
Journal of Industrial Information Integration 41 (2024) 100668 

A
2
n

Contents lists available at ScienceDirect

Journal of Industrial Information Integration

journal homepage: www.elsevier.com/locate/jii

Full length article

Model-based tool for the design, configuration and deployment of
data-intensive applications in hybrid environments: An Industry 4.0 case
study
Ricardo Dintén ∗, Patricia López Martínez, Marta Zorrilla
Software Engineering and Real-Time group, Universidad de Cantabria, Avda. de los Castros s/n, Santander, Spain

A R T I C L E I N F O

Dataset link: https://github.com/istr-uc/RAI4D
eploymentTool

Keywords:
Model-based
Digital platform
Containerisation
Service-oriented
Cloud/edge computing
Internet of things

A B S T R A C T

The fourth industrial revolution advocates the reformulation of industrial processes to achieve the end-to-
end (provider-customer) digitalisation of the industrial sector. As is well known, the industrial environment
is very complex, where legacy systems must interoperate and integrate with modern devices and sensors.
Communication among them requires specific and costly developments, so architectures based on data sharing
and services implementation are considered one of the most flexible and appropriate technological solutions
to gradually achieve the desired horizontal and vertical integration of the value chain. The design and
deployment of data-intensive applications is not straightforward, therefore this paper proposes a model-based
tool to characterise the different elements to be configured in an application and to make its deployment
easier by generating configuration, orchestration and deployment files and sending them to the corresponding
nodes for their execution. In few words, this article highlights the advantages of distributed and data-centric
architectures to face the challenge of integration and interoperability in data-intensive complex systems and
presents the extension of the RAI4 metamodel proposed in Martínez et al. (2021) that now allows specifying
how, containerised or not, and where, on the cloud, fog, edge or on-premise, each service can be hosted
according to its functional and non-functional requirements, mainly issues related with real-time, security and
cyber physical hardware dependencies. For the sake of comprehension, a pseudo-real use case addressed to
pre-process and store pollution data from environmental sensors installed in a smart city is described in detail,
including different deployment settings.
1. Introduction

Industries are currently undergoing a process of digital transforma-
tion fostered by Industry 4.0. The term Industry 4.0 (or I4.0), ‘‘Smart
Factory’’ or ‘‘Industrial Internet’’ [1] emerged at the Hannover Fair
(Germany) in 2013, with the aim of promoting a new strategy for
organising and controlling industrial production processes based on the
information generated in the life cycle of its products. Briefly, Industry
4.0 advocates a shift in manufacturing processes and organisations
towards a more flexible, intelligent, predictive and controlled environ-
ment driven by data. According to [2], ‘‘for I4.0 to come true, it is
essential to implement the horizontal integration of inter-corporation
value network, the end-to-end integration of engineering value chain,
and the vertical integration of factory inside’’. This leads to the need
to strategically design and plan the deployment of a digital platform
that allows the gradual implementation of fully digitised services and
processes [3].

∗ Corresponding author.
E-mail addresses: ricardo.dinten@unican.es (R. Dintén), lopezpa@unican.es (P. López Martínez), marta.zorrilla@unican.es (M. Zorrilla).

To reach this objective, Germany published RAMI [4], a unified
architectural reference model that provides a collective understanding
for I4.0 standards. It can be regarded as a tool to map I4.0 concepts
and use cases. On the other hand, the Industrial Internet Consortium
(IIRA) [5] enables Industrial Internet of Things (IIoT) system archi-
tects to design their own systems using a common vocabulary and a
standard-based architecture framework and reference architecture. At
the same time other organisations have proposed their reference guide
such as NIST or MIIT from China [6]. In particular, our proposal is
based on the layered databus architecture pattern proposed in IIRA
as central element of the architecture, which is modelled along with
other components needed to build data-intensive applications that meet
the main requirements of Industry 4.0 scenarios such as internet of
things, cyber–physical systems and smart factory. These requirements
according to [7] are interoperability, virtualisation, decentralisation,
real-time capability, service orientation and modularity, which were ex-
tended and refined in [8]. Furthermore, it is also of utmost importance
https://doi.org/10.1016/j.jii.2024.100668
Received 8 June 2023; Received in revised form 20 June 2024; Accepted 25 July 2
vailable online 3 August 2024 
452-414X/© 2024 The Author(s). Published by Elsevier Inc. This is an open access ar
c-nd/4.0/ ). 
024

ticle under the CC BY-NC-ND license ( http://creativecommons.org/licenses/by- 

https://www.elsevier.com/locate/jii
https://www.elsevier.com/locate/jii
https://github.com/istr-uc/RAI4DeploymentTool
https://github.com/istr-uc/RAI4DeploymentTool
https://github.com/istr-uc/RAI4DeploymentTool
https://github.com/istr-uc/RAI4DeploymentTool
https://github.com/istr-uc/RAI4DeploymentTool
https://github.com/istr-uc/RAI4DeploymentTool
https://github.com/istr-uc/RAI4DeploymentTool
https://github.com/istr-uc/RAI4DeploymentTool
https://github.com/istr-uc/RAI4DeploymentTool
https://github.com/istr-uc/RAI4DeploymentTool
https://github.com/istr-uc/RAI4DeploymentTool
https://github.com/istr-uc/RAI4DeploymentTool
https://github.com/istr-uc/RAI4DeploymentTool
https://github.com/istr-uc/RAI4DeploymentTool
https://github.com/istr-uc/RAI4DeploymentTool
https://github.com/istr-uc/RAI4DeploymentTool
https://github.com/istr-uc/RAI4DeploymentTool
https://github.com/istr-uc/RAI4DeploymentTool
https://github.com/istr-uc/RAI4DeploymentTool
https://github.com/istr-uc/RAI4DeploymentTool
https://github.com/istr-uc/RAI4DeploymentTool
https://github.com/istr-uc/RAI4DeploymentTool
https://github.com/istr-uc/RAI4DeploymentTool
https://github.com/istr-uc/RAI4DeploymentTool
https://github.com/istr-uc/RAI4DeploymentTool
https://github.com/istr-uc/RAI4DeploymentTool
https://github.com/istr-uc/RAI4DeploymentTool
https://github.com/istr-uc/RAI4DeploymentTool
https://github.com/istr-uc/RAI4DeploymentTool
https://github.com/istr-uc/RAI4DeploymentTool
https://github.com/istr-uc/RAI4DeploymentTool
https://github.com/istr-uc/RAI4DeploymentTool
https://github.com/istr-uc/RAI4DeploymentTool
https://github.com/istr-uc/RAI4DeploymentTool
https://github.com/istr-uc/RAI4DeploymentTool
https://github.com/istr-uc/RAI4DeploymentTool
https://github.com/istr-uc/RAI4DeploymentTool
https://github.com/istr-uc/RAI4DeploymentTool
https://github.com/istr-uc/RAI4DeploymentTool
https://github.com/istr-uc/RAI4DeploymentTool
https://github.com/istr-uc/RAI4DeploymentTool
https://github.com/istr-uc/RAI4DeploymentTool
https://github.com/istr-uc/RAI4DeploymentTool
https://github.com/istr-uc/RAI4DeploymentTool
https://github.com/istr-uc/RAI4DeploymentTool
mailto:ricardo.dinten@unican.es
mailto:lopezpa@unican.es
mailto:marta.zorrilla@unican.es
https://doi.org/10.1016/j.jii.2024.100668
https://doi.org/10.1016/j.jii.2024.100668
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jii.2024.100668&domain=pdf
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/


R. Dintén et al. Journal of Industrial Information Integration 41 (2024) 100668 
that the architecture allows the integration of legacy systems present
in industrial environments and enables their interoperability with the
latest generation devices in a transparent manner. This is achieved by
using a data-centric publish–subscribe communications model where
applications on the databus simply ‘‘subscribe’’ to data they need and
‘‘publish’’ information they produce [9].

The design, development and deployment of modern data-intensive
applications is a complex task mainly due to the great number of differ-
ent technologies that must be orchestrated, configured and deployed in
order to fulfil their functionality [10]. Among others, scheduling, distri-
bution, communication, persistence and security services to name the
most relevant ones. Furthermore, most times these applications must be
deployed on a hybrid (cloud/edge/on-premise) environment [11] with
the aim of meeting latency requirements, managing huge volume of
data and having enough computing capacity. This means that design
and, above all, deployment decisions are becoming more complex
due to the heterogeneity of the devices, the diversity of execution
environments, real-time constraints and security and legal requirements
that involve dynamic reconfiguration changes. Therefore, it is highly
recommended to work with software tools that facilitate their concep-
tion, setting-up as well as their deployment and monitoring following
the new DevOps culture [12] where software developers collaborate
with IT operators. At this regard, our proposal addresses the design
supported on a reference architecture (RA) and, as pointed out by Ataei
et al. [13], RAs are an effective artefact for addressing the development
of complex big data systems that provide software engineers with
knowledge about patterns designed to solve a class of problems that
occur repeatedly. Furthermore, it increases the frequency, quality and
speed of software delivery using automated procedures.

In [14], the authors described RAI4, a data-centric reference archi-
tecture focused on Industry 4.0 that allows us to conceive and specify
all the elements involved in a data-intensive application: data sources,
physical and virtual resources, workflows and monitoring elements ac-
cording to which perform the scaling and self-tuning. This architecture
is supported by a metamodel that contains a detailed information about
how all these elements are conceived and related. In this paper, we
extend this metamodel to add the possibility of deploying applications
on hybrid environments as well as of specifying and building partially
or totally containerised applications. Containerisation is essential in
this type of applications as it is the most efficient way to deploy soft-
ware solutions [15] whilst facilitating portability and reuse in different
infrastructures.

Oppenheimer et al. [16] pointed out that IT teams lack tools that
help them build the configuration files to orchestrate the set of con-
tainers that comprise a complex application. This fact is even more
challenging if the solution must combine the deployment of container-
ised services with others that are not. Nowadays manual deployment
is the only possibility, which is prone to errors and hard to repeat. To
overcome this limitation, together with the architecture metamodel we
provide a tool for the deployment of the digital platform (services) and
its applications. To show the usefulness and validity of our metamodel
to design data-intensive applications as well as to deploy them in hybrid
environments by means of our deployment tool, we describe a use case
aimed at pre-processing and storing pollution data from environmental
sensors installed in a smart city. Likewise, we list other use cases
developed and available in our online repository.

