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Quasi phase reduction of all-to-all strongly coupled λ − ω oscillators near incoherent states
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The dynamics of an ensemble of N weakly coupled limit-cycle oscillators can be captured by their N phases
using standard phase reduction techniques. However, it is a phenomenological fact that all-to-all strongly coupled
limit-cycle oscillators may behave as “quasiphase oscillators,” evidencing the need of novel reduction strategies.
We introduce, here, quasi phase reduction (QPR), a scheme suited for identical oscillators with polar symmetry
(λ − ω systems). By applying QPR, we achieve a reduction to N + 2 degrees of freedom: N phase oscillators
interacting through one independent complex variable. This “quasi phase model” is asymptotically valid in the
neighborhood of incoherent states, irrespective of the coupling strength. The effectiveness of QPR is illustrated
in a particular case, an ensemble of Stuart-Landau oscillators, obtaining exact stability boundaries of uniform
and nonuniform incoherent states for a variety of couplings. An extension of QPR beyond the neighborhood of
incoherence is also explored. Finally, a general QPR model with N + 2M degrees of freedom is obtained for
coupling through the first M harmonics.
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I. INTRODUCTION

Dynamical reduction is a concept of paramount importance
in nonlinear dynamics [1], which may be used to reduce
the number of degrees of freedom or to transform the evo-
lution equations into a canonical form. Classical reduction
techniques include adiabatic elimination [2], center-manifold
reduction [3], and phase reduction [4–7]. The latter has been
crucial to configure our comprehension of oscillatory media
and coupled self-sustained oscillators.

Large ensembles of coupled self-sustained oscillators are
found in a variety of domains ranging from biology and
technology to the social sciences, see, e.g., Refs. [8–11] and
references therein. It is well established that, if the coupling
among N limit-cycle oscillators is weak, then, phase reduc-
tion can be applied [4] and the dynamics becomes reliably
described by N phase oscillators. This approach yields a
minimal description of emergent phenomena in all-to-all cou-
pled oscillators as, for instance, collective synchronization
[12–14], quasiperiodic partial synchronization (QPS) [15,16],
or nonuniform incoherent states (NUISs) [17].

If the coupling is strong, however, phase reduction is
not applicable as evidenced by several forms of collective
chaos in globally coupled oscillators, which clearly elude
phase reduction [18,19]. However, there are situations in
which the oscillators, despite being strongly coupled, still
resemble phase oscillators as their ordering on top of a
closed curve is preserved in time. Straightforward examples
are states in which the mean field vanishes such that each
oscillator evolves as if it was uncoupled from the others.
For identical oscillators, these states are called incoherent,
or “phase-balanced configurations” if N is finite [20]. The
uniform incoherent state (UIS) —also called “splay state”
for finite N—is the simplest form of incoherence. This was

encountered a long time ago in arrays of Josephson junc-
tions [21,22], populations of model neurons [23–25] (with the
name of “asynchronous state”), and other systems. In con-
trast, other phase-balanced configurations, i.e., NUISs, have
attracted much less attention. We are only aware that coex-
istence of different NUISs is nowadays being investigated in
the context of some engineering applications [26,27]. Apart
from incoherent states, there are more complex phenomena,
such as QPS, modulated QPS, or pure collective chaos in
which identical oscillators behave as “quasiphase oscillators”
on top of an unsteady closed curve [19,28,29]. Recent ad-
vances extending standard phase reduction beyond the first
order do not appear to be practical enough even to cover the
moderate coupling regime [17,30]. Alternative methods based
on phase-amplitude reduction or isostables fall short in the
dimensionality reduction actually achieved [6,31–33].

In this paper, we present quasi phase reduction (QPR), a
dynamical reduction method to capture the dynamics of all-
to-all coupled identical limit-cycle oscillators near incoherent
states. For standard phase reduction, the zeroth order corre-
sponds to tuning the coupling to zero. In our new approach,
the incoherent states play the role of zeroth-order solutions,
and the mean field will be the “small quantity” of our theory.
Moreover, the number of oscillators is irrelevant, it may be
either finite or infinite. The QPR method only covers identical
λ − ω oscillators (two-dimensional systems with polar sym-
metry), but still, it is conceptually appealing since it yields
a significant dimensionality reduction from 2N to N + 2 de-
grees of freedom. The reduced system consists of N phase
oscillators and one complex-valued variable. Thereupon we
can calculate analytically the stability boundary of incoherent
states. Moreover, we explore an extension of QPR, keeping
the N + 2 degrees of freedom, which correctly pinpoints a
saddle QPS at moderate coupling in a specific model. Finally,
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general QPR with N + 2M degrees of freedom is derived for
coupling through the Mth harmonic. Throughout this paper,
the correctness of our approach is confirmed by numerical
simulations with a popular λ − ω system called the Stuart-
Landau oscillator.

The paper is organized as follows. In Sec. II, we introduce
the λ − ω oscillator and the isochrons. Incoherent states in a
particular system of globally coupled λ − ω oscillators are re-
viewed in Sec. III for illustrative purposes. Section IV presents
QPR for a family of coupling functions. The results in Sec. IV
are applied to Stuart-Landau oscillators in Sec. V. Sections VI
and VII extend the results in Sec. IV beyond the lowest order,
and to other coupling functions, respectively. The conclusions
are summarized in Sec. VIII.

II. λ − ω OSCILLATOR

In this paper, we restrict ourselves to oscillators of the
λ − ω type [9,34]. These are two-dimensional systems with
rotational symmetry, which admit the following representa-
tion of the evolution equations in polar coordinates:

ṙ = λ(r)r, (1a)

φ̇ = ω(r). (1b)

The overdot denotes the time derivative as usual. Without
lack of generality, we assume the existence of a stable limit
cycle at r = 1, i.e., λ(1) = 0. Moreover, the natural frequency
of the oscillator is � = ω(1). The attraction rate to the limit

cycle is given by the second Floquet exponent � = dλ
dr |r=1 <

0. Alternative to Eq. (1), we can work with the complex
variable A = reiφ such that the λ − ω oscillator obeys

Ȧ = f (A), (2)

where function f satisfies f (Aeiα ) = eiα f (A). For simplicity,
it is convenient to assume that f can be expressed as a series
of the form

f (A) =
∞∑

n=−∞
fn|A|nA, (3)

where fn are complex coefficients. The existence of an attrac-
tive limit cycle of frequency � implies

∑
n n Re( fn) = � and∑

n fn = i�. Common instances of λ − ω systems contain a
small number of nonzero coefficients fn in Eq. (3). If only
f0 and f2 are nonzero [with Re( f0) = −Re( f2) > 0] we have
the well-known Stuart-Landau oscillator [4], the normal form
of a supercritical Hopf bifurcation. Adding other nonzero
terms we get, for instance, the normal form of the generalized
(Bautin) Hopf bifurcation if f4 �= 0 [3], or the slow-amplitude
dynamics of a parametric feedback oscillator as used in micro-
and nanoelectromechanics if f−1 �= 0 [35].

