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Supervised by: Camilo Palazuelos

September 2024



Abstract

Water consumption plays a vital role in pig farming operations, and accurate prediction of water use
is essential for efficient resource management. This study, part of the European DECIDE project—a
five-year initiative aimed at developing data-driven decision support tools that provide robust and
early signals of disease onset and options for diagnostic confirmation—aims to develop a compre-
hensive model to predict water consumption in pig herds, considering various external variables and
incorporating historical water consumption data from previous batches.

First, the key parameters influencing water consumption in growing pigs, such as feed intake, humidity,
indoor farm temperature, and days of growth, are identified, a task not done before. These factors
are integrated into the predictive model, which was developed using both R and Python programming
language.

To capture the daily seasonal pattern in water consumption, four harmonics were incorporated into
the model. Through experimentation, it was discovered that adding a fourth harmonic improved
prediction accuracy.

Additionally, the model was enhanced by incorporating a parameter that included historical water
consumption data from other batches produced on the same day and at the same growth stage. This
additional feature proved effective in improving the model’s performance.

Beyond creating this model and capturing the upward trend in water consumption of a batch and
daily seasonality, we also determined the daily water consumption patterns on a warm summer day
and a cold winter day, noting that the pattern varies depending on the season.

The developed model was validated using historical data from several batches of pigs on the same farm.
The predicted water consumption values were compared with actual values, and it was observed that
all actual values were within the confidence intervals calculated using the Delta method, validating
the model’s reliability and accuracy.

Thus, this study successfully achieved the objective of modelling water consumption in pig herds. The
findings of this research contribute to the efficient management of water resources in pig farming and
lay the groundwork for future advancements in this field.
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1 Introduction

Pork meat has high demand worldwide and is expected to increase in the coming years [1]. This
projection presents a set of challenges for the pig sector related to developing sustainable breeding
systems while ensuring animal welfare and health. However, over the years, livestock production has
been subjected to increasing industrialisation, leading to much larger and more intensive production
units, with less time available to attend to animals individually.

Sensor-based monitoring and early warning systems can help farmers daily by identifying animals or
groups of animals that need priority attention. Ideally, the system can generate timely alerts so that
farm staff can decide on appropriate interventions and prevent any condition that reduces welfare
or at least mitigate its consequences. Early warning systems for livestock production, also known
as detection models, have been developed over the last twenty years, often aiming to detect various
conditions in individual animals, such as clinical mastitis or lameness in cows. Additionally, modelling
changes in animal behaviour monitored by sensors has been an increasing focus in precision livestock
farming over the past decades. For example, animal behaviour modelling has been used as an early
indicator of diseases or as a decision-making tool for managing groups of growing pigs.

Specifically, some studies conducted by The National Committee for Pig Production, Danish Bacon
and Meat Council [2], [3], and [4] have highlighted the potential of monitoring the water consumption
pattern of growing pigs. Under normal conditions, pigs exhibit a stable diurnal water consumption
pattern, whereas disease outbreaks, changes in feed quality, or ventilation problems often cause de-
viations from this pattern. Therefore, real-time monitoring of water consumption in finishing pigs
seems to be a potential way to improve the management and handling of these animals [3]. Thus, to
detect changes in water consumption behaviour, a well-founded model to predict expected behaviour
is essential.

Although this field has been growing in recent years, very few studies on the water consumption
pattern of pigs have been found in the literature [10] - [12], while their feeding behaviour seems better
described. It is worth mentioning that in most studies, the intake pattern of finishing pigs housed in
groups (batches) is calculated as the average over the entire test period. For example, in Hyun et al.
(1997) [7], the diurnal pattern is estimated as an average of 10 weeks, or in Slader et al. (1998) [8], an
average of 53 days is used. In others, such as Nienaber et al. (2011-2018) [9], the analysis was made
more flexible by dividing the test period into five intervals. For each interval, the intake pattern is
estimated as averages of 7-day periods. Thus, a common pattern is observed in all the aforementioned
studies: the lack of dynamics. The daily pattern is estimated as an average over a number of days.
The disadvantage of this method is that it does not reflect a change in the feeding pattern over the
period.

Water consumption is, of course, a continuous process, but for monitoring purposes, consumption must
be measured in discrete intervals, i.e., the amount of water consumed in a given period. In previous
studies, such as Madsen et al. (2001; 2005) [5] [6], different time intervals are considered, and it is
concluded that hourly sums are the preferable option when modelling observed water consumption.
For water consumption predictions for the previous hour, a model with a dynamic nature is required,
allowing for development in both the diurnal pattern and the overall water consumption period as the
pigs grow, i.e., the time the batch is on the farm. A good example is the auto-regressive moving average
(ARMA) models, where more attention is paid to recent information than past information. Thus,
as time passes, the information loses its value. Monitoring the hourly sums of water consumption of
growing pigs slightly complicates the model’s structure compared to the studies described above, i.e.,
the model must include not only linear or quadratic growth as the pigs grow but also a cyclic effect
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to describe the diurnal pattern. Cyclic or periodic models are widely used in commercial business, for
example, to model annual deviations in oil and gas demand.

The objective of this work can be separated in two. On the one hand, describing the water consumption
pattern (for example, the daily water consumption patterns on a warm summer day and a cold
winter day), as well as other variables that could have an impact on such pattern. And, on the
other hand, making the most of the knowledge obtained in the descriptive part, a learning ARMA
mathematical model was developed for predicting the hourly water consumption pattern in growing
pigs pigs. Additionally, the goal is for the model to eventually become part of a computer-based
monitoring system for the comprehensive management of the farm that provided the data, located in
the province of Lleida.

1.1 Objectives

As it has been mentioned, the general objective of this study is to describe the water consumption
pattern in growing pigs, considering variables that may influence this pattern, and to develop an
ARMA mathematical model to predict hourly water consumption, with the aim of integrating it into
a computer-based monitoring system for the comprehensive management of the farm located in the
province of Lleida.

Moreover, more specific objectives are pretended to be achieved:

• To describe daily water consumption patterns in growing pigs under different weather conditions,
such as warm summer days and cold winter days.