The paper is organised as follows. Section 2 relates architectures
proposed in the literature for the design and deployment of data
intensive applications and discusses the importance of containerisation
in this context. Section 3 summarises our RAI4 metamodel, which
models a reference architecture under a highly flexible data centric
architecture for Industry 4.0 based on a set of middleware services
that provide management and monitoring capabilities to the platform.
Section 4 explains the metamodel extension proposed in this paper
for supporting containerisation and describes and justifies the changes

performed. Section 5 presents the case study and explains the process of

2 
building a model, compliant to the metamodel, of an IoT data-intensive
application deployed in a hybrid environment. In addition, deployment
variations of this model are described with the aim of showing the
reutilisation capacity of our tool and the associated costs. Section 6
discusses the advantages of adopting our RAI4 metamodel and tool and
points out issues still open. Finally, the last section summarises our
conclusions and our future research lines.

2. Related work

This section is organised in two subsections. The first relates the
proposed architectures in the literature designed for the instantiation
of big data platforms and, in particular, those that are focused on facili-
tating the design and deployment of containerised or non-containerised
applications in hybrid environments. Next, the containerisation tech-
nology and its relevance to our proposal is commented as well as the
importance of the use of orchestration technologies.

2.1. Reference architectures for big data-intensive applications

First of all it is convenient to clarify the term reference architecture
(RA) since this is profusely used in literature. In general, it is under-
stood as a collection of related elements that perform certain task or set
of tasks. The degree of detail, the perspective or the mechanisms under
which each module is described mark the difference among them. The
conceptualisation provided by reference architectures not only helps to
identify the key components of the system, their function and inter-
relationship with each other, but also facilitates their maintainability
and scalability. Furthermore, it serves as a communication medium or
language that provides stakeholders with unified elements and symbols
to discuss and develop big data projects.

Big data intensive applications can be characterised in addition
to the three V’s (velocity, variety and volume of data) by requiring
according to [13]: (i) distributed scaling to address batch and stream-
ing processing demand, (ii) the need for real near-time performance
(stream processing), (iii) the complex technology orchestration to cre-
ate effective communication channels between components and data
flows, (iv) metadata to manage quality, security and privacy issues
and (v) a continuous delivery to continually disseminate patterns and
insights into various business domains (DataOps). In our particular
context, IoT/I4.0, it is also desirable that RA conforms to industry
standards such as IIRA or RAMI. Furthermore, for practical reasons,
the provision of tools for pipeline process automation (model to code),
especially in complex environments, should be included [16]. For all
these mentioned premises and literature studied, the authors state that
the features that RA for big data intensive applications should fulfil are:

• (R1) standard-based adopted by industry and academia
• (R2) distributed, scalable and data-centred
• (R3) support for metadata
• (R4) measurable performance
• (R5) formally described by means of a standard language or

model
• (R6) deployment tool available

In the literature we find several architectural proposals for data-
intensive applications but based on the pipeline specification as a set of
ad-hoc blocks, without using an abstraction layer that makes the solu-
tion reusable, scalable, domain-independent (general) and technology-
agnostic. Some examples are the architecture proposed by [17] for the
integration, processing and analysis of heterogeneous and unstructured
data from water supply networks supported by a CEP engine; the one
published by Carcillo et al. [18] for detecting credit card fraud using
streaming analysis with Kafka and Spark or the one defined by [19] for
predictive maintenance use cases applied for the railway transportation

industry and the wind turbines energy industry. Others such as the



R. Dintén et al. Journal of Industrial Information Integration 41 (2024) 100668 
one proposed by the CAPRI project [20] that aims to innovate the
process industry, with a modular and scalable reference architecture,
based on open source software and deployable both in brownfield and
greenfield scenarios, being general purpose, it lacks a model that helps
software architects to describe, maintain and deploy their big data
platform. Unlike the previously mentioned works, this one is based
on industry standards (RAMI, IIRA) and incorporates security issues.
In the same line, Neomycelia [21], is a RA that provides a business
domain-independent event driven microservices architecture comprised
of 14 components. Among them monitoring and metadata modules are
included as well as a bus backbone and batch and streaming processing.
They mention that its RA follows ISO/IEC 42010 for architectural
descriptions, however it cannot be checked in the paper. Nor does it
offer a deployment tool.

Prior to the publication of our proposal, Ataei et al. [13] per-
formed a systematic literature review about big data reference architec-
tures. They analysed 22 reference architectures (RA) and their findings
yielded the fact that the majority of the big data RAs analysed were run-
ning underlying some sort of monolithic data pipeline following kappa
or lambda architecture with a central storage unit and issues such as
privacy and security did not seem to have been discussed enough.
Metadata management is also lacked in most RA, except Neomycelia
and Bolster [22]. The latter refines the lambda architecture to create a
software reference architecture for semantic-aware big data systems.

Until now, none of previously RA mentioned relies on a model-based
approach. This limits developers to reason, reuse and automate, by
means of translation rules, the setting, deployment and reconfiguration
of their models. At this regard, we find Margara et al.’s work [23]
that presents a unifying model that dissects data-intensive systems
into a collection of abstract components that cooperate to offer the
system functionalities. This is very useful for software engineers that
need to deeply understand the range of possibilities to select the best
systems for their application scenario and once selected, could use our
metamodel to design and deploy their digital platform.

Another interesting model-driven proposal is the one published
in [24]. They built a UML profile conceived at three abstraction levels
to assist data-intensive applications developers in three facets. The first
level allows designers to define the main architecture of an application;
the second level includes the specifics of the technology used to develop
the application, e.g., Apache Storm; and, the third level allows them
to automate the deployment of the application and the frameworks it
exploits in the specific cloud environments that designers have selected.
Unlike RAI4.0, they include a module in the second level that, based
on certain parameters such as number of users, average task execution
time, number of cores and degree of parallelism, etc., provides an es-
timated performance model. In contrast, RAI4.0 includes a monitoring
module that allows to measure in real time the parameters of interest
(CPU usage, memory, latencies, etc.) of the deployed services and based
on them, DevOps teams can reconfigure the platform by adding or
reducing nodes or hosting the services on the cloud, fog or edge accord-
ing to the functional requirements of the application. Both proposals
include virtualisation, feature that none of previously mentioned works
collected and, furthermore, RAI4.0 enables the deployment in hybrid
environments and not only in the cloud. [24] does not model metadata.

Table 1 summarises the features of the reviewed works according
to the requirements previously specified.

As far as we know, there are no other proposal of model-based
reference architecture that addresses the design and deployment of a
data centred big data platform on which a set of global, heterogeneous
and decentralised services, virtualised or not, are orchestrated. Besides,
it takes into account security and metadata. Security is enabled by
means of an access control list (ACL) of data bus publishers/subscribers
using the TLS protocol and data confidentiality is preserved by means
of encryption. Data integrity is kept thanks to event management
system whose features guarantee that events are immutable. Finally,

data privacy must be controlled ad-hoc using metadata registered. In

3 
Table 1
Big data reference architecture comparison.

Ref. R1 R2 R3 R4 R5 R6

[17] N Y N N N N
[18] N Y N N N N
[19] N Y N N N N
[20] Y Y Y N N N
[21] Y Y Y Y Y N
[22] Y Y Y N N N
[24] Y Y N Y Y Y
RAI4.0 Y Y Y Y Y Y

addition, data is governed by metadata description, which is essential
for the platform to operate in a decentralised and autonomous way. The
metadata is responsible for collecting the nature, semantics and quality
of the data required by the agents that process it; the estimation of
the volume, velocity and variety of data to be managed, the metrics
to be measured in order to reconfigure resources dynamically and
the security requirements (authentication, integrity, confidentiality and
availability). Due to this last issue is highly important in these com-
plex environments, we rely on ontologies such as Onto-Carmen [25],
an Ontology-driven approach for Cyber–Physical System Security Re-
quirements meta-modelling and reasoning which helps in the early
stages of development by identifying, modelling, and analysing security
requirements.

Finally, the fact that RAI4.0 has a deployment tool available makes
this RA more useable and cost-effective after a short training.

2.2. Containerisation and orchestration

Container technology has acquired great relevance in recent years,
in fact has emerged as a new paradigm to address intensive scientific
applications problems. Thanks to the containers, developers can create
predictable environments isolated from other applications and run on a
shared operating system as a process, which can be moved quickly and
reliably from one computing environment to another. Not only con-
tainerisation makes deployment easy in a reasonable amount of time
and with few required computational resources [26], but also applica-
tion performance is not significantly penalised as demonstrated in [27]
by running an IoT application inside a Linux container, rather than di-
rectly on the device’s host operating system. Therefore, as [15] pointed
out, nowadays the most efficient way to deploy a software solution on
the cloud or edge is by means of container-based virtualisation.

The main reasons for the adoption of containerisation can be sum-
marised in: (i) the time to start to operate containers is practically
instantaneous, better than virtual machines; (ii) containers show much
better scalability than virtual machines; and, (iii) with the same work-
load, containers achieve higher CPU and memory utilisation [28].

Nowadays there are different container technologies, being Docker
[29], an open source project that automates the faster deployment
of Linux applications, one of the most adopted [30]. But Docker is
not the only container system option, CoreOS provides a streamlined
alternative to Docker called CoreOS rkt [31] and Canonical offers the
LXC containerisation engine [32] for Ubuntu to name a few [33].

In complex systems, the volume of containers is huge and it is there-
fore desirable to use orchestrators for the deployment, management and
scaling of applications, facilitating portability between infrastructure
providers [34]. Kubernetes [35], Docker Swarm [36] or more recently
Hasicorp Nomad [37] are some examples.

Kubernetes and Nomad support similar core use cases for appli-
cation deployment and management. However, Kubernetes performs
better in use cases addressed to containerised big data applications de-
ployed in the cloud. Furthermore, Kubernetes provides all the features
needed to run Linux container-based applications including cluster
management, scheduling, service discovery, monitoring, etc. whereas
Nomad only aims to focus on cluster management and scheduling using



R. Dintén et al.

p
w
R

Journal of Industrial Information Integration 41 (2024) 100668 
other tools like Consul for service discovery/service mesh and Vault for
secret management. On the other hand, Nomad is architecturally much
simpler, a single binary, thus lighter and more general purpose (not
focused only on Linux containers). Regarding Swarm, it is lightweight
and more beginner-friendly that Kubernetes but it only manages Docker
containers. Those researchers interested in testing these technologies
can use COFFEE, a recent tool [38] for Benchmarking of Container
Orchestration Frameworks.