A. Isochrons

To account for the effect of perturbations, phase reduction
approaches require extending the definition of the phase away
from the limit cycle [4,5,7,9]. To do so, we seek a phase vari-
able θ such that θ̇ = � holds in the whole basin of attraction
not only on the limit cycle. The isochron is defined as the set
of points that converge to the same “asymptotic phase” on

the limit cycle. For λ − ω systems, polar symmetry yields a
relation between the phase θ and the polar coordinates of the
form [9]

θ (r, φ) = φ − χ (r), (4)

with χ (1) = 0. The phase dynamics satisfies θ̇ = φ̇ − dχ

dr ṙ,
and imposing θ̇ = �, we solve the equation for χ (r),

χ (r) =
∫ r

1

ω(r̂) − �

λ(r̂)r̂
d r̂ =

∫ r

1

∑
n

Im( fn)r̂n − �

∑
n

Re( fn)r̂n+1
dr̂. (5)

Depending on the specific oscillator type considered, a closed
analytical solution of χ (r) may or may not exist. However, if
deviations from the limit cycle are small, it is enough to know
the first coefficient of the Taylor expansion of χ around r = 1,

χ (1 + δr) = χ0δr + O(δr2),

where χ0 = dχ

dr |r=1. Differentiating Eq. (5) and evaluating the
limit r → 1 by L’Hôpital’s rule, we get

χ0 =

∑
n

n Im( fn)

∑
n

(n + 1) Re( fn)
=

∑
n

n Im( fn)

�
.

This expression together with
∑

n n Re( fn) = �, obtained be-
fore, can be cast in a compact form

∞∑
n=−∞

n fn = �(1 + iχ0). (6)

B. Stuart-Landau oscillators

In this paper, we asses the validity of our theoretical find-
ings with the Stuart-Landau oscillator, which is a universal
representation (via center-manifold reduction) of systems in
the neighborhood of a Hopf bifurcation. It reads

Ȧ = A − (1 + ic2)|A|2A. (7)

The limit cycle at |A| = 1 has a second Floquet exponent � =
−2. Moreover, the isochrons are logarithmic spirals θ = φ −
c2 ln r, where c2 in Eq. (7) is the so-called nonisochronicity
parameter. Therefore, χ0 = c2 for this system.

III. AN EXAMPLE: THE MEAN-FIELD COMPLEX
GINZBURG-LANDAU EQUATION

Before presenting the QPR method, it is instructive to
recall a well-studied model of globally coupled λ − ω oscilla-
tors in which incoherent states are observed: The mean-field
complex Ginzburg-Landau equation (MF-CGLE). It consists
of N diffusively coupled Stuart-Landau oscillators [18,19],

Ȧ j = Aj − (1 + ic2)|Aj |2Aj + ε(1 + ic1)(A − Aj ), (8)

here, constants ε and c1 determine the strength and the re-
activity of the coupling, respectively; and A = 1

N

∑N
k=1 Ak .

The MF-CGLE is a discretization of the complex Ginzburg-
Landau equation on a fully connected lattice. The last term of
Eq. (8) is a discrete version of the Laplacian on such a lattice.
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FIG. 1. (a) Partial phase diagram of the MF-CGLE (9) for c2 =
3, showing the domain of the UIS and NUISs in the presence of an
infinitesimal noise. In the yellow region, the UIS is stable, whereas
different NUISs are observed inside the other shaded region. The
color shading codes the unevenness of the oscillator density through
the value of |Z2| ≡ Q. In the white region, all incoherent states
are unstable. The asterisk and the green line indicate the parameter
values used in panel (b) and in Fig. 3, respectively. (b) Snapshot of
a random sample of 60 oscillators out of N = 300, after a numerical
simulation of 2 × 106 time units where an independent white Gaus-
sian noise of intensity D = 10−6 along the real and imaginary parts
of the Aj’s has been added to remove the degeneracy among infinitely
many neutrally stable NUISs.

The MF-CGLE is a prototype of system with many degrees
of freedom and a rich repertoire of collective behaviors. In
addition to full synchrony, UIS, NUISs, QPS, and clustering,
the system displays several forms of chaos and has attracted
considerable attention over the years [18,19,28,29,36–39].

For better comparison with the QPR theory, it is convenient
to absorb the local term ε(1 + ic1)Aj . Specifically, setting

κ = ε

1 − ε
,

rescaling time (t → t
1−ε

), and going to a rotating frame with
rescaled amplitude

(Aj → Aj√
1−ε

e−i(εc1+c2 )t ), we get

Ȧ j = (1 + ic2)(1 − |Aj |2)Aj + κ (1 + ic1)A. (9)

At variance with the Stuart-Landau Eq. (7), the linear coef-
ficient has a nonzero imaginary part as we have adopted a
rotating frame such that � = 0.

In a broad region of parameter space, the system (9) settles
into an incoherent state, i.e., with zero mean field A = 0.
This does not specify the state of the system as it holds
for a continuum of oscillator arrangements for N > 3. The
most prominent incoherent state is the UIS, corresponding
to oscillators located over a circle with uniformly distributed
phases. For the remaining incoherent states, there is a lack
of uniformity in the oscillator distribution, and we use the
acronym NUIS for them. Figure 1(a) shows a partial phase
diagram for Eq. (9) for a specific value of c2 = 3. The UIS is
observed in the light (yellow) shaded region at the left of the
black solid line [18,19]. In the other shaded region, a NUIS
settles spontaneously (the UIS is unstable). The asterisk in the
phase diagram indicates the parameter values for the snapshot
of the NUIS in Fig. 1(b). In this figure, it is apparent that the

oscillators are not evenly distributed, whereas A, represented
by a red cross, settles at the origin.