• To identify and analyse additional variables that may influence the water consumption pattern
in order to better understand its behaviour.

• To develop an ARMA mathematical model based on the knowledge obtained from the water
consumption pattern description, allowing for the prediction of hourly water consumption in
growing pigs.
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2 Material and methods

2.1 Farm, herd and data

2.1.1 Fattening Farm

The herd from which the data was obtained comes from a farm owned by a renowned agricultural and
livestock company based in Spain. The company has distinguished itself in the livestock sector through
the implementation of advanced technologies and innovative practices. In particular, the company has
invested in digitisation and automation in production processes. This includes the use of real-time
monitoring and control systems, optimisation of feed and animal welfare, and the implementation of
efficient management systems.

All of this relates to the farm from which the data was obtained. This particular farm combines the
latest technologies with sustainable practices to transform the way pigs are raised and to reduce the
negative impact on the environment. The farm is characterised by the implementation of technologies
such as artificial intelligence, robotics, and data analysis. These tools allow for more precise animal
monitoring, automated control of feeding systems, and decision-making based on real-time information.
They also promote animal welfare and responsible production, considering ethical and quality aspects
in animal breeding and management.

The farm in question is located in the province of Lleida. Structurally, it consisted of three separated
buildings with two units each, as it can be seen in Figure 1. The two units in each building are separated
but connected by a central corridor. Each barn has 56 pens of 9m2 that house approximately 12-14
pigs (around 700 pigs per barn). The farm allowed and all-in/all-out management system, with the
pigs entering at a weight of between 21-25kg and leave the facilities at a final weight of about 110kg.

2.1.2 Herd

Water consumption data was obtained from several groups of finishing pigs (referred to as batches).
When a group or batch of pigs arrives at the farm, the animals are distributed among the pens in the
six units, as shown in Figure 1. However, in this study, data is used per barn (this aspect is explained
further in section 2.1.3). It is important to note that all pigs in a batch enter the farm at the same
time and are of the same age relative to the weaning date. When a barn is emptied by sending the pigs
to the slaughterhouse, it is cleaned and dried for biosecurity reasons before introducing a new batch
of pigs. For our study group, the growth period (20 – 110kg) is approximately 20 weeks, including
one week for cleaning.

2.1.3 Data

In relation to the development of a new monitoring system, the farm has installed water flow meters
and microcomputers in each of the six barns. Data on water consumption from various batches has
been collected, with the following characteristics:

• For each of the six barns, data from five consecutive different batches has been collected. In
total, data from 30 batches has been used, resulting in 30 time series. Taking into account that
there were between 660-730 pigs per batch, the water consumption of more than 2000 pigs was
analysed.
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Figure 1: Representation of the six buildings of the farm under study.

• The study period spans from December 2020 to January 2024.

• Hourly water consumption (in litters) has been recorded, providing 24 data points per day.

• The cleaning weeks between the departure of one batch and the arrival of the next have not
been used in the model construction.

• The number of pigs per batch is similar but not constant. For this reason, the total water
consumption of the barn has been divided by the number of pigs in the respective barn, so that
each time series indicates water consumption per animal per hour of the day.

• The data contains some random noise due to biological variation and reading errors.

Figure 2 shows one of the time series, corresponding to the five batches in barn 1.01. This data has
been used to find a suitable model for hourly water consumption per pig.

2.1.4 Indicator Parameters

In addition to having data on the animals’ water consumption every 24 hours, we also had external
parameter variables that could be associated with water consumption and, therefore, be useful in
predicting this consumption in finishing pigs. In particular, these variables were:

• Feed consumption: There is a direct relationship between feed consumption, which has also
been divided by the number of animals in the pen, and water consumption in pigs. When
pigs consume more feed, they likely need more water to facilitate digestion and stay hydrated.
Insufficient water supply leads to a decrease in feed intake and, consequently, a decrease in
performance and feed efficiency [14].
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Figure 2: Time series of water consumption per animal per hour for the five batches in barn 1.01.

• Exterior and interior temperature of the farm: Temperature significantly impacts the
behaviour and metabolism of pigs. Since pigs sweat very little, they achieve thermoregulation
by seeking opportunities to cool down (e.g., soaking in water or mud) or through panting [15].
In hot conditions, pigs can experience heat stress, which typically leads to a greater need for
water to regulate their body temperature and stay cool. Conversely, in cold conditions, pigs
need more feed to warm up and consequently, more water [16].

• Concentration of NH3 and CO2 in the air: The environment in which pigs are housed is
crucial for their welfare and health. Both the concentration of NH3 (ammonia) and CO2 are
related to air quality in the farm and the degree of ventilation. High levels of these gases can
negatively affect the pigs’ welfare and, consequently, their water consumption. For example,
high concentrations of ammonia could cause tail biting, significantly reducing animal welfare
[17].

• Humidity: Humidity affects water consumption in pigs in several ways. Firstly, high humidity
conditions increase the pigs’ hydration needs due to evaporation and body water loss. Addi-
tionally, heat stress caused by a combination of high humidity and high temperatures reduces
pigs’ water consumption. Water quality can also deteriorate in humid environments, affecting
the appeal and safety of water for pigs. Finally, pigs’ behaviour may change in high humidity
conditions, potentially decreasing their access and motivation to drink water. In summary, it is
important to ensure an adequate supply of clean and fresh water during periods of high humidity
to maintain optimal pig welfare and performance.

Therefore, the aforementioned variables can be associated with pigs’ water consumption and their
welfare, as well as being good predictors of this consumption for the early detection of abnormal water
consumption behaviours that may be related to, for example, respiratory diseases. This association will
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be studied in this work, along with the capacity of these variables to predict the water consumption of
finishing pigs. By modelling water consumption based on these variables, the water needs of pigs can
be understood more realistically, enabling informed decisions to optimise their welfare and productive
performance.

The following section presents a model designed to adapt to the characteristics of the water consump-
tion data.

2.2 Methods

As mentioned in previous sections, water consumption is a crucial aspect of pig production since an
adequate water supply is necessary to maintain their health and well-being. Given the nature of
the data described above (i.e., data collected hourly over a period of time), time series modelling
techniques will be used to describe and predict pigs’ water consumption. In particular, autoregressive
moving average models (ARMA models) will be employed, which are described in more detail below.