Due to the irruption of the container technologies, Pahl et al. [10]
carried out a survey with the aim of identifying, taxonomically clas-
sifying and systematically comparing the existing research body on
containers and their orchestration and specifically the application of
this technology in the cloud. They concluded that there was a need for
research beyond the performance and isolation concerns for container
virtualisation, particularly regarding methodological and tool support.
At this regard, and with the aim of helping researchers and tech-
nologists to compare deployment automation technologies, Wurster
et al. [39] proposed the Essential Deployment Metamodel (EDMM)
which provides a common denominator of the features of the most im-
portant deployment technologies and maps these to native constructs of
each technology. Therefore, its purpose is different from ours, although
it can help DevOps team in the definition of the configuration file for
the image orchestrator to be used in the digital platform and specify it
for deployment using our metamodel.

Following with proposals based on models related to containeri-
sation, Paraiso et al. [40] employs Model-Driven Engineering (MDE)
techniques, in order to handle and analyse Docker containers at a
higher level of abstraction. Their model collects the structure of con-
tainers, the relationships among them, and the hosts in which they are
deployed but omits information on services and workflows describing
the application. As the previous reference, this could be used to gener-
ate, validate and update Docker configuration files, if this virtualisation
tool was the one selected for the digital platform. One aspect to be
taken into account is it is linked to OCCI API that conditions the
use of its infrastructure to previously provision machines, unlike our
metamodel, which is technology agnostic.

Finally, SMADA-Fog [41] is a complete solution that enables auto-
mated deployment and service adaptivity in container-based applica-
tions executed within the fog computing environment. This includes
models, notations, algorithms and tools for this purpose. It thus fo-
cuses on deployment stage, leaving out of scope the description of the
workflows and data sources that make up the system. In this regard,
it provides a semantic module as well as optimisation algorithms that
allow the reconfiguration of the parameters specified in the deploy-
ment, thus enabling dynamically the improvement of the performance
of the applications. This last option of reconfiguration is lacked in our
proposal.

3. RAI4 reference architecture

RAI4 is a general reference architecture for the definition and
deployment of industrial applications. This is supported on a data-
centric architecture and on a set of middleware services that provide
management and monitoring capabilities to the platform. A compliant
RAI4 metamodel has been defined to describe the targeted applications.
Models compliant to the RAI4 metamodel serve two purposes in two
different phases of the development process:

• They help designers to conceive their data-intensive digital plat-
forms, providing both all the modelling artifacts required to
describe the elements involved in such kind of systems (data,
resources, applications and monitoring metrics) and a common

way of organising these elements.

4 
• They gather all the information required to configure, deploy
and execute the applications on the platform. In this sense, RAI4
models are used as input of the tool RAI4DeploymentTool, which
automates the generation, transfer and execution of the set of
configuration files and scripts that are required to deploy and
launch the applications described in the model.

The main elements defined in the RAI4 metamodel to support
both the design and the deployment of data-intensive applications are
explained in the following subsections.

3.1. Design of a RAI4 data-intensive application

As it is shown in Fig. 1, each model compliant to the RAI4 meta-
model is organised around a root element, instance of the Computa-
tionalSystem class. This acts as container of the three sections that
comprise the model:

• The platform model, made up of the set of physical and virtual
resources and the middleware services that comprise the digital
platform. All of them modelled through classes that inherit from
the PlatformResource abstract class.

• The workload model, constituted by the set of data streams
(topics) that flow in the environment, modelled through instances
of the WorkloadStreamData class, along with the workflows
(set of processing tasks) that produce and/or consume these data
streams (Workflow class).

• The monitoring model, i.e. the set of metrics that must be mea-
sured at runtime. The root class for the hierarchy of possible
metrics is Metric.

The platform model is the section most affected by the extension
roposed in this paper, so a more detailed explanation is given in
hat follows. Fig. 2 depicts the classes that inherit from Platform-
esource and hence, are used to describe the different types of

resources available in the platform. ProcessingNode represents the
processing nodes that participate in the system, either physical nodes
at dew or edge computing level [42], modelled as instances of the
PhysicalProcessingNode class, or virtual resources hired on the
cloud, represented as instances of the VirtualProcessingNode
class. ProcessingNode identifies each node with its IP address and
describes some common properties such as the number of processors, or
the external IP address in case of virtual nodes. PlatformResource
instances can be grouped in ResourceCluster elements, if needed.

PlatformServer is an abstract root class that gathers generic
information about the configuration, deployment and identification of
the brokers that provide access to the distributed services available in
the platform. As shown in Fig. 2 this class is, in turn, specialised in
seven abstract classes, one for each type of service included in the archi-
tecture: SerializationServer, SecurityServer, Communi-
cationServer, DistributionServer, SchedulingServer,
MonitoringServer and PersistenceServer.

As said before, these classes are described at abstract level, so
they must be specialised when a certain set of specific technolo-
gies are chosen for their implementation. In our case, a platform
almost completely based on Apache technologies is used, so the fol-
lowing classes were added to the metamodel: a Kafka-based com-
munication service (KafkaServer), a Zookeeper-based distribution
server (ZookeeperServer), an Apache Storm scheduling server
(StormServer) and a Cassandra persistence server
(CassandraServer). Likewise, a Prometheus-based monitoring
server (PrometheusServer) was added. Two of them are shown
in detail in Fig. 2, with each class collecting the attributes with the
specific information required for the configuration of the corresponding
services. These services usually have a great amount of configuration
properties which in most cases, are used with their default values. For

simplifying the task of the designers, these default values are provided



R. Dintén et al. Journal of Industrial Information Integration 41 (2024) 100668 
Fig. 1. Root elements of the RAI4 metamodel.
Fig. 2. Platform resources and middleware services (Platform Model).
by the metamodel, so they only need to assign those properties that
require a different value for the modelled scenario.

Although not directly affected by the extension, it is interesting
to give some ideas about how the metamodel describes the workload
model, especially for a better understanding of the use case exposed in
Section 5. The rest of the metamodel, e.g. the monitoring section can
be consulted in [14].

Two elements contribute to the definition of the workload of a
system: the set of topics that flows through the environment and
the set of processing workflows that produces/consumes/transforms
these topics. These workflows constitute the applications that provide
the functionality in the environment. They are conceived as sets of
processing tasks that operate following a reactive strategy, in response
to the occurrence of a specific pattern of instances coming from one
or more topics, which triggers the execution of the root task of the
workflow. The rest of tasks that constitute the workflow are chained
following an acyclic graph.

The metamodel describes topics as instances of the Workload-
StreamData class while the processing tasks that exploit the topics
are organised in Workflow elements, whose main structure is shown
5 
in Fig. 3. The execution of a workflow is triggered in response to the
occurrence of a topic (rootTask.trigger). Next, a set of processing
tasks (ownedTasks) related by the control flow are executed. The task
pointed by the rootTask attribute represents the one that starts the
workflow execution. The control flow among the tasks is implemented
by means of a set of private topics (ownedStreamData) defined
by the workflow, which are instances of WorkflowStreamData, a
special type of topic. When a task finishes its execution, a data flow
(returnedTopic) is returned which, in turn, can trigger the execu-
tion of other task(s) of the workflow. The scheduling service responsible
for the assignment of resources and for launching the execution of the
tasks is referenced through the scheduler attribute.

3.2. Deployment of a RAI4 data-intensive application

The complexity that involves the configuration, deployment and
execution of an initial RAI4 digital platform as well as its reconfigura-
tion and the installation/uninstallation of the workflows were the main
drivers that boosted the development of the RAI4DeploymentTool. This
tool processes the model of the system (compliant to the RAI4 Meta-
model) and, as a first step, generates all the required configuration files



R. Dintén et al. Journal of Industrial Information Integration 41 (2024) 100668 
Fig. 3. Workflow and topics (excerpt of the Workload Model).

and launch scripts for the deployable components (services, workflows,
topics, etc.). Then, the tool sends these files to their corresponding
physical or virtual processing nodes using SCP commands, and finally,
it executes remotely the scripts that launch the execution of the compo-
nents on the nodes using SSH. This last step is order-concerned, taking
all possible dependencies among components into account, so that the
RAI4DeploymentTool can be executed from a console opened in one
of the nodes of the platform or from any other node connected to the
platform through the network.

Fig. 4 summarises the main elements defined in the metamodel to
support the deployment tool. As can be observed, the root class of
the model, ComputationalSystem, defines a method called de-
ployAndLaunch that implements the whole deployment and launch-
ing process:

• First, this method invokes the configureDeployment method
on each element that can be independently deployed on the
system, modelled as elements that inherit from the SystemCom-
ponent class. Taking the configuration data assigned to each
instance, this method generates all the configuration files and
scripts required to launch the component in a node and adds them
to the ProcessingNode element that represents the node in
which they must be later instantiated and executed (in the scripts
case). The behaviour of this method must be overridden for each
concrete type of component.

• When all the deployable components have been processed, the
deploy method is invoked on each ProcessingNode, which
causes the transfer, using SCP, of all the configuration files stored
in the configFiles attribute and the scripts corresponding to
the launchingScripts attribute to the corresponding physi-
cal node.

• Finally, all the previously transferred scripts are remotely exe-
cuted in their corresponding nodes using SSH. These will launch
the execution of the corresponding components using the con-
figuration data also transferred in the previous step. As said,
the scripts are launched in a specific order, and not arbitrarily
node by node, since the latter could raise some errors due to
dependencies among components that are executed on different
nodes.

A more detailed description of the deployment process implemented
by the tool can be consulted in [14].

The current implementation of the tool and metamodel, available
at git,1 is based on Eclipse/EMF [43], hence, the RAI4 metamodel
has been formalised using Ecore and the RAI4 models used as in-
put of the deployment tool are formalised as .xmi files compliant to

1 https://github.com/istr-uc/RAI4DeploymentTool.
6 
that metamodel, using the Sample Reflective Ecore Model editor for
their edition. The deployment tool has been written using Java and
Maven, so it is packaged as a .jar file. Therefore, it is triggered as a
common jar application, using a RAI4 model as input argument. The
only restrictions that must be met for the deployment tool to work
are that the virtual nodes must be already provisioned and reachable,
platform services, e.g. Kafka or Cassandra, must be previously installed,
i.e. available, in the nodes of the platform, and the Kubernetes cluster
must be configured and running so that the generated scripts can launch
their corresponding instances on them.

4. Metamodel extension for supporting containerisation

The advantages provided by application containerisation led us to
carry out a refactorization of the RAI4 metamodel. The changes were
addressed to allow some platform servers to be deployed on premise
or cloud nodes directly, while others could be deployed by means of
container orchestration services, such as Kubernetes, Docker Swarm or
Nomad.

