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Abstract. A continuous linear operator L defined on the space of entire
functions H(C) is said to be an extended λ-eigenoperator of the differen-
tiation operator D provided DL = λLD. Here we fully characterize when
an extended λ-eigenoperator of D is supercyclic, it has a hypercyclic sub-
space or it has a supercyclic subspace.
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1. Introduction

A (continuous, linear) operator T acting on a separable complex Fréchet space
X is said to be hypercyclic if there exists f ∈ X such that {Tnf}n≥0 is dense
in X . In this case we say that the vector f is hypercyclic for T . To say that T
is supercyclic means that there exists a vector x ∈ X such that the projective
orbit {λTnx : n ≥ 0, λ ∈ C} is dense in X . The operator T is said to
have a hypercyclic (supercyclic) subspace if there exists an infinite dimensional
closed subspace whose non-zero vectors are hypercyclic (supercyclic) for T .
The study of hypercyclic (supercyclic) subspaces is a mainstream research line
in the theory of hypercyclic operators (see [13] Chapter 10, [3] Chapter 8, [20]),
and its interest comes from the invariant subspace problem.
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Over a century ago, Birkhoff [6] proved that the translation operator is hy-
percyclic on H(C) endowed with the compact open topology. Later, MacLane
[18] proved that the differentiation operator D is also hypercyclic. These seem
to be the first examples of hypercyclic operators. Godefroy and Shapiro [11]
unified the results of Birkhoff and MacLane by showing that each non-scalar
operator A (i.e., A �= λI) commuting with D is hypercyclic.

An operator T is said to λ-commute withA provided AT = λTA, where
λ ∈ C. If T �= 0, then T is called an extendedλ-eigenoperator of A with extended
eigenvalue λ. Extended λ-eigenoperators appear in the proof of an extension
of Lomonosov’s famous result, which was obtained independently by Scott
Brown and Kim, Moore and Pearcy [9,14]. They proved that if an operator
has a compact extended λ-eigenoperator then it has a non-trivial hyperinvari-
ant subspace. The determination of the extended λ-eigenoperators plays an
important role in the study of an operator, and some properties, like hyper-
cyclicity, are transferred in some way to the commutant (see [11]).

In this paper we study how the hypercyclic properties are transferred to
the λ-commutant. Some results in [4] reveal that the hypercyclic properties for
the extended λ-eigenoperators of D enjoy a rich structure (see [1] for related
results).

For the differentiation operator D on H(C), Bonilla and Grosse-Erdmann
studied how frequent hypercyclicity is transferred to the commutant of D (see
[8]). Recall that an operator T on a Fréchet space X is said to be frequently
hypercyclic if there exists a vector x ∈ X such that for each nonempty open
subset U of X the set NU = {n ∈ N : Tnx ∈ U} has positive lower density in N.
The study in [16] reveals that frequent hypercyclicity is not always transferred
to the λ-commutant.

It has also been studied when an operator that commutes with D has a
hypercyclic subspace. S. Shkarin [24] began by proving that D has a hypercyclic
subspace. Partial results were obtained by H. Petersson [22] and completed by
Q. Menet [19], obtaining the so called Menet-Petersson-Shkarin’s result which
asserts that each non-scalar operator commuting with D has a hypercyclic
subspace. Thus the following question arises:

Question 1. Assume that L is an extended λ-eigenoperator of D.
When does L have a hypercyclic subspace?

In strong contrast with Menet-Petersson-Shkarin’s result, an extended
λ-eigenoperator L of D does not always have a hypercyclic subspace. Indeed,
if we consider the following extended λ-eigenoperators of the differentiation
operator: Tλ,bf = f ′(λz + b), introduced by Aron-Markose [2], it was shown in
[17] that Tλ,b has a hypercyclic subspace if and only if |λ| = 1.

It is known from [4] that if L is an extended λ-eigenoperator of D then L
factorizes as L = Rλφ(D) where Rλf(z) = f(λz) is the dilation operator and
φ is an entire function of exponential type, that is, there exist constants A,B
such that |φ(z)| ≤ AeB|z| for all z ∈ C.
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Table 1. Hypercyclic subspaces

L = Rλφ(D) Z(φ) = ∅ Z(φ) �= ∅ finite Z(φ) infinite

|λ| < 1 L /∈ HC∞ [4] L /∈ HC∞ [4] L /∈ HC∞ [4]
|λ| = 1, λ �= 1 L /∈ HC∞ [4] L ∈ HC∞; Th. 3.6 L ∈ HC∞; Prop. 3.4
|λ| > 1 L /∈ HC∞ [4] L /∈ HC∞; Th. 3.9 L ∈ HC∞; Prop. 3.4

The results in [17] may suggest that extended λ-eigenoperators with |λ| >
1 have no hypercyclic subspace. For Tλ,b this is true because in the factorization
Tλ,b = Rλφ(D) the map φ(z) = zebz has only one zero. However the situation
is quite different when φ has infinitely many zeros. Our first main result fully
answer Question 1.