IV. (N + 2)-QUASI PHASE REDUCTION

In this section, we present our QPR method from 2N to
N + 2 degrees of freedom for N coupled λ − ω oscillators.
The reduced system consists of N phases plus two global
degrees of freedom, hence, the name of QPR. The validity
of the method requires a weak perturbation in the oscillators’
motion, what holds in the neighborhood of the incoherent
states, irrespective of the coupling strength.

A. Coupling

We will consider globally coupled identical oscillators,

Ȧ j = f (Aj ) + κg(A), (10)

where κ is a positive coupling constant, and A denotes one or
more mean fields of the set CA, A ⊆ CA. The set CA of mean
fields is as follows:

CA = {|A|nA}n∈Z ∪ {|A|nA∗}n∈Z. (11)

Here, |A|nA = 1
N

∑N
j=1 |Aj |nA j and ∗ stands for complex con-

jugation. Note that only the first harmonic in φ enters in the
interaction. (The case with higher harmonics in the coupling is
discussed in Sec. VII). Moreover, we demand the interaction
function g in Eq. (10) to vanish when the mean fields in
the argument vanish, i.e., g(A = 0) = 0. Among the possible
couplings the most preeminent one is diffusion, g(A) ∝ Ā,
as in the MF-CGLE (9) introduced above [18,19]. Other ex-
amples with nonlinear coupling as g(A) ∝ Ā + b|Ā|2Ā and
g(A) ∝ Ā + b|A|2A have been considered in Refs. [40,41],
respectively. It is also important to note that we do not exclude
symmetry breaking terms in the coupling, such as Re(Ā),
similar to Ref. [42].

B. Preliminaries

The first step of the analysis is to obtain the evolution
equation for the dynamics of the phases. Equation (10) in
polar coordinates becomes

ṙ j = λ(r j )r j + κ Re[g(A)e−iφ j ], (12a)

φ̇ j = ω(r j ) + κ

r j
Im[g(A)e−iφ j ]. (12b)

The phase dynamics is obtained through the change of
variables in (4),

θ̇ j = � + κ

r j
Im{[1 − ir jχ

′(r j )]g(A)e−i[θ j+χ (r j )]}, (13)

here χ ′(r j ) denotes the derivative of χ with respect to r evalu-
ated at r j . In order to reduce the dimensionality of the system,
we seek to remove the dependence on the radii r j . Using
Eq. (12a), we write the evolution equation for an infinitesimal
perturbation δr j off the limit-cycle (r j = 1 + δr j),

˙δr j = �δr j + κ Re[g(A)e−iθ j (1 − iχ0δr j )] + O
(
δr2

j

)
. (14)

It is obvious that the oscillators will be in the proximity of the
limit cycle whenever κ|g(A)|  −�. If this condition holds,
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we can set r j = 1 in (13), obtaining thereby the lowest-order
approximation,

θ̇ j = � + κ Im[(1 − iχ0)g(A)e−iθ j ]. (15)

This equation is not closed, as there are still dependences on
the mean field(s) through g(A).

1. Small κ: Standard first-order phase reduction

To put our paper in context, and for later comparison, we
note that traditional first-order phase reduction assumes κ 
−�, which automatically implies δr j � 0, as noted above.
Therefore, the mean fields in g(A) can be approximated as

|A|nA = rn+1ei[θ+χ (r)] � Z, (16)

where Z ≡ eiθ is the Kuramoto order parameter. Thus, at the
lowest order, the coupling term will only depend on Z . In this
case, we can make the replacement g(A) � ̂(Z ) in Eq. (15)
obtaining

θ̇ j = � + κ Im[(1 − iχ0)̂(Z )e−iθ j ]. (17)

This system of N phase oscillators is the first-order phase
reduction of (10). This reduction works poorly if the coupling
is not small; and, even for asymptotically small coupling,
there are states of (10) not reproducible by Eq. (17), such as
the NUIS [shown in Fig. 1(b)] or QPS. Higher-order terms
proportional to κ2, κ3, etc., can be incorporated into (17)
removing degeneracies and extending the validity of the phase
model with N degrees of freedom [17]. However, if the cou-
pling is strong this procedure is either impractical (as the
convergence rate of the series in powers of κ is not fast enough
[17]) or plain wrong (if the expansion in κ is divergent).

C. Small |g(A)|: Quasi phase reduction of Eq. (10)

Incoherent states, the starting point of our analysis, are
configurations of the oscillators compatible with A = 0. Ac-
cordingly, in an incoherent state, each oscillator evolves as
if it experienced no input from the rest of the population.
An ensemble of identical oscillators may spontaneously settle
into the UIS or NUISs in wide regions of parameter space, see,
e.g., Fig. 1. Moreover, it is phenomenologically observed that
there are also nonincoherent states in which strongly coupled
oscillators behave as quasiphase oscillators [29], preserving
their ordering on top of a closed curve that evolves in time.
This occurs, in particular, in globally coupled Stuart-Landau
oscillators when the UIS loses its stability giving rise to a state
called the QPS which, after secondary instabilities, yields pure
collective chaos [19,29].

With the aim at describing the previous phenomena in a
minimal way, we resort to Eq. (15) since it already suggests
that some kind of perturbative approach in small g(A) is
feasible in analogy to the small κ approximation in standard
phase reduction. As Eq. (15) is not closed due to g(A), we are
tempted to consider g(A) as a new variable. This is not the best
choice as the evolution equation cannot be generally closed
in terms of g(A). Instead, the complex variable B = A is the
right choice since, as shown below, any mean field |A|nA can
be approximately expressed in terms of B and Z . Assuming
the proximity of the oscillators to their fiducial limit cycles,

r = 1 + δr, we expand φ = θ + χ0δr + O(δr2). In this way,
the mean field B is

B = A = reiφ � (1 + δr)ei(θ+iχ0δr) � Z + (1 + iχ0)δr eiθ .