Consequently, the platform model has been significantly changed, as
it can be observed in Fig. 5. The first change consists in the definition
of the new ProcessingResourceCluster class, which inherits
from PlatformResource. This is an abstract class used to model a
resource with processing capacity, i.e. a resource in which platform ser-
vices or workflows can be executed. More specifically, it models a clus-
ter of this kind of processing resources. Two classes inherit from it: (i)
ProcessingNodeCluster, which redefines the old NodeCluster
class, and it represents a cluster of ProcessingNode elements, either
physical or virtual, and (ii) OrchestrationCluster, which repre-
sents a container-based orchestration cluster, responsible for managing
the creation, scaling, communication and arranging of the container-
based deployed services throughout a hidden set of nodes. Due to the
inner complexity of configuring orchestration services, like Kubernetes,
it is common to use managed versions of these services supported by
cloud providers. In this case, it is not possible knowing in advance the
specific nodes in which the services will run (in fact, their management
is usually discouraged), so these nodes are not included in the model.

As shown in Fig. 6, the OrchestrationCluster abstract class is
currently specialised in three concrete classes, KubernetesCluster,
SwarmCluster and NomadCluster, to give support to the main
current contenarisation technologies. Each one defines the properties
required for configuring the deployment of platform services on them.
For example, both SwarmCluster and NomadCluster define the ip
and port required to access them, while Kubernetes uses a mechanism
based on a file containing its access metadata (referenced by the
kubeConfigPath attribute).

The definition of this new modelling elements is accompanied of
a simple refactorisation of the previous PlatformServer class. As
shown in Fig. 5, it has been renamed as PlatformService, and
its semantics has been redefined so it no longer represents a sin-
gle broker with a ProcessingNode as host but an entire service
with a ProcessingResourceCluster as host. This allows the
deployment of services either on nodes or according to container-based
strategies. Moreover, this strategy reduces the number of modelling
elements needed to create a model of an application, since e.g. to
model a three broker Kafka cluster in the previous version, three
KafkaServer instances were needed, each one hosted in a different
ProcessingNode, while now it can be modelled by a single instance
of KafkaService, hosted in a ProcessingNodeCluster made
up of three nodes. This makes the model closer to reality, the building
and understanding of models easier, and the process of refactoring
simpler.

The rest of applied refactorisations, summarised in Fig. 7, are re-
lated with the configuration and deployment management. We have
renamed the SystemComponent class to a more suitable name, De-
ployableComponent, and changed the way the information re-
quired for the deployment is included in the model. Before, all the

https://github.com/istr-uc/RAI4DeploymentTool


R. Dintén et al. Journal of Industrial Information Integration 41 (2024) 100668 
Fig. 4. Elements of the metamodel supporting the deployment tool.
Fig. 5. Refactorization of the platform model.
Fig. 6. OrchestrationCluster hierarchy.

information was defined in the SystemComponent itself, and hence
inherited by each subclass, but now, since the deployment data depends
strongly on where the component is deployed, node or container-based
orchestrator, a new strategy has been defined. Each Deployable-
Component contains an instance of a new class called Deployment-
Configuration.

As can be seen in Fig. 7, DeploymentConfiguration is specialised in
two classes: OrchestratorDeploymentConf and NodeDeploy-
mentConf to represent the specific configuration of each deployment
mode. NodeDeploymentConf keeps the same old configuration pa-
rameters previously present in the SystemComponent class and aimed
7 
to configure deployment on physical or virtual nodes, whereas Or-
chestratorDeploymentConf defines a new set of parameters and
classes needed to deploy services on containerisation technologies.
The latter gathers the main technology-independent metadata of a
containerised application, which are:

• image and imageTag: represent the registry, repository and
version of the container image to use on the deployment of the
service.

• imagePullPolicy: tells the orchestration server when to pull
or download the image from the repository.

• replicas: sets up the desired number of replicas to be running
on a certain moment.

• command: gathers a command line order to execute after the
creation of the container.

• volumes: models the persistence configuration of the services
deployed.

• ports: models the port mapping between containers and actual
nodes to make services accessible from outside.

• constraints: this feature allows modelling restrictions to en-
sure that applications are deployed only on some specific nodes
(via labels) or on nodes that have a minimum level of specifica-
tions (via resources).

• env: collects environment variables that must exist on the con-
tainers.



R. Dintén et al. Journal of Industrial Information Integration 41 (2024) 100668 
Fig. 7. Extension of RAI4 metamodel to support containerisation.
• restartPolicy: models the behaviour of the applications
when they fail or restart.

Three classes have been defined as extension of Orchestra-
torDeploymentConf, called KubernetesDeploymentConf,
SwarmDeploymentConf and NomadDeploymentConf,2 to gather
some properties specific for the deployment of services on each tech-
nology. As example, these are the properties added for Kubernetes:

• externalIP: external IP of a load balancer available on a cloud
provider. This will be used to redirect traffic from outside the
cluster to the Kubernetes service responsible for managing the
communication of the pods.

• serviceType: type of Kubernetes service used to expose the
services within and outside clusters. It can take the following
values: LoadBalancer and ClusterIP.

Regarding the deployment process, it is important to remember
that the RAI4Deployment tool generates the required information to
configure and execute only those elements that inherit from De-
ployableComponent. The elements that represent the underlying
processing resources, either processing nodes or orchestrators in this
new version, are considered to be available for the deployment, i.e. they
must have been previously configured and started for their use.

These changes make the metamodel be more general and cover a
wider variety of deployment settings, as it will be demonstrated in the
following sections.

5. Use case: IoT application

This section describes a case study to show the applicability of
our proposal. This models a real-time application that analyses and
processes pollution data from sensors installed in a smart city. This

2 Nomad is currently supported only at modelling level, the deployment
tool still needs to be adapted.
8 
data intensive application has been designed following a kappa archi-
tecture [44] where data are collected and published in Kafka, then
processed by Storm and persisted in Cassandra for being queried and,
in a future, used to build prediction models [45,46].

Next, we explain the model of the application defined according to
our metamodel. It must be remembered that the reference architecture
organises the system model in three independent but complementary
sections: the workload of the system, the platform resources available
for execution, and the monitoring metrics. Most of the modelling
elements used in these sections are independent of the deployment
scenario, since they are related to the system design itself. So, the
elaboration of the model starts with the definition of those elements.

For elaborating the workload model, the first step consists in defin-
ing and qualifying the topics that flow in the environment. In this case,
there is a single topic, called PollutionT, which gathers the ingested
pollution data. Secondly, the workflows that produce, consume or
transform the topic instances must be described. The description of
a workflow includes three features: (i) the reactivity, i.e., the topics
that trigger its execution, the topics that it consumes and the ones
generated as result of the execution; (ii) the activity, i.e., the processing
tasks that are executed and the control flow among them and; (iii) the
scheduling, i.e., the scheduler that defines the concurrency and multi-
plicity strategy applied for the execution of the tasks in the available
resources and services. Fig. 8 depicts a schema of the behaviour of the
PollutionProcess workflow, triggered by PollutionT. The first
step of the workflow aims at filtering the data to get rid of out of range
values and classifying them by region and temporal window (10 s).
Next, the result of this step is stored in Cassandra. Afterwards, each
environmental parameter included in the topic is averaged by region
and temporal window, and finally, these mean values are also stored
in Cassandra. In this case, all these functionalities are executed inside
a single task, called mainTask in the model.

Then, as part of the definition of the platform model, we start with
the description of the middleware services used in this case: Kafka
is used as communication service, Zookeeper as distribution service,
Storm as scheduling service and Cassandra as persistence service. So,



R. Dintén et al. Journal of Industrial Information Integration 41 (2024) 100668 
Fig. 8. Behavioural description of the PollutionProcess workflow.
Fig. 9. PlatformService and workflow instances for the pollution use case.
their corresponding instances are added to the model, configured and
related with the corresponding elements already present in this one:
the KafkaService instance, PollutionKafka, is assigned to the
holder attribute of the PollutionT topic, since Kafka is responsible
for its management, whereas the StormService instance, Pollu-
tionStorm, is assigned as scheduler of the PollutionProcess
workflow, since its mainTask must be deployed on Storm. Fig. 9
represents, using a UML object diagram, these instances of the pollution
model and how they are related.

Once the design model of the application has been defined, it is
time to add the deployment-related modelling elements, i.e., defining
the deployment platform. In this case, a hybrid deployment scenario
is considered, where Storm and Cassandra are deployed on physical
edge nodes, while Kafka and Zookeeper are deployed on containers
managed by Kubernetes. As a consequence of this fact, as shown
in Fig. 10, the CassandraService and StormService instances
introduced before are related through their host attribute to their
corresponding ProcessingNodeCluster instances, Cassandra-
Cluster and StormCluster, which must be added to the model,
and which gathers the corresponding PhysicalProcessingNode
instances: the node for Cassandra, CassandraNode, and two nodes
for deploying Storm, NimbusNode and SupervisorNode.

On the other hand, Kafka and Zookeeper are deployed on contain-
ers on the cloud managed by Kubernetes, hence, their corresponding
instances in the model are related to a single KubernetesCluster
instance through their host attribute, as it is depicted in Fig. 11.

To include in the model the rest of information required to support
the configuration and deployment process, an instance of NodeDe-
ploymentConf or KubernetesDeploymentConf must be added
to each PlatformService instance defined in the model, accord-
ing to where it is deployed. The instances added in this example
9 
are represented also in Figs. 10 and 11, showing only part of their
attributes.

This model would be used as input of the tool that automatically
generates the set of configuration files and scripts required to deploy
and launch the complete application in the deployment platform. For
minimising the complexity of the deployment of services in Kubernetes,
the new version of RAI4DeploymentTool relies on Helm [47], a package
manager for Kubernetes, so the set of files generated for deploying
Kafka and Zookeeper follow the rules defined by Helm. To give an idea
of the amount on files required to deploy an application like this, the
number of generated files for this specific deployment model sums a
total of six configuration files and seven scripts, which are generate
and distributed by the tool on the different nodes of the platform:

• CassandraNode receives two Cassandra configuration files and the
script that launches the CassandraService instance, Pollution-
Cass, on it.

• SupervisorNode receives one configuration file and the script
required to launch the PollutionSupervisor instance on it.