Main result 1. Assume thatL = Rλφ(D) is an extendedλ-eigenoperator
ofD. The following conditions are equivalent:

1. L = Rλφ(D) has a hypercyclic subspace.
2. φ has infinitely many zeros and|λ| ≥ 1 orφ has a finite (non empty)

number of zeros and|λ| = 1.
The proof of this result splits into several cases. If we denote Z(φ) the set

of zeros of φ and HC∞ the set of all operators having a hypercyclic subspace,
Table 1 below summarizes the results.

Let us remark that Table 1 does not include the case λ = 1, for which the
situation is different. The shaded entries in Table 1 correspond with results
discovered in [4]. In those cases the operator L = Rλφ(D) is not hypercyclic,
therefore it has no hypercyclic subspaces.

Moreover, we devote some effort to sharpen the results of Table 1. Let
us denote by SC∞ the set of all supercyclic operators having a supercyclic
subspace. For L /∈ HC∞, we want to know whether L ∈ SC∞, and we begin
studying the supercyclicity of the extended λ-eigenoperators of D.

Question 2. Let L be a non-hypercyclic extended λ-eigenoperator of
D. Is L supercyclic?
Question 3. Let L be a supercyclic extended λ-eigenoperator of D.
Does L have a supercyclic subspace?
When φ has no zeros, then the operator L = Rλφ(D) is a composition

operator Cλ,bf(z) = f(λz + b) induced by an affine endomorphism. In this
case, it was proved by Bernal-González, Bonilla and Calderón-Moreno [5] that
L is not supercyclic (see the shaded entries in Table 2).

For Question 2 it is enough to study the case |λ| < 1 because in other
cases the operator is hypercyclic. We fully answer this question and our results
sheds light on an additional, unexpected condition: The value of φ at the origin.
When φ(0) = 0 we can obtain a positive result using standard arguments.
However, the case φ(0) �= 0 requires more efforts and new ideas. In general,
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Table 2. Supercyclicity

L = Rλφ(D) Z(φ) = ∅ φ(0) = 0 Z(φ) �= ∅, φ(0) �= 0

0 < |λ| < 1 L /∈ SC [5] L ∈ SC \ HC; Th. 4.1 L /∈ SC; Th. 4.2

Table 3. Supercyclic subspaces

|λ| < 1 Z(φ) = ∅ 0 ∈ Z(φ) 0 /∈ Z(φ)

L /∈ SC∞ [5]L ∈ SC∞ \ HC∞; Th. 5.1L /∈ SC∞ (Th. 4.2)
|λ| = 1, λ �= 1Z(φ) = ∅ Z(φ) �= ∅ finite Z(φ) infinite

L /∈ SC∞ [5]L ∈ HC∞; Th. 3.6 L ∈ HC∞ ; Prop.3.4
|λ| > 1 Z(φ) = ∅ Z(φ) �= ∅ finite Z(φ) infinite

L /∈ SC∞ [5]L /∈ SC∞; Th.5.5 L ∈ HC∞; Prop.3.4

to prove that an operator is not supercyclic is much more complicated than
proving that it is. Denoting by SC and HC the set of all supercyclic and
hypercyclic operators respectively, we obtain:

Main result 2. Assume that L = Rλφ(D) is an extended λ-eigenoperator
of D. The following conditions are equivalent:

1. L ∈ SC \ HC.
2. 0 < |λ| < 1 and φ(0) = 0.

Again the proof splits into two cases, and Table 2 summarizes the results.
We also study when an extended λ-eigenoperator has a supercyclic sub-

space. The remaining cases are: 1) |λ| < 1 and φ(0) = 0 (Theorem 5.1), in
which there exists a supercyclic subspace, and 2) |λ| > 1 and φ(D) has a
non-empty finite number of zeros, in which the operator does not have a su-
percyclic subspace. We will use a sort of angle criterion, which was first used
by Montes and Salas in [20, p. 102]. The proof uses a mix between the ideas
of [19] and [20], however these ideas separately seem not enough to obtain the
desired result. In summary:

Main result 3. Let L be an extended λ-eigenoperator of D, λ �= 1. The
following conditions are equivalent:

1. L ∈ SC∞ \ HC∞.
2. 0 < |λ| < 1 and φ(0) = 0.

Table 3 summarizes the results and points at the places in the paper
where those results can be found. Here the shaded entries in the first column
follow by the non-supercyclicity of the operator ( [5]), and the other shaded
entries follow from the study on hypercyclic subspaces (see Table 1).

The main ancestors of this paper are [12] and [15]. Many of the results
in these two papers were extended to operators on Fréchet spaces in [19].
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The paper is structured as follows. In Sect. 2 we describe some tools from
[22] and [19] that we will use throughout the paper. In Sect. 3 we prove Main
result 1. The case when φ has finitely many zeros is reduced to the case of a
polynomial P by showing that the operators Rλφ(D) and RλP (D) are similar.
In Sect. 4 we characterize when Rλφ(D) is supercyclic in terms of an intriguing
and unexpected condition on the values of φ(0). Finally, in Sect. 5 we prove
the Main result 3.