However, some basic concepts in classical time series analysis are introduced first, necessary for an
accurate description of ARMA models.

2.2.1 Basic Concepts

A univariate time series is a set of observations {xt}, each recorded at a time t ∈ T0. This work focuses
on the case where T0 is a discrete and finite set, e.g., T0 = {1, · · · , T}. Setting aside more theoretical
details, it is understood that, for a fixed time t, the observation xt is a realisation of a random variable
Xt and that the set of observations {xt}t∈T0 is part of a realisation of a stochastic process {Xt}t∈T ,
T0 ⊆ T . In practice, however, the term time series [18] is used to refer to both the stochastic process
and the observations described in Section 2.1.3.

Weakly Stationary Processes and the Autocorrelation Function

Let {Xt}t∈T be a time series with E
[
X2

t

]
<∞. Then, this time series is weakly stationary if: (i.) the

mean function of the series, µX(t) = E [Xt], is independent of t, ∀ t ∈ Z, and (ii.) the autocovariance
function (ACFV) of the series, γX(h) = Cov [Xt, Xt+h] = E [(Xt − µX(t))(Xt+h − µX(t))], is indepen-
dent of t, ∀ t ∈ Z and of each lag h ∈ Z. Henceforth, when stationarity is mentioned, it will always be
in the weak sense unless otherwise specified.

Let {Xt}t∈T be a stationary time series. Its ACFV with lag h ∈ Z satisfies: (i.) γX(0) ≥ 0, that is,
γX(0) = V [Xt], (ii.) |γX(h)| ≤ γX(0) for all h ∈ Z [19] and, (iii.) γX(−h) = γX(h) for all h ∈ Z.

The autocorrelation function (ACF) of a stationary time series {Xt}t∈T is defined as:

ρX(h) = Cor [Xt, Xt+h] =
Cov [Xt, Xt+h]

V [Xt]
=
γX(h)

γX(0)
, ∀ t, h ∈ Z,

with ρX(h) ∈ (−1, 1), ∀h ∈ Z.

In practice, the functions µX(t), γX(h), and ρX(h), ∀t, h ∈ Z are estimated using the sample mean,
sample autocovariance function, and sample autocorrelation function of {xt}t∈T0 .
That is, if we observe a time series {xt}t∈T0 , T0 = {1, · · · , T} as a realization of a part of a stationary
process {Xt}t∈T , T ∈ Z, the mean, autocovariance, and autocorrelation functions of the stationary
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process are estimated such that:

µ̂X(t) = µ̂X =
1

T

T∑
i=1

xi, γ̂X(h) =
1

T

T−h∑
i=1

(xt+h − µ̂X)(xt − µ̂X), and ρ̂X(h) =
γ̂X(h)

γ̂X(0)
.

Note that γ̂X(0) = V̂(Xt). For more details, see [20].

White Noise Processes

A stationary process {εt}t∈T is a white noise process, {εt}t∈T ∼WN(0, σ2), if: (i.) E [εt] = 0, ∀t and
(ii.) E [εtεs] = σ2 if s = t or E [εtεs] = 0 if s ̸= t for s, t ∈ T . Given the previous points (i.)-(ii.), the
process {εt}t∈T is clearly stationary since µε(t) = E [εt] is independent of t,∀t, γε(h) only depends on
the lag h ∈ Z, and E

[
ε2t
]
= V [εt] = σ2 <∞.

Moreover, if εt and εs are independent for all t ̸= s, the process {εt}t∈T is an independent white noise
process (i.e., {εt}t∈T ∼ IWN(0, σ2)). Finally, if {εt}t∈T are independent and identically distributed
random variables following a Normal(0, σ2) distribution (i.e., {εt}t∈T ∼ GWN(0, σ2)), the process is
clearly white noise and independent white noise. For more details on these processes, see [20].

The Partial Autocorrelation Function

The partial autocorrelation function (PACF), αX(h), h ∈ Z, of a stationary process {Xt}t∈T is defined
as the correlation between Xt and Xt+h adjusting for the intermediate variables Xt+1, · · · , Xt+h−1 for
h ≥ 2. Formally:

αX(h) = Cor(Xt+h − Ê(Xt+h|Xt+1, · · · , Xt+h−1),

Xt − Ê(Xt|Xt+1, · · · , Xt+h−1)),

where Ê(Xt+h|Xt+1, · · · , Xt+h−1) and Ê(Xt|Xt+1, · · · , Xt+h−1) are the predictions of Xt+h and Xt

respectively. More details about these predictions are provided below. See also [20]. Note that
αX(0) = 1 and αX(1) = ρX(1).

2.2.2 ARMA Models

ARMA(p,q) models (where p is the order of the autoregressive part and q of the moving average part)
are widely used in the analysis of univariate and stationary time series. These models allow, among
other things, to capture the dynamic relationships and dependency structure of a time series based
on past observations and past error terms. See, for example, [21].
Formally, an ARMA(p,q) process satisfies the following equation:

Xt = c+ φ1Xt−1 + · · ·+ φpXt−p + ϵt + ϑ1ϵt−1 + · · ·+ ϑqϵt−q, (1)

where {εt}t∈T ∼WN(0, σ2), t ∈ T , φp ̸= 0, ϑq ̸= 0 and c, φ1, · · · , ϑq are parameters.

In ARMA processes, stationarity and causality depend only on the autoregressive part of the process.
In fact, the process will be stationary and causal if it can be written as an infinite moving average
process (i.e., an MA(∞)). An MA(∞) process is defined by the expression:

Xt =

∞∑
j=0

ψtεt−j = ψ(B)εt,

where ψ0 = 1 and ψ(B) =
∑∞

j=0 ψjB
j , BXt = Xt−1 (backshift operator). This process is well-defined

(almost surely) if
∑∞

j=0 |ψj | < ∞. Additionally, it is a causal process since Xt depends only on the
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past and not the future.
On the other hand, we can also discuss the invertibility property of the process, which in this case,
depends only on the moving average part. An ARMA(p,q) process is invertible if it can be written as
an AR(∞) process. That is, if the process {εt}t∈T can be written as a linear combination of the time
series {Xt}t∈T . For more information on MA(∞) and AR(∞) processes, see [22].