• NimbusNode receives one configuration file and three scripts
to launch, respectively, the PollutionNimbus and Pollu-
tionUI Storm instances, and to trigger the PollutionPro-
cess workflow execution on the PollutionNimbus instance.

• LocalNode receives two configuration files and four Helm scripts:
two of them required to launch PollutionKafka and Pollu-
tionZkpr instances on Kubernetes, and two more to remotely
create the PollutionT topic on the Kafka instance managed by
Kubernetes.

To provide some insights into the model definition and deployment
process, Fig. 12 demonstrates how a user would utilise the metamodel
and deployment tool to create this hybrid application. PollutionHybrid-
Kubernetes.xmi file contains the model of the application, which, as



R. Dintén et al. Journal of Industrial Information Integration 41 (2024) 100668 
Fig. 10. Deployment configuration for the Cassandra and Storm services.
Fig. 11. Deployment configuration for the Kakfa and Zookeeper services.
said in Section 3.2 and shown in the top part of Fig. 12, it is edited
using the Ecore Sample Reflective Editor. The figure also shows how
configuration properties are assigned to the elements of the model
through the Properties tab (the figure is focused on the Zookeeper
instance of the model). Once the model is finished, the deployment
tool is triggered. As it was explained in Section 3.2, the application
invokes the deployAndLaunch() method of the root class, Compu-
rationalSystem, whose code is partially shown in the figure. This
method generates the configuration files required by each deployable
component and the scripts required to trigger their execution. As an
example, the generated files for the Zookeeper instance are shown in
the bottom of the figure. The deployAndLaunch() method itself
sends these files, via scp, to their corresponding hosts and executes the
scripts, via ssh, to trigger the execution of the application.

5.1. Deployment variations of IoT model

As an evidence of the reutilisation capacity that is provided by
the proposed metamodel and the benefits of using the associated de-
ployment tool to automate the whole process, we compare different
deployment scenarios for this same case study. All of them share the
same functionality, i.e. the same design shown in Fig. 9, but each one
differs from the others in the place of deployment, on-premise or cloud,
the mode of deployment, physical or virtualised, or the number of
nodes used per service. The considered scenarios are the following:
10 
• The first scenario (base or reference case) is the simplest, with all
the PlatformService instances (one Zookeeper, one Kafka,
one Cassandra, one Storm Nimbus and one Storm supervisor)
deployed on a single physical node.

• The second one is a distributed and scaled version of the base
scenario, where each PlatformService instance is deployed
on its own physical node, and besides, some services (Kafka and
Zookeeper) are scaled up to three nodes.

• The third scenario is a distributed version of the base scenario
but deployed on a hybrid environment, where some services
(Storm and Cassandra) are deployed on physical processing nodes
whereas Kafka and Zookeeper are deployed on AWS EC2 virtual
machines.

• The last scenario is the hybrid deployment explained in the
previous section, using Kubernetes to containerise Kafka and
Zookeeper, while Storm and Cassandra remain deployed on phys-
ical nodes.

The number of instances declared in the model and the number of
files generated by the tool in order to deploy each scenario are shown
in Table 2 whereas the XMI files corresponding to them are available
in git.3

Next we describe the process to go through all the different scenar-
ios just making some tweaks to the models:

3 https://github.com/istr-uc/RAI4DeploymentTool.

https://github.com/istr-uc/RAI4DeploymentTool


R. Dintén et al. Journal of Industrial Information Integration 41 (2024) 100668 
Fig. 12. Model definition, file generation and deployment process for the Zookeeper service from the pollution case study.
• Creating the first model requires defining the following instances:
one ComputationalSystem, one PhysicalProcessingN-
ode and its corresponding ProcessingNodeCluster, one
instance for each PlatformService (which makes a total
of six, including the Storm nimbus and worker), two for the
workflow (Workflow and Task) and one WorkloadStream-
Data for the topic. After describing those instances, we add the
corresponding NodeDeploymentConf instance to each Plat-
formService and to the Workflow, and we are ready to
deploy the first scenario using our deployment tool.

• To create the model for the second scenario, we add to the first
model the additional PhysicalProcessingNode instances
with their corresponding ProcessingNodeCluster instances
and change the host reference of each PlatformService to
refer to those clusters (the clusters for Storm and Cassandra will
have only one node, while the ones for Kafka and Zookeeper will
contain three). These changes, that should not take more than five
minutes to a user familiarised with the metamodel, allow us to
configure another deployment easily and quickly.

• The third model can be obtained from the second one, only
by changing the PhysicalProcessingNode instances corre-
sponding to Kafka and Zookeeper to VirtuaProcessingNode
instances and removing the extra nodes used to scale them before,
without requiring any other change in the platform services.

• Finally, since the last deployment scenario is a little more complex
than the previous ones, it is also the most time consuming but
we can say that for a user familiarised with the metamodel it
can take around ten minutes. In this case, the model of the
11 
second scenario would be taken as starting point. We would need
to define a new KubernetesCluster instance and make the
KakfaService and ZookeeperService instances refer to
it as their host. This would require to delete from the model
the ProcessingNodeCluster instances used before to deploy
Kafka and Zookeeper. Besides, the new KubernetesDeploy-
mentConf instances should be added to the model to configure
the deployment of these two platform services on Kubernetes.
If another orchestration technology would be used, Nomad or
Docker Swarm, only the KubernetesCluster and Kuber-
netesDeploymentConf instances should be replaced by the
ones corresponding to the chosen technology.

As we can observe, the greater the complexity of the deployment,
either by increasing the number of nodes or by virtualising the services,
the number of instances in the model and the configuration/script
files to write and send to the respective nodes grow slightly but the
consumed development time is very low. Even more, thanks to the use
of RAI4DeploymentTool, the process of generating and sending these
files and executing the services on their corresponding nodes is almost
insignificant compared with doing it by hand, which saves time and
money to IT teams when reconfiguring the platform. Furthermore, the
use of this tool avoids the edition of configuration files and the launch-
ing of each service manually, which reduces errors in the assignment of
values to configuration properties as well as the ordered launching of
services. Therefore, we consider that this tool is very useful in the test
stage of the application, when issues such as latency, throughput and
response time of the system must be measured in different scenarios



R. Dintén et al. Journal of Industrial Information Integration 41 (2024) 100668 
Table 2
Evaluation/model complexity of the different deployment scenarios.

No.
Scenario

Description No. in-
stances

No.
generated
files

1 Single node on premise 21 14
2 Distributed and scaled cluster on premise 34 25
3 Hybrid cluster (on premise and cloud) 30 15
4 Hybrid cluster (on premise and containers) 27 16

in order to choose the best setting for meeting the requirements of the
application.

6. Discussion

As a result of the experience gained in the development and de-
ployment of data-intensive applications, we can highlight the advan-
tages and open issues of our model-based reference architecture and
deployment tool.

Firstly, it provides a systematic method for dealing with the design
and deployment of these applications. The metamodel allows designers
to address their conception and development in two phases: first,
to carry out a high-level design where the services, data streams,
workflows and metrics that constitute the applications are described,
focusing their efforts on reasoning about the concrete problem to
solve being aware of the rest of applications in the environment, in
particular those with which they must interoperate; and, subsequently,
to focus on a second stage dedicated to the selection and evaluation of
technologies and development of artifacts, for which different imple-
mentation options are offered, also specifying the essential parameters
for their configuration. Moreover, the extension incorporated in this
work on the hybridisation and containerisation of applications makes
the metamodel even more versatile and powerful, as it can cover all cur-
rent deployment alternatives in distributed and scalable environments.
This feature is absolutely essential for the proposal to be used by the
productive sector.

As the first and second stages are decoupled, once the first one
is finished, different teamworks can be in charge of developing the
software artifacts that implement the defined processing tasks while
system administrator experts determine the deployment configuration
and describe it in the model, thus being documented.

Thanks to the deployment tool provided, the modelled system can
be deployed and running within minutes. Moreover, administrators
can have different pre-designed configurations, so that before final de-
ployment, they can run performance benchmarks, compare and choose
the most satisfactory configuration. This task, which is tedious if done
manually, can be automated with our strategy.

Although dealing with the complexity of the first design is the main
contribution of the metamodel, the ease of integration of other applica-
tions in the platform should not be overlooked, i.e., incorporating new
topics and workflows, as well as monitoring metrics, among others.
By reasoning about an already created model, the designer takes in
mind the rest of the processes that coexist in the digital platform, thus
favouring the sharing of resources and interoperability and avoiding
inopportune collisions.

Nevertheless, our tool still has aspects for improvement, some of
them already in development phase. First, it would be very useful for
novice administrators that the tool could offer suitable configurations
for expected workloads based on the historic log of the platform.
That means, monitoring KPIs were used as input of a predictor that
specifying a load state of platform would suggest a configuration per
each service. Second, the interface for model definition and tool usage
could be more user-friendly. Therefore, we are currently working on
a new version of the environment, built as a stand-alone Eclipse Rich
Application, that integrates the deployment tool as an automatic model-
to-text transformation, and a graphical editor for the models. This will
12 
be available for the second semester of 2024. Third, support for Nomad
is being implemented in the deployment tool due to its increasing use
for containering simple applications, specially in edge nodes. Finally,
as a consequence of this upgrade of the RA, another issue to solve is
the migration of models described with the previous version of RAI4.0.

Another criticism that could be made is the eternal trade-off be-
tween designing a generic tool or a specific one, i.e. the need of
choosing between having the best configuration for a specific technol-
ogy versus the ease of being able to decide freely. We have bridged
this trade-off by allowing specialisation of the platform services ac-
cording to their underlying technologies. Another concern is that the
complexity of our RA grows with the addition of new services, such
as the upcoming ones related to automating the generation, publishing
and updating of machine learning models (MLOps) [48], leading to an
increasing learning curve for its use. Hence, we are evaluating how
to mitigate this effect. One possibility could involve outlining steps
in the Continuous Model-driven Engineering (CMDE) concept, where
the target of Continuous Delivery is an MDE artifact created through
collaboration within an MDE ecosystem, as proposed by Garcia and
Cabot [49]. In this context, DevOps principles evolve into ModDevOps,
supporting a seamless continuum of models from design to runtime
and vice versa, that means, with data gathered from the environ-
ment to drive dynamic reconfiguration at runtime or finding improved
designs [50].

Finally, we have no real evidence of companies using our model di-
rectly, as the experiments have been developed by the authors through
collaboration agreements in which the company receives the required
implemented solution, generated according to our strategy.