(18)

Therefore, we can express the average δr eiθ in terms of B
and Z ,

δr eiθ � B − Z

(1 + iχ0)
, (19)

and apply this identity to all the other mean fields, obtaining a
linear dependence of |A|nA on B and Z ,

|A|nA = rn+1eiφ

� Z + (n + 1 + iχ0)δr eiθ

� B + n

1 + iχ0
(B − Z ). (20)

With the previous equation, any g(A) can be approximated by
a function of Z and B,

g(A) � (Z, B). (21)

Now, the evolution of B is obtained averaging (10) over the
whole population, Namely,

Ḃ = 1

N

N∑
k=1

Ȧk = f (A) + κ g(A). (22)

The term f (A) is calculated using Eqs. (3), (6), and (20),

f (A) � i�B + �(B − Z ). (23)

Finally, replacing Eqs. (21) and (23) into Eqs. (15) and (22)
we obtain the (N + 2)-QPR of the globally coupled oscillator
system defined by Eq. (10),

θ̇ j = � + κ Im[(1 − iχ0)(Z, B)e−iθ j ] (24a)

Ḃ = i�B + �(B − Z ) + κ(Z, B). (24b)

These equations are the main result of this paper. Some
important remarks follow.

1. Remarks on the (N + 2)-QPR, Eq. (24)

The QPR that transforms (10) into (24) entails a drastic
decrease in the number of degrees of freedom from 2N to
N + 2: one complex variable B plus N phases. In contrast to
standard phase reduction, there is an extra complex variable
B. This is the key ingredient to make the strong coupling
amenable to analysis, whereas preserving the population of
phase oscillators. The theory is consistent since QPR (24)
boils down to the standard phase reduction (17) in the κ → 0
limit. To see this, set � = 0 in (24) by going to a rotating
frame (θ ′

j, B′) = (θ j − �t, Be−i�t ) if necessary, and note that
B(t ) → Z (t ) as κ → 0 in Eq. (24b). In this way, Eq. (24a)
reduces to (17) since (Z, Z ) = ̂(Z ), cf. Eqs. (16) and (20).

Equation (24) can be regarded as a population of phase os-
cillators coupled through a sort of external medium B. Indeed,
a similar model is obtained applying ordinary phase reduction
(assuming weak coupling) to a model of “dynamical quorum
sensing” in which oscillators are coupled through a medium

042203-4



QUASI PHASE REDUCTION OF ALL-TO-ALL STRONGLY … PHYSICAL REVIEW E 102, 042203 (2020)

with intrinsic dynamics [43]. Here, in sharp contrast, there is
no medium in the original system (10), instead, QPR endows
the mean field with a virtual dynamical equation.

An important feature of Eq. (24) [as a consequence of the
approximations (18) and (19)] is that it is a quasi-integrable
model that can be analyzed within the framework of the
Watanabe-Strogatz theory [44,45]. Given a particular initial
condition there are N − 3 constants of motion determining
the fate of the system. This degeneracy of the model is not
present in (10). Still, the system in Eq. (24) is useful, at least,
because of two reasons: (i) We can use it to determine the
stability (boundary) of incoherent states analytically, see the
next sections; and (ii) it is the starting point for higher-order
QPR, see Sec. VI.

2. Stability of incoherent states

Equation (24) is the QPR of model (10), irrespective of the
number N of oscillators. In this section, we take the thermo-
dynamic limit (N → ∞) and analyze the stability boundary
of the incoherent states. The analysis requires defining a den-
sity ρ such that ρ(θ, t )dθ is the fraction of oscillators with
phases between θ and θ + dθ at time t . Additionally, we
impose the normalization condition

∫ 2π

0 ρ(θ, t )dθ = 1. The

Kuramoto order parameter is now Z = ∫ 2π

0 ρ(θ, t )eiθ dθ . The
oscillator density ρ obeys the continuity equation because of
the conservation of the number of oscillators,

∂tρ(θ, t ) + ∂θ [v(θ )ρ(θ, t )] = 0. (25)

This is a nonlinear equation since v = θ̇ depends on ρ.
According to Eq. (20), all |A|nA are linear combinations

of B and Z . Therefore, all states with B = Z = 0 are inco-
herent states since (0, 0) = 0. Obviously, there are infinitely
many phase densities compatible with Z = 0, which rotate
uniformly: ρincoh(θ, t ) = ρincoh(θ − �t ). Notably, it will be
shown below that not all incoherent states become unstable
simultaneously.

The analysis proceeds introducing the Fourier expansion
of ρ,

ρ(θ, t ) = 1

2π

∞∑
m=−∞

ρm(t )e−imθ , (26)

with coefficients ρ0 = 1 and ρ−m = ρ∗
m. Inserting (26) into

(25), and noting that Z = ρ1, we may rewrite our model (24)
in Fourier space,

ρ̇m = im�ρm + mκ

2
[(1 − iχ0)(ρ1, B)ρm−1

− (1 + iχ0)∗(ρ1, B)ρm+1], (27a)

Ḃ = i�B + �(B − ρ1) + κ(ρ1, B). (27b)

In light of these equations, it becomes apparent the exis-
tence of an infinite set of incoherent solutions characterized
by ρ1 = B = 0, and ρm�2 = ρ̂meim�t with arbitrary ρ̂m�2. We
distinguish between the UIS, corresponding to ρ̂m �=0 = 0 and
the remaining set of NUISs.

The linear stability of the (N)UIS is determined consid-
ering the evolution of infinitesimal perturbations of the form

ρm = (ρ̂m + δρm)eim�t and B = δBei�t . The linearization of
Eq. (27) turns out to be as follows:

˙δρm = mκ

2
[(1 − iχ0)e−i�ρ̂m−1 �∇ · �δ

−(1 + iχ0)ei�ρ̂m+1 �∇∗ · �δ], (28a)

˙δB = �(δB − δρ1) + κ �∇ · �δ. (28b)

The right-hand sides of these equations only include per-
turbations in the subspace spanned by ρ1 and B; note the
shorthand notation �δ = (δρ1, δρ

∗
1 , δB, δB∗)T , and the gradi-

ents �∇ defined in this subspace and evaluated at ρ1 = B = 0.
We, then, have an infinite set of vanishing eigenvalues corre-
sponding to eigenvectors with δB = δρ1 = 0 [46].

