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Abstract. We study the thermodynamics and critical behavior of su(m|n)
supersymmetric spin chains of Haldane–Shastry type with a chemical potential term.
We obtain a closed-form expression for the partition function and deduce a description
of the spectrum in terms of the supersymmetric version of Haldane’s motifs, which we
apply to obtain an analytic expression for the free energy per site in the thermodynamic
limit. By studying the low-temperature behavior of the free energy, we characterize the
critical behavior of the chains with 1 6 m,n 6 2, determining the critical regions and
the corresponding central charge. We also show that in the su(2|1), su(1|2) and su(2|2)
chains the bosonic or fermionic densities can undergo first-order (discontinuous) phase
transitions at T = 0, in contrast with the previously studied su(2) case.
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1. Introduction

Spin chains of Haldane–Shastry type have been extensively studied as the prototypical
examples of one-dimensional lattice models with long-range interactions, due to their
remarkable physical and mathematical properties. The best known of these models
is the original Haldane–Shastry (HS) chain [1, 2], which consists of a circular array
of N equispaced spins with inverse-square two-body interactions. This chain is
integrable [3, 4] and invariant under the quantum Yangian for arbitrary values of N ,
which in turn makes it possible to derive a complete description of its spectrum
in terms of Haldane’s motifs [5]. From a more applied standpoint, the HS chain
has appeared in such disparate contexts as conformal field theory [6–8], fractional
statistics and anyons [5, 6, 9, 10], quantum chaos vs. integrability [11–15], quantum
information theory [16] or quantum simulation of long-range magnetism [17]. One of
the characteristic features of the HS chain is its close connection with the (dynamical)
spin Sutherland model [18], whose spin degrees of freedom are governed by the HS
Hamiltonian in the large coupling constant limit. Using this idea, known in the literature
as Polychronakos’s freezing trick [19], it is possible to compute in closed form the
chain’s partition function [11]. In fact, the same approach can be applied to the long-
range dynamical spin models of Calogero [20] and Inozemtsev [21], which yield the so-
called Polychronakos–Frahm (PF) [22,23] and Frahm–Inozemtsev (FI) [24] spin chains.
Although they are not translationally invariant, these chains share many fundamental
properties with the original HS chain. For this reason, we shall collectively refer in this
work to the HS, PF and FI chains as spin chains of Haldane–Shastry type.

In all the chains of HS type discussed in the previous paragraph, the term “spin”
actually stands for su(m) spin. In fact, Haldane himself was the first to consider
an su(m|n) supersymmetric version of the HS chain, whose sites can be occupied either
by an su(m) boson or by an su(n) fermion [25]. An analogous supersymmetric chain
of PF type was introduced shortly afterwards [26]. The partition function of both
the HS and the PF supersymmetric chains have been exactly computed using the
freezing trick [26–28], and their spectra have been fully described in terms of a suitable
generalization of Haldane’s motifs [29–31]. On the other hand, the supersymmetric
version of the Frahm–Inozemtsev chain [31] has received comparatively less attention
in the literature. It should also be noted that, apart from their intrinsic interest, the
supersymmetric chains of HS type are closely related to important models in condensed
matter theory describing the dynamics of holes in a spin background. Indeed, the HS
su(m|1) chain with m > 1 is equivalent to the long-range su(m) t-J model with equal
exchange and transfer energies proportional to (zi − zj)−2, originally introduced by
Kuramoto and Yokoyama [32].

The study of the thermodynamics of spin chains of HS type, which goes back to the
early work of Haldane [6], has received a good deal of attention. In the latter reference
the spinon description of the spectrum is used to deduce an expression for the entropy of
the su(2) HS chain in the thermodynamic limit. A heuristic formula for the free energy
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of the PF chain appeared shortly afterwards in Ref. [23]. A similar result for the FI
chain using the transfer matrix method was derived by Frahm and Inozemtsev [24], who
also computed the magnetization of this chain in an external constant magnetic field.
More recently, a comprehensive study of the thermodynamics of the three (spin 1/2)
chains of HS type in a constant magnetic field was performed in Ref. [33], using again
the transfer matrix method. In the supersymmetric case, the thermodynamic functions
of the su(1|1) HS chain (with a chemical potential term) have been exactly computed
taking advantage of the equivalence of this model to a free, translationally invariant
fermion system [34]. This approach cannot be applied to the su(1|1) PF and FI chains,
since these models are not translationally invariant, nor in fact to any chain of HS type
with m or n different from 1. To the best of our knowledge, the thermodynamics of the
supersymmetric chains of the latter type, or the non-supersymmetric ones with m > 2,
have not been analyzed in the literature.

The connection between the original su(2) HS chain and the level-1 su(2) Wess–
Zumino–Novikov–Witten conformal field theory (CFT), stemming from the Yangian
symmetry of both types of models, was already numerically observed by Haldane [1]
and subsequently established by several authors in the (purely fermionic) su(n)
case [5,6,35,36]. Thus the su(n) HS chain (with no magnetic field or chemical potential
term) is critical (gapless), with central charge c = n− 1. This result was later extended
to the su(m|n) PF chain (again with zero chemical potentials) in Ref. [29], where it
was shown that the central charge in this case is c = m − 1 + n/2 for m > 1. The
same is true for the su(m|n) HS chain with m > 1, by virtue of the relation between
the partition functions of the supersymmetric PF and HS chains established in Ref. [7].
The criticality of the su(1|1) HS chain with a chemical potential was also proved in
Ref. [34], where it was shown that the central charge is instead c = 1 for a certain range
of nonzero values of the chemical potential. In particular, it should be noted that in all
cases reviewed above the central charge is integer or half-integer, as in a CFT of free
bosons and/or fermions.

The aim of this paper is to study the thermodynamics and the critical behavior of
the three families of su(m|n) spin chains of HS type with a general chemical potential
term. To this end, we shall first evaluate in closed form the chains’ partition functions for
arbitrary finite values of the number of sites N . Exploiting the connection of the latter
chains with a certain inhomogeneous vertex model, we shall achieve a concise description
of the spectrum in terms of a generalization of Haldane’s motifs. This description shall
then be used to compute the transfer matrix and obtain a closed-form expression for
the free energy per site in the thermodynamic limit. With the help of this expression,
we shall study the thermodynamics and criticality of the supersymmetric chains of HS
type with 1 6 m,n 6 2. First of all, examining the low-temperature behavior of the
free energy per site we shall determine the values of the chemical potentials for which
these chains are critical, and compute the corresponding central charge. In particular, it
turns out that the central charge can take rational values that are not half-integers. We
shall also analyze the existence of phase transitions at zero temperature in the densities
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of bosons and fermions. We shall show that these densities exhibit only second-order
(continuous) transitions for m = n = 1, while for m + n > 2 (and 1 6 m,n 6 2)
either the bosonic or the fermionic densities undergo a first-order (discontinuous) phase
transition.

We shall end this introduction by briefly outlining the paper’s organization. In
Section 2 we present the three supersymmetric chains of HS type under study, and
discuss their duality under exchange of the bosonic and fermionic degrees of freedom.
The partition function of these chains is computed in closed form in Section 3 by means
of Polychronakos’s freezing trick. In Section 4 we establish the equivalence of su(m|n)
supersymmetric spin chains of HS type to certain inhomogeneous vertex models, from
which we deduce a simple formula for the spectrum in terms of supersymmetric motifs.
By means of this formula, in Section 5 we evaluate the chains’ free energy per site in
the thermodynamic limit. We also discuss in this section several symmetries of the
free energy and the main thermodynamic functions, with particular emphasis on the
one arising from the boson-fermion duality. Sections 6-8 are devoted to the analysis
of the critical behavior and the existence of zero-temperature phase transitions in the
spin densities for the su(1|1), su(2|1) and su(2|2) chains. In Section 9 we present our
conclusions and discuss several lines for future research suggested by the present work.
The paper ends with a technical appendix providing a detailed discussion of the behavior
of the free energy per site of the su(1|1) chains for finite values of N .

2. The models

An su(m|n) supersymmetric spin chain is a one-dimensional array of N sites, each of
which is occupied by either a boson or a fermion with m and n degrees of freedom,
respectively. Thus the Hilbert space Σ(m|n) = ⊗Ni=1Cm+n of the system is spanned by
the basis vectors

|s1 · · · sN〉 ≡ |s1〉 ⊗ · · · ⊗ |sN〉, si ∈ {1, . . . ,m+ n}, (2.1)

where the one-particle state |si〉 is regarded as bosonic if si ∈ B ≡ {1, . . . ,m} and
fermionic if si ∈ F ≡ {m + 1, . . . ,m + n}. The su(m|n) permutation operators P (m|n)

ij

(with 1 6 i < j 6 N) are defined by

P
(m|n)
ij | · · · si · · · sj · · ·〉 = εij(s1, . . . , sN)| · · · sj · · · si · · ·〉, (2.2)

where the sign εij(s1, . . . , sN) is equal to 1 if si, sj ∈ B, −1 if si, sj ∈ F , and (−1)ν
if si and sj are of different type, ν being the number of fermionic spins sk with k =
i+ 1, . . . , j− 1. We shall also define the number operators Nα with α = 1, . . . ,m+n by

Nα|s1 · · · sN〉 = Nα(s)|s1 · · · sN〉,

where

Nα(s) ≡
N∑
i=1

δsi,α (2.3)
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is the number of spins of type α in the state |s1 · · · sN〉. The supersymmetric spin chains
we shall deal with in this paper are described by a Hamiltonian of the form

H =
∑
i<j

Jij(1− P (m|n)
ij )−

m+n−1∑
α=1

µαNα ≡ H0 +H1, (2.4)

where (as in what follows, unless otherwise stated) the sum over Latin indices ranges
from 1 to N . In the last term the real constant µα has a natural interpretation
as the chemical potential of the α-th species, and without loss of generality (since∑m+n
α=1 Nα = N) we have chosen the normalization µm+n = 0. The models we shall

focus on are those for which H0 is the Hamiltonian of the supersymmetric Haldane–
Shastry, Polychronakos–Frahm and Frahm–Inozemtsev spin chains, whose interaction
strengths Jij are respectively given by

Jij = J

2 sin2(ξi − ξj)
, ξk = kπ

N
, (2.5)

Jij = J

(ξi − ξj)2 , HN(ξk) = 0 , (2.6)

Jij = J

2 sinh2(ξi − ξj)
, Lc−1

N (e2ξk) = 0 . (2.7)

Here J 6= 0 is a real constant, HN denotes the Hermite polynomial of degree N and
Lc−1
N is a generalized Laguerre polynomial of degree N (with c a positive parameter).

In the non-supersymmetric case (mn = 0) the model (2.4) with interactions (2.5)–
(2.7) is the one solved in Ref. [33]. Indeed, in this case Pij = ±Sij, where Sij is the
operator permuting the i-th and j-th spins and the “+” (resp. “−”) sign corresponds to
the case n = 0 (resp. m = 0). Moreover, the operators

Jα = Nα −Nm+n , α = 1, . . . ,m+ n− 1 ,

are a basis of the standard su(m + n) Cartan subalgebra, in terms of which H1 can be
expressed as

H1 =
m+n−1∑
α=1

BαJα +B0

for suitable real constants Bα. It also worth mentioning that the Hamiltonian (2.4), for
which we shall use the more explicit notation H(m|n), is related to H(n|m) by a duality
relation that we shall now briefly explain [30,37]. To this end, let us define the unitary
operator U : Σ(m|n) → Σ(n|m) by

U |s1 · · · sN〉 = (−1)
∑

i
iπ(si)|s′1 · · · s′N〉 ,

where π(si) = 0 if si ∈ B (resp. π(si) = 1 if si ∈ F ) and s′i = m + n + 1− si. We then
have

U−1P
(n|m)
ij U = −P (m|n)

ij , U−1NαU = Nm+n+1−α ,

and therefore

U−1H(n|m)U = E0 −H(m|n)
∣∣∣
µα→−µm+n+1−α

, E0 ≡ 2
∑
i<j

Jij . (2.8)
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Thus the spectra of H(n|m) and H(m|n) are related by

E
(n|m)
k (µ1, . . . , µm+n) = E0 − E(m|n)

k (−µm+n, . . . ,−µ1) . (2.9)

We can therefore assume without loss of generality that m > n in what follows.
Another basic symmetry of the spectrum of the Hamiltonian (2.4) is related to

changes in the labeling of the bosonic or fermionic degrees of freedom. More precisely,
let Tαβ : Σ(m|n) → Σ(m|n) (with α 6= β ∈ {1, . . . ,m + n}) denote the linear operator
whose action on a basis element |s1 · · · sN〉 consists in replacing all the sk’s equal to α
by β, and vice versa. If π(α) = π(β) (i.e., if α and β are either both bosonic or both
fermionic) it is clear that Tαβ commutes with the su(m|n) permutation operators P (m|n)

ij ,
and hence with H0. It is also straightforward to verify that

T−1
αβ Nα Tαβ = Nβ , T−1

αβ Nβ Tαβ = Nα , T−1
αβ Nγ Tαβ = Nγ (γ 6= α, β),

and thus

T−1
αβ H Tαβ = H0 − µαNβ − µβNα −

m+n∑
γ=1
γ 6=α,β

µγNγ .