For a stationary and causal ARMA(p,q) process, the mean and covariance functions are defined by
the following expressions:

• E (Xt) = µX(t) = µX = c1−
p∑

j=1

φj

 ,

• γX(h) =

{∑p
j=1 φjγY (h− j) + σ2

∑q
k=h ϑkψk−h, 0 ≤ h ≤ q,∑p

j=1 φjγY (h− j), h ≥ q + 1.
,

where ψ are the coefficients of the MA(∞) representation of the ARMA(p,q) process.

Prediction of ARMA(p,q) Processes

There are several different ways to express the predictions of these models. Thus, assuming that xt is
a causal and invertible ARMA(p,q) process, φ(B)xt = ϑ(B)εt, where εt ∼ i.i.d N(0, σ2ω). In the case
of a nonzero mean, E(xt) = µx, we simply substitute xt by xt − µx in the model. First, we consider
two types of predictions. We write xTT+m to indicate the minimum mean squared error predictor of
xT+m based on the data {x1, . . . , xn}, that is:

xnn+m = E(xn+m|xn, . . . , x1),

For ARMA models, it is easier to compute the prediction of xn+m assuming we have the complete
history of the process {xn, xn−1, . . . , x1, x0, x−1, . . . }. We will denote the estimation of xn+m based
on the infinite past as:

x̂n+m = E(xn+m|xn, xn−1, . . . , x1, x0, x−1, . . . ).

In general, xnn+m and x̂n+m are not the same, but the idea here is that for large samples, x̂n+m will
provide a good approximation to xnn+m. Now, if we write xnn+m in its causal and invertible forms:

xn+m =

∞∑
j=0

ψjωn+m−j , ψ0 = 1 (2)

ωn+m =

∞∑
j=0

πjωn+m−j , π0 = 1 (3)

Then, taking the conditional expectations of (2), we have

x̂n+m =

∞∑
j=0

ψjω̂n+m−j =

∞∑
j=m

ψjωn+m−j (4)
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because, due to causality and invertibility,

ω̂t = E(ωt|xn, xn−1, . . . , x1, x0, x−1, . . . ) =

{
0, t > n

ωt, t ≤ n
(5)

Similarly, taking the conditional expectations of (3), we have

x̂n+m = −
m−1∑
j=1

πj x̂n+m−j −
∞∑

j=m

πjxn+m−j (6)

where we have used that E(xt|xn, xn−1, . . . , x1, x0, x−1, . . . ) = xt for t ≤ n.

The prediction is then achieved recursively using (6), starting with the one step ahead prediction,
m = 1, and then continuing for m = 2, 3, . . . . With (4), we can write

xn+m − x̂n+m =
m−1∑
j=0

ψjωn+m−j (7)

so that the mean squared prediction error can be written as

Pn
n+m = E(xn+m − x̂n+m)2 = σ2ω

m−1∑
j=0

ψ2
j (8)

We also note that for a fixed sample size n, the prediction errors are correlated. That is, for k ≥ 1,

E{(xn+m − x̂n+m)(xn+m+k − x̂n+m+k)} = σ2ω

m−1∑
j=0

ψjψj+k (9)

Maximum Likelihood and Least Squares Estimation

For general ARMA models, it is difficult to write the likelihood as an explicit function of the param-
eters. Instead, it is advantageous to express the likelihood in terms of innovations or one-step-ahead
prediction errors, xt − xt−1

t .

For a normal ARMA(p,q) model, let β = (µ, φ1, . . . , φp, ϑ1, . . . , ϑq)
′ be the (p + q + 1)-dimensional

vector of model parameters. The likelihood can be written as

L(β, σ2ω) =
n∏

t=1

f(xt|xt−1, . . . , x1)

The conditional distribution of xt given xt−1, . . . , x1 is Gaussian with mean xt−1 and variance Pt−1.
Recall that Pt−1 = γ(0)

∏t−1
j=1(1− ϕ2jj).

For ARMA models, γ(0) = σ2ω
∑∞

j=0 φ
2
j , and in this case we can write

P t−1
t = σ2ω

{ ∞∑
j=0

φ2
j

t−1∏
j=1

(1− ϕ2jj)

}
= σ2ωrt
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where rt is the term inside the braces. Note that the terms rt are functions of the regression parameters
only and can be computed recursively as rt+1 = (1 − ϕ2tt)rt with the initial condition r1 =

∑∞
j=0 φ

2
j .

The likelihood of the data can now be written as

L(β, σ2ω) = (2πσ2ω)
−n/2[r1(β)r2(β) · · · rn(β)]−1/2 exp

[
−S(β)

2σ2ω

]
(10)

where

S(β) =
n∑

t=1

(xt − xt−1
t (β))2

rt(β)
(11)

Both xt−1 and rt are functions that depend only on β, as seen in expressions (10) and (11). Given
values of β and σ2ω, maximum likelihood estimation would proceed by maximizing (10) with respect
to β and σ2ω.

Delta Method

If η = g(θ) is a one-to-one transformation of θ, then the asymptotic distribution of its MLE η̂ = ĝ(θ)
is given by

η̂ ∼ N(η, g′(θ)2(F ∗(θ))−1)

if g(θ) is continuously differentiable with g′(θ) ̸= 0.

For a θ d-dimensional and the function g = (g1, · · · , gr), where r ≤ d, the formulation is

η̂ ∼ N(η,G′G(F ∗(θ))−1)

where the ij-th entry of G is equal to ∂gi(θ)
∂θj

.

2.2.3 Model Description

An ARMA(p,q) model will be used to model the water consumption of growing pigs, as it provides
several advantages. Here are some reasons why these models are useful in this context:

• Capturing patterns and trends: ARMA(p,q) models can identify patterns and trends in
water consumption data over time. This can help understand how water consumption varies at
different times and whether there are seasonal patterns or long-term trends.

• Predicting future values: These models allow for forecasting future water consumption.
Based on past observations and past error terms, these models can estimate how water con-
sumption will evolve in the coming periods. This is particularly useful for resource planning and
decision-making in pig production.