Hence, according to Eq. (28), the relevant infinitesimal
instabilities develop in the subspace spanned by ρ1 and B.
We are led to analyze the 4 × 4 Jacobian matrix ruling the
dynamics of δB and δρ1. In this Jacobian, only the second
mode ρ̂2 (and ρ̂∗

2 ) is present. Moreover, it can be shown
that the stability of all incoherent states can be classified by
the value of the amplitude |ρ̂2| = Q. This result was already
proved in a particular case [18,47], but QPR shows that it is a
general property of the coupling via the mean fields in CA.

Finally, we want to stress that the stability boundaries of
the (N)UIS obtained from (28) exactly match those of the
original system (10). The reason is that QPR is asymptotically
valid in the limit g(A) → 0, i.e., where the instabilities take
place.

V. QUASI PHASE REDUCTION FOR STUART-LANDAU
OSCILLATORS

In this paper, we address populations of Stuart-Landau
oscillators in detail. Reduction via QPR for other λ − ω os-
cillators is worked out likewise.

A. Linear coupling: mean field complex
Ginzburg-Landau equation

A simple system to illustrate and test our previous findings
is the MF-CGLE presented in Sec. III. Written as in (9) the
values of � = −2 and χ0 = c2 remain those indicated in
Sec. II B, and given that g(A) = (1 + ic1)A, it is straightfor-
ward to obtain (Z, B) = (1 + ic1)B. Hence, the quasi phase
reduced model (24) becomes

θ̇ j = κη|B| sin(ϒ − θ j + α), (29a)

Ḃ = −2(B − Z ) + κ (1 + ic1)B, (29b)

where B = |B|eiϒ, η ≡
√

(1 + c2
2 )(1 + c2

1 ), α ≡ arg[1 +
c1c2 + (c1 − c2)i]. Equation (29) is similar to the
Kuramoto-Sakaguchi model [4], but with the phase oscillators
coupled through B instead of Z . Only in the limit κ → 0, B
approaches Z and the standard first-order phase reduction is
recovered [19].

1. Numerical results: Transient dynamics

To confirm the correctness of our approach, we compare
the transient behavior of the MF-CGLE (9) with its QPR (29).
We track the evolution of the mean field Z = eiθ for both
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(a)

(c)

(e)

(f)

(d)

(b)

FIG. 2. Time series of the real part of Kuramoto order parameter
Z , (b), (d), and (f) for the MF-CGLE (9) and its QPR (29) with
N = 50 depicted by black and orange lines, respectively. In (f), the
modulus of the second Kuramoto-Daido order parameter Q is also
depicted with dark blue and yellow colors for the MF-CGLE and its
QPR, respectively. In panels (b) and (d), the oscillators are initially
distributed randomly over the unit circle as shown in panels (a) and
(c). In (f), the oscillators’ phases θ j are randomly initialized over
the interval [0, π

2 ] ∪ [π, 3π

2 ] as shown in panel (e). Accordingly,
the system is near the NUIS with B = Z � 0 and Q � 0.66. The
parameters chosen are c2 = 3, κ = 0.5, and c1 = −1.1 in (b) where
the UIS is stable and c1 = −1 in (d) and (f) where the UIS is unstable
but the NUISs with Q > 1

3
√

2
� 0.24 are not.

systems near incoherent states, noting that, for the MF-CGLE,
Z is ei(φ−c2 ln r). In Figs. 2(a)–(d), we initialized N = 50 os-
cillators randomly on the unit circle, i.e., near the UIS. The
parameters used in Figs. 2(a), 2(b) and 2(c), 2(d) correspond
to the stable and unstable UISs, respectively. The stability
properties of the UIS (growth rate and oscillation frequency)
are perfectly captured by the QPR Eqs. (29). As expected, in
Fig. 2(d), after a certain time interval, the mean field |Z| grows
too large, and the QPR equations become inaccurate (the MF-
CGLE approaches a saddle quasiperiodic partial synchrony
and eventually decays to a NUIS). In Figs. 2(e) and 2(f), we
show that QPR also gives a good description of the NUISs.
With the same parameters that in Fig. 2(d), the oscillators were
randomly set in the phase interval [0, π

2 ] ∪ [π, 3π
2 ] of the unit

circle. In this way, B = Z � 0 but Q = |ei2θ | � 2/π . We can
see, in Fig. 2(f), that, as time evolves, Z decays to zero, but

Q converges to a nonzero constant value because the UIS is
unstable, but the NUISs with large enough Q values are not.

2. Uniform incoherent state

A closed formula for the stability boundary of the UIS
was already found in Refs. [18,19], so here, we just wish to
evidence how QPR permits to obtain it in a simple way. As
mentioned above, only the evolution of δρ1 and δB must be
taken into account in Eq. (28). As ρ2 = 0 in the UIS, we get

d

dt

(
δρ1

δB

)
=

(
0 κη

2 eiα

2 −2 + κ (1 + ic1)

)(
δρ1

δB

)
,

The characteristic equation is as follows:

P2(λ) = λ2 + (2 − κ − iκc1)λ − κηeiα = 0.

The locus of the (oscillatory) instability is determined impos-
ing λ = i�c. The critical coupling κ0 satisfies

κ0(κ0 − 1)c2
1 − 4(κ0 − 1)c1c2 + κ0c2

2 + (κ0 − 2)2 = 0, (30)

in agreement with Refs. [18,19] (be aware of the different
parametrizations in each paper).

3. Nonuniform incoherent state

The stability boundary of each NUIS is determined through
the evolution of δρ1 and δB. Inserting the specific value of
ρ̂2 = Q � 1 into Eq. (28) we get

δρ̇1 = κη

2
(eiαδB − Qe−iαδB∗), (31a)

δḂ = −2(δB − δρ1) + κ (1 + ic1)δB. (31b)

The associated characteristic polynomial of fourth degree
is as follows:

P4(λ) = λ4 + a1λ
3 + a2λ

2 + a3λ + a4.