7. Conclusions and future lines

Few years ago, cloud computing was the solution for massive data
management and computing. However, the real-time constrains and the
specific requirements of cyber–physical systems present in industrial
environments have led to design and deploy data-intensive applications
that must be easily reconfigured so that the services and resources
used meet the functional and non-functional requirements of each
application. Frequently, latency and throughput are restricted to certain
limits, making it necessary to reduce delays and consequently deploy
processing tasks close to where the data is produced (edge computing).
In addition, it is highly desirable that tasks and services are isolated and
containerised in order to make their deployment easier, more flexible
and free from incompatibilities. These aspects led us to extend our RAI4
metamodel to support containerised and hybrid deployment settings.

RAI4 is a model-based tool that helps software developers and IT
teams to design and deploy modern data intensive applications on
big data architectures. This is defined at two levels: a technology-
independent, extensible and reusable model and another specialised
one that collects the most popular cutting-edge technologies. This
involves the following advantages: on the one hand, this metamodel
allows practitioners to design their applications bearing in mind all
the essential elements in data-intensive applications and on the other
hand, to configure different deployments and to measure their per-
formance by means of the monitoring metrics implemented in their
own solution. This tool can therefore be classified in the group of
DevOps technologies which help teams streamline their development
and delivery processes, reduce errors and delays, and increase their
ability to respond to changing requirements and business needs [12].

In our experience, by using simple models to describe the design
and the deployment of complex applications and by automating the
deployment starting from such models, we have achieved considerable
gains both in terms of reasoning on and documenting our digital
platform, as well as in terms of time saved when deploying and re-
deploying with different configurations. Likewise, the time required for
the integration of new applications or services is reduced since parts of
the model can be reused.



R. Dintén et al.

t

Journal of Industrial Information Integration 41 (2024) 100668 
Ongoing work primarily focuses on enhancing the deployment tool
by supporting new technologies, such as Nomad, and improving us-
ability with a graphical editor for deployment models. Additionally,
a model-driven approach is being implemented, enabling files and
scripts generation through a model-to-text transformation. Likewise, we
continue designing new case studies, for instance, predictive mainte-
nance [51] or smart houses [52].

Disclaimer

Finally, we would point out that the software identified in this
paper is used in order to check the completeness and capability of
implementation of our reference architecture in different use cases.
This does not imply their recommendation or that these products are
necessarily the best available for that purpose.

CRediT authorship contribution statement

Ricardo Dintén: Writing – review & editing, Software, Investiga-
ion, Conceptualization. Patricia López Martínez: Writing – review &

editing, Visualization, Software, Methodology. Marta Zorrilla: Writing
– review & editing, Writing – original draft, Supervision.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared to
influence the work reported in this paper.

Data availability

Code publicly available at: https://github.com/istr-uc/RAI4Deploy
mentTool.

Acknowledgements

This work was partially supported by MCIN/ AEI /10.13039/5011
00011033/ FEDER ‘‘Una manera de hacer Europa’’ under grant PID
2021-124502OB-C42 (PRESECREL) and the predoctoral program ‘‘Con-
cepción Arenal del Programa de Personal Investigador en formación
Predoctoral’’ funded by Universidad de Cantabria and Cantabria’s Gov-
ernment (BOC 18-10-2021).

References

[1] R.Y. Zhong, X. Xu, E. Klotz, S.T. Newman, Intelligent manufacturing in
the context of industry 4.0: a review, Engineering (ISSN: 2095-8099) 3 (5)
(2017) 616–630, http://dx.doi.org/10.1016/J.ENG.2017.05.015, https://www.
sciencedirect.com/science/article/pii/S2095809917307130.

[2] S. Wang, J. Wan, D. Li, C. Zhang, Implementing smart factory of industrie 4.0:
An outlook, Int. J. Distrib. Sens. Netw. 12 (1) (2016) http://dx.doi.org/10.1155/
2016/3159805.

[3] N. Bicocchi, G. Cabri, F. Mandreoli, M. Mecella, Dynamic digital factories for
agile supply chains: An architectural approach, J. Ind. Inf. Integr. 15 (2019)
111–121, http://dx.doi.org/10.1016/j.jii.2019.02.001.

[4] R. Heidel, M. Hoffmeister, M. Hankel, U. Döbrich, The Reference Ar-
chitecture Model RAMI 4.0 and the Industrie 4.0 Component, VDE
Verlag, 2019, URL https://www.vde-verlag.de/buecher/624990/the-reference-
architecture-model-rami-4-0-and-the-industrie-4-0-component.html.

[5] Industrial Internet Consortium, Industrial internet reference architecture v1.9,
2019.

[6] Fraile, Sanchis, Poler, Ortiz, Reference models for digital manufacturing
platforms, Appl. Sci. 9 (20) (2019) http://dx.doi.org/10.3390/app9204433.

[7] M. Hermann, T. Pentek, B. Otto, Design principles for industrie 4.0 scenarios,
in: 2016 49th Hawaii International Conference on System Sciences, HICSS, 2016,
pp. 3928–3937, http://dx.doi.org/10.1109/HICSS.2016.488.

[8] C.E. Belman-López, J.A. Jiménez-García, S. Hernández-González, Análisis exhaus-
tivo de los principios de diseño en el contexto de industria 4.0, Rev. Iberoam.
Autom. Inform. Ind. 17 (4) (2020) 432–447, http://dx.doi.org/10.4995/riai.
2020.12579.
13 
[9] R. Tolosana-Calasanz, J. Ángel Bañares, J.-M. Colom, Model-driven development
of data intensive applications over cloud resources, Future Gener. Comput. Syst.
87 (2018) 888–909, http://dx.doi.org/10.1016/j.future.2017.12.046.

[10] C. Pahl, A. Brogi, J. Soldani, P. Jamshidi, Cloud container technologies: A
state-of-the-art review, IEEE Trans. Cloud Comput. 7 (3) (2019) 677–692, http:
//dx.doi.org/10.1109/TCC.2017.2702586.

[11] M. De Donno, K. Tange, N. Dragoni, Foundations and evolution of mod-
ern computing paradigms: Cloud, IoT, edge, and fog, IEEE Access 7 (2019)
150936–150948, http://dx.doi.org/10.1109/ACCESS.2019.2947652.

[12] A.V. Jha, R. Teri, S. Verma, S. Tarafder, W. Bhowmik, S.K. Mishra, B. Ap-
pasani, A. Srinivasulu, N. Philibert, From theory to practice: Understanding
DevOps culture and mindset, Cogent Eng. 10 (1) (2023) 2251758, http:
//dx.doi.org/10.1080/23311916.2023.2251758, arXiv:https://doi.org/10.1080/
23311916.2023.2251758.

[13] P. Ataei, A. Litchfield, The state of big data reference architectures: A systematic
literature review, IEEE Access 10 (2022) 113789–113807, http://dx.doi.org/10.
1109/ACCESS.2022.3217557.

[14] P.L. Martínez, R. Dintén, J.M. Drake, M.E. Zorrilla, A big data-centric architecture
metamodel for industry 4.0, Future Gener. Comput. Syst. 125 (2021) 263–284,
http://dx.doi.org/10.1016/j.future.2021.06.020.

[15] R. Qasha, Z. Wen, J. Cała, P. Watson, Sharing and performance optimization
of reproducible workflows in the cloud, Future Gener. Comput. Syst. 98 (2019)
487–502, http://dx.doi.org/10.1016/j.future.2019.03.045.

[16] D. Oppenheimer, A. Ganapathi, D.A. Patterson, Why do internet services fail, and
what can be done about it? in: Proceedings of the 4th Conference on USENIX
Symposium on Internet Technologies and Systems - Volume 4, USITS ’03, USENIX
Association, USA, 2003, p. 1.

[17] D. Corral-Plaza, I. Medina-Bulo, G. Ortiz, J. Boubeta-Puig, A stream processing
architecture for heterogeneous data sources in the Internet of Things, Com-
put. Stand. Interfaces 70 (2020) 103426, http://dx.doi.org/10.1016/j.csi.2020.
103426.

[18] F. Carcillo, A. Dal Pozzolo, Y.-A. Le Borgne, O. Caelen, Y. Mazzer, G. Bontempi,
SCARFF: A scalable framework for streaming credit card fraud detection with
spark, Inf. Fusion 41 (2018) 182–194, http://dx.doi.org/10.1016/j.inffus.2017.
09.005.

[19] R. Sahal, J.G. Breslin, M.I. Ali, Big data and stream processing platforms for
industry 4.0 requirements mapping for a predictive maintenance use case, J.
Manuf. Syst. 54 (2020) 138–151, http://dx.doi.org/10.1016/j.jmsy.2019.11.004.

[20] A. Salis, A. Marguglio, G. De Luca, S. Razzetti, W. Quadrini, S. Gusmeroli,
An edge-cloud based reference architecture to support cognitive solutions in
process industry, Procedia Comput. Sci. 217 (2023) 20–30, http://dx.doi.org/10.
1016/j.procs.2022.12.198, URL https://www.sciencedirect.com/science/article/
pii/S1877050922022761, 4th International Conference on Industry 4.0 and
Smart Manufacturing.

[21] P. Ataei, A. Litchfield, NeoMycelia: A software reference architecturefor big data
systems, in: 2021 28th Asia-Pacific Software Engineering Conference, APSEC,
2021, pp. 452–462, http://dx.doi.org/10.1109/APSEC53868.2021.00052.

[22] S. Nadal, V. Herrero, O. Romero, A. Abelló, X. Franch, S. Vansum-
meren, D. Valerio, A software reference architecture for semantic-aware big
data systems, Inf. Softw. Technol. 90 (2017) 75–92, http://dx.doi.org/10.
1016/j.infsof.2017.06.001, URL https://www.sciencedirect.com/science/article/
pii/S0950584917304287.

[23] A. Margara, G. Cugola, N. Felicioni, S. Cilloni, A model and survey of distributed
data-intensive systems, 2022, http://dx.doi.org/10.48550/ARXIV.2203.10836.

[24] D. Pérez-Palacín, J. Merseguer, J.I. Requeno, M. Guerriero, E.D. Nitto, D.A.
Tamburri, A UML profile for the design, quality assessment and deployment
of data-intensive applications, Softw. Syst. Model. 18 (6) (2019) 3577–3614,
http://dx.doi.org/10.1007/s10270-019-00730-3.