• Identifying influential factors: By incorporating regressors or other variables into ARMA(p,q)
models, it is possible to account for other factors that may influence pig water consumption. For
example, variables such as outside temperature, feed consumption, or the interior temperature
of the barn can be included to assess their impact on water consumption. This provides an
opportunity to better understand the relationships and factors affecting water consumption and
optimize production practices.
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• Evaluating policies and strategies: Using ARMA(p,q) models to model the water consump-
tion of growing pigs can also serve as a tool to evaluate different management policies and
strategies. Hypothetical scenarios can be simulated to analyze how they would affect water con-
sumption and pig welfare. This provides valuable information for decision-making in production
and the implementation of more efficient and sustainable practices.

ARMA(p,q) Models with Parameters

ARMA(p,q) models that include regressor parameters are known as ARMAX(p,q) models. Adding
regressors is useful for several reasons. Firstly, it improves the model’s fit to the data by considering
the influence of other variables that might be related to the time series of interest. This allows for
better capturing of the relationships between variables and obtaining a more accurate model.

Additionally, it is possible to control or account for important factors that may affect the time series.
These external factors can introduce noise or bias into the analysis, and by including them in the
model, their impact is reduced, leading to more reliable results.

Another advantage of adding regressors is the ability to explore causal effects and cause-and-effect
relationships between variables. This allows for analyzing how changes in indicator variables translate
into changes in the target time series, which helps to better understand the underlying mechanisms
and interactions between variables.

Moreover, considering these external variables in an ARMA(p,q) model improves the accuracy of
predictions. These additional variables allow for better capturing of fluctuations and trends present
in the data, resulting in more accurate and reliable forecasts.

Finally, including regressors facilitates optimization and informed decision-making. If the regressor
variables are relevant to the study context, they can be used to predict trends and make decisions
based on the model’s results.

Thus, including them will improve data fit, control for confounding factors, explore causal effects, en-
hance prediction accuracy, and facilitate informed decision-making. These advantages make ARMA(p,q)
models with regressor variables a valuable tool in analyzing time series with multiple external variables
available.

An ARMAX(p,q) model with parameters is thus defined as follows:

log(Xt) =c+ ϕ1 log(Xt−1) + ϕ2 log(Xt−2) + . . .+ ϕp log(Xt−p)

+ θ1εt−1 + θ2εt−2 + . . .+ θqεt−q

+ β1Yt−1 + β2Yt−2 + . . .+ βkYt−k + εt

where Xt is the value of the time series at time t, c is a constant, ϕ1, ϕ2, . . . , ϕp are the autoregressive
coefficients, εt is the error term at time t, θ1, θ2, . . . , θq are the coefficients of the past error terms,
Yt−1, Yt−2, . . . , Yt−k are the values of the regressor variables at previous times, and β1, β2, . . . , βk are
the coefficients of the regressor variables.

Cyclic Components

As observed in Figure 3, the daily consumption pattern (Fig. 6) can be modeled by four cyclic
components [5], each describing a harmonic wave. One way to express these waves in an ARMA(p,q)
model is through trigonometric functions for representing seasonality. Thus, the harmonic waves can
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be described as:

H1(t) = sin(ωt) + cos(ωt)

H2(t) = sin(2ωt) + cos(2ωt)

H3(t) = sin(3ωt) + cos(3ωt)

H4(t) = sin(4ωt) + cos(4ωt)

where ω = 2π/24.

(a) First harmonic (b) Second harmonic

(c) Third harmonic (d) Fourth harmonic

Figure 3: The daily consumption pattern over a week (black line) is shown along with the first four harmonic waves:
24h (H1), 12h (H2), 8h (H3), and 6h (H4).

The daily water consumption pattern in pigs can be modeled using four harmonics with periods of 24,
12, 8, and 6 hours due to the cyclic and repetitive nature of this behavior.

The 24-hour harmonic captures the general daily variation in water consumption. The 24-hour cycle
is the basic period representing a full day, and it is natural to assume that the water consumption of
pigs will follow a regular pattern over this period. This harmonic allows modeling the general trend
of water consumption during the day, with peaks at specific hours and periods of lower consumption
during the night.

However, water consumption in pigs may be influenced by additional factors that follow shorter pat-
terns. For example, pigs often have regular feeding routines with specific times for receiving feed. This
can generate variations in water consumption at shorter intervals, such as every 12 hours (period 12),
every 8 hours (period 8), or every 6 hours. These additional harmonics allow capturing these periodic
variations and improving the model’s accuracy.

Considering the three harmonics together (Figure 4) provides a more complete and accurate repre-
sentation of the daily water consumption pattern in pigs. Each harmonic contributes with its own
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frequency and amplitude, allowing the model to capture both the general daily variations and the
faster, more specific variations. This facilitates the analysis of water consumption at different times
of the day and helps to better understand the water needs of pigs under various conditions and
circumstances.

Figure 4: The daily consumption pattern over a week (black line) is shown along with the sum of the four harmonic
waves.
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3 Results and Discussion

We have thirty time series, the characteristics of which have been described in section 2.1.3.

First, let us recall Figure 2, which showed five consecutive batches from barn 1.01.

It is clearly observed that, within the same batch, water consumption per animal shows an increasing
trend and then decreases sharply until a new batch of pigs enters. Thus, we can affirm that water
intake increases as the pigs grow.

On the other hand, if we look at the water consumption of any of the batches (Figure 5), in addition
to the mentioned increasing trend, a daily oscillation is noticeable, following a pattern that repeats
day after day; during the night, consumption is minimal and gradually increases throughout the day
until it peaks at around 17-18 hours (6b). Moreover, the daily drinking pattern is relatively stable, as
shown in Figures 6a and 6b.

Figure 5: Time series of water consumption per animal and hour for batch 10 of barn 1.01

(a) Time series of average daily water consumption per day of
the week considering the 30 analyzed batches.

(b) Boxplot of average daily water consumption considering the
30 analyzed batches.

Figure 6: Water consumption per animal and hour for batch 10 of barn 1.01

The time series for all batches can be found in Section 5.1 of the Appendix.