Although the zeros cannot be computed, the Routh-Hurwitz
criterion [48] allows to know if there is, at least, one root with
nonnegative real part. For the fourth-order polynomial P4(λ),
all roots have negative real parts if and only if ai > 0 and
a1a2a3 − a2

1a4 − a2
3 > 0. This criterion gives five conditions

for the stability of a particular “Q NUIS,”

κQ(κQ − 1)c2
1 − 4(κQ − 1)c1c2 + κQc2

2 + (κQ − 2)2

+ κ2
Q

(
1 + c2

1

)(
1 + c2

2

)
[
(2 − κQ)2 + c2

1

] Q2 > 0, (32a)

4 − 2κQ(3c1c2) + (
1 + c2

1

)
κ2

Q > 0, (32b)

κQ < 2, (32c)

plus two other inequalities that are always fulfilled. Equa-
tions (32) are precisely the exact Q-dependent NUIS stability
boundaries of (9) [47].

4. The effect of arbitrarily weak noise

A particular (N)UIS may be either unstable or neutrally
stable but not asymptotically stable. Thus, in the MF-CGLE,
a continuum of neutrally stable incoherent states coexist in
regions of parameter space. Hence, the question is the se-
lective effect of arbitrarily weak noise. The color shading in
the phase diagram of Fig. 1(a) has been made from Eqs. (30)
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FIG. 3. Root mean square 〈|Zm|2〉1/2 of the Kuramoto-Daido or-
der parameters Zm = 1

N

∑N
k=1 eimθk (m = 1, . . . , 6) along the green

line in Fig. 1(a) (c2 = 3, κ = 0.5). The black line is Q∗, the the-
oretically predicted value of |Z2|, whereas the horizontal dashed
line at 1/

√
N (roughly) indicates the upper expected value of the

statistical fluctuations for a vanishing Zm in the thermodynamic limit.
The simulations were carried out with N = 300 oscillators, under
independent white Gaussian noises of intensity D = 10−6 along the
real and imaginary parts of the Aj’s.

and (32) under the assumption that the system adopts a phase
density with Q = Q∗, where Q∗ is the smallest Q value among
all neutrally stable NUISs. Indeed, a neutral UIS is attracting
in the presence of weak noise, see [19]. As may be seen in
Fig. 3, in the region where the UIS is unstable, the values of Q
observed match almost perfectly with Q∗, depicted by a black
solid line.

Less intuitive is the behavior of the remaining modes,
Zm (m > 2), that are irrelevant in the stability analysis. Ac-
cording to our Fig. 3, in the UIS region all Zm’s go to zero,
whereas, in the NUIS region, this is only the case for the
odd m index. The even modes grow as Q increases. The last
NUIS to destabilize is Q = 1 and corresponds to two equally
populated point clusters in antiphase, i.e., a bi-delta phase
density (Z2 = Z4 = Z6 = · · · = eiξ ).

B. Nonlinear coupling, g(A) ∝ |A|nA

Recent papers by Schmidt and co-workers [41,49] have
studied chimera states in the MF-CGLE with an extra cou-
pling term proportional to |A|2A. Here, instead of embarking
on the exploration of the high-dimensional parameter space
of that system, each coupling of the form |A|nA (n ∈ Z) is
analyzed separately. Thus, the systems under consideration
are as follows:

Ȧ j = (1 + ic2)(1 − |Aj |2)Aj + κ (1 + iγn)|A|nA, (33)

where the parameter γn is a real constant. In the particular
case n = 0, Eq. (33) becomes the MF-CGLE (9) and γ0 = c1,
accordingly.

Deriving the QPR of (33) requires calculating the function
(Z, B). Using (20) with χ0 = c2, the result is straightforward

n(Z, B) = (1 + iγn)
[
B + n

1 + ic2
(B − Z )

]
, (34)

where the subscript n is used to indicate the dependence on the
specific coupling considered. Finally, inserting n into (24)
we obtain the QPR of (33),

θ̇ j = κηB|B| sin(ϒ − θ j + αB) − κηRR sin(� − θ j + αR),

(35a)

Ḃ = �(B − Z ) + κn(Z, B), (35b)

where we have defined ηBeiαB =
(1−ic2 )(1+iγn )(1+n+ic2 )

1+ic2
, ηReiαR = n(1−ic2 )(1+iγn )

1+ic2
, and Z = R ei� .

Prior to determining the exact stability boundaries of the
(N)UIS from Eq. (35), let us see what the standard first-order
phase reduction predicts. For this, we take the limit κ → 0+,
observing that B collapses into Z , and Eq. (35a) becomes the
Kuramoto-Sakaguchi model in Eq. (17). The crossover from
perfect synchrony to incoherence is given by the Benjamin-
Feir-Newell criterion (1 + c1c2 = 0) in the diffusive case, and,
now, generalizes to

1 + γnc2 = 0, (36)

by virtue of Eq. (16). Therefore, in a phase diagram of sys-
tem (33) including the κ axis, the stability boundaries of the
(N)UIS are expected to emanate from γn = −c−1

2 at κ = 0.
The exact stability boundaries of the UIS and NUISs in

the thermodynamic limit are obtained from (35) as explained
in previous sections. The stability boundary of the UIS is as
follows:

κ0{4(c2 − γn)2 + γn(n + 2)(γn − c2)

[κ0(n + 2) − 4)]} + (1 + γnc2)(κ0(n + 2) − 4)2 = 0. (37)

We can see, in the limit κ → 0, we recover (36). The stability
boundary of a Q-dependent NUIS can be computed as was
performed in the linear coupling case; the interested reader
can find its expression in the Appendix.

In Fig. 4, the stability boundaries lines of the UIS
and NUIS are depicted for five different values of n =
−2,−1, . . . , 2. Taking n = 0 in panel (c) as the reference
case, we see that augmenting n shrinks the region of incoher-
ence. On the contrary, for n = −1, stable NUISs reach larger
κ values, whereas the UIS region remains mostly unchanged.
The boundaries for other negative n values are similar to those
for n = −2 in Fig. 4(a). It is interesting that, for all n values,
there are regions in parameter space where the UIS is unstable
but certain NUISs are not. This means that, at least, for certain
initial conditions, the system may spontaneously converge
to a NUIS. According to our numerical simulations, and as
reasoned above, under weak noise, the nonunstable NUIS
with the smallest Q value is observed. In addition, save for
n = −1, 0, there are also regions for small enough γn where
the UIS is the last incoherent state to become unstable.