2. Some Preliminary Results

Here we introduce some tools we will use along the paper. Let X be a sep-
arable Fréchet space. Next result is a version of the Hypercyclicity Criterion
discovered by Bès-Peris (see Theorem 3.24 in [13]).

Theorem 2.1 (Hypercyclicity criterion for sequences). Let (Tn) be a sequence
of operators acting on X . Suppose that there exist two dense subsets X0, Y0 of
X , a subsequence (Tnk

) and a sequence of maps Sk : Y0 → X satisfying:

i) Tnk
x0 → 0 for all x0 ∈ X0.

ii) Sky0 → 0 and
iii) Tnk

Sky0 → y0 for all y0 ∈ Y0.

Then there exists x ∈ X such that the set {Tnk
x : k ∈ N} is dense in X .

We say that an operator T on X satisfies the Hypercyclicity Criterion for
the sequence(nk) if the hypothesis of Theorem 2.1 holds for the sequence of
powers (Tn), and the sequence (nk).

To obtain an infinite dimensional closed subspace of hypercyclic vectors,
we need a stronger Hypercyclicity Criterion involving an infinite dimensional
closed subspace M0 where we can control the orbits. Such a result appeared
firstly in [12] in the Banach space setting. Here we will use the following Fréchet
space extension by Petersson [22] (see also [7]).

Theorem 2.2. Let (Tn) be a sequence of operators on a Fréchet space X with
a continuous norm. If (Tn) satisfies the Hypercyclicity Criterion for a sub-
sequence (nk) of N and there exists an infinite dimensional closed subspace
M0 ⊂ X such that Tnk

f → 0 for all f ∈ M0, then there is an infinite dimen-
sional closed subspace M1 such that for every x ∈ M1 \ {0} the orbit {Tnk

x}
is dense in X .

The existence of the subspace M0 in the previous Theorem can be weak-
ened, requiring only a control of the sequence of operators in a sequence of
closed subspaces of decreasing infinite dimension. This weakening was proved
firstly in the Banach space setting in [15, Theorem 20]. We will use the follow-
ing extension for Fréchet spaces discovered by Q. Menet (see [19], Theorem
1.11 and Remark 1.12).
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Theorem 2.3. Let T be an operator on X satisfying the Hypercyclicity Crite-
rion for (nk), and let (ρn) be an increasing sequence of seminorms defining
the topology of X . If there exists a decreasing sequence of infinite dimensional
closed subspaces (Mj) such that, for each n ∈ N, we can find Cn > 0 and
m(n), k(n) ∈ N so that for each j ≥ k(n) and x ∈ Mj,

ρn(Tnj x) ≤ Cnρm(n)(x),

then T has a hypercyclic subspace.

Remark 2.4. Theorem 2.3 remains true replacing the sequence (Tnk) by a
sequence of operators (Tnk

) (see [19, Theorem 1.11 and Remark 1.12]).

To prove that a hypercyclic operator on Banach spaces does not have
a hypercyclic subspace, it suffices to inspect its essential spectrum (see [12]).
For sequences of operators on Banach spaces, the result by González-León-
Montes ([12]) was refined by León-Muller in [15] (Theorem 22 and Corollary
23). For sequences of operators defined on Fréchet spaces this problem is more
delicate and much more complex. The following sufficient condition to prove
the nonexistence of hypercyclic subspaces was discovered by Q. Menet in [19]
(Theorem 2.2 and Corollary 2.3).

Theorem 2.5. Let T be an operator on a Fréchet space X with a continuous
norm. Assume that there exist a sequence of seminorms (ρn) defining the topol-
ogy of X and N ≥ 1 such that for every n ∈ N, there exist Cn > 1, a closed
subspace Nn of finite codimension such that

ρN (Tnx) ≥ Cnρn(x) for x ∈ Nn.

Then T has no hypercyclic subspace.

3. Hypercyclic Subspaces for Extended Eigenoperators of D

We begin by describing some results obtained in [4] where it was characterized
when an extended λ-eigenoperator of D is hypercyclic. First of all, the extended
λ-eigenoperators of D were described as follows:

Proposition 3.1 ([4, Proposition 2.3]). Let L be an operator on H(C). Then
DL = λLD for some 0 �= λ ∈ C if and only if L = Rλφ(D), with Rλf(z) =
f(λz) for z ∈ C and φ an entire function of exponential type.

In the trivial case λ = 0, we get DL = 0, which means that rank(L) is
contained in the one dimensional subspace of all constant functions. In such a
case L is never supercyclic.