It follows that

E
(m|n)
k (. . . , µα, . . . , µβ, . . .) = E

(m|n)
k (. . . , µβ, . . . , µα, . . .) (π(α) = π(β)); (2.10)

in other words, the spectrum of H is invariant under permutations of the bosonic or
fermionic chemical potentials among themselves. Note, finally, that combining Eqs. (2.9)
and (2.10) we obtain the more general relation

E
(n|m)
k (µ1, . . . , µm+n) = E0 − E(m|n)

k (−µα1 , . . . ,−µαm+n) ,

where (α1, . . . , αm+n) is a permutation of (1, . . . ,m + n) such that {α1, . . . , αm} =
{n+ 1, . . . , n+m} (and, consequently, {αm+1, . . . , αm+n} = {1, . . . , n}).

3. Partition function

In this section we shall compute in closed form the partition function of the chains (2.4)–
(2.7) by exploiting their connection with the su(m|n) spin versions [25–27, 38] of
the dynamical models of Sutherland, Calogero and Inozemtsev, respectively. For
definiteness, we shall present the details of the calculation only for the PF model (2.4)-
(2.6), which is technically the simplest.

To begin with, recall that the Hamiltonian of the su(m|n) spin Calogero model is
given by

H0 = −
∑
i

∂2
xi

+ a2r2 +
∑
i 6=j

a(a− P (m|n)
ij )

(xi − xj)2 , r2 ≡
∑
i

x2
i , (3.1)

with scalar counterpart

Hsc = −
∑
i

∂2
xi

+ a2r2 +
∑
i 6=j

a(a− 1)
(xi − xj)2 . (3.2)
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Defining

H = H0 + 2a
J
H1 (3.3)

we then have

H = Hsc + 2a
J
h(x) , (3.4)

with x ≡ (x1, . . . , xN) and

h(x) = J
∑
i<j

1− P (m|n)
ij

(xi − xj)2 −
m+n−1∑
α=1

µαNα .

Hence the Hamiltonian (2.4) with interactions (2.6) is simply H = h(ξ), where
ξ ≡ (ξ1, . . . , ξN) and the ξk’s are the chain sites (i.e., the zeros of the Hermite polynomial
of degree N). From Eq. (3.1) it follows that in the limit a → ∞ the eigenfunctions of
the su(m|n) spin Hamiltonian H are sharply peaked at the coordinates of the (unique)
equilibrium of the scalar potential

U = r2 +
∑
i 6=j

1
(xi − xj)2 (3.5)

in the configuration space (AN−1 Weyl chamber)

A = {x ∈ RN |x1 < · · · < xN} ,

which coincide with the chain sites ξk [39]. By Eq. (3.4) and the relation H = h(ξ), it
follows that for large a the eigenvalues of H are approximately given by

Eij ' Esc
i + 2a

J
ej ,

where Esc
i and ej respectively denote two arbitrary eigenvalues of Hsc and H. From

the latter equation it is immediate to deduce the following exact formula relating the
partition functions Z, Zsc and Z of the three Hamiltonians H, Hsc and H:

Z(T ) = lim
a→∞

Z(2aT/J)
Zsc(2aT/J) . (3.6)

The argument just outlined leading to Eq. (3.6) is known in the literature as
Polychronakos’s freezing trick [19].

The partition function Zsc of the scalar Calogero model (3.2), which is well known
(see, e.g., Refs. [12,19]), is given by

Zsc(2aT/J) = q
JEGS

2a
∏
i

(1− qJi)−1, q ≡ e−1/T , (3.7)

where

EGS = aN + a2N(N − 1)

is the ground-state energy of both H0 and Hsc, and we have taken Boltzmann’s
constant kB as 1. We shall next outline the computation of the spectrum of the
Hamiltonian H in Eq. (3.3). To this end, note first of all that, although the
Hamiltonians H0 and H are naturally defined on the Hilbert space L2(A) ⊗ Σ(m|n),
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they are actually equivalent to any of their extensions to the space L2(RN) ⊗ Σ(m|n).
This is essentially due to the fact that any point x ∈ RN outside the singular
hyperplanes xi − xj = 0 can be mapped in a unique way to a point in A by an
appropriate permutation. For reasons that will be clear in the sequel, from now on
we shall identify H0 and H with their symmetric extension, defined on the Hilbert
space Λ(L2(RN)⊗Σ(m|n)). Here Λ is the total symmetrizer with respect to simultaneous
permutations of both the coordinates and the spin variables, determined by the relations

KijP
(m|n)
ij Λ = ΛKijP

(m|n)
ij = Λ, 1 6 i < j 6 N , (3.8)

whereKij denotes the operator permuting the i-th and j-th coordinates. With the latter
identification, it can be shown that H is represented by an upper triangular matrix in
an appropriate basis that we shall now describe. To this end, let

|n, s〉 = Λ
(
ρ(x)

∏
i

xnii · |s〉
)
, (3.9)

where |s〉 ≡ |s1 · · · sN〉 and
ρ(x) = e−ar2/2 ∏

i<j

|xi − xj|a. (3.10)

The states (3.9), partially ordered according to the total degree |n| ≡ ∑i ni, are a (non-
orthonormal) basis of Λ(L2(RN) ⊗ Σ(m|n)) provided that (for instance) the quantum
numbers n and s satisfy the following conditions
i) ni > ni+1 for all i = 1, . . . , N − 1.
ii) If ni = ni+1 then si 6 si+1 for si ∈ B, or si < si+1 for si ∈ F .

Indeed, note first of all that if ni = nj and si = sj ∈ F then the state (3.9) vanishes by
antisymmetry. Otherwise, acting with the permutation operators KijPij on a state of
the form (3.9) we can always obtain a state satisfying the first condition and differing
from the original one at most by a sign. Applying to this state permutations acting on
indices i, j such that ni = nj we arrive at a state, again differing from the initial one
by at most a sign, in which the spin variables are ordered so that the second condition
is also satisfied. Moreover, it can be shown that the states satisfying the above two
conditions are linearly independent and complete.

Proceeding as in Ref. [12], it is straightforward to show that the action of the spin
Hamiltonian H0 on the basis (3.9) is given by

H0|n, s〉 = E0
n,s|n, s〉+

∑
|n′|<|n|,s′

cn′s′,ns|n′, s′〉 (3.11)

with cn′s′,ns ∈ C and
E0

n,s = 2a|n|+ EGS . (3.12)
The matrix of H0 on the basis (3.9) is upper triangular, as claimed, and its spectrum is
given by Eq. (3.12). On the other hand, sinceH1 clearly commutes with the symmetrizer
Λ (since each Nα does) and

H1|s〉 = −
m+n−1∑
α=1

µαNα(s)|s〉 = −
(∑

i

µsi
)
|s〉
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(with µm+n = 0), we have

H1|n, s〉 = −
(∑

i

µsi
)
|n, s〉 . (3.13)

Thus H1 is diagonal in the basis (3.9), and by Eqs. (3.11)-(3.13) the spectrum of H is
given by

En,s = 2a|n| − 2a
J

∑
i

µsi + EGS , (3.14)

where the quantum numbers n and s satisfy conditions i)-ii) above.
We are now ready to evaluate in closed form the partition function of the chain (2.4)

using the freezing trick formula (3.6). In the first place, in order to compute the partition
function of the su(m|n) spin model (3.3) it is convenient to parametrize the multiindex n
satisfying condition i) above as

n = (ν1, . . . , ν1︸ ︷︷ ︸
k1

, . . . , νr, . . . , νr︸ ︷︷ ︸
kr

), (3.15)

where ν1 > · · · > νr > 0 and k1 + · · ·+ kr = N with ki > 0 for all i. In particular, note
that the vector k = (k1, . . . , kr) can be considered as an element of the set PN of ordered
partitions of the integer N . We shall also refer in what follows to each maximal group
(νi, . . . , νi) of repeated components of the multiindex n as a sector. From Eq. (3.14) for
the spectrum of H it immediately follows that the partition function H is given by

Z(2aT/J) = q
JEGS

2a
∑

k∈PN

∑
ν1>···>νr>0

q

r∑
i=1

Jkiνi ∑
s∈n

q−
∑

j
µsj , (3.16)

where the notation s ∈ n stands for all possible multiindices s ∈ {1, . . . ,m + n}N
satisfying condition ii) above for a given multiindex n. Let us next evaluate the inner
sum in Eq. (3.16)

Σ(k) ≡
∑
s∈n

q−
∑

j
µsj , (3.17)

which clearly depends on n only through k. Since condition ii) above effects only the
ordering of the spin variables sk within each sector of the multiindex n independently
of the others, we have

Σ(k) ≡
r∏
i=1

σ(ki) , (3.18)

where

σ(k) =
∑
i+j=k

∑
16s16···6si6m

q
−

i∑
l=1

µsl ∑
16l1<···<lj6n

q
−

j∑
p=1

µm+lp
(3.19)

is the contribution to Σ(k) of a sector of length k (with i bosons and j fermions).
The sum σ(k) is easily expressed in terms of the complete and elementary symmetric
polynomials hi(x1, . . . , xm) and ej(x1, . . . , xn) of degrees i and j, respectively defined by

hi(x1, . . . , xm) ≡
∑

p1+···+pm=i
xp1

1 · · ·xpmm , ej(x1, . . . , xn) ≡
∑

16l1<···<lj6n
xl1 · · ·xlj ,
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where it is understood that ej(x1, . . . , xn) = 0 for j > n. Recall that hi (respectively ej)
is nothing but the Schur polynomial associated to the partition (i) (resp. (1j)). We
shall also need in the sequel the supersymmetric elementary polynomial of degree k in
m bosonic and n fermionic variables, defined by

ek(x1, . . . , xm|y1, . . . , yn) =
∑
i+j=k

hi(x1, . . . , xm)ej(y1, . . . , yn).

We then have

∑
16s16···6si6m

q
−

i∑
l=1

µsl =
∑

p1+···+pm=i

m∏
l=1

q−plµl = hi(q−µ1 , . . . , q−µm), (3.20)

∑
16l1<···<lj6n

q
−

j∑
p=1

µm+lp
= ej(q−µm+1 , . . . , q−µm+n), (3.21)

where (as usual) µm+n = 0. Thus

σ(k) =
∑
i+j=k

hi(q−µ1 , . . . , q−µm)ej(q−µm+1 , . . . , q−µm+n)

= ek(q−µ1 , . . . , q−µm|q−µm+1 , . . . , q−µm+n),

and therefore, by Eq. (3.18),

Σ(k) =
r∏
i=1

eki(q−µ1 , . . . , q−µm |q−µm+1 , . . . , q−µm+n)

≡ Ek(q−µ1 , . . . , q−µm |q−µm+1 , . . . , q−µm+n). (3.22)

On the other hand, the change of variables νi−νi+1 = li (with i = 1, . . . , r and νr+1 ≡ 0)
easily yields

r∑
i=1

Jkiνi = J
r∑
i=1

ki
r∑
j=i

lj = J
r∑
j=1

ljKj, Kj ≡
j∑
i=1

ki , (3.23)

and hence
∑

ν1>···>νr>0
q

r∑
i=1

Jkiνi

=
∑

l1,...,lr−1>0,lr>0

r∏
j=1

qJKj lj =
r−1∏
j=1

∞∑
lj=1

qJKj lj ·
∞∑
lr=0

qJKrlr

=
r−1∏
j=1

qJKj

1− qJKj ·
1

1− qJKr .