[25] C. Blanco, D.G. Rosado, Ángel Jesús Varela-Vaca, M.T. Gómez-López, E.
Fernández-Medina, Onto-CARMEN: Ontology-driven approach for cyber–physical
system security requirements meta-modelling and reasoning, Internet Things 24
(2023) 100989, http://dx.doi.org/10.1016/j.iot.2023.100989, URL https://www.
sciencedirect.com/science/article/pii/S2542660523003128.

[26] O. Bentaleb, A.S.Z. Belloum, A. Sebaa, A. El-Maouhab, Containerization tech-
nologies: taxonomies, applications and challenges, J. Supercomput. 78 (1) (2022)
1144–1181, http://dx.doi.org/10.1007/s11227-021-03914-1.

[27] M.U. Ilyas, M. Ahmad, S. Saleem, Internet-of-things-infrastructure-as-a-service:
The democratization of access to public internet-of-things infrastructure, Int.
J. Commun. Syst. 33 (16) (2020) e4562, http://dx.doi.org/10.1002/dac.
4562, arXiv:https://onlinelibrary.wiley.com/doi/pdf/10.1002/dac.4562, e4562
dac.4562.

[28] Q. Zhang, L. Liu, C. Pu, Q. Dou, L. Wu, W. Zhou, A comparative study of
containers and virtual machines in big data environment, 2018, arXiv:1807.
01842.

[29] D. Merkel, Docker: Lightweight linux containers for consistent development and
deployment, Linux J. 2014 (239) (2014).

[30] I. Diamanti, Container adoption benchmark survey, report, 2018.
[31] A. Polvi, Coreos is building a container runtime, rkt, 2014, URL https://coreos.

com/blog/rocket/. (Accessed 14 May 2023).

https://github.com/istr-uc/RAI4DeploymentTool
https://github.com/istr-uc/RAI4DeploymentTool
https://github.com/istr-uc/RAI4DeploymentTool
https://github.com/istr-uc/RAI4DeploymentTool
https://github.com/istr-uc/RAI4DeploymentTool
https://github.com/istr-uc/RAI4DeploymentTool
https://github.com/istr-uc/RAI4DeploymentTool
https://github.com/istr-uc/RAI4DeploymentTool
https://github.com/istr-uc/RAI4DeploymentTool
https://github.com/istr-uc/RAI4DeploymentTool
https://github.com/istr-uc/RAI4DeploymentTool
https://github.com/istr-uc/RAI4DeploymentTool
https://github.com/istr-uc/RAI4DeploymentTool
https://github.com/istr-uc/RAI4DeploymentTool
https://github.com/istr-uc/RAI4DeploymentTool
https://github.com/istr-uc/RAI4DeploymentTool
https://github.com/istr-uc/RAI4DeploymentTool
https://github.com/istr-uc/RAI4DeploymentTool
https://github.com/istr-uc/RAI4DeploymentTool
https://github.com/istr-uc/RAI4DeploymentTool
https://github.com/istr-uc/RAI4DeploymentTool
https://github.com/istr-uc/RAI4DeploymentTool
https://github.com/istr-uc/RAI4DeploymentTool
https://github.com/istr-uc/RAI4DeploymentTool
https://github.com/istr-uc/RAI4DeploymentTool
https://github.com/istr-uc/RAI4DeploymentTool
https://github.com/istr-uc/RAI4DeploymentTool
https://github.com/istr-uc/RAI4DeploymentTool
https://github.com/istr-uc/RAI4DeploymentTool
https://github.com/istr-uc/RAI4DeploymentTool
https://github.com/istr-uc/RAI4DeploymentTool
https://github.com/istr-uc/RAI4DeploymentTool
https://github.com/istr-uc/RAI4DeploymentTool
https://github.com/istr-uc/RAI4DeploymentTool
https://github.com/istr-uc/RAI4DeploymentTool
https://github.com/istr-uc/RAI4DeploymentTool
https://github.com/istr-uc/RAI4DeploymentTool
https://github.com/istr-uc/RAI4DeploymentTool
https://github.com/istr-uc/RAI4DeploymentTool
https://github.com/istr-uc/RAI4DeploymentTool
https://github.com/istr-uc/RAI4DeploymentTool
https://github.com/istr-uc/RAI4DeploymentTool
https://github.com/istr-uc/RAI4DeploymentTool
https://github.com/istr-uc/RAI4DeploymentTool
https://github.com/istr-uc/RAI4DeploymentTool
http://dx.doi.org/10.1016/J.ENG.2017.05.015
https://www.sciencedirect.com/science/article/pii/S2095809917307130
https://www.sciencedirect.com/science/article/pii/S2095809917307130
https://www.sciencedirect.com/science/article/pii/S2095809917307130
http://dx.doi.org/10.1155/2016/3159805
http://dx.doi.org/10.1155/2016/3159805
http://dx.doi.org/10.1155/2016/3159805
http://dx.doi.org/10.1016/j.jii.2019.02.001
https://www.vde-verlag.de/buecher/624990/the-reference-architecture-model-rami-4-0-and-the-industrie-4-0-component.html
https://www.vde-verlag.de/buecher/624990/the-reference-architecture-model-rami-4-0-and-the-industrie-4-0-component.html
https://www.vde-verlag.de/buecher/624990/the-reference-architecture-model-rami-4-0-and-the-industrie-4-0-component.html
http://refhub.elsevier.com/S2452-414X(24)00112-2/sb5
http://refhub.elsevier.com/S2452-414X(24)00112-2/sb5
http://refhub.elsevier.com/S2452-414X(24)00112-2/sb5
http://dx.doi.org/10.3390/app9204433
http://dx.doi.org/10.1109/HICSS.2016.488
http://dx.doi.org/10.4995/riai.2020.12579
http://dx.doi.org/10.4995/riai.2020.12579
http://dx.doi.org/10.4995/riai.2020.12579
http://dx.doi.org/10.1016/j.future.2017.12.046
http://dx.doi.org/10.1109/TCC.2017.2702586
http://dx.doi.org/10.1109/TCC.2017.2702586
http://dx.doi.org/10.1109/TCC.2017.2702586
http://dx.doi.org/10.1109/ACCESS.2019.2947652
http://dx.doi.org/10.1080/23311916.2023.2251758
http://dx.doi.org/10.1080/23311916.2023.2251758
http://dx.doi.org/10.1080/23311916.2023.2251758
https://doi.org/10.1080/23311916.2023.2251758
https://doi.org/10.1080/23311916.2023.2251758
https://doi.org/10.1080/23311916.2023.2251758
http://dx.doi.org/10.1109/ACCESS.2022.3217557
http://dx.doi.org/10.1109/ACCESS.2022.3217557
http://dx.doi.org/10.1109/ACCESS.2022.3217557
http://dx.doi.org/10.1016/j.future.2021.06.020
http://dx.doi.org/10.1016/j.future.2019.03.045
http://refhub.elsevier.com/S2452-414X(24)00112-2/sb16
http://refhub.elsevier.com/S2452-414X(24)00112-2/sb16
http://refhub.elsevier.com/S2452-414X(24)00112-2/sb16
http://refhub.elsevier.com/S2452-414X(24)00112-2/sb16
http://refhub.elsevier.com/S2452-414X(24)00112-2/sb16
http://refhub.elsevier.com/S2452-414X(24)00112-2/sb16
http://refhub.elsevier.com/S2452-414X(24)00112-2/sb16
http://dx.doi.org/10.1016/j.csi.2020.103426
http://dx.doi.org/10.1016/j.csi.2020.103426
http://dx.doi.org/10.1016/j.csi.2020.103426
http://dx.doi.org/10.1016/j.inffus.2017.09.005
http://dx.doi.org/10.1016/j.inffus.2017.09.005
http://dx.doi.org/10.1016/j.inffus.2017.09.005
http://dx.doi.org/10.1016/j.jmsy.2019.11.004
http://dx.doi.org/10.1016/j.procs.2022.12.198
http://dx.doi.org/10.1016/j.procs.2022.12.198
http://dx.doi.org/10.1016/j.procs.2022.12.198
https://www.sciencedirect.com/science/article/pii/S1877050922022761
https://www.sciencedirect.com/science/article/pii/S1877050922022761
https://www.sciencedirect.com/science/article/pii/S1877050922022761
http://dx.doi.org/10.1109/APSEC53868.2021.00052
http://dx.doi.org/10.1016/j.infsof.2017.06.001
http://dx.doi.org/10.1016/j.infsof.2017.06.001
http://dx.doi.org/10.1016/j.infsof.2017.06.001
https://www.sciencedirect.com/science/article/pii/S0950584917304287
https://www.sciencedirect.com/science/article/pii/S0950584917304287
https://www.sciencedirect.com/science/article/pii/S0950584917304287
http://dx.doi.org/10.48550/ARXIV.2203.10836
http://dx.doi.org/10.1007/s10270-019-00730-3
http://dx.doi.org/10.1016/j.iot.2023.100989
https://www.sciencedirect.com/science/article/pii/S2542660523003128
https://www.sciencedirect.com/science/article/pii/S2542660523003128
https://www.sciencedirect.com/science/article/pii/S2542660523003128
http://dx.doi.org/10.1007/s11227-021-03914-1
http://dx.doi.org/10.1002/dac.4562
http://dx.doi.org/10.1002/dac.4562
http://dx.doi.org/10.1002/dac.4562
https://onlinelibrary.wiley.com/doi/pdf/10.1002/dac.4562
http://arxiv.org/abs/1807.01842
http://arxiv.org/abs/1807.01842
http://arxiv.org/abs/1807.01842
http://refhub.elsevier.com/S2452-414X(24)00112-2/sb29
http://refhub.elsevier.com/S2452-414X(24)00112-2/sb29
http://refhub.elsevier.com/S2452-414X(24)00112-2/sb29
http://refhub.elsevier.com/S2452-414X(24)00112-2/sb30
https://coreos.com/blog/rocket/
https://coreos.com/blog/rocket/
https://coreos.com/blog/rocket/


R. Dintén et al. Journal of Industrial Information Integration 41 (2024) 100668 
[32] Canonical Ltd, Linux containers - LXC - documentation, 2023, URL https://
linuxcontainers.org/lxc/documentation/. (Accessed 14 May 2023).

[33] Q. Zhang, L. Liu, C. Pu, Q. Dou, L. Wu, W. Zhou, A comparative study of
containers and virtual machines in big data environment, 2018, CoRR abs/1807.
01842, arXiv:1807.01842, URL http://arxiv.org/abs/1807.01842.

[34] I. Jaju, Maximizing DevOps Scalability in Complex Software Systems: Maximiz-
ing DevOps Scalability in Complex Software Systems (Master’s thesis), Upsala
Universitet, 2023.