From Proposition 3.1, it was derived that if φ has no zeros, then the
operator Rλφ(D) is a multiple of a composition operator induced by an affine
endomorphisms: Cλ,bf(z) = f(λz + b). The main result in [4] characterizes
when Rλφ(D) is hypercyclic:
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Theorem 3.2 ([4]). For an operator L on H(C) satisfying DL = λLD, λ �= 1,
the following conditions are equivalent:

1. L is hypercyclic.
2. L satisfies the Hypercyclicity Criterion.
3. |λ| ≥ 1 and L is not a multiple of the operator Cλ,bf(z) = f(λz + b).

Now we can restate our first main result as follows:
Main result 1. Let L = Rλφ(D) be an extended λ-eigenoperator of D.

Then the following conditions are equivalent:
1. L has a hypercyclic subspace.
2. φ has infinitely many zeros and |λ| ≥ 1, or φ has a non-empty finite

number of zeros and |λ| = 1.
The proof splits into several cases which we will study separately. Next

we consider the case when λ is a root of the unity.

Theorem 3.3. Assume that λ is a root of the unity. If DL = λLD and L is
not a multiple of Cλ,b then L has a hypercyclic subspace.

Proof. If λn0 = 1 for some n0 ∈ N then Rn0
λ = I. Since L = Rλφ(D) is not a

multiple of Cλ,b, φ has some zero, Ln0 is not a multiple of the identity and Ln0

commutes with D. Thus, since by Menet-Petterson-Shkarin’s result (see [19,
22,24]) each non-scalar operator commuting with the differentiation operator
has a hypercyclic subspace, we get that Ln0 has a hypercyclic subspace. Hence
L has a hypercyclic subspace as we desired. �

Proposition 3.4. Let L = Rλφ(D) be an extended λ-eigenoperator of D. If L is
hypercyclic and φ has infinitely many zeros then L has a hypercyclic subspace.

Proof. By Theorem 3.2, L satisfies the Hypercyclicity Criterion for some sub-
sequence (nk) of N. If a is a zero of φ then Leaz = φ(a)eaλz = 0. Since φ has
infinitely many zeros, Ker(L) is infinite dimensional. Since the sequence (Ln)
converges trivially to zero on Ker(L), by Theorem 2.2 L has a hypercyclic
subspace as we desired. �

Proposition 3.4 reduces our problem to the case that φ is an entire func-
tion of exponential type which only has finitely many zeros. By Hadamard
factorization Theorem, φ(z) = P (z)ebz, where P (z) is a polynomial. This case
includes the operators Tλ,b studied in [2]. By Theorem 3.2, it is sufficient to
study the case |λ| ≥ 1. Since the existence of a hypercyclic subspace is invariant
under similarity, our next result simplifies the problem.

Proposition 3.5. Set λ �= 1. The operator RλP (D)ebD is similar to RλP (D).

Proof. Set α = b
1−λ . It is easy to check that e−αDRλ = Rλe−λαD. Hence

e−αDRλP (D)eαD = Rλe−λαDP (D)eαD = RλP (D)eα(1−λ)D = RλP (D)ebD,

and the result is proved. �
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For f(z) =
∑∞

k=0 akzk ∈ H(C), we define ρM (f) =
∑∞

k=0 |ak|Mk. The
family of seminorms {ρM : M > 0} induces the natural topology of H(C).

The case λ = 1 of the following result was proved by Menet [19].

Theorem 3.6. If L = RλP (D) with |λ| = 1 and P is a non-constant polyno-
mial, then L has a hypercyclic subspace.

Proof. By Theorem 3.2, L = RλP (D) satisfies the Hypercyclicity Criterion
for some subsequence (nk), (moreover by [16], the operator L satisfies the
Hypercyclicity Criterion for the full sequence of natural numbers).

Let us denote ω = λ−1 and P (z) =
∑d

k=0 bkzk. For each n ∈ N we write

P (ωz)P (ω2z) · · · P (ωnz) =
nd∑

k=0

b
(n)
k zk

and set C̃n = max{|b(r)k | : 1 ≤ r ≤ n , 1 ≤ k ≤ dr}. Then

(RλP (D))n(zs) = RλP (D) · · · RλP (D)(zs)
= P (ωD) · · · P (ωnD)Rn

λ(zs)

=
nd∑

k=0

b
(n)
k [s(s − 1) · · · (s − k + 1)]λnszs−k.

Let us precise in the above formula that s(s−1) · · · (s−k+1) = 1 when k = 0.
Thus, if |z| = M ≥ 1,

|(RλP (D))n(zs)| ≤
nd∑

k=0

|b(n)k |[s(s − 1) · · · (s − k + 1)]Ms−k ≤ C̃nndsndMs.

