the considered quantile when the covariate increases in
one unit; see [36]. To illustrate this, we fit the Weibull regression model formulated in (21)
considering the quantiles q ∈ {0.1, 0.25, 0.5, 0.75, 0.9}. In addition, we use a procedure
to find the optimal value of q, qopt namely, that is, the value of q that maximizes the log-
likelihood function. We consider the profile log-likelihood method based on a grid of
values of q ∈ {0.01, 0.02, . . . , 0.99}. Then, we estimate the Weibull regression parameters
and compute the corresponding log-likelihood function. This procedure has been used
in other contexts for Weibull models by [8] (pp. 426–433), where it is called a non-failing
algorithm. The results are presented in Table 13. We observe that the covariate has the
largest impact on higher levels of the response variable. For example, for values near to the
25th quantile of the response variable, if the voltage increases by 1 kV, the values of the
response change by (exp(−0.62)− 1)× 100% = −47%. If we consider values close to the
90th quantile, it changes by (exp(−0.52)− 1)× 100% = −41%.

Table 13. Estimates of the parameters of the Weibull quantile regression model considering different
quantiles, with insulating fluid data.

Estimate q = 0.10 q = 0.25 q = 0.50 q = 0.75 q = 0.90 qopt = 0.32

β̂0 18.97 21.80 20.97 20.19 21.02 20.50
β̂1 −0.57 −0.62 −0.56 −0.52 −0.52 −0.57
k̂ 0.84 0.81 0.82 0.84 0.84 0.85

7. Concluding Remarks

This paper has proposed novel quantile regression models for a response variable
that follows an asymmetrical behavior based on a new parameterization of the Weibull
distribution. We have estimated the new model parameters by using the maximum
likelihood method and discussed hypothesis testing based on the Wald and likelihood ratio
statistics. In addition, we have used the randomized quantile and generalized Cox–Snell
residuals to evaluate the fit of the model. Monte Carlo simulation studies have found
that (i) the maximum likelihood estimators are empirically consistent and asymptotically
normal distributed (Tables 2–7), and (ii) the randomized quantile and generalized Cox–
Snell residuals follow a standard normal distribution and exponential distribution with
a parameter equal to one, respectively (Tables 8 and 9). Furthermore, we have derived
local influence techniques to analyze the impact of a perturbation on the estimation of
model parameters considering four schemes. We have applied the proposed model to a
data set related to the time to electrical breakdown of an insulating fluid. The experimental
results of this data analysis have shown the excellent performance of the proposed model
to the data, making it a better choice than the usual normal regression model and other
asymmetrical quantile regression models proposed in the literature. Some observations
have been detected as potentially influential cases for our local diagnostic analysis (Figure 5)
but without inferential change. Furthermore, we have studied the impact of the covariates
on the quantiles of the response.

This work has evidenced that the new proposed model is helpful for independent data
and a response variable with positive support. This new quantile regression model can also
be suitable for small samples. However, we remark some limitations of our models and the
proposed methodology. For example, diverse phenomena frequently provide other types
of data to those analyzed in this study, such as censored, functional, spatial, and temporal
data, as well as structures of measurement errors, and partial least squares, all of which
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are suitable to be studied to increase the predictive capability in the modeling; see [37–41].
Then, it is necessary to formulate new models based on our approach to study these
phenomena in such types of data and modeling structures. These structures are not an easy
aspect to be explored, especially with spatially correlated data, because new multivariate
distributions based on asymmetrical models need to be proposed and parameterized in
terms of quantiles; see [38]. Furthermore, our proposal allows likelihood methods to be
used, and thus this proposal can be applied to different distributions for modeling data,
but adaptations of the corresponding methodology for each of these distributions must
be performed.

An idea to enhance the empirical analysis of our proposal involves the following
steps. First, consider the covariate with the highest simple correlation coefficient. Second,
estimate the slope and intercept parameters in h(Q). Third, taking a quantile as the median,
create a data set on y and x stating a table with the observed values of y, the fitted values of
y, and the residuals as their difference. Fourth, plot the observed and fitted values against
the x values to allow the assessment of the model. In addition, least squares-fitted values
can be displayed in the same graphical plot. A one-at-a-time cross-validation separates
one observation for prediction from the remaining data, which adds a simple aspect about
prediction that is also valuable. Other aspects related to k-fold cross validation are also
appealing. Additionally, the relationship between a quantile and the covariates by means
of a link function must be evaluated in each case, since it may not be correctly specified,
implying extra analyses to achieve a better modeling. Moreover, measures such as the Cook
distance and generalized leverage are essential diagnostic aspects of all statistical modeling,
and they must be further studied for the newly proposed model. Weibull-type distributions
with an extreme value index are widely used in many areas such as environmental sciences,
hydrology, and meteorology; see [42]. Our proposed methodology can be adapted to this
type of distributions. These and other aspects are part of our ongoing research.
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