[35] K. Hightower, B. Burns, J. Beda, Kubernetes: Up and Running Dive into the
Future of Infrastructure, first ed., O’Reilly Media, Inc., 2017.

[36] F. Soppelsa, C. Kaewkasi, Native Docker Clustering with Swarm, Packt
Publishing, 2017.

[37] HashiCorp, Nomad by HashiCorp, 2022, URL https://www.nomadproject.io/.
[38] M. Straesser, J. Mathiasch, A. Bauer, S. Kounev, A systematic approach for

benchmarking of container orchestration frameworks, in: Proceedings of the
2023 ACM/SPEC International Conference on Performance Engineering, ICPE ’23,
Association for Computing Machinery, New York, NY, USA, 2023, pp. 187–198,
URL https://doi.org/10.1145/3578244.3583726.

[39] M. Wurster, U. Breitenbücher, M. Falkenthal, et al., The essential deployment
metamodel: a systematic review of deployment automation technologies, SICS
Softw.-Inensiv. Cyber-Phys. Syst. 35 (2020) 63–75, http://dx.doi.org/10.1007/
s00450-019-00412-x.

[40] F. Paraiso, S. Challita, Y. Al-Dhuraibi, P. Merle, Model-driven management
of docker containers, in: 2016 IEEE 9th International Conference on Cloud
Computing, CLOUD, 2016, pp. 718–725.

[41] N. Petrovic, M. Tosic, SMADA-Fog: Semantic model driven approach to de-
ployment and adaptivity in fog computing, Simul. Model. Pract. Theory 101
(2020) 102033, http://dx.doi.org/10.1016/j.simpat.2019.102033, Modeling and
Simulation of Fog Computing.

[42] M. Gusev, What makes dew computing more than edge computing for internet
of things, in: 2021 IEEE 45th Annual Computers, Software, and Applica-
tions Conference, COMPSAC, 2021, pp. 1795–1800, http://dx.doi.org/10.1109/
COMPSAC51774.2021.00269.

[43] D. Steinberg, F. Budinsky, M. Paternostro, M. E., EMF: Eclipse Modeling
Framework 2.0, second ed., Addison-Wesley Professional, 2009.

[44] W. Wingerath, F. Gessert, S. Friedrich, N. Ritter, Real-time stream processing for
big data, Inform. Technol. 58 (4) (2016) 186–194, http://dx.doi.org/10.1515/
itit-2016-0002.
14 
[45] M.R. Delavar, A. Gholami, G.R. Shiran, Y. Rashidi, G.R. Nakhaeizadeh, K. Fedra,
S.H. Afshar, A novel method for improving air pollution prediction based on
machine learning approaches: A case study applied to the capital city of Tehran,
ISPRS Int. J. Geo Inf. 8 (2) (2019) 99, http://dx.doi.org/10.3390/ijgi8020099.

[46] G. Díaz, H. Macià, V. Valero, et al., An intelligent transportation system to control
air pollution and road traffic in cities integrating CEP and colored Petri nets,
Neural Comput. & Appl. 32 (2020) 405–426, http://dx.doi.org/10.1007/s00521-
018-3850-1.

[47] Helm Authors and The Linux Foundation, Helm, 2024, URL https://helm.sh/.
[48] O. Debauche, J.B. Nkamla Penka, M. Hani, A. Guttadauria, R. Ait Abdelouahid,

K. Gasmi, O. Ben Hardouz, F. Lebeau, J. Bindelle, H. Soyeurt, N. Gengler, P.
Manneback, M. Benjelloun, C. Bertozzi, Towards a unified architecture powering
scalable learning models with IoT data streams, blockchain, and open data,
Information 14 (6) (2023) http://dx.doi.org/10.3390/info14060345, URL https:
//www.mdpi.com/2078-2489/14/6/345.

[49] J. Garcia, J. Cabot, Stepwise adoption of continuous delivery in model-driven
engineering, in: J.-M. Bruel, M. Mazzara, B. Meyer (Eds.), Software Engineering
Aspects of Continuous Development and New Paradigms of Software Production
and Deployment, Springer International Publishing, Cham, 2019, pp. 19–32.

[50] B. Combemale, M. Wimmer, Towards a model-based DevOps for cyber-physical
systems, in: J.-M. Bruel, M. Mazzara, B. Meyer (Eds.), Software Engineering
Aspects of Continuous Development and New Paradigms of Software Production
and Deployment, Springer International Publishing, Cham, 2020, pp. 84–94.

[51] R.D. Herrero, M.E. Zorrilla, An I4.0 data intensive platform suitable for the
deployment of machine learning models: a predictive maintenance service case
study, in: F. Longo, M. Affenzeller, A. Padovano (Eds.), Proceedings of the 3rd
International Conference on Industry 4.0 and Smart Manufacturing (ISM 2022),
Virtual Event / Upper Austria University of Applied Sciences - Hagenberg Campus
- Linz, Austria, 17-19 November 2021, in: Procedia Computer Science, vol.
200, Elsevier, 2021, pp. 1014–1023, http://dx.doi.org/10.1016/J.PROCS.2022.
01.300.

[52] M.E. Zorrilla, Á. Ibrain, Bernard, an energy intelligent system for raising
residential users awareness, Comput. Ind. Eng. 135 (2019) 492–499, http://dx.
doi.org/10.1016/j.cie.2019.06.040.

https://linuxcontainers.org/lxc/documentation/
https://linuxcontainers.org/lxc/documentation/
https://linuxcontainers.org/lxc/documentation/
http://arxiv.org/abs/1807.01842
http://arxiv.org/abs/1807.01842
http://arxiv.org/abs/1807.01842
http://arxiv.org/abs/1807.01842
http://arxiv.org/abs/1807.01842
http://refhub.elsevier.com/S2452-414X(24)00112-2/sb34
http://refhub.elsevier.com/S2452-414X(24)00112-2/sb34
http://refhub.elsevier.com/S2452-414X(24)00112-2/sb34
http://refhub.elsevier.com/S2452-414X(24)00112-2/sb34
http://refhub.elsevier.com/S2452-414X(24)00112-2/sb34
http://refhub.elsevier.com/S2452-414X(24)00112-2/sb35
http://refhub.elsevier.com/S2452-414X(24)00112-2/sb35
http://refhub.elsevier.com/S2452-414X(24)00112-2/sb35
http://refhub.elsevier.com/S2452-414X(24)00112-2/sb36
http://refhub.elsevier.com/S2452-414X(24)00112-2/sb36
http://refhub.elsevier.com/S2452-414X(24)00112-2/sb36
https://www.nomadproject.io/
https://doi.org/10.1145/3578244.3583726
http://dx.doi.org/10.1007/s00450-019-00412-x
http://dx.doi.org/10.1007/s00450-019-00412-x
http://dx.doi.org/10.1007/s00450-019-00412-x
http://refhub.elsevier.com/S2452-414X(24)00112-2/sb40
http://refhub.elsevier.com/S2452-414X(24)00112-2/sb40
http://refhub.elsevier.com/S2452-414X(24)00112-2/sb40
http://refhub.elsevier.com/S2452-414X(24)00112-2/sb40
http://refhub.elsevier.com/S2452-414X(24)00112-2/sb40
http://dx.doi.org/10.1016/j.simpat.2019.102033
http://dx.doi.org/10.1109/COMPSAC51774.2021.00269
http://dx.doi.org/10.1109/COMPSAC51774.2021.00269
http://dx.doi.org/10.1109/COMPSAC51774.2021.00269
http://refhub.elsevier.com/S2452-414X(24)00112-2/sb43
http://refhub.elsevier.com/S2452-414X(24)00112-2/sb43
http://refhub.elsevier.com/S2452-414X(24)00112-2/sb43
http://dx.doi.org/10.1515/itit-2016-0002
http://dx.doi.org/10.1515/itit-2016-0002
http://dx.doi.org/10.1515/itit-2016-0002
http://dx.doi.org/10.3390/ijgi8020099
http://dx.doi.org/10.1007/s00521-018-3850-1
http://dx.doi.org/10.1007/s00521-018-3850-1
http://dx.doi.org/10.1007/s00521-018-3850-1
https://helm.sh/
http://dx.doi.org/10.3390/info14060345
https://www.mdpi.com/2078-2489/14/6/345
https://www.mdpi.com/2078-2489/14/6/345
https://www.mdpi.com/2078-2489/14/6/345
http://refhub.elsevier.com/S2452-414X(24)00112-2/sb49
http://refhub.elsevier.com/S2452-414X(24)00112-2/sb49
http://refhub.elsevier.com/S2452-414X(24)00112-2/sb49
http://refhub.elsevier.com/S2452-414X(24)00112-2/sb49
http://refhub.elsevier.com/S2452-414X(24)00112-2/sb49
http://refhub.elsevier.com/S2452-414X(24)00112-2/sb49
http://refhub.elsevier.com/S2452-414X(24)00112-2/sb49
http://refhub.elsevier.com/S2452-414X(24)00112-2/sb50
http://refhub.elsevier.com/S2452-414X(24)00112-2/sb50
http://refhub.elsevier.com/S2452-414X(24)00112-2/sb50
http://refhub.elsevier.com/S2452-414X(24)00112-2/sb50
http://refhub.elsevier.com/S2452-414X(24)00112-2/sb50
http://refhub.elsevier.com/S2452-414X(24)00112-2/sb50
http://refhub.elsevier.com/S2452-414X(24)00112-2/sb50
http://dx.doi.org/10.1016/J.PROCS.2022.01.300
http://dx.doi.org/10.1016/J.PROCS.2022.01.300
http://dx.doi.org/10.1016/J.PROCS.2022.01.300
http://dx.doi.org/10.1016/j.cie.2019.06.040
http://dx.doi.org/10.1016/j.cie.2019.06.040
http://dx.doi.org/10.1016/j.cie.2019.06.040

	Model-based tool for the design, configuration and deployment of data-intensive applications in hybrid environments: An Industry 4.0 case study
	Introduction
	Related Work
	Reference architectures for big data-intensive applications
	Containerisation and orchestration 

	RAI4 reference architecture
	Design of a RAI4 data-intensive application
	Deployment of a RAI4 data-intensive application

	Metamodel extension for supporting containerisation
	Use case: IoT Application
	Deployment variations of IoT model

	Discussion
	Conclusions and future lines
	CRediT authorship contribution statement
	Declaration of competing interest
	Data availability
	Acknowledgements
	References