Clearly, for each n ∈ N we can select Mn > 0 such that C̃nndxdn ≤ 2x for
x ≥ Mn. We consider a strictly increasing sequence (nj) in N with nj+1 ≥ Mnj

.
Thus if s ≥ j + 1 then

C̃nj
njdnnjd

s ≤ 2ns . (1)

If f ∈ Nj = linearspan{zns : s ≥ j +1}, then f(z) =
∑

s=j+1 asz
ns and

ρM (Lnj f) = ρM

⎛

⎝Lnj

⎛

⎝
∞∑

s=j+1

asz
ns

⎞

⎠

⎞

⎠

= ρM

⎛

⎝
∞∑

s=j+1

asL
nj zns

⎞

⎠

≤
∞∑

s=j+1

|as|njdC̃nj
ndnj

s Mns
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≤
∞∑

s=j+1

|as|(2M)ns = ρ2M (f),

where the last inequality follows from equation (1). Thus Theorem 2.3 is ful-
filled if we consider the sequence of seminorms (ρn) and we take m(n) = 2n,
Cn = k(n) = 1. Thus if p(D) is not a multiple of the identity and |λ| = 1 then
L = RλP (D) has a hypercyclic subspace, as we desired to prove. �

The most intriguing case is when |λ| > 1 and φ has a finite number of
zeros; or just φ(D) = adD

d + · · · + a0I is a polynomial. The main idea of the
proof is basically to show that the significant term of the action of Ln (on
finite codimensional subspaces) is concentrated on adD

d. If we set

Nn = {f ∈ H(C) : f(0) = f ′(0) = · · · = f (n)(0) = 0},

by bounding the derivative on a line, it is simple to show that there exist c > 0
and r > 0 such that for any f ∈ Nd

ρr(Lf) ≥ c|λ|dρr(f (d)(λz)).

However this idea of boundedness is not enough for the asymptotic inequality
that it is needed. We stress here that the following asymptotic formula relies
on taking finite codimensional subspaces Nn for n large enough.

Lemma 3.7. Suppose that L = RλP (D) with P a polynomial of degree d ≥ 1.
Let M > 0. There exist a constant c > 0 and an increasing sequence (mn) ⊂ N

such that for each n ∈ N and h ∈ Nmn

ρM (Lnh) ≥ cn · |λ|d · |λ|2d · · · |λ|ndρM (h(nd)(λnz)). (2)

Proof. We can assume that L = P (D)Rλ and P (D) =
∑d

k=0 akDk.
For n = 1, set c > 0 satisfying |ad| > c, and let h ∈ Nm with m (large

enough) to be determined later. We write

ρM (Lh) ≥ ρM (adD
dRλh) −

d−1∑

k=0

|ak|ρM (DkRλh).

If h(λz) =
∑∞

n=m hnzn, let us check the above formula in each zp for
p ≥ m. Since

ξM,d(p) :=
|a0|Md + |a1|pMd−1 + · · · + |ad−1|p · · · (p − d + 2)M

p(p − 1) · · · (p − d + 1)
→ 0

as p → ∞, there exists m1 > 0 such that for p ≥ m1, |ad|− ξM,d(p) > c. Thus

p · · · (p − d + 1)
Md

[|ad||hp|Mp − ξM,d(p)|hp|Mp] ≥ cp · · · (p − d + 1)|hp|Mp−d,

and for each f ∈ Nm1 we get



    2 Page 10 of 24 M. González et al. Results Math

ρM (Lh) ≥ ρM (adD
dRλh) −

d−1∑

k=0

|ak|ρM (DkRλh)

≥ cρM (Ddh(λz)) = c|λ|dρM (h(d)(λz)).

The proof for arbitrary n is similar. Recall that ω = 1/λ. If Ln = P (D)P (ωD)
· · · P (ωn−1D)Rn

λ, then

ρM (Lnh) = ρM (P (D)P (ωD) · · · P (ωn−1D)Rn
λh)

= 1 · |ω|d · · · |ω|d(n−1)ρM (P̂ (D)Rn
λh),

where P̂ (D) is a polynomial whose leader term is |ad|nDnd. Thus, by arguing
as in the first step, there exists mn such that for any h ∈ Nmn

we get

ρM (Lnh) = 1 · |ω|d · · · |ω|d(n−1)ρM (P̂ (D)Rn
λh)

≥ cn1 · |ω|d · · · |ω|d(n−1)ρM (DndRn
λh)

= cn1 · |ω|d · · · |ω|d(n−1)|λ|nd · · · |λ|ndρM (h(nd)(λnz))

= cn|λ|d|λ|2d · · · |λ|ndρM (h(nd)(λnz)),

and the result is proved. �
Remark 3.8. For future reference, we remark that the asymptotic inequality
(2) remains true for any subsequence (rn) of (mn). This fact will be crucial in
the proof of Theorem 5.5.

The following result completes the proof of Main result 1. Surprisingly
there are hypercyclic extended λ-eigenoperators of D such that all closed sub-
spaces of hypercyclic vectors have finite dimension.

Theorem 3.9. If L = Rλφ(D) with |λ| > 1 and φ has finitely many zeros, then
each closed subspace of hypercyclic vectors for L is finite dimensional.