Thus, after analyzing the characteristics of our data, we proceed to explain, on one hand, which
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Figure 7: Water consumption per day hour and season (mean per hour of all batches)

indicator parameters have been chosen to include in the model and, subsequently, describe the model
applied to the data to achieve the objective of predicting the hourly water consumption of a batch.

For example, in Figure 7 we plot again the daily consumption pattern that we just saw in Figure 6b
(you can see it represented in orange), but now we also separate the data into hot and cold months,
we can observe that in the hot months (the line in red) the two peaks that we mentioned before are
heavier, whereas in cold months (blue line) the first peak barely exists. For this reason, we could think
that temperature should be introduced into the model.

Moreover, if we observe Figure 8 we can say that the temperature not only affects the seasonality, but
also the growing trend.

Figure 8: Water consumption per fattening and season (mean per day of all batches)

In the graph in Figure 8, we can see the water consumption trend throughout the fattening period.
The yellow line represents the average of water consumption per day and pig of all batches. Whereas,
if we split the data again like we did before, the red line represents the trend in hot months and the
line in blue in cold months.

It can be seen that also the trend varies according to the temperature, being the trend in hot months
more pronounced. So this was another evidence to add temperature to the model.
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We proceed to study the possible indicator variables in more detail below.

3.1 Influence of Indicator Parameters

The following explains which parameters were introduced into the model while deciding the orders
p, q of the model. This choice was made by selecting a model with the lowest possible AIC while also
making sensible predictions. Thus, the decision to include or exclude a regressor variable was made
mathematically by analyzing the significance level of the coefficient attributed to each parameter,
i.e., if zero appears in its 95% confidence interval, it is considered null and, consequently, will not be
included in the model. However, even if a parameter was not entirely significant mathematically, if
it made sense from a biological perspective and/or helped improve prediction accuracy, it was still
included in the model.

Feed Consumption

Feed consumption can affect the water consumption of growing pigs due to the relationship between
feeding and hydration. As we know and have discussed, feed consumption is directly related to the
nutritional needs of pigs. When pigs consume feed, they obtain the necessary nutrients for growth
and development. The digestion and metabolism of these nutrients generate heat in the pig’s body.
As a result, pigs may experience an increase in body temperature, which can lead to increased water
consumption to regulate their temperature and stay hydrated.

Additionally, feed consumption is associated with saliva production in pigs. Saliva is important for
digestion and also helps keep the mouth and throat hydrated. As pigs eat more feed, there is increased
saliva production, which may increase the need for water to maintain proper hydration.

Another factor to consider is the composition of the feed. Some feeds may contain ingredients that
are drier and require more water for digestion. Therefore, if pigs consume a feed with a higher dry
matter content, they may need to increase their water intake to compensate for the hydration loss
associated with digesting these ingredients.

Thus, as shown in Figure 9, feed consumption can affect the water consumption of growing pigs due
to physiological processes related to digestion, saliva production, and body temperature regulation.
This is why Figure 9 resembles Figure 5, which showed the water consumption of the same batch. It
is observed that the animals eat in a similar pattern to their drinking, with a growing trend as the
pigs gain weight and a daily cyclical component, similar to what happens with water.

Indoor Temperature of the Barn

Figure 10 shows that summer batches of pigs consume slightly more water than winter batches. This
difference in water consumption can be explained by various factors related to the exterior and interior
temperatures of the barn, which increase during the summer months.

Firstly, the external temperature has a direct impact on the behavior of pigs. During the summer
months, when temperatures are higher, pigs may experience thermal stress. Thermal stress leads to a
greater need for pigs to regulate their body temperature and stay cool. As a result, pigs may actively
seek water to drink and cool down, which is reflected in an increase in water consumption.

It is observed that indoor temperatures are less extreme and more stable than outdoor temperatures.
This is because, during the summer months, cooling systems are used in the barn to maintain an
appropriate temperature for the pigs. These systems help reduce thermal stress and provide a more
comfortable environment for the animals. Similarly, in winter, underfloor heating is applied to mitigate
the negative impact of low temperatures.
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Figure 9: Observations of feed consumption per animal and hour for batch 10 of barn 1.01.

Thus, the increase in water consumption of summer pig batches compared to winter ones is due to
the warmer climatic conditions during the summer months. Especially, the indoor temperature of the
barn, which is where pigs are mostly exposed, seems to play an important role in this increase, which
is why it has been decided to include it in the model.

Figure 10: Observations of water consumption per animal and per hour for barn 5.01 with corresponding exterior and
interior temperatures per hour, respectively, from top to bottom.

Humidity

As previously mentioned, humidity in the barn can affect the water consumption of pigs because high
humidity can cause a greater feeling of heat and discomfort for the animals, as it hinders the dissipation
of body heat through sweating. This can lead to an increased demand for water from pigs, as they
need to drink more to stay hydrated and cool down. Thus, this parameter has also been included in
the model.

Number of Days of the Batch in the Pen

Clearly, the number of days a pig has been in a pen can influence its water consumption. As the pig
grows and increases in weight, its water demand also increases. This is because larger pigs require more
liquid to meet their physiological needs and stay hydrated. This implies that as the pig approaches the
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end of the growth cycle and achieves a higher weight, its water consumption is likely to be significantly
higher. For this reason, this variable has also been introduced into our model.

3.2 Orders p, q of the ARMA(p,q) Model

We now proceed to explain the model applied to the pig water consumption data. It is important to
highlight that the results obtained by applying this model to three different batches from one barn
are shown. Thus, we will analyze how suitable the model is and how well it predicts future batches.

The chosen model is an ARMA(24,24) and has the following characteristics:

• The AR part coefficients are all zero except for AR(1), AR(2), AR(23), and AR(24).

• The MA part coefficients are all zero except for MA(1), MA(2), MA(3), MA(6), MA(8), MA(12),
MA(13), MA(14), MA(23), and MA(24).

• The included indicator parameters, as explained in the previous Section 3.1, are: feed consump-
tion, indoor temperature of the barn, humidity, and the number of days the batch has been in
the pen.

• Additionally, four harmonics with periods of 24, 12, 8, and 6 have been introduced.