From the latter equality and Eq. (3.16) we thus obtain

Z(2aT/J) = q
JEGS

2a
∑

k∈PN
Σ(k)q

r−1∑
i=1

JKi r∏
i=1

(1− qJKi)−1, (3.24)

with Σ(k) given by Eq. (3.22). Using Eq. (3.7) and the freezing trick formula (3.6) we
finally arrive at the following closed-form expression for the partition function of the
su(m|n) chain (2.4) with interactions (2.6):

Z(T ) =
∑

k∈PN
Σ(k)q

r−1∑
i=1

JKi N−r∏
i=1

(1− qJK′i), (3.25)
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where Ki is given by Eq. (3.23) and the integers K ′1 < · · · < K ′N−r are defined by

{K ′1, . . . , K ′N−r} = {1, . . . , N − 1} \ {K1, . . . , Kr−1}. (3.26)

The above procedure can be repeated with minor modifications for the su(m|n)
chains (2.4) with interactions (2.5) or (2.7). It turns out that the resulting formula
for the partition function can be written in a unified way for all three models (2.5)-(2.7)
as

Z(T ) =
∑

k∈PN
Σ(k)q

r−1∑
i=1

JE(Ki) N−r∏
i=1

(1− qJE(K′i)), (3.27)

where the dispersion relation E is given by

E(i) =


i(N − i), for the HS chain
i, for the PF chain
i(i+ c− 1), for the FI chain.

(3.28)

4. Associated vertex models

The Hamiltonian H0 in Eq. (2.4) is closely related to an inhomogeneous classical vertex
model first introduced in Ref. [31] that we shall now briefly describe. The model consists
of a one-dimensional array of N + 1 vertices joined by N bonds σi, each of which can
be in m+ n states {1, . . . ,m} ≡ B and {m+ 1, . . . ,m+ n} ≡ F . Thus a configuration
of the system is specified by a vector σ = (σ1, . . . , σN), with σi ∈ B ∪F . The energy of
such a configuration is then defined by

E(m|n)(σ) = J
N−1∑
i=1

δ(σi, σi+1)E(i), (4.1)

where

δ(i, j) =

 1, i > j or i = j ∈ F
0, i < j or i = j ∈ B.

(4.2)

The authors of Ref. [31] introduced the so-called generalized partition function‡

ZV (q; x|y) ≡
m+n∑

σ1,...,σN=1

m∏
α=1

xNα(σ)
α ·

n∏
β=1

y
Nm+β(σ)
β · qE(m|n)(σ) , (4.3)

with Nα given by Eq. (2.3), in terms of which the partition function of the vertex model
with energies (4.1) is simply

ZV (q) = ZV (q; 1m|1n). (4.4)

As shown in Ref. [31], this generalized partition function satisfies the remarkable identity

ZV (q; x|y) =
∑

k∈PN
Sk(x|y)q

r−1∑
i=1

JE(Ki)
(4.5)

‡ From now on, with a slight abuse of notation we shall regard Z as a function of the variable q = e−1/T

instead of the temperature T .
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for all x ∈ Rm, y ∈ Rn, where Sk(x|y) is the super Schur polynomial associated to the
border strip 〈k1, . . . , kr〉 (see, e.g., Ref. [30]). In the latter reference it is also shown that
the RHS of Eq. (4.5) can be alternatively expressed as

∑
k∈PN

Sk(x|y)q
r−1∑
i=1

JE(Ki)
=

∑
k∈PN

Ek(x|y)q
r−1∑
i=1

JE(Ki) N−r∏
i=1

(1− qJE(K′i)) . (4.6)

Combining the last two equations we obtain the identity

ZV (q; x|y) =
∑

k∈PN
Ek(x|y)q

r−1∑
i=1

JE(Ki) N−r∏
i=1

(1− qJE(K′i)), (4.7)

valid for arbitrary x ∈ Rm, y ∈ Rn.
Equations (4.3) and (4.7) immediately yield a strikingly simple description of the

spectrum of the chain (2.4) with interactions (2.5)–(2.7) akin to Eq. (4.1). Indeed,
taking into account Eq. (3.22) we immediately have

Z(q) = ZV (q; q−µ1 , . . . , q−µm|q−µm+1 , . . . , q−µm+n)

=
m+n∑

σ1,...,σN=1
q
E(m|n)(σ)−

m+n∑
α=1

µαNα(σ)
=

m+n∑
σ1,...,σN=1

qE
(m|n)(σ)−

∑
i
µσi . (4.8)

Thus the spectrum of the HS-type chains (2.4)–(2.7) is given by

E(σ) = E(m|n)(σ)−
∑
i

µσi = J
N−1∑
i=1

δ(σi, σi+1)E(i)−
∑
i

µσi , (4.9)

where σ ∈ {1, . . . ,m + n}N . In fact, the vectors δ(σ) ∈ {0, 1}N−1 with components
δk(σ) = δ(σk, σk+1) are essentially the supersymmetric version of the celebrated motifs
introduced by Haldane et al. [5]. Equation (4.9) will be the starting point for the
evaluation of the thermodynamic functions of the chain (2.4) in the next section.

5. Thermodynamics

5.1. Computation of the free energy

The first step in the computation of the thermodynamic functions of the chains (2.4)–
(2.7) is to suitably normalize their Hamiltonians so that the mean energy per site tends
to a finite limit as N →∞. To this end, note that

trP (m|n)
ij = (m+ n)N−2(m− n) , trNα = N(m+ n)N−1 ,

and hence the mean energy of the Hamiltonian H is given by

µ = trH
(m+ n)N =

(
1− m− n

(m+ n)2

)∑
i<j

Jij −
N

m+ n

m+n∑
α=1

µα .

The sum ∑
i<j Jij is easily evaluated by observing that it is half the maximum energy

of the Hamiltonian H0 in the purely fermionic case m = 0, so that by Eq. (4.9) with
µα = 0 for all α we have∑

i<j

Jij = J

2

N−1∑
i=1
E(i) (5.1)
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and therefore

µ = J

2

(
1− m− n

(m+ n)2

)N−1∑
i=1
E(i)− N

m+ n

m+n∑
α=1

µα . (5.2)

Using Eq. (3.28) we immediately obtain

N−1∑
i=1
E(i) =



N

6 (N2 − 1), for the HS chain
N

2 (N − 1), for the PF chain
N

6 (N − 1)(2N + 3c− 4), for the FI chain.

Thus the mean energy per site will tend to a constant in the thermodynamic limit
N →∞ provided that the constant J scales as

J =


K

N2 , for the HS and FI chains
K

N
, for the PF chain,

(5.3)

where K is a real (positive or negative) constant independent of N and we have assumed
that limN→∞ c/N ≡ γ > 0 is finite. With this choice of J we can write

JE(i) = Kε(xi) , xi ≡
i

N
, (5.4)

where ε(x) is given by

ε(x) =


x(1− x), for the HS chain
x, for the PF chain
x(γN + x), for the FI chain

(5.5)

and we have defined γN = (c−1)/N . Since we shall be mainly interested in what follows
in the thermodynamic limit, from now on we shall implicitly assume that γN has been
replaced by its limit γ.

Equation (4.9) for the spectrum of the chain Hamiltonian (2.4)-(2.7), which by
Eq. (5.4) can be written as

E(σ) =
N−1∑
i=1

[
Kδ(σi, σi+1)ε(xi)−

1
2(µσi + µσi+1)

]
− 1

2(µσ1 + µσN ), (5.6)

makes it possible to evaluate in closed form the free energy per site in the thermodynamic
limit by the transfer matrix method. To this end, note that from the latter equation we
have

Z(q) = tr [A(x0)A(x1) · · ·A(xN−1)] , (5.7)

where A(x) is the (m+ n)× (m+ n) matrix with entries

Aαβ(x) = qKε(x)δ(α,β)− 1
2 (µα+µβ) . (5.8)

Let J(x) denote Jordan canonical form of A(x), so that

A(x) = P (x)J(x)P (x)−1
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for a suitable invertible matrix P (x). This matrix is of course not unique, but should
be chosen in such a way that it is a smooth function of the variable x ∈ [0, 1]. Writing,
for simplicity,

Ai ≡ A(xi) , Ji ≡ J(xi) , Pi ≡ P (xi)

we then have

Z(q) = tr [P0J0(P−1
0 P1)J1 · · · (P−1

N−2PN−1)JN−1P
−1
N−1] .

On the other hand, from the smoothness of the matrix P (x) it follows that

Pi+1 ≡ P (xi+1) = P (xi) + (xi+1 − xi)P ′(xi) + o(xi+1 − xi) (5.9)

≡ Pi + 1
N
P ′(xi) + o(N−1) = Pi + O(N−1). (5.10)

Thus

P−1
i Pi+1 = 1I + O(N−1),

and the dominant contribution to the free energy per spin f(T ) ≡ −(T/N) logZ(q) in
the thermodynamic limit is given by

f(T ) ' − T
N

log tr(UJ0 · · · JN−1) , U ≡ lim
N→∞

P−1
N−1P0 = P (1)−1P (0).

We shall assume at this point that the matrix J0 · · · JN−1 is diagonal. In fact, it suffices
that J1 · · · JN−1 be diagonal, since A0 is symmetric and therefore J0 is diagonal. If this
is the case, denoting by λα(x) (α = 1, . . . ,m+ n) the eigenvalues of A(x) and defining

Λα =
N−1∏
i=0

λα(xi)

we have

tr(UJ0 · · · JN−1) =
m+n∑
α=1

UααΛα .

Since all the entries of A(x) are strictly positive, by the Perron–Frobenius theorem this
matrix has a positive and simple eigenvalue, that we shall take as λ1(x), satisfying

λ1(x) > |λα(x)| , ∀α > 1 .

(In particular, it is understood that the matrix P (x) must be chosen so that its first
column is an eigenvector corresponding to the Perron–Frobenius eigenvalue.) This is
readily seen to imply that

lim
N→∞

|Λα|
Λ1

= 0 , ∀α > 1 .

Indeed, we have

log
( |Λα|

Λ1

)
= N · 1

N

N−1∑
i=0

log
( |λα(xi)|
λ1(xi)

)
,

with
1
N

N−1∑
i=0

log
( |λα(xi)|
λ1(xi)

)
−→
N→∞

∫ 1

0
log
( |λα(x)|
λ1(x)

)
dx.
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Since the integrand is everywhere negative, the latter integral is a negative number or
−∞. In either case

lim
N→∞

log
( |Λα|

Λ1

)
= −∞,

which is equivalent to our claim. It follows that when N � 1 we have

tr(UJ0 · · · JN−1) ' U11Λ1 ≡ U11

N−1∏
i=0

λ1(xi),

provided only that U11 6= 0. If this is the case, the free energy per site in the
thermodynamic limit is given by

f(T ) = −T lim
N→∞

1
N

N−1∑
i=0

log λ1(xi) = −T
∫ 1

0
log λ1(x) dx . (5.11)

The latter formula, which is valid for the three types of chains (2.5)–(2.7) (and actually
for any model whose energies are given by an equation of the form (4.9)-(5.4)), is the
main result of the paper. Recall that for the validity of Eq. (5.11) we have made the
following two assumptions, which will be explicitly checked in each of the examples to
which we shall apply it in the next section:

i) The matrix J1 · · · JN−1 is diagonal
ii) U11 6= 0

The last condition can in fact be somewhat simplified, as we shall next explain. Indeed,
note first of all that

Aαβ(0) = vαvβ , vα ≡ q−µα/2.