Proof. We can assume that L = P (D)Rλ with P (z) =
∑d

k=0 bkzk non-constant.
By applying Lemma 3.7 there exist a constant c > 0 and an increasing sequence
(mn) ⊂ N with mn ≥ nd such that for any h ∈ Nmn

ρ1(Lnh) ≥ cn · |λ|d · |λ|2d · · · |λ|ndρ1(h(nd)(λnz)). (3)

Let us consider the seminorms p0(h) = max|z|≤1 |h(z)|, and

pn(h) = max
|z|≤|λ|n/4

|h(z)|.

Then (pn) is an increasing sequence of seminorms that defines the original
topology of H(C). Moreover, since mn ≥ nd, for h ∈ Nmn

we get

ρ1(h(nd)(λnz)) = max
|z|≤1

|h(nd)(λnz)|

= max
|w|≤|λ|n

|h(nd)(w)|

≥ max
|w|≤|λ|n/4

|h(nd)(w)|
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≥ |λ|−dn2/4 max
|w|≤|λ|n/4

|h(w)|

= |λ|−dn2/4pn(h).

By setting Cn = cn|λ| dn(n+1)
2 |λ|−dn2/4 and using the above inequality in

equation (3), for h ∈ Nmn
we obtain

ρ1(Lnh) ≥ cn|λ| dn(n+1)
2 |λ|−dn2/4pn(h) = Cnpn(h)

with Cn → ∞. Thus, by Theorem 2.5, L has no hypercyclic subspaces. �

4. Supercyclic Extended Eigenoperators of D

Let L be an operator on H(C) satisfying DL = λLD with λ �= 1. In this section
we study when L is supercyclic. For λ = 1 the operator is always hypercyclic
(see [11]) provided L is not a multiple of the identity.

In this direction, it was proved in [5, Theorem 3.6] that no multiple of
Cλ,b is supercyclic for λ �= 1. The study of hypercyclicity of the extended λ-
eigenoperators of D defined by: Tλ,bf = f ′(λz + b) were studied in [2,10,17].
However, the supercyclicty of such operators, as far as we know, has not been
studied. Our second main result solves this question and provides a complete
answer to Question 2 in the introduction. Surprisingly enough, the character-
ization depends of the value of φ at the origin.

Let us denote by HC (and SC) the subset of all hypercyclic operators
(supercyclic operators) defined on H(C).

Main result 2. Assume that L = Rλφ(D) is an extended λ-eigenoperator
of D. The following conditions are equivalent:

1. L ∈ SC \ HC.
2. 0 < |λ| < 1, φ(0) = 0.

We point out that if L = Rλφ(D) with λ �= 1 and φ has no zeros, then
(see Proposition 2.3 [4]) L is a multiple of Cλ,b for some b ∈ C, hence by
Bernal-Bonilla-Calderón [5], L is not supercyclic. According to the results in
[4], the only extended λ-eigenoperators which are not hypercyclic and could
be supercyclic are the extended λ-eigenoperators associated to |λ| < 1. Thus,
we can concentrate on the cases with |λ| < 1 and φ−1{0} �= ∅.

The proof of the second main theorem splits into two cases. First we
analyze the case φ(0) = 0 and |λ| < 1, which includes the Aron-Markose oper-
ators. And then we study the case |λ| < 1 and φ(0) �= 0, in which surprisingly
the extended λ-eigenoperators of D are not supercyclic.

Theorem 4.1. If L = Rλφ(D) with |λ| < 1 and φ(0) = 0, then L is supercyclic.

Proof. It is enough to find a sequence of real numbers (λn) such that the
sequence of operators (λnLn) satisfies the conditions of Theorem 2.1.

We write φ(z) = zmψ(z) with ψ(0) �= 0, and set Aλ = Rλψ(D), so that
L = AλDm. Since ψ(0) �= 0, the polynomials of degree less or equal than n
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form an invariant subspace for Aλ. Moreover, the operator Aλ has a triangular
matrix representation with diagonal entries ψ(0)λk, k = 0, 1, · · · , n; hence the
eigenvalues of the matrix are simple. Let pk (0 ≤ k ≤ n) be the polynomial of
degree k such that Aλpk = ψ(0)λkpk for k ≥ 0. Since DRλ = λRλD we get:

Lk = RλDmψ(D) · · · RλDmψ(D)

= λmλ2m · · · λ(k−1)mRλψ(D) · · · Rλψ(D)Dkm

= λmλ2m · · · λ(k−1)mAk
λDkm.

Set λk = (λm · · · λm(k−1))−1 and let us denote Tk = λkLk. Since Lkp(z) =
0 for km > deg(p), the sequence (λkLk) converges pointwise to zero on the set
of polynomials X0 = linearspan{pk(z) : k ≥ 0}, which is dense in H(C). Let
V be the complex Volterra operator defined by

V f(z) =
∫ z

0

f(ξ)dξ, (z ∈ C).