• Finally, a variable has been included to account for the water consumption of other batches on
the same day of growth and at the same hour.

For batch 7 of barn 1.01, one of the batches modeled, the coefficients obtained are shown in Table
1 located in Annex 5.3. It is important to note that, although some coefficients were not strictly
significant at the 95% confidence level, they were considered non-zero if they improved the prediction
or, on the other hand, if it was necessary from a veterinary perspective to include them.

Observing the ACF and PACF (Figures 11 and 12) of the time series for batch 7 after applying the
chosen model, it is noted that for all lags, the values remain within the 95% confidence interval,
showing that the chosen model is appropriate for this batch.
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Figure 11: ACF of water consumption for batch 7 of barn 1.01 after applying the model.

Figure 12: PACF of water consumption for batch 7 of barn 1.01 after applying the model.

To predict the water consumption of a new batch of pigs, in this case, batch 11 from the same barn,
the predict function in R was not used, as we are not looking to continue the time series of the same
batch but rather estimate the consumption per hour and day of a completely new batch. Therefore,
a different approach to predicting water consumption was needed. The strategy used was to take the
most recent values available from the time series each day (i.e., the last 24 values) and apply the model
to obtain the prediction of water consumption for the following day.
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It is important to consider that since this is a new batch of pigs with unique characteristics, the
prediction of water consumption will be subject to a certain degree of uncertainty. Nevertheless, by
using historical data from other batches and our model, a reasonable estimate of water consumption
for the new batch 11 is obtained, which meets our goal of predicting the water consumption of an
entire batch of pigs (Figure 13).

Figure 13: Prediction of hourly and per animal water consumption for batch 11 of barn 1.01 based on historical data
of the same barn. Real observations are shown in blue, predictions in red.

Figure 13 shows the water consumption data for batch 11 of barn 1.01 We observe that the prediction
is good and all real values fall within the 95% confidence intervals. Moreover, the model predicts very
well the increasing trend in water consumption as the pigs grow and also adapts and describes very
well the daily water consumption seasonality.

Similarly, the same procedure is carried out for two other barns to predict the hourly and per animal
water consumption for batch 11 (see Annex 5.2).

In Figure 14 we can observe the prediction results zoomed to 1 week to appreciate the forecast better,
and as you can see we can conclude that our model fits well and it is accurate. Therefore we can
conclude that our model fits well and it is accurate.
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Figure 14: Prediction of hourly and per animal water consumption for batch 11 of barn 1.01 zoomed to 1 week. Real
observations are shown in blue, predictions in red.
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4 Conclusions

After analyzing the results, we can state that in this work, we have achieved our objective of modeling
the water consumption of a complete batch of pigs. To accomplish this, we followed several steps that
have proven effective in analyzing and predicting water consumption.

First, we found a model that accurately describes the drinking behavior of pigs and identified the
key parameters influencing the water consumption of growing pigs. These parameters include feed
consumption, humidity, indoor temperature of the barn, and the number of days of growth. By
incorporating these factors into our model, we significantly improved the accuracy of our predictions.
It is worth noting that no related study on modeling the drinking patterns of these animals included
external parameters as we have done.

Second, we addressed the daily water consumption seasonality by using four harmonics in our model.
This allowed us to capture and account for recurring and cyclic patterns in water consumption through-
out the day. Moreover, by adding a fourth harmonic, we observed an improvement in the accuracy of
our predictions, demonstrating the importance of considering the complexity of seasonal patterns.

Third, we discovered that including a parameter containing the historical water consumption of other
batches on the same day and hour of growth also contributes to improving our model. This suggests
that there are correlations between the water consumption of different batches at specific times, and
leveraging this historical information can help us obtain better predictions.

Finally, we achieved the initial goal of modeling the water consumption of a complete batch using
historical data from other batches in the same barn. Our approach has proven satisfactory, as all real
water consumption values fell within the confidence intervals calculated using the Delta method. This
supports the validity and effectiveness of our model in predicting water consumption in pig batches.

In summary, this work has contributed to advancing the understanding and prediction of water con-
sumption in pig farming. We have identified influential factors, incorporated seasonal patterns, consid-
ered historical correlations, and obtained satisfactory results. These findings have significant practical
implications for water supply management in pig production, potentially leading to better planning
and optimization of water resources.

However, given that this work is part of a five-year project, there are several future proposals that
could further enrich our work. For example, it would be beneficial to test the model on a larger
number of batches to evaluate its performance in different contexts. Additionally, we could consider
including additional variables, such as water quality or the presence of diseases, which could influence
pigs’ water consumption.

Another interesting proposal would be to investigate the relationship between water consumption and
the health status of pigs. If significant links could be established, water consumption could be used as
an early indicator of diseases, allowing for earlier detection and treatment. These data could enrich
our model and improve its predictive capability.

In conclusion, the current work has successfully modeled water consumption in pig batches and opens
the door to many future proposals that could expand and improve our approach. These improvements
would contribute to a more efficient, sustainable production and enhance animal welfare.
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5 Annex

5.1 Hourly Water Consumption Time Series per Animal from Different Farms

Figure 15: Hourly observations of water consumption per animal for the five batches from Farm 1.0.2.

Figure 16: Hourly observations of water consumption per animal for the five batches from Farm 3.0.1.

Figure 17: Hourly observations of water consumption per animal for the five batches from Farm 3.0.2.
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Figure 18: Hourly observations of water consumption per animal for the five batches from Farm 5.0.1.

Figure 19: Hourly observations of water consumption per animal for the five batches from Farm 5.0.2.
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5.2 Prediction of other batches

As shown in Figures 20 - 21, the predictions for the new batch based on historical data are similar
to the originals and also fall within the selected 95% confidence intervals. The coefficients for both
models can be found in Tables 2 - 3 located in Annex 5.3.

Figure 20: Prediction of hourly and per animal water consumption for batch 11 of barn 1.01 based on historical data
from batch 8 of the same barn. Real observations are shown in blue, predictions in red, and 95% confidence intervals
calculated using the delta method in gray.