It follows that the eigenvalues of A(0) are v2 > 0, with corresponding eigenspace
spanned by v ≡ (v1, . . . , vm+n), and 0, whose eigenspace is the orthogonal complement
of Rv1. Hence in this case the Perron–Frobenius eigenvalue is λ1(0) = v2, and
Pα1(0) = κvα ≡ κq−µα/2 for some non-vanishing constant κ. We thus have

U11 =
m+n∑
α=1

[P (1)−1]1αPα1(0) = κ
m+n∑
α=1

[P (1)−1]1αq
− 1

2µα ,

and therefore the condition U11 6= 0 is equivalent to
m+n∑
α=1

[P (1)−1]1αq
− 1

2µα 6= 0. (5.12)

This condition can be alternatively expressed as
m+n∑
α=1

(−1)α+1Mα1(1)q− 1
2µα 6= 0, (5.13)

where Mαβ(x) is the cofactor of Pαβ(x). It is also worth mentioning that Eq. (5.12) is
automatically satisfied for the su(m|n) HS chain (2.4)-(2.5). Indeed, in this case ε(1) = 0
implies that P (1) = P (0), and hence

U11 =
m+n∑
α=1

[P (0)−1]1αPα1(0) = 1 .
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Finally, it is important to note for the sequel that in the genuinely supersymmetric case
mn 6= 0 the matrix A(x) always has a zero eigenvalue, since its first and last rows are
proportional. Indeed, in this case we have

δ(1, α) = 0 , δ(m+ n, α) = 1 , α = 1, . . . ,m+ n,

so that

Am+n,α(x) = qKε(x)− 1
2 (µm+n+µα) = qKε(x)− 1

2 (µm+n−µ1)A1α(x) .

Thus, for fixed m + n, the genuinely supersymmetric models are easier to treat than
their non-supersymmetric counterparts.

We have numerically verified that the N = ∞ exact equation (5.11) for the free
energy per site of the three su(m|n) chains of HS type provides a good approximation
to its finite N counterpart fN(T ) ≡ −(T/N) logZ(q) for N as low as 20. For instance,
in Fig. 1 we have compared f(T ) in Eq. (5.11) with fN(T ) for the su(1|1) PF chain with
N = 10, 15, 20, 25, K > 0 and µ1 ≡ µ = ±K. It is apparent that the error |f(T )−fN(T )|
is quite small even for N ∼ 10, and decreases steadily as N increases. It may at first
seem surprising that at low temperatures this error is noticeably larger for µ = −K than
for µ = K. A detailed explanation of this fact, which is essentially due to the different
behavior of the ground state energy for positive and negative values of µ, is presented
in the Appendix.
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Figure 1. Left: free energy per site of the su(1|1) PF chain with µ1 ≡ µ = K > 0
for N = 10 spins, f10(T ), as a function of T (solid red line) compared to its
thermodynamic limit computed via Eq. (5.11) (dashed gray line). Right: same plot
for µ = −K. Insets: difference f(T ) − fN (T ) for N = 10 (red), 15 (green), 20 (blue)
and 25 (black) spins in the range 0 6 T 6 10. Note: in all plots, fN , f and T are
measured in units of K.

5.2. Symmetries of the free energy

We shall next deduce several symmetry properties of the free energy per site f of
the Hamiltonian (2.4)–(2.7) stemming from Eqs. (2.9) and (2.10), which shall be
frequently applied in the following sections. To this end, in the rest of this section
we shall drop the temperature dependence but otherwise use the more descriptive
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notation f(µ1, . . . , µm+n−1;K) for the free energy per site. Note, in particular, that
the latter notation underscores the fact that we have chosen µm+n = 0 in Eq. (2.4). It
is of interest for the sequel to determine how would a different “normalization” of the
chemical potentials like, e.g., µ1 = 0 affect the free energy per site. To see this, let

Ĥ(µ̂2, . . . , µ̂m+n) = H0 −
m+n∑
α=2

µ̂αNα,

and denote by f̂(µ̂2, . . . , µ̂m+n;K) the corresponding free energy per site (in the
thermodynamic limit). Using the identity

Nm+n = N −
m+n−1∑
α=1

Nα

it is straightforward to deduce that

Ĥ(µ̂2, . . . , µ̂m+n) = H(µ1, . . . , µm+n−1)−Nµ̂m+n,

where H(µ1, . . . , µm+n−1) is given by Eq. (2.4) with µm+n = 0 and the chemical
potentials µα, µ̂α are related by

µα = µ̂α − µ̂m+n (µ̂1 = 0) ⇐⇒ µ̂α = µα − µ1 (µm+n = 0). (5.14)

It then follows that

f̂(µ̂2, . . . , µ̂m+n;K) = f(µ1, . . . , µm+n−1;K)− µ̂m+n = f(µ1, . . . , µm+n−1;K) + µ1, (5.15)

with µα and µ̂α related by Eq. (5.14). Consider next Eq. (2.9), which relates the spectra
of H(m|n) and H(n|m). Dividing by N and letting N →∞ we obtain the relation

f (n|m)(µ1, . . . , µm+n−1;K) = lim
N→∞

E0

N
+ f̂ (m|n)(µm+n−1, . . . , µ1;−K),

where f (n|m) and f̂ (m|n) respectively denote the free energy per site of the
Hamiltonians H(n|m) (with the choice µm+n = 0) and H(m|n) (with µ̂1 = µm+n = 0).
From Eqs. (2.8), (5.1) and (5.4) we have

lim
N→∞

E0

N
= K lim

N→∞

1
N

N−1∑
i=1

ε(xi) = K
∫ 1

0
ε(x)dx ≡ Kε0 ,

where

ε0 =


1
6 , for the HS chain
1
2 , for the PF chain
1
3 + γ

2 , for the FI chain.
(5.16)

Using Eq. (5.15) we finally obtain the remarkable relation

f (n|m)(µ1, . . . , µm+n−1;K) = Kε0−µ1+f (m|n)(−µ1, µm+n−1−µ1, . . . , µ2−µ1;−K).(5.17)

Similarly, from Eq. (2.10) we immediately deduce that

f(. . . , µα, . . . , µα′ , . . . ;K) = f(. . . , µα′ , . . . , µα, . . . ;K) (π(α) = π(α′)), (5.18)
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so that f is invariant under permutations of chemical potentials of the same type
(bosonic or fermionic). Using the latter identity the relation (5.17) can be generalized
as follows:

f (n|m)(µ1, . . . , µm+n−1;K) = Kε0 − µα1

+ f (m|n)(−µα1 , µαm+n−1 − µα1 , . . . , µα2 − µα1 ;−K), (5.19)

where (α1, . . . , αm+n) is a permutation of (1, . . . ,m + n) such that {α1, . . . , αn} =
{1, . . . , n}.

5.3. Thermodynamic functions

Once the free energy per site is known, all the remaining thermodynamic functions can
be easily derived through standard formulas. For instance, the density of su(m|n) spins
of type α (with α = 1, . . . ,m+ n− 1) is given by

nα ≡
〈Nα〉
N
≡ 1
NZ

∑
σ

Nα(σ)e−βE(σ), β ≡ 1/T ,

where 〈Nα〉 is the thermal average of Nα. From Eq. (4.9), which can be alternatively
written as

E(σ) = E(m|n)(σ)−
m+n∑
α′=1

µα′Nα′(σ)

(with E(m|n)(σ) independent of the Nα′ ’s), we immediately obtain

nα = − ∂f

∂µα
. (5.20)

The variance (per site) of the number of spins of type α

να ≡
1
N

(
〈N 2

α 〉 − 〈Nα〉2
)

(5.21)

can be similarly computed, with the result

να = −β−1 ∂
2f

∂µ2
α

. (5.22)

The internal energy, heat capacity (at constant volume) and entropy per site are
respectively given by the usual formulas

u = ∂

∂β
(βf), cV = −β2 ∂u

∂β
, s = β2 ∂f

∂β
= β(u− f) . (5.23)

The symmetry properties of the free energy derived in the previous subsection
yield analogous properties of the thermodynamic functions just reviewed. For instance,
it follows immediately from Eq. (5.18) that the thermodynamic functions u, cV and s are
invariant under permutations of chemical potentials of the same type, while the particle
densities nα (with α = 1, . . . ,m+ n− 1) behave as§

nα(. . . , µα′ , . . . , µα′′ , . . . ;K) = nα(. . . , µα′′ , . . . , µα′ , . . . ;K) (π(α′) = π(α′′))

§ In fact, from the behavior of the densities nα with α = 1, . . . ,m + n − 1 it follows that nm+n is
invariant under permutations of chemical potentials of the same type.
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for α 6= α′, α′′ and

nα(. . . , µα, . . . , µα′ , . . . ;K) = nα′(. . . , µα′ , . . . , µα, . . . ;K) (π(α) = π(α′))

(similar relations hold for να). In view of the last equation, we can restrict ourselves
without loss of generality to studying just one bosonic and one fermionic density.
Likewise, Eq. (5.17) implies that

u(n|m)(µ1, . . . , µm+n−1;K) = Kε0−µ1+u(m|n)(−µ1, µm+n−1−µ1, . . . , µ2−µ1;−K), (5.24)

and similar identities for cV and s. As to the boson densities, differentiating (5.17) with
respect to µ1 we obtain

n
(n|m)
1 (µ1, . . . , µm+n−1;K) = 1−

m+n−1∑
α=1

n(m|n)
α (−µ1, µm+n−1 − µ1, . . . , µ2 − µ1;−K)

= n
(m|n)
m+n (−µ1, µm+n−1 − µ1, . . . , µ2 − µ1;−K) . (5.25)

On the other hand, differentiation of Eq. (5.17) with respect to µα with α = 2, . . . ,m+
n− 1 yields

n(n|m)
α (µ1, . . . , µm+n−1;K) = n

(m|n)
m+n+1−α(−µ1, µm+n−1 − µ1, . . . , µ2 − µ1;−K) . (5.26)

Note that the latter equation is actually valid for α = 1, . . . ,m + n, on account of
Eq. (5.25) and the identity nm+n = 1−∑m+n−1

α=1 nα. Of course, similar relations hold for
the variances per site να. In particular, when m = n Eqs. (5.24) (and its analogues for
cV and s) and (5.26) imply that we can restrict ourselves without loss of generality to
positive values of K.

In Sections 6–8 we shall apply the results of this section to study the
thermodynamics of the su(1|1), su(2|1) (or, equivalently, su(1|2)) and su(2|2)
supersymmetric chains (2.4)–(2.7).

6. The su(1|1) chains

6.1. Free energy per site

In this case the transfer matrix A(x) is simply

A(x) =
(

q−µ q−
µ
2

qKε(x)−µ2 qKε(x)

)
, µ ≡ µ1 ,

with eigenvalues zero and

λ1(x) = qKε(x) + q−µ .

In particular, the matrix A(x) is diagonalizable for all x ∈ [0, 1], and condition i) in the
previous section is thus trivially satisfied. Condition ii) is also easily verified, as we can
simply take

P (x) =
(
q−(Kε(x)+µ

2 ) −q µ2
1 1

)
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and therefore
2∑

α=1
(−1)α+1Mα1(1)q− 1

2µα =
∣∣∣∣∣ q−

µ
2 −q µ2

1 1

∣∣∣∣∣ = q−
µ
2 + q

µ
2 > 0.

Thus the free energy per site is given by Eq. (5.11), which in this case reads

f(T, µ) = −T
∫ 1

0
log(qKε(x) + q−µ)dx = −µ− 1

β

∫ 1

0
log
(
1 + e−β(Kε(x)+µ)

)
dx . (6.1)

For the su(1|1) HS chain (2.4)-(2.5), Eq. (6.1) coincides with the formula derived in
Ref. [34]‖. The derivation of Eq. (6.1) in the latter reference is based on the equivalence
of the su(1|1) HS chain to a translation-invariant free fermion model, which in turn
relies on the symmetry of its dispersion relation ε(x) = x(1 − x) about x = 1/2. This
derivation is therefore not valid for the PF and FI chains, as their dispersion relations
are monotonic. The approach followed in this paper circumvents this problem since, as
remarked in the previous section, Eq. (6.1) is actually valid for the three chains of HS
type (2.5)–(2.7).

As explained in the previous section, since m = n = 1 we can restrict ourselves
in this case to positive values of K. This also follows directly from the alternative
expression for the free energy per site

f = 1
2(Kε0 − µ)− 1

β

∫ 1

0
log

[
2 cosh

(
β
2 (Kε(x) + µ)

)]
dx ,

which implies (temporarily dropping the dependence of f on the temperature) that

f(−µ;−K) = f(µ;K) + µ−Kε0

(cf. Eq. (5.17)).