We want to remark that all the stability boundaries cal-
culated are the exact results for (33) and their correctness
has been numerically checked using an ensemble of N = 100
oscillators (not shown). To our knowledge, only the case of the
MF-CGLE had been solved so far [18,47]. We believe using
QPR (35) is the most effective method for computing these
boundaries.
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FIG. 4. Partial phase diagrams for populations of Stuart-Landau oscillators with nonisochronicity parameter c2 = 3, coupled through
g(A) = (1 + iγn)|A|nA with n = −2, 1, 0, 1, 2, in panels (a)–(e). The stability boundaries of the UIS and the NUIS with Q = 1 are depicted
by black and red lines, respectively. The UIS is stable in the yellow region. In the shaded region, the intensity of the red color indicates Q∗ (the
smallest Q value among the nonunstable NUISs).

C. Other couplings

In this subsection, we want to make some comments on
the couplings where the (N + 2)-QPR scheme presented so
far can be applied.

It is straightforward to consider a combination of nonlinear
couplings, such as

g(A) =
∞∑

n=−∞
σn|A|nA + μn|A|nA∗,

with complex σn and μn. In this case, (Z, B) is simply a sum
over terms, equal to the bracketed part on the right-hand side
of Eq. (34), and their complex conjugates.

Other nonlinear coupling considered in Refs. [40,50],

g(A) = (ε1 + iε2)A − σ (η1 + iη2)|A|2A

can be treated analogously to other couplings. Nonetheless,
the stability boundaries of the UIS and NUISs in this case are
the same that those for Eq. (9) because the nonlinear term is
negligible if |B| = |A|  1.

Our QPR approach does not exclude systems with nonlin-
ear delayed feedback and/or couplings, such as h(Aj )g(A)
(provided h has polar symmetry h(Ajeiφ ) = eiφh(Aj ) [51] ),
similar to those studied in Ref. [52].

Finally, the case of a scalar coupling, such as g(A) ∝
Re(A) ∝ Ā + Ā∗, is particularly simple, as QPR may be fur-
ther reduced to only one real-valued global variable, i.e.,
N + 1 degrees of freedom in total.

VI. EXPLORING THE NEXT ORDER OF QPR

As it occurs with standard first-order phase reduction, ex-
tending the theory to the next order in the QPR scheme is not
a trivial task. For QPR, a systematic expansion is even more
troublesome as there is not a small coupling parameter but a
small field g(A). This should be the goal of future works, but
we think it may be instructive to pinpoint the difficulties as
well as to examine the workable limit of small coupling.

The first step is to expand Eq. (13) to order δr j . We obtain,
in this way, an augmented version of Eq. (15),

θ̇ j = � + κ Im[(1 − iχ0)g(A)e−iθ j ]

− κ Im
{[

1 + χ2
0 + i(χ0 + χ1)

]
g(A)e−iθ j

}
δr j, (38)

where χ1 = d2χ (r)
dr2 |r=1. The deviation from the reference ra-

dius δr j evolves in time as dictated by Eq. (14), which is

coupled to θ j and to the mean field A. It is not obvious how to
proceed next since A is not static.

A. Small κ

Inspecting Eq. (14), we realize that, if κ is small, then,
δr j (t ) adjusts quickly to the current mean field,

δr j = − κ

�
Re[g(A)e−iθ j ] + O(κ2). (39)

We can insert (39) into (38) to obtain the phase equation up to
O(κ2),

θ̇ j = � + κ Im[(1 − iχ0)ge−iθ j ]

+κ2

�

{
1 + χ2

0

2
Im(g2e−i2θ j ) + (χ0 + χ1)[Re(ge−iθ j )]2

}
.

(40)

With the new term, proportional to κ2, the Watanabe-Strogatz
theory [44] cannot be applied. This is not a surprise since the
original model is not quasi-integrable. To proceed with the
analysis, function g has to be written in terms of the mean
fields Z, B, and maybe others. To the lowest order, we simply
adopt the function (Z, B) obtained above.

1. Mean field complex Ginzburg-Landau equation

Let us see how Eq. (40) applies to the particular case of the
MF-CGLE, Eq. (9). As the unit oscillator is the Stuart-Landau
oscillator, we insert χ0 = −χ1 = c2 into Eq. (40). Moreover,
we keep the evolution for B as before. This results in an
extended QPR model,

θ̇ j = κη|B| sin(ϒ − θ j + α) − κ2η2|B|2
4

sin[2(ϒ − θ j ) + β],

(41a)

Ḃ = −2(B − Z ) + κ (1 + ic1)B, (41b)

here, β = arg(1 − c2
1 + 2ic1).

Next, we test (41) by comparing with numerical simula-
tions. We select constants c1, c2, and κ such that the UIS
and full synchrony are both unstable, but the NUISs with
Q above a certain value have not destabilized. As observed
in Ref, [17], for small and moderate κ values, there is a
heteroclinic connection between the UIS and a saddle QPS.
Recall that, in a QPS state the oscillator density rotates
uniformly (as Z, Z2, etc., accordingly), but each individual
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(a) (c)

(d)(b)

FIG. 5. Time evolution of the MF-CGLE (9) in black, its (N +
2)-QPR (29) in orange, and the extended (N + 2)-QPR (41) in
blue. Panels (a)and (c) show the magnitude of the Kuramoto or-
der parameter R(t ) = |Z (t )| and (b) and (d) the magnitude of the
second Kuramoto-Daido order parameter Q(t ) = |Z2(t )|. Two sets
of parameters are used: (a) and (b) c1 = −0.5, κ = 0.2; (c) and
(d) c1 = −1, κ = 0.5. Parameter c2 = 3 in all panels.

oscillator exhibits quasiperiodic motion. For the numerical
test in Fig. 5, we initialize N = 100 Stuart-Landau oscillators
randomly in the unit circle for the full model (9) as well as the
(N + 2)-QPR (29) and the extended (N + 2)-QPR (41) with
identical initial phases and the B = Z value. Two values of
the coupling are selected κ = 0.2 and 0.5 in Figs. 5(a), 5(b)
and 5(c), 5(d) respectively. The heteroclinic connection with
the saddle QPS is captured by the extended model (41), in
contrast to (29), which only reproduces the exponential insta-
bility of the UIS. For both, the MF-CGLE (9) and Eq. (41),
the final state is a NUIS. Unsurprisingly, the extended QPR
(41) is more accurate for κ = 0.2 than for κ = 0.5 since we
assumed a small κ in its derivation.