To have a more precise estimate of hourly and per animal water consumption for batch 11, the average
of the predictions obtained from batches 7, 8, and 9 has been taken (Figure 22). These predictions fit
more accurately than the previous ones to the real water consumption observations, with all of them
again falling within the calculated confidence intervals. We interpret that since this forecast comes
from the average of predictions based on other batches (historical data), it is expected to adjust better
to what might occur in the future, i.e., the actual hourly and per animal water consumption of batch
11.
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Figure 21: Prediction of hourly and per animal water consumption for batch 11 of barn 1.01 based on historical data
from batch 9 of the same barn. Real observations are shown in blue, predictions in red, and 95% confidence intervals
calculated using the delta method in gray.

Figure 22: Prediction of hourly and per animal water consumption for batch 11 of barn 1.01 based on the average of
the other three predictions. Real observations are shown in blue, the average of predictions in red, and 95% confidence
intervals calculated using the delta method in gray.
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5.3 Estimates of ARMA Model Coefficients for Batches 7, 8, and 9 from Farm
1.01

Estimate Std. Error z value Pr(>|z|)
ar1 0.6519 0.0871 7.4835 0.0000
ar2 -0.2524 0.0501 -5.0404 0.0000

ar23 0.2302 0.0397 5.8037 0.0000
ar24 0.3432 0.0776 4.4243 0.0000
ma1 -0.6373 0.0890 -7.1629 0.0000
ma2 0.2743 0.0576 4.7573 0.0000
ma3 0.1536 0.0258 5.9506 0.0000
ma6 0.1061 0.0197 5.3930 0.0000
ma8 0.0530 0.0181 2.9305 0.0017

ma12 0.0361 0.0249 1.4534 0.0731
ma13 -0.0449 0.0296 -1.5178 0.0645
ma14 0.0196 0.0252 0.7794 0.2179
ma23 -0.1557 0.0442 -3.5245 0.0002
ma24 -0.2421 0.0722 -3.3517 0.0004

intercept -2.1362 0.5962 -3.5831 0.0002
s1 -1.3668 0.1681 -8.1327 0.0000
c1 -0.5833 0.1968 -2.9636 0.0015
s2 0.1574 0.0768 2.0500 0.0202
c2 0.0440 0.0865 0.5083 0.3056
s3 0.2545 0.0335 7.5957 0.0000
c3 -0.1036 0.0361 -2.8673 0.0021
v4 0.0438 0.0217 2.0149 0.0220
v5 0.0097 0.0030 3.2277 0.0006
v6 -0.0074 0.0033 -2.2595 0.0119
v8 -0.0117 0.0053 -2.2221 0.0131

V19 0.1326 0.0443 2.9903 0.0014
s4 -0.0235 0.0172 -1.3659 0.0860
c4 0.0459 0.0169 2.7086 0.0034

Table 1: Estimates of coefficients for modeling Batch 7 from Farm 1.01.
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Estimate Std. Error z value Pr(>|z|)
ar1 1.3778 0.0415 33.1633 0.0000
ar2 -0.6031 0.0233 -25.9181 0.0000

ar23 0.3370 0.0055 61.0070 0.0000
ar24 -0.1902 0.0257 -7.3963 0.0000
ma1 -0.9998 0.0480 -20.8177 0.0000
ma2 0.3510 0.0380 9.2268 0.0000
ma3 0.0850 0.0350 2.4288 0.0076
ma4 0.0789 0.0246 3.2101 0.0007
ma8 0.0661 0.0172 3.8351 0.0001
ma10 -0.0500 0.0153 -3.2682 0.0005
ma18 -0.0363 0.0163 -2.2285 0.0129
ma22 0.1197 0.0264 4.5293 0.0000
ma23 -0.2980 0.0355 -8.3908 0.0000
ma24 0.0572 0.0339 1.6883 0.0457

intercept -1.9376 0.2039 -9.5008 0.0000
s1 -0.7204 0.0794 -9.0765 0.0000
c1 -0.6163 0.0687 -8.9764 0.0000
s2 -0.3455 0.1866 -1.8517 0.0320
c2 -0.4985 0.2197 -2.2688 0.0116
s3 0.1807 0.0277 6.5352 0.0000
c3 0.1613 0.0261 6.1761 0.0000
v5 0.0025 0.0119 0.2079 0.4177
v6 -0.0057 0.0025 -2.2764 0.0114
v8 0.0133 0.0020 6.5506 0.0000

V21 0.1174 0.0433 2.7133 0.0033
s4 0.1078 0.0119 9.0743 0.0000
c4 0.0203 0.0118 1.7129 0.0434

Table 2: Estimates of coefficients for modeling Batch 8 from Farm 1.01.
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Estimate Std. Error z value Pr(>|z|)
ar2 -0.1083 0.0185 -5.8396 0.0000

ar24 0.8860 0.0184 48.0576 0.0000
ma1 0.1768 0.0176 10.0617 0.0000
ma2 0.2779 0.0312 8.9176 0.0000
ma3 0.1347 0.0187 7.1970 0.0000
ma4 0.1035 0.0180 5.7466 0.0000
ma5 0.0804 0.0158 5.0956 0.0000
ma6 0.0591 0.0137 4.3126 0.0000
ma23 0.0851 0.0143 5.9429 0.0000
ma24 -0.7389 0.0247 -29.9092 0.0000

intercept -2.0368 0.6060 -3.3609 0.0004
s1 -1.0720 0.0527 -20.3279 0.0000
c1 -0.5403 0.0517 -10.4399 0.0000
s2 0.2252 0.0395 5.7008 0.0000
c2 0.1450 0.0395 3.6718 0.0001
s3 0.2495 0.0256 9.7419 0.0000
c3 -0.0124 0.0257 -0.4839 0.3142
v4 -0.0018 0.0245 -0.0753 0.4700
v5 -0.0050 0.0121 -0.4106 0.3407
v6 -0.0095 0.0031 -3.0299 0.0012
v8 0.0060 0.0025 2.4174 0.0078
s4 -0.1137 0.0227 -4.9993 0.0000
c4 -0.0214 0.0228 -0.9391 0.1738

Table 3: Estimates of coefficients for modeling Batch 9 from Farm 1.01.
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