6.2. Thermodynamic functions

From Eqs. (5.23) and (6.1) we immediately obtain the following explicit formulas for
the main thermodynamic functions of the su(1|1) chains of HS type:

n1 =
∫ 1

0

dx
1 + e−β(Kε(x)+µ) , (6.2)

ν1 = 1
4

∫ 1

0
sech2[β2 (Kε(x) + µ)]dx , (6.3)

u = −µ+
∫ 1

0

Kε(x) + µ

1 + eβ(Kε(x)+µ) dx , (6.4)

cV = β2

4

∫ 1

0
(Kε(x) + µ)2 sech2[β2 (Kε(x) + µ)]dx , (6.5)

s =
∫ 1

0

{
log
[
2 cosh(β2 (Kε(x) + µ))

]
− β

2 (Kε(x) + µ) tanh(β2 (Kε(x) + µ))
}

dx . (6.6)

In Fig. 2 we present a plot of the internal energy, specific heat and entropy per site as a
function of T for the three su(1|1) chains of HS type with µ = 1/2. In fact, we have found

‖ It should be taken into account that in Ref. [34] the alternative convention µ1 = 0, µ2 = −λ was
used.
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Figure 2. Internal energy (left), specific heat (center) and entropy (right) per site
versus the temperature for the HS (blue), PF (red) and FI (with γ = 0, green) su(1|1)
chains with µ/K = 1/2. (The internal energy, specific heat and temperature are
measured in units of K.)

that the latter functions have the same qualitative behavior for a wide range of values
of µ, which is essentially the same as their su(2|0) counterparts analyzed in Ref. [33].
In particular, the specific heat exhibits the so called Schottky peak, characteristic of
two-level systems like the Ising model at zero magnetic field or paramagnetic spin 1/2
anyons [40].

As was the case for the su(2|0) PF chain studied in Ref. [33], it turns out that the
thermodynamic functions of the su(1|1) PF chain (2.4)-(2.6) can be expressed in closed
form in terms of elementary or well-known special functions. To this end, recall first of
all the definition of the dilogarithm function [41,42]

Li2(z) = −
∫ z

0

log(1− t)
t

dt,

where log z denotes the determination of the logarithm with Im log z ∈ (−π, π) and the
integral is taken along any path not intersecting the branch cut on the half-line [1,∞).
Performing the change of variables t = −e−β(Kx+µ) in Eq. (6.1) for the PF chain we
immediately obtain

f(T, µ) = −µ+ 1
Kβ2

[
Li2(−e−βµ)− Li2(−e−β(K+µ))

]
. (6.7)

Differentiation of this expression with respect to µ yields a remarkable closed formula in
terms of elementary functions for the density of bosons of the su(1|1) PF chain, namely

n1 = 1− 1
Kβ

log
( 1 + e−βµ

1 + e−β(K+µ)

)
. (6.8)

The remaining thermodynamic functions admit similar closed-form expressions, namely

ν1 = 1
Kβ

e−βµ(1− e−βK)
(1 + e−βµ)(1 + e−β(K+µ)) , (6.9)

u = µ

Kβ
log(1 + e−βµ)− K + µ

Kβ
log(1 + e−β(K+µ))− f − 2µ , (6.10)

cV = 2µ
K

log(1 + e−βµ)− 2(K + µ)
K

log(1 + e−β(K+µ)) (6.11)

+ βµ2

K(1 + eβµ) −
β(K + µ)2

K(1 + eβ(K+µ)) − 2β(f + µ), (6.12)

s = β(u− f) . (6.13)
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6.3. Critical behavior

We shall next determine the low temperature behavior of the free energy per site (6.1)
for the three HS-types chains (2.5)–(2.7). As is well known, when T → 0 the free energy
per unit length of a (1 + 1)-dimensional CFT (in natural units ~ = kB = 1) behaves as

f(T ) ' f(0)− πcT 2

6v , (6.14)

where c is the central charge and v is the speed of sound [43, 44]. Since the value
of f at small temperatures is determined by the low energy excitations, the validity
of Eq. (6.14) is generally taken as a strong indication of the criticality (conformal
invariance) of a quantum system. In fact, the latter equation is one of the standard
methods for identifying the central charge of the Virasoro algebra of a quantum critical
system.

Let us suppose, to begin with, that the boson chemical potential µ is strictly
positive. In this case Kε(x) + µ > 0 for all x ∈ [0, 1] (since, as remarked above,
we are taking K > 0 throughout this section), so that f(0, µ) = −µ and

|f(T, µ)− f(0, µ)| < T
∫ 1

0
e−β(Kε(x)+µ) < T e−βµ ,

so that the system is not critical. A similar result holds for µ < −Kεmax, where

εmax = max
06x61

ε(x) =


1
4 , for the HS chain
1 for the PF chain
1 + γ, for the FI chain.

Consider next the case −Kεmax < µ < 0. It is now convenient to rewrite Eq. (6.1)
as

f(T, µ) + µ = −ηT
∫ 1/η

0
log
(
1 + e−β(Kε(x)+µ)

)
dx , (6.15)

where

η =

 2 , for the HS chain
1, for the PF and FI chains.

This is certainly possible, since the dispersion relation ε(x) = x(1 − x) is symmetric
about x = 1/2. Let x0 denote the unique root of the equation Kε(x) + µ = 0 in the
interval (0, 1/η), namely

x0 =


1
2 (1−

√
1 + 4µ

K
), for the HS chain

− µ
K
, for the PF chain

1
2 (−γ +

√
γ2 − 4µ

K
), for the FI chain.

(6.16)

Since Kε(x) + µ is negative for 0 6 x < x0 and positive for x0 < x 6 1/η, we have

f(0, µ) + µ = η
(
K
∫ x0

0
ε(x)dx+ µx0

)
(6.17)
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and

f(T, µ)− f(0, µ) = −ηT
∫ 1/η

0
log
(
1 + e−β|Kε(x)+µ|

)
dx.

If we now fix ∆ < min(x0, 1/η − x0) independent of T and set A ≡ [0, x0 −∆] ∪ [x0 +
∆, 1/η], the latter integral can be approximated by

I(T ) ≡
∫ x0+∆

x0−∆
log
(
1 + e−β|Kε(x)+µ|

)
dx

with an error ∫
A

log
(
1 + e−β|Kε(x)+µ|

)
dx <

∫
A

e−β|Kε(x)+µ|dx < e−βκ ,

with κ = min(−µ − ε(x0 −∆), µ + ε(x0 + ∆)) > 0 independent of T . Performing the
change of variables y = β|Kε(x)+µ| in each of the intervals [x0−∆, x0] and [x0, x0 +∆]
we obtain

I(T ) = T

K

( ∫ β|Kε(x0−∆)+µ|

0

log(1 + e−y)
ε′(x) dy +

∫ β|Kε(x0+∆)+µ|

0

log(1 + e−y)
ε′(x) dy

)
. (6.18)

Moreover, since ε′ does not vanish on [x0 −∆, x0 + ∆] we have
1

ε′(x) = 1
ε′(x0) + O(x− x0) = 1

ε′(x0) + O(Ty),

and therefore (taking into account that
∫∞

0 y log(1 + e−y)dy is convergent)

I(T ) = T

Kε′(x0)

( ∫ β|Kε(x0−∆)+µ|

0
+
∫ β|Kε(x0+∆)+µ|

0

)
log(1 + e−y) dy + O(T 2) .

It can be easily checked that the error incurred by replacing the upper limits in each of
the above integrals by +∞ is O(e−κ′β), where again κ′ is a constant independent of the
temperature (see, e.g., Ref. [45]). Hence

I(T ) = 2T
Kε′(x0)

∫ ∞
0

log(1 + e−y) dy + O(T 2) = π2T

6Kε′(x0) + O(T 2) ,

and therefore

f(T, µ) = f(0, µ)− ηπ2T 2

6Kε′(x0) + O(T 3) .

(See Fig. 3 (left) for a graphic comparison of the latter approximation to the exact
expression (6.1) for µ/K = −εmax/4 and T/K 6 0.3.)

It was shown in Ref. [34] that the su(1|1) HS chain (2.4)-(2.5) can be mapped to a
translationally invariant system of free fermions with energy-momentum relation E(p) =
Kε(p/(2π)), where p ∈ (0, 2π) is the momentum (mod 2π). Moreover, at low energies
the spectrum of this chain consists of small excitations with momenta around p0 ≡ 2πx0

(or 2π − p0), so that the speed of sound is given by

v = dE
dp

∣∣∣∣∣
p=2πx0

= Kε′(x0)
2π (for the HS chain) .

Of course, the situation is quite different for the PF and FI chains, since these systems
are not translationally invariant and, in particular, their dispersion relation ε(x) is not
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symmetric around x = 1/2. In this case we must therefore take as energy-momentum
relation the symmetric extension of Kε(p/π) around π, i.e.,

E(p) = Kε(1− |1− p/π|) (for the PF and FI chains) (6.19)

(cf. Fig. 3, right), so that now p = πx and the speed of sound is given by

v = dE
dp

∣∣∣∣∣
p=πx0

= Kε′(x0)
π

(for the PF and FI chains) .

Note that this implies that in the thermodynamic limit (though not for any finite N) the
su(1|1) PF and FI chains are equivalent to a translation-invariant free fermion model
with energy-momentum relation (6.19), since under the change of variables x = p/π

Eq. (6.1) becomes

f(T, µ) = −µ− T

π

∫ π

0
log(1 + e−β(E(p)+µ)) dp.

Thus for all three su(1|1) chains of HS type we can write

v = Kε′(x0)
ηπ

, (6.20)

and we can therefore express the asymptotic equation for the free energy per site in the
unified way

f(T, µ) = f(0, µ)− πT 2

6v + O(T 3) , (6.21)

where

v =


K
2π

√
1 + 4µ

K
, for the HS chain

K
π
, for the PF chain

K
π

√
γ2 − 4µ

K
, for the FI chain.

(6.22)

Comparing with Eq. (6.14) we conclude that for −Kεmax < µ < 0 all of these chains
are critical, with c = 1. In other words, the free energy per site of the three su(1|1)
chains of HS type behaves as that of a CFT with central charge c = 1 (for instance, a
free CFT with one bosonic field).

For µ = 0, a similar analysis shows that the HS, PF and FI (with γ 6= 0) su(1|1)
chains (2.4)-(2.7) are again critical, but the central charge is now c = 1/2 (i.e., that of
a free CFT with one fermionic field). On the other hand, the FI chain with γ = µ = 0
is not critical, since following Ref. [45] it can be shown that in this case

f(T, 0) = −1
2

√
π

K

(
1− 1√

2

)
ζ(3/2)T 3/2 + O(T 2),

where ζ(z) denotes Riemann’s zeta function. Finally, for µ = −Kεmax the PF and FI
chains are critical with c = 1/2 (since the root x0 = 1 of Kε(x) − Kεmax is simple in
both cases), while for the HS chain it was shown in Ref. [34] that

f(T,−K/4) = K

6 −
√
π

K

(
1− 1√

2

)
ζ(3/2)T 3/2 + O(T 2).
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Figure 3. Left: free energy per site versus temperature (both in units of K) for
the su(1|1) HS (blue), PF (red) and FI chains (with γ = 0, green) for µ/K =
−εmax/4. In all three cases, the dashed black line represents the low-temperature
approximation (6.21). Right: energy-momentum function E(p) for the su(1|1) HS
(blue), PF (red) and FI chains, with γ = 0 (green) and γ = 1/2 (light green) in the
latter case.

In particular, the su(1|1) HS chain with µ = −K/4 is not critical. In summary, the
phase diagram of the three su(1|1) chains of HS type is as represented schematically
in Fig. 4. For the su(1|1) HS chain, the above result follows from the general ones in
Ref. [34] for a system of spinless free fermions, as well as the direct calculation in Ref. [7].
On the other hand, our result for the su(1|1) PF chain with µ = 0 is in agreement with
the heuristic analysis of Ref. [29].

-1 0
μ/(Kεmax)

c = 1/2
c = 1

Figure 4. Phase diagram of the su(1|1) chains of HS type with K > 0. The critical
line and points are colored according to the value of the central charge c, as shown in
the accompanying legend. The origin is not critical for the FI chain with γ = 0, while
the point −Kεmax is not critical for the HS chain.