For κ values larger than those in Fig. 5 there is not a saddle
QPS but, instead, a stable QPS branching off from the UIS
[28,29]. Remarkably, this also occurs for the extended model
(41) at large enough κ (not shown).

VII. (N + 2M)-QUASI PHASE REDUCTION:
HIGHER-ORDER HARMONICS

In this section, we analyze QPR when we let the oscillators
interact through higher-order harmonics,

Ȧ j = f (Aj ) + κ g(AM ), (42)

where AM are mean fields belonging to the set,

CM
A = {{|A|nAm} ∪ {|A|nA∗m}}

n∈Z
m=1,...,M

. (43)

These mean fields are the first M harmonics in φ. We show
next that, provided the subset of (43) with m = M is not
empty, the QPR of Eq. (42) possesses N + 2M degrees of
freedom. In other words, the largest harmonic of φ in the
coupling determines the number of degrees of freedom of
QPR.

We proceed as in the case M = 1 seeking to close Eq. (15).
For M > 1, we need to introduce new mean fields Bm = Am

with m = 1, . . . , M (B1 ≡ B). Assuming the λ − ω oscillators
are in the neighborhood of the limit cycle at r = 1, we get

Bm = Am

= rmeimφ

� (1 + m δr)eim(θ+iχ0δr)

� Zm + m(1 + iχ0)δr eimθ , (44)

where Zm = eimθ is the mth Kuramoto-Daido order parameter.
We can express δr eimθ in terms of Bm and Zm,

δr eimθ � Bm − Zm

m(1 + iχ0)
. (45)

Applying this equality to the averages |A|nAm with an arbitrary
n value yields

|A|nAm = rn+meimφ

� Zm + (n + m + imχ0)δr eimθ

� Bm + n

m(1 + iχ0)
(Bm − Zm). (46)

This relationship permits to approximate g(AM ) in Eq. (15)
in terms of the M-dimensional complex vectors �Z =
(Z1, Z2, . . . , ZM ) and �B = (B1, B2, . . . , BM ),

g(AM ) � ( �Z, �B). (47)

The evolution of the phases is, therefore, linked to the set of
complex mean fields {Bm}m=1,...,M , whose evolution equations
remain to be determined. Recalling (42), we get

Ḃm = m[Am−1 f (A) + κBm−1g(AM )]. (48)

We see that every Bm is influenced by Bm−1 and by BM (and
possibly other Bm’s) through g, see Eq. (47). The first term on
the right-hand side of Eq. (48) is approximated resorting to
Eqs. (3), (6), and (46). The result depends only on Bm and Zm,

Am−1 f (A) = i�Bm + �

m
(Bm − Zm).

Hence, the (N + 2M)-QPR of Eq. (42) is the (N + 2M)-
dimensional set of ordinary differential equations,

θ̇ j = � + κ Im[(1 − iχ0)( �Z, �B)e−iθ j ], (49a)

Ḃm = �(Bm − Zm) + m[i�Bm + κ( �Z, �B)Bm−1] (49b)

where j = 1, . . . , N, m = 1, . . . , M, and B0 = 1.
As a final note, we mention that it is also possible to deal

with a coupling function g(|A|), where g is any function [53].

VIII. CONCLUSIONS

Phase reduction is a powerful technique that has deeply
shaped our knowledge on the dynamics of oscillator ensem-
bles. Despite its enormous success, the description enabled by
reduced phase models breaks down if the coupling between
the oscillators is not weak. Recently, some works have ex-
tended standard phase reduction [17,30,54] in a perturbative
fashion in the coupling constant. These approaches are, how-
ever, condemned to fail for strong coupling.
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In this paper, we have given a new twist to the concept of
phase reduction, introducing QPR for all-to-all coupled λ − ω

oscillators. This new reduction procedure works indepen-
dently of the coupling strength, by exploiting the smallness of
the collective oscillations near incoherent states. The reduced
model has N + 2M degrees of freedom corresponding to M
dynamical complex variables mediating the interactions of N
phase oscillators, akin to dynamical quorum-sensing models.
We have studied in detail the case of M = 1, corresponding
to interactions via the first harmonic of the angle. Explicit
stability boundaries for uniform and nonuniform incoherent
states have been obtained for ensembles of Stuart-Landau
oscillators.

Finally, an extension of QPR beyond the lowest order
has been obtained for weak coupling. Nonetheless, a gen-
uine well-controlled expansion to the next order remains to
be developed. In parallel with this, some sort of general-
ization from global to more complex coupling topologies or
more general oscillators appears to be possible as well. The
case of heterogeneous oscillators—where traditional phase

reduction works perfectly (for small couplings)—is amenable
to analysis through QPR and will be the aim of future papers.
All in all, we deem QPR as a promising path towards a
comprehensive theory of collective phenomena in oscillator
ensembles.
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APPENDIX: THE NUIS STABILITY BOUNDARY FOR
NONLINEAR COUPLING

The NUIS stability boundary of (33) is determined using
the Routh-Hurwitz criterion and is given by

4
(
γ 2

n + 1
)(

c2
2 + 1

)
κ (Q2 − 1)[κ (n + 2) − 4]2 + [4 − κ (n + 2)]

[− 4γnc2 + (
γ 2

n + 1
)
κ (nQ2 + n + 2) − 4

]
( − 8κ (γnc2+n + 3)

+ (
γ 2

n + 1
)
κ2{−[n2(Q2 − 1) − 4n − 4]} + 16) − 4κ

[
4γnc2 − (

γ 2
n + 1

)
κ
(
nQ2 + n + 2

) + 4
]2

> 0, (A1a)

κ <
4

2 + n
, (A1b)

(
γ 2

n + 1
)
κ2{[n2(1 − Q2) + 4n + 4]} + 16 − 8κ (γnc2 + n + 3) > 0, (A1c)

κ
[(

γ 2
n + 1

)
κ (nQ2 + n + 2) − 4γnc2 − 4

]
> 0. (A1d)
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