Since LV mpk = Aλpk = ψ(0)λkpk, we can define

Skpn =
V mkpn

(ψ(0)λn)k
,

and we extend Sk to X0 by linearity. It is easy to check that λkTkSk = IdX0 .
Finally, for n0 fixed, Skpn0(z) → 0 uniformly on compact subsets; hence

Sk converges pointwise to zero on X0. Thus, by Theorem 2.1, there exists
f ∈ H(C) such that {λkLkf}k≥0 is dense in H(C), hence L is supercyclic. �

The proof of the next result completes the characterization of super-
cyclicity for extended λ-eigenoperators of D. We highlight here the difficulty
of proving the non-supercyclicity of an operator.

Theorem 4.2. Assume that |λ| < 1 and φ(0) �= 0. Then, the operator L =
Rλφ(D) is not supercyclic.

Proof. Since supercyclicity is invariant under multiplications by non-zero scalars,
for pure notational convenience, we can suppose without loss of generality that
φ(0) = 1.

Assume that f ∈ H(C) is supercyclic for L. Thus, given g(z) = ez, there
exists an increasing subsequence of natural numbers {nk} and a sequence of
scalars {λnk

} ⊂ C \ {0} such that

λnk
(Lnkf)(z) → ez as nk → ∞

uniformly on compact subsets of C. Moreover, since Dmez = ez, for each
m ∈ N

λnk
Dm(Lnkf)(z) → ez as nk → ∞

uniformly on compact subsets of C. In particular,

λnk
(DmLnkf)(z0) → ez0 and λnk

(Lnkf)(0) → 1 as nk → ∞. (4)
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From (4) we get that

(DmLnkf)(z0)
(Lnkf)(0)

→ ez0 as k → ∞. (5)

This unusual idea of applying Dm to the previous sequence is crucial and
central in the proof. It really simplifies everything. We will show that we can
choose m ∈ N such that

(DmLkf)(z0)
(Lkf)(0)

→ 0 k → ∞, (6)

which contradicts (5).
To show (6) we will use two different integral representations of the oper-

ator L. It was shown in [4, Proposition 3.3] that there exists a Borel measure
μ with compact support in C such that

(Lkf)(z) =
∫

· · ·
∫

f
(
λkz + λk−1w1 + · · · + wk

)
dμ(wk) · · · dμ(w1).

Now, since the support of μ is contained in some disc D(0, R) and

|λkz + λk−1w1 + · · · + wk| ≤ M(|z|) := |λ|k|z| +
1 − |λ|k
1 − |λ| R

for |z| < r, we get that each element in the argument of f lies in the disk
D(0,M(r)). Therefore, for f ∈ H(C), if |z| ≤ r then

|Lkf(z)| ≤ sup
|z′|=M(r)

|f(z′)|‖μ‖k,

where ‖μ‖ denotes the total variation of the measure μ. On the other hand,
since DL = λLD, for |z| ≤ r we get

|(DmLkf)(z)| = |λ|mk|(Lk)Dmf(z)| ≤ |λ|mk‖μ‖k max
|z′|=M(r)

|Dmf(z′)|. (7)

Next we obtain lower estimates of |(Lkf)(0)|. Indeed, let us observe that

Lk = Rλφ(D)Rλφ(D) · · · Rλφ(D) (8)

= Rk
λφ(D)φ(λD) · · · φ(λk−1D). (9)

We consider the sequence of entire functions Φk(z) = φ(z) · · · φ(λk−1z)
with series expansions

Φk(z) =
∞∑

m=0

a
(k)
m

m!
zm. (10)

Thus, for each f ∈ H(C)

Lkf(0) = Rk
λ

∞∑

m=0

a
(k)
m

m!
Dmf(0) =

∞∑

m=0

a
(k)
m

m!
f (m)(0).
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The proof relies on the fact that quantities Lkf(0) are bounded, that is, there
exists a constant C > 0 such that

∞∑

m=0

|a(k)
m |
m!

|f (m)(0)| < C (11)

for all k. Indeed, since φ is of exponential type, by Hadamard factorization
Theorem (recall that φ(0) = 1), denoting by (an) the roots of φ, we have:

φ(z) = ebz
∞∏

n=1

(

1 − z

an

)

ez/an .

and

σ(φ) = inf

{

s ≥ 0 :
∑

n

1/|an|s < ∞
}

≤ 1,

(σ(φ) can be equal to 0 if φ has only finitely many roots). Let us observe
that the zeros of the finite product Φk(z) = φ(z) · · · φ(λk−1z) is the subset
Ak = ∪k−1

l=0 ∪∞
n=1 {ωlan}. If the infinite product converges, it will be an entire

function with the following zeros

A =
∞⋃

l=0

∞⋃

n=1

{ωlan}.

Assume that {bn}n≥1 is an enumeration of the set A. We consider the infinite
product

Φ(z) = e
∑∞

l=0 λlbz
∞∏

n=1

(

1 − z

bn

)

ez/bn

= ebz/(1−λ)
∞∏

n=1

(

1 − z

bn

)

ez/bn .