6.4. Boson density at low temperatures

The low temperature behavior of the su(1|1) boson density (6.2) can be analyzed using
the results of Ref. [34], which are valid for an arbitrary dispersion function ε(x). To this
end, let us rewrite Eq. (6.2) as

n1 = η
∫ 1/η

0

dx
1 + e−β(Kε(x)+µ) ,

so that ε(x) is monotonically increasing in the interval [0, 1/η] for all three chains of HS
type. It readily follows from the latter expression that the value of the boson density
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at T = 0 is given by

n1(0, µ) =


0 , µ 6 −Kεmax

1− ηx0 , −Kεmax 6 µ 6 0
1 , µ > 0,

where x0 is given by Eq. (6.16). Thus the su(1|1) boson density presents a second order
(continuous) phase transition at zero temperature (cf. Fig. 5).

-1.5 -1.0 -0.5 0.5
μ/K

0.2
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0.6

0.8

1.0

n1

Figure 5. Zero temperature boson density n1 as a function of µ/K for the HS (blue),
PF (red) and FI (green for γ = 0, light green for γ = 1/4) chains.

The low temperature behavior of the boson density for the su(1|1) PF chain follows
directly from Eq. (6.8). For instance, in the critical region −K < µ < 0 we have

n1 = 1 + µ

K
− sgn(K + 2µ) T

K
e−βmin(|µ|,K+µ) + O

(
T

K
e−κβ

)
,

with κ = min(2|µ|, K + µ) for −K/2 6 µ < 0 and κ = min(|µ|, 2K + 2µ) for −K <

µ 6 −K/2. For the HS and FI chains, an asymptotic approximation for n1 at low
temperatures can be easily derived from the general formulas in Ref. [34]. For instance,
in the critical region −Kεmax < µ < 0 we have

n1 = 1− ηx0 + Kε′′(x0)
6πη2v3 T 2 + O(T 3)

=


√

1 + 4µ
K
− 2π2

3K2

(
1 + 4µ

K

)−3/2
T 2 + O(T 3) , for the HS chain

1 + 1
2

(
γ −

√
γ2 − 4µ

K

)
+ π2

3K2

(
γ2 − 4µ

K

)−3/2
T 2 + O(T 3) , for the FI chain.

The qualitative behavior of the boson density for finite T can also be analyzed with
the help of the closed formula (6.2). To begin with, since

∂n1

∂T
= − η

4T 2

∫ 1/η

0

Kε(x) + µ

cosh2[β2 (Kε(x) + µ)]
dx

and we are taking K > 0, it is clear that for µ 6 −Kεmax (resp. µ > 0) the boson
density increases (resp. decreases) monotonically to its T → ∞ limit 1/2, as expected.
The qualitative behavior of the boson density is more subtle when µ lies inside the critical
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interval (−Kεmax, 0). To help analyze this behavior, in Fig. 6 (left) we have represented
the implicit curve ∂n1

∂T
= 0 for the three su(1|1) chains of HS type and µ/(Kεmax) in the

critical range (−1, 0). From the latter plot it is clear that for the HS and FI chains there
is a range of values of µ for which n1 is not monotonic. More precisely, for the HS chain
the boson density has a unique minimum at finite temperature for −Kεmax < µ < µc
for a certain critical chemical potential µc, since n1 is decreasing to the right of the
curve ∂n1

∂T
= 0 and decreasing to its left (this is clear from the behavior of n1 for

µ > 0 and µ < −Kεmax). Similarly, the boson density of the FI chain presents a
unique maximum at finite T in the range µc < µ < 0, where now the critical value µc
of µ depends on the chain parameter γ. The situation is totally different for the PF
chain, for which n1 is monotonically increasing (resp. decreasing) for −K < µ < −K/2
(resp. −K/2 < µ < 0), since now n1 is constant for µ = −K/2 ≡ µc (cf. Fig. 6, left).
The critical chemical potential µc can be computed in all cases from the condition

lim
T→∞

T 2∂n1

∂T
(T, µc) = −1

4 (Kε0 + µc) = 0 ,

which yields µc = −Kε0. The qualitative behavior of n1 just described is apparent in
Fig. 6 (right), where we have plotted the boson density for the three chains of HS type
for µ = −3Kεmax/4 and µ = −Kεmax/4.
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Figure 6. Left: plot of the implicit curve ∂n1
∂T = 0 for the su(1|1) HS (blue),

PF (red) and FI chains, with γ = 0 (green) and γ = 1 (light green) in the
latter case. The dashed black lines represent the vertical asymptotes µ/(Kεmax) =
−ε0/εmax = −2/3,−5/12,−1/3. Right: boson density for µ/(Kεmax) = −3/4 (solid
lines) and µ/(Kεmax) = −1/4 (dashed lines), with the same color code.

7. The su(2|1) chains

This case is of particular interest, since its dual su(1|2) version with HS interaction (2.5)
can be mapped to the spin 1/2 Kuramoto–Yokoyama t-J model in an external magnetic
field [46] with a suitable choice of the chemical potentials.
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7.1. Free energy per site

The transfer matrix A(x) is now given by

A(x) =


q−µ1 q−

1
2 (µ1+µ2) −q−

µ1
2

qKε(x)− 1
2 (µ1+µ2) q−µ2 q−

µ2
2

qKε(x)−µ1
2 qKε(x)−µ2

2 qKε(x)

 ,
and its eigenvalues are zero and

λ±(x) = a(x)±
√
a(x)2 + q−(µ1+µ2)(qKε(x) − 1) ,

where

a(x) = 1
2
(
q−µ1 + q−µ2 + qKε(x)

)
.

Thus the Perron–Frobenius eigenvalue is λ1(x) = λ+(x). (Note that the term under the
square root is clearly positive, since it is strictly greater than 1

2(q−µ1−q−µ2)2.) Moreover,
the matrix A(x) is again diagonalizable for 0 < x < 1, since for these values of x its
three eigenvalues are simple on account of the inequality qKε(x) 6= 1. Hence condition i)
of the previous section is again satisfied. Moreover, when 0 < x 6 1 the matrix P (x)
for the su(2|1) PF and FI chains can be taken as¶

P (x) =


q

1
2 (µ2−µ1) 0 q

1
2 (µ2−µ1)

1 + q−µ1
λ+(x)(q

Kε(x) − 1) −q
µ2
2 1 + q−µ1

λ−(x)(q
Kε(x) − 1)

qKε(x)+µ2
2 1 qKε(x)+µ2

2

 . (7.1)

Thus Eq. (5.13) in this case reads∣∣∣∣∣∣∣∣∣
q−

µ1
2 0 q

1
2 (µ2−µ1)

q−
µ2
2 −q

µ2
2 1 + q−µ1

λ−(1)(q
Kε(1) − 1)

1 1 qKε(1)+µ2
2

∣∣∣∣∣∣∣∣∣ = q−
µ1
2 +µ2

λ−(1) (1− qKε(1))
(
λ−(1) + q−(µ1+µ2)

)
6= 0.

For the PF and FI chains ε(1) = 1 and ε(1) = 1+γ > 1, respectively, so that the second
factor never vanishes. The last one is positive, since it can be written as ρ −

√
ρ2 − ν

with

ρ = 1
2 (q−µ1 + q−µ2 + 2q−(µ1+µ2) + qKε(1)) > 0,

ν = q−2(µ1+µ2) + q−(µ1+2µ2) + q−(2µ1+µ2) + q−(µ1+µ2) > 0.

Thus condition ii) is also satisfied in this case. Applying Eq. (5.11) we then obtain,
after a slight simplification,

f(T, µ1, µ2) = −1
2(µ1 + µ2)− T

∫ 1

0
log
(
b(x) +

√
b(x)2 + e−Kβε(x) − 1

)
dx, (7.2)

with

b(x) = 1
2 e−β[Kε(x)+ 1

2 (µ1+µ2)] + cosh
(
β
2 (µ1 − µ2)

)
. (7.3)

¶ Equation (7.1) is valid for the HS chain only for 0 < x < 1. However, as shown in the previous
section, condition ii) is always satisfied for this chain.
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Comparing the expressions for the eigenvalue λ1(x) = λ+(x) from the su(1|1) and su(2|1)
cases we conclude that the su(1|1) thermodynamic functions can be formally obtained
from the su(2|1) ones in the limit µ2 → −∞, as expected. The thermodynamic functions
of the su(2|1) chains can be computed without difficulty from Eqs. (7.2)-(7.3) and the
general equations (5.20), (5.22) and (5.23), although the corresponding expressions are
rather cumbersome and shall therefore not be displayed here.

7.2. Critical behavior

With the help of the explicit formula (7.2), we shall next briefly analyze the criticality
properties of the su(2|1) chains of HS type as a function of the chemical potentials
and the interaction strength K. We shall see that these chains exhibit a richer critical
behavior than their su(1|1) counterparts, both in terms of the complexity of the critical
region and the possible values of the central charge.
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Figure 7. Phase diagram of the su(2|1) chains of HS type with K > 0 (left)
and K < 0 (right). The critical regions, lines, and points are colored according
to the central charge c as shown in each plot’s legend. For K > 0, the origin
and the half-lines µ1 = 0 > µ2, µ2 = 0 > µ1, µ1 = µ2 > 0 are not critical
for the FI chain with γ = 0, while the point (−Kεmax,−Kεmax) and the half-
lines µ1 = −Kεmax > µ2, µ2 = −Kεmax > µ1 are not critical for the HS chain.
Similarly, for K < 0 the origin and the half-lines µ1 = 0 > µ2, µ2 = 0 > µ1,
µ1 = µ2 > 0 are not critical for the FI chain with γ = 0, while the points (|K|εmax, 0),
(0, |K|εmax), the segment {µ1 + µ2 = |K|εmax, 0 < µ1 < |K|εmax} and the half-
lines {µ1 = |K|εmax, µ2 < 0}, {µ2 = |K|εmax, µ1 < 0}, 0 < µ1 = µ2 ± |K|εmax are
not critical for the HS chain.

The phase diagram of the su(2|1) chains is presented in Fig. 7, both for positive and
negative values of K. For the sake of conciseness, we shall only present the calculations
for a few cases of interest when K > 0 (the remaining ones can be analyzed in a similar
fashion). To begin with, by Eq. (5.18) we can restrict ourselves to the case µ1 > µ2
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without loss of generality. First of all, it is clear that the open region µ1 > 0, µ1 > µ2

is not critical. Indeed, in this region we have

b(x) '
T→0+

1
2
(
1 + e−β(Kε(x)+µ1)

)
e
β
2 (µ1−µ2) ≡ B(x)e

β
2 (µ1−µ2), (7.4)

from which it easily follows that f(0) = −1
2(µ1 + µ2) − 1

2(µ1 − µ2) = −µ1. Hence
when T → 0+ we have

|f(T )− f(0)| ' ηT
∫ 1/η

0
log
[
B(x) +

√
B2(x) + e−β(µ1−µ2)(e−Kβε(x) − 1)

]
dx

6 ηT
∫ 1/η

0
log[2B(x)] dx 6 ηT

∫ 1/η

0
e−β(Kε(x)+µ1)dx 6 T e−βµ1 ,

since K > 0 by assumption. Similarly, if −Kεmax > µ1 > µ2 we have

b(x) ' 1
2
(
1 + eβ(Kε(x)+µ1)

)
e−

β
2 (2Kε(x)+µ1+µ2) ≡ B̂(x)e−

β
2 (2Kε(x)+µ1+µ2),

so that

f(0) = −1
2 (µ1 + µ2) + η

2

∫ 1/η

0
(2Kε(x) + µ1 + µ2)dx = Kε0

and

|f(T )− f(0)| ' ηT
∫ 1/η

0
log
[
B̂(x) +

√
B̂2(x) + eβ(2Kε(x)+µ1+µ2)(e−Kβε(x) − 1)

]
dx

6 ηT
∫ 1/η

0
log[2B̂(x)] dx 6 ηT

∫ 1/η

0
eβ(Kε(x)+µ1)dx 6 T eβ(Kεmax+µ1).

Thus the triangular region −Kεmax > µ1 > µ2 is also noncritical.
Likewise, it can be shown that the open region µ1 > µ2, −Kεmax < µ1 < 0 is

critical, with central charge c = 1. To this end, let us denote by x0 the unique root of
the equation Kε(x) + µ1 = 0 in the interval (0, 1/η). We then have

f(T ) ' −µ1 − ηT
∫ 1/η

0
log
[
B(x) +

√
B2(x) + e−β(µ1−µ2)(e−Kβε(x) − 1)

]
dx,

where the last term under the square root tends to 0 as T → 0+, and Kε(x) + µ1 is
positive for x0 < x 6 1/η. It follows that

f(0) = −µ1 + η
∫ x0

0
(Kε(x) + µ1) dx = ηK

∫ x0

0
ε(x)dx− µ1(1− ηx0),

and thus

f(T )− f(0) ' −T (I1 + I2) ,

where

I1 = η
∫ x0

0
log
[
B̂(x) +

√
B̂2(x) + eβ(2Kε(x)+µ1+µ2)(e−βKε(x) − 1)

]
dx, (7.5)

I2 = η
∫ 1/η

x0
log
[
B(x) +

√
B2(x) + e−β(µ1−µ2)(e−Kβε(x) − 1)

]
dx. (7.6)

As in Subsection 6.3, the main contribution to both integrals comes from an arbitrarily
small neighborhood of x0, where |Kε(x) + µ1| is small. In such a neighborhood, the
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remaining terms under the square root are negligible, since their exponents are strictly
negative in the whole integration range. We thus have

I1 ' η
∫ x0

0
log
[
2B̂(x)

]
dx, I2 ' η

∫ 1/η

x0
log
[
2B(x)

]
dx .

We now perform in each of this integrals the change of variables y = β|Kε(x) + µ1|.
Taking into account that in a small neighborhood of x0

η

Kε′(x) = η

Kε′(x0) + O(Ty) = 1
πv

+ O(Ty) ,

where the effective speed of sound v is given by Eq. (6.22) with µ = µ1, we easily obtain

I1 '
T

πv

∫ β|µ1|

0
log
(
1 + e−y

)
dy , I2 '

T

πv

∫ β|Kεmax+µ1|

0
log
(
1 + e−y

)
dy

up to a term of order O(T ). Extending both integrals to +∞ (which produces an
exponentially small error in β, as shown in Subsection 6.3) we finally obtain

I1,2 '
T

πv

∫ ∞
0

log
(
1 + e−y

)
dy = πT

12v
and therefore

f(T )− f(0) ' −πT
2

6v .

Comparing with Eq. (6.14) we conclude that the open set µ1 > µ2,−Kεmax < µ1 < 0 is
indeed critical, with central charge c = 1.

The latter results, together with the symmetry of the free energy under exchange
of the bosonic chemical potentials, establish the validity of the phase diagram in Fig. 7
in the “generic” subset µ1 6= µ2 minus the half-lines µ1 = 0 > µ2, µ2 = 0 > µ1,
µ1 = −Kεmax > µ2, µ2 = −Kεmax > µ1. We shall limit ourselves to analyzing the two
points µ1 = µ2 = 0,−Kεmax, which illustrate the general procedure.

First of all, at the origin we have

f(T ) = −ηT
∫ 1/η

0
log
[
1 + 1

2 e−Kβε(x) +
√

2e−Kβε(x) + 1
4 e−2Kβε(x)

]
dx.

Performing again the change of variablesKβε(x) = y and proceeding as above we obtain

f(T ) ' −T
2

πv

∫ ∞
0

log
[
1 + 1

2 e−y +
√

2e−y + 1
4 e−2y

]
dy = −πT

2

4v ,

where now v = Kε′(0)/(ηπ). (Of course, the latter formula is clearly not valid for the
FI chain with γ = 0, as ε′(0) = 0 in this case. In fact, it is straightforward to show that
this chain is not critical when µ1 = µ2 = 0, since f(T )−f(0) ∝ T−3/2.) Comparing with
Eq. (6.14) we conclude that (except for the FI chain with γ = 0) the model is critical in
this case with central charge c = 3/2 (i.e., that of a free CFT with one boson and one
fermion). This is again in agreement with the general result of Ref. [29] for the su(m|n)
PF chain with zero chemical potentials, according to which c = m− 1 + n/2 for m > 1.
In fact, the same is true for the su(1|2) chains with µ1 = µ2 = 0 (excluding again the
FI chain with γ = 0). Indeed, using Eq. (5.19) we readily obtain

f(T )− f(0) = f(T )−Kε0 ' −
T 2

πv

∫ ∞
0

log
[

1
2 + e−y +

√
1
4 + 2e−y

]
dy = −πT

2

6v ,
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so that c = 1 = m− 1 + n/2 also in this case.
Consider, finally, the case µ1 = µ2 = −Kεmax = −Kε(1/η) ≡ µ, for which

f(T ) = −µ− ηT
∫ 1/η

0
log
[
1 + 1

2 e−β(Kε(x)+µ)

+
√

e−β(Kε(x)+µ) + 1
4 e−2β(Kε(x)+µ) + e−Kβε(x)

]
dx,

and hence

f(0) = −µ+ η
∫ 1/η

0
(Kε(x) + µ)dx = Kε0 .

We thus have

f(T )− f(0) = −ηT
∫ 1/η

0
log
[

1
2 + eβ(Kε(x)+µ) +

√
1
4 + eβ(Kε(x)+µ) + eβ(Kε(x)+2µ)

]
dx,

' −ηT
∫ 1/η

0
log
[

1
2 + eβ(Kε(x)+µ) +

√
1
4 + eβ(Kε(x)+µ)

]
dx ,

since µ < 0. The PF and FI chains both satisfy the condition ε′(1) 6= 0. In this case,
performing the usual change of variables β(Kε(x) + µ) = −y and taking into account
the definition (6.20) of the effective speed of sound v we obtain

f(T )− f(0) ' −T
2

πv

∫ ∞
0

log
[

1
2 + e−y +

√
1
4 + e−y

]
dy = −2πT 2

15v .

Thus the su(2|1) PF and FI chains with µ1 = µ2 = −Kεmax are both critical with
central charge c = 4/5, as claimed. Note, in particular, that the latter models
cannot be equivalent at low temperatures to a free CFT with any number of bosons
or fermions, since the central charge of such a theory is necessarily integer or half-
integer. Obviously, the latter conclusions do not hold for the HS chain, since in this
case we have ε′(1/η) = ε(1/2) = 0. In fact, it can be shown without difficulty that this
chain is not critical when µ1 = µ2 = −K/4.

7.3. Zero-temperature densities

From Eqs. (5.20) and (7.2)-(7.3) we obtain the following explicit expressions for the
particle densities of the su(2|1) chains of HS type:

n1(T, µ1, µ2) = 1
2 + η

2

∫ 1/η

0

sinh(βµ−)− 1
2e−β(Kε(x)+µ+)√

b(x)2 + e−Kβε(x) − 1
dx , (7.7)

n2(T, µ1, µ2) = n1(T, µ2, µ1) , (7.8)

n3(T, µ1, µ2) = η

2

∫ 1/η

0

e−β(Kε(x)+µ+)√
b(x)2 + e−Kβε(x) − 1

dx , (7.9)

with

µ± ≡
1
2 (µ1 ± µ2) .

We shall limit ourselves to analyzing the behavior of these densities at zero temperature.
By contrast with the su(2|0) and su(1|1) cases, we shall show that in this case the
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bosonic densities exhibit a first-order (discontinuous) phase transition across the half-
line µ1 = µ2 > −Kεmax for K > 0.

Suppose, to begin with, that K > 0, and consider first the fermionic density n3.
Since this density is clearly symmetric under exchange of the bosonic chemical potentials,
we shall restrict ourselves without loss of generality to the case µ1 > µ2. When µ1 > µ2,
using the low temperature approximation (7.4) we have

n3 ' η
∫ 1/η

0

[
(1 + eβ(Kε(x)+µ1))2 − 4e2β(Kε(x)+µ+)

]−1/2
dx , (7.10)

where we have taken into account that eβ(Kε(x)+2µ+) � e2β(Kε(x)+µ+) as T → 0+ for
0 < x 6 1/η. WhenKε(x)+µ1 > 0, the term e2β(Kε(x)+µ1) dominates over the remaining
ones as T → 0+, so that the integrand tends to zero in this region. On the other hand,
when Kε(x) + µ1 < 0 the integrand clearly tends to 1 as T → 0+. We thus have

n3(0) = η|I(µ1)| ,

where |I(µ)| denotes the length of the (possibly empty) interval

I(µ) = {x ∈ [0, 1/η] : Kε(x) + µ < 0}.

Denoting by x0(µ) the unique root of the equation Kε(x) + µ = 0 in the interval [0, η]
(cf. Eq. (6.16)), we conclude that for K > 0 and µ1 > µ2 the zero temperature fermionic
density is given by

n3(0) =


0, µ1 > 0,
η x0(µ1), −Kεmax 6 µ1 6 0,
1, µ1 < −Kεmax .

Likewise, for K > 0 and µ1 = µ2 ≡ µ we have

n3 = η
∫ 1/η

0

[
1 + 4eβ(Kε(x)+µ) + 4eβ(Kε(x)+2µ)

]−1/2
dx ,

so that again n3(0) = η|I(µ)|. From the previous formulas and the symmetry of n3

under the exchange of µ1 with µ2 we obtain the following expression for n3(0), valid in
the whole (µ1, µ2) plane when K > 0:

n3(0) =


0, max(µ1, µ2) > 0,
ηx0(max(µ1, µ2)), −Kεmax 6 max(µ1, µ2) 6 0,
1, max(µ1, µ2) < −Kεmax .

(7.11)

It is apparent from the latter expression that n3 is continuous, but its gradient is
discontinuous along the segment −Kεmax 6 µ1 = µ2 6 0 and the half-lines µ1 = 0 > µ2,
µ2 = 0 > µ1, µ1 = −Kεmax > µ2, µ2 = −Kεmax > µ1 (cf. Fig. 8, left).

Consider next the density n1 of the first species of bosons, which for µ1 > µ2 can
be expressed as

n1 = 1
2 (1− n3) + η

2

∫ 1/η

0
D(x)−1/2dx , D(x) ≡ b(x)2 + e−Kβε(x) − 1

sinh2(βµ−)
. (7.12)
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Figure 8. Left: fermion density at zero temperature for the su(2|1) HS chain with
K > 0. Right: same plot for the bosonic density n1, with a red line drawn to illustrate
the discontinuity along the half-line µ1 = µ2 > −Kεmax.

At low temperatures we have

D(x) =
(
1 + e−β(Kε(x)+µ1)

)2
+ O(e−2βµ−),

so that

lim
T→0+

∫ 1/η

0
D(x)−1/2dx =

∣∣∣{x ∈ [0, 1/η] : Kε(x) + µ1 > 0}
∣∣∣ = 1

η
− |I(µ1)|,

and thus
n1(0) = 1

2
(
1− n3(0)

)
+ 1

2
(
1− η|I(µ1)|

)
.

Using the previous formula for n3(0) we obtain the following expression for n1(0)
when K > 0 and µ1 > µ2:

n1(0) =


1 , µ1 > 0,
1− η x0(µ1), −Kεmax 6 µ1 6 0,
0, µ1 < −Kεmax .

On the other, when K > 0 and µ2 > µ1 we have

n1 = 1
2 (1− n3)− η

2

∫ 1/η

0
D(x)−1/2dx ,

so that proceeding as before we obtain

n1(0) = 1
2
(
1− n3(0)

)
− 1

2
(
1− η|I(µ2)|

)
= 0 .

Finally, when µ1 = µ2 by Eq. (7.12) we simply have n1(0) = (1 − n3(0))/2. Taking
into account the symmetry of n1 under exchange of µ1 with µ2 we obtain the following
general expression for the latter density (for K > 0):

n1(0) =



0, µ1 < µ2 or −Kεmax > µ1 > µ2,
1
2 , µ1 = µ2 > 0,
1
2(1− ηx0(µ1)), −Kεmax 6 µ1 = µ2 < 0,
1− ηx0(µ1), −Kεmax 6 µ1 6 0, µ1 > µ2,
1, µ1 > 0, µ1 > µ2 .

(7.13)
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Figure 9. Left: fermion density at zero temperature for the su(2|1) HS chain with
K < 0. Right: same plot for the bosonic density n1.

It follows from the previous expression that n1 is discontinuous along the half-line µ1 =
µ2 > −Kεmax, and has a discontinuous gradient along the half-lines µ1 = −Kεmax > µ2

and µ1 = 0 > µ2. Thus in this case the bosonic density n1 (and hence n2) presents
both first- and second-order phase transitions for appropriate values of the chemical
potentials µ1 and µ2. A very similar calculation, that we shall omit for the sake of
conciseness, shows that when K < 0 the fermionic density is given by

n3(0) =



0, µ1 − µ2 > |K|εmax or max(µ1, µ2) > |K|εmax,
1− ηx0(max(µ1, µ2)), 0 6 max(µ1, µ2) 6 |K|εmax, min(µ1, µ2) 6 0,
1− ηx0(µ1 + µ2), µ1 > 0, µ2 > 0, µ1 + µ2 6 |K|εmax,
1, µ1 6 0, µ2 6 0,

while the bosonic density n1(0) reads

n1(0) =

0, µ1 6 0 or µ2 − µ1 > |K|εmax,
ηx0(µ1), 0 6 µ1 6 |K|εmax, µ2 6 0,
η
2

[
x0(µ1 + µ2) + sgn(µ1 − µ2)x0(|µ1 − µ2|)

]
, µ1 > 0, µ2 > 0, µ1 + µ2 6 |K|εmax,

1
2

[
1 + η sgn(µ1 − µ2)x0(|µ1 − µ2|)

]
, |µ1 − µ2| 6 |K|εmax, µ1 + µ2 > |K|εmax,

1, µ1 − µ2 > |K|εmax, µ1 > |K|εmax .
It can be easily checked that both densities (and hence the remaining one n2(0)) are
continuous, although their gradient is discontinuous along several segments and half-
lines (cf. Fig. 9). Thus when K < 0 the chains (2.4)–(2.7) exhibit only second-order
phase transitions at zero temperature.
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8. The su(2|2) chains

The eigenvalues of the su(2|2) transfer matrix

A(x) =


q−µ1 q−

1
2 (µ1+µ2) q−

1
2 (µ1+µ3) q−

µ1
2

qKε(x)− 1
2 (µ1+µ2) q−µ2 q−

1
2 (µ2+µ3) q−

µ2
2

qKε(x)− 1
2 (µ1+µ3) qKε(x)− 1

2 (µ2+µ3) qKε(x)−µ3 q−
µ3
2

qKε(x)−µ1
2 qKε(x)−µ2

2 qKε(x)−µ3
2 qKε(x)


are zero (double) and

λ±(x) = a(x)±
√
a(x)2 + (qKε(x) − 1)(q−(µ1+µ2) − qKε(x)−µ3) ,

where now

a(x) = 1
2
(
q−µ1 + q−µ2 + qKε(x)−µ3 + qKε(x)

)
.

Thus the Perron–Frobenius eigenvalue is again λ1(x) = λ+(x). However, in this case
A(x) is not diagonalizable when x ∈ (0, 1). More precisely, for 0 < x < 1 its Jordan
canonical form can be taken as

J(x) =


λ+(x) 0 0 0

0 λ−(x) δ0,λ−(x) 0
0 0 0 1
0 0 0 0


where δ0.λ−(x) denotes Kronecker’s delta. Indeed, the eigenvalue λ−(x) vanishes if and
only if Kε(x) = µ3 − µ1 − µ2 (i.e., for at most two values of x for the HS chain and
one such value for the PF and FI chains), and when this happens it can be shown that
the geometric multiplicity of the zero eigenvalue is one+. It follows that the product
J1 · · · JN−1 is diagonal in either case provided that N > 4, so that the first condition
is again satisfied. As to the second condition, we shall not present the matrix P (x) in
this case, since it is too unwieldy to display. However, a long but elementary calculation
with the help of the symbolic package MathematicaTM shows that the latter condition
is also satisfied in this case. Thus the free energy per spin is again given by Eq. (5.11),
or equivalently

f(T, µ1, µ2, µ3) = −1
2 (µ1 + µ2)

− T
∫ 1

0
log
[
b(x) +

√
b(x)2 − (1− e−Kβε(x))(1− e−β(Kε(x)+µ1+µ2−µ3))

]
dx, (8.1)

where now

b(x) = e−β[Kε(x)+ 1
2 (µ1+µ2−µ3)] cosh

(
β
2µ3

)
+ cosh

(
β
2 (µ1 − µ2)

)
. (8.2)

Comparing with Eqs. (7.2)-(7.3) we deduce that the thermodynamic functions of the
su(2|1) chain can be formally obtained from those of its su(2|2) counterpart in the
limit µ3 → −∞.
+ The eigenvalue λ−(x) also vanishes at x = 0 and, in the case of the HS chain, at x = 1. The matrix J0
(or J1, in the latter case) is diagonal, although this has no influence on condition i).
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Although the thermodynamic functions can be computed without difficulty from
Eqs. (8.1)-(8.2), we shall not present here the corresponding expressions as they are
excessively long. An important exception occurs when all chemical potentials vanish,
so that the previous expression for the free energy per site simplifies to

f(T, 0, 0, 0) = −2ηT
∫ 1/η

0
log

(
1 + e−K2 βε(x)

)
dx = 2f (2|0)(T, 0) . (8.3)

Thus the energy, specific heat and entropy of the su(2|2) chains of HS type with µα = 0
for all α are twice the corresponding values for their su(2|0) counterparts with µ1 = 0
and the same interaction strength K. Moreover, since the latter chains are all critical
(except for the FI chain with γ = 0), with central charge c = 1, it follows that the
su(2|2) chains with zero chemical potentials are also critical with c = 2 (again with the
exception of the FI chain with γ = 0). This is once more in agreement with the general
formula for the central charge of the su(m|n) PF chain with zero chemical potentials in
Ref. [29].

We shall not exhaustively analyze the zero-temperature behavior of the particle
densities, given the relative complexity of their explicit expressions. However, our
numerical calculations based on the latter expressions clearly indicate that for K > 0
the fermionic densities n3,4 exhibit only second-order phase transitions at T = 0, while
the bosonic ones n1,2 undergo also a first-order phase transition across (a subset of) the
plane µ1 = µ2 (see Fig. 10, top). On the other hand, from Eq. (5.26) we deduce that

nα(µ1, µ2, µ3;K) = n5−α(−µ1, µ3 − µ1, µ2 − µ1;−K).

From this equation and the previous observation it follows that forK < 0 the situation is
reversed, i.e., the fermionic densities feature only second-order phase transitions at zero
temperature while the bosonic ones present also a first-order phase transition across (a
subset of) the plane µ3 = 0. Again, this statement is fully corroborated by our numerical
calculations (cf. Fig. 10, bottom).

9. Conclusions

In this paper we study the thermodynamics and critical behavior of the three families
of su(m|n) supersymmetric spin chains of Haldane–Shastry type with an additional
chemical potential term. Our analysis is based on two main results, namely the
computation in closed form of the partition function for an arbitrary (finite) number
of spins and the derivation of a simple description of the spectrum in terms of
supersymmetric motifs. By means of the transfer matrix method, we obtain an analytic
expression for the free energy per site, and hence the main thermodynamic functions,
in the thermodynamic limit. For the su(1|1), su(2|1) (or su(1|2)) and su(2|2) chains, we
identify the values of the chemical potentials for which the models are critical by studying
the low-temperature behavior of the free energy per site. In particular, we show that
the central charge can take rational values that are not integers or half-integers, thus
excluding the equivalence to a CFT with free bosons and/or fermions. We also analyze



Thermodynamics and criticality of supersymmetric spin chains 38

-��� -��� -��� -��� ��� ��� ���
-���

-���

-���

-���

���

���

���

μ1/(Kεmax)

μ
2/
(K

ε
m
ax
)

n1(0)

0.0891

0.2079

0.3267

0.4455

0.5643

0.6831

0.8019

0.9207

-� -� � � �
-�

-�

�

�

�

μ1/(Kεmax)

μ
3/
(K

ε
m
ax
)

n3(0)

0.019

0.152

0.285

0.418

0.551

0.684

0.817

0.950

Figure 10. Contour and surface plots of the densities n1(0) (left) and n3(0) (right)
for the su(2|2) HS chain with µ3 = 0, K > 0 (top), and µ2 = 0, K < 0 (bottom).

the existence of zero-temperature phase transitions in the spin densities. More precisely,
we show that in the su(1|1) case there are only second-order phase transitions, while
for su(2|1) and su(2|2) first-order phase transitions occur in the bosonic densities when
the interaction strength K is positive. Moreover, for su(1|2) and su(2|2) the fermionic
densities also undergo a first-order phase transition at T = 0 for negative values of K.

The present work suggests several possible lines for future research. In the first
place, the previous results and those of Ref. [33] seem to indicate that first-order
transitions in the spin densities at T = 0 will occur provided that m + n > 2. It
would be of interest to ascertain the validity of this conjecture, for instance by studying
the behavior of these densities in the su(3) case. It would also be of interest to study
the existence of a suitable recurrence relation for the (generalized) partition function
of the models under study for arbitrary values of the chemical potentials µα, similar
to the one derived in Ref. [29] for µα = 0. Such a relation could then be used, by
the method explained in the latter reference, to compute the central charge without
explicit knowledge of the highest eigenvalue of the transfer matrix. Finally, another
open problem that comes to mind is the extension of the above results to spin chains of
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HS type associated with root systems different than AN−1, like BCN , BN or DN . A key
step in this endeavor would be the deduction of a description of the spectrum in terms of
suitable motifs. Note, in this respect, that the partition function of the supersymmetric
Polychronakos–Frahm spin chain of BCN type with µα = 0 is known [37], and the same
is true for the ordinary (non-supersymmetric) PF chain of DN type [50] and the BCN ,
BN and DN Haldane–Shastry chains [47–49]. However, for neither of these models an
expression of the energies in terms of motifs akin to Eq. (4.9) has been found so far.
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Appendix

In this Appendix we provide a justification of the different behavior of the free energy
per site at finite N of the su(1|1) chains for positive and negative values of the chemical
potential µ when K > 0 (see, e.g., Fig. 1). For simplicity, we shall restrict ourselves to
the PF and FI chains (the argument for the HS chain is very similar). To begin with,
for m = n = 1 the value of f at zero temperature for the PF and FI chains is given by

f(0) =


Kε0 , µ < −Kεmax,

K
∫ x0

0
ε(x) dx− µ(1− x0) , −Kεmax 6 µ 6 0,

−µ , µ > 0,
with Kε(x0) + µ = 0 and ε0 defined in Eq. (5.16) (cf. Section 6). On the other hand,
from Eq. (4.9) for m = n = 1 it follows that the ground state of the su(1|1) PF and FI
chains with K > 0 is nondegenerate for µ < −Kεmax and µ > 0, since it is obtained
from the unique values σ = (2, . . . , 2) and σ = (1, . . . , 1), respectively. The ground
state energy EGS is thus given by

EGS =


J
N−1∑
i=1
E(i) = K

N−1∑
i=1

ε(xi) '
N→∞

NKε0 , µ < −Kεmax ,

−Nµ , µ > 0.
For −Kεmax 6 µ 6 0 and large N , the ground state (still nondegenerate, or with very
little degeneration) is instead obtained from a vector σ of the form (2, . . . , 2, 1, . . . , 1, 2)
with Nx 2’s and N(1− x) 1’s (where 0 6 x 6 1). The parameter x is easily computed
by minimizing the energy E(x) corresponding to such a vector σ, given by

E(x) = J
Nx−1∑
i=1
E(i)− µN(1− x) '

N→∞
N
(
K
∫ x

0
ε(s) ds− µ(1− x)

)
.
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Differentiating with respect to x we easily obtain Kε(x) + µ = 0, so that x = x0. Thus
in this case we have

EGS ' J
Nx0−1∑
i=1
E(i)−Nµ(1− x0) = K

Nx0−1∑
i=1

ε(xi)−Nµ(1− x0)

'
N→∞

N
[
K
∫ x0

0
ε(x) dx− µ(1− x0)

]
, −Kεmax 6 µ 6 0 .

In all cases, when T → 0 we have Z ' e−βEGS , and consequently fN(0) = EGS/N . From
the previous expressions for the ground state energy we indeed conclude that

lim
N→∞

fN(0) = f(0) ,

as expected. However, for large though finite N the value of fN(0) is exactly equal
to f(0) when µ > 0, while for µ < 0

f(0)− fN(0) = K
[ ∫ x0

0
ε(x) dx− 1

N

Nx0−1∑
i=1

ε(xi)
]

(where x0 should be interpreted as 1 for µ < −Kεmax) is nonvanishing and O(N−1).
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