For s > 0, since
∞∑

n=1

1
|bn|s =

( ∞∑

k=0

|λ|sk

) ( ∞∑

n=1

1/|an|s
)

we get that σ(Φ) = σ(φ) ≤ 1, which implies that the infinite product converges
to an entire function Φ and Φ has order 1 (that is, Φ is of exponential type).

Since φ is of exponential type, there exists r0 such that if r ≥ r0 and
|z| = r

|φ(z)| ≤ eAr.

On the other hand, since Φk converges to Φ, there is a constant M > 1 such
that if |z| ≤ r0 then |Φk(z)| ≤ M for all k. We claim that there is a constant
Aλ such that |Φk(z)| ≤ MeAλ|z| for all k and all z ∈ C.
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Indeed, set r > r0 and since |λ| < 1 set n0 the first natural number such
that |λ|n0+1r ≤ r0. If |z| = r then

|φ(z)φ(λz) · · · φ(λk−1z)| ≤ |φ(z) · · · φ(λn0z)| · |φ(λn0+1z) · · · φ(λk−1z)|
≤ eAr+A|λ|r+···+A|λ|n0r|Φk−n0−1(λn0+1z)|
≤ Me

A
1−|λ| r = MeAλr.

Now, by Cauchy formula we get that if r ≥ r0
∣
∣
∣
∣
∣

a
(k)
m

m!

∣
∣
∣
∣
∣
≤ r−mMeAλr.

Set R = Aλe. The function r−meAλr attains its minimum at r = m
Aλ

. Substi-
tuting (see [23, Chapter 7, Section VII]), we get that there exists m0 ≥ 0 such
that for any m ≥ m0 and for any k ≥ 0:

∣
∣
∣
∣
∣

a
(k)
m

m!

∣
∣
∣
∣
∣
≤ M

Am
λ em

mm
≤ M

Rm

m!
. (12)

Since the entire function Ψ(z) = M
∑∞

m=0
Rm

m! zn is of exponential type,
the operator Ψ(D) is continuous and belong to the commutant of D. If f ∈
H(C), we consider the entire function |f |(z) =

∑∞
n=0

|f(n)(0)|
n! zn. Thus,

(Ψ(D)|f |)(0) ∈ C is well defined, by using inequalities (12) we get

|Lkf(0)| ≤
∞∑

m=0

|a(k)
m |
m!

|f (m)(0)|

≤
∞∑

m=0

M
Rm

m!
|f (m)(0)|

= |(Ψ(D)|f |)(0)|
which gives that the series (11) is bounded uniformly on k ∈ N. Now, let us con-
sider Φ(D); since Φ(0) = 1, Φ(D) has dense range. Therefore, there exists f ∈
H(C) supercyclic for L, such that (Φ(D)f)(0) �= 0. Set f =

∑∞
m=0

f(m)(0)
m! zm.

We claim that there exist c > 0 and k0 ∈ N such that

|Lkf(0)| = |(Φk(D)f)(0)| =

∣
∣
∣
∣
∣

∞∑

m=0

a
(k)
m

m!
f (m)(0)

∣
∣
∣
∣
∣
> c (13)

for all k ≥ k0. Indeed, set |(Φ(D)f)(0)| = δ > 0 and ε > 0 small enough such
that c = δ − ε > 0. Since Φ is of exponential type and by using (12), we get
that there exist R0 and M > 0 such that

∣
∣
∣
∣
∣

a
(k)
m

m!
− Φm(0)

m!

∣
∣
∣
∣
∣
≤ M

Rm
0

m!
. (14)
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Let us fix l0 large enough such that M
∑∞

m=l0+1
Rm

0
m! |f (m)(0)| < ε/2.

Since Φk → Φ uniformly on compact subsets, there exists k0 such that, for
any k ≥ k0

l0∑

m=0

|a(k)
m − Φm(0)|

m!
|f (m)(0)| < ε/2. (15)

Thus, by using inequalities (14) and (15) if k ≥ k0 we get:

|(Φk(D)f)(0) − (Φ(D)f)(0)| ≤
l0∑

m=0

|a(k)
m − Φm(0)|

m!
|f (m)(0)|

+M

∞∑

m=l0+1

Rm
0

m!
|f (m)(0)| ≤ ε

2
+

ε

2
= ε.

Therefore, if k ≥ k0

|Lkf(0)| ≥ |(Φ(D)f)(0)| − |(Φ(D)f)(0) − (Φk(D)f)(0)|
≥ δ − ε = c,

as we desired.
Thus, by selecting m such that |λ|m < ‖μ‖ and using the estimates (7)

and (13) for all k ≥ k0 we get:

∣
∣
∣
∣
(DmLkf)(z0)

(Lkf)(0)

∣
∣
∣
∣ ≤

∣
∣
∣
∣
(DmLkf)(z0)

c

∣
∣
∣
∣

≤ |λ|mk‖μ‖k max|z|=M(r) |Dmf(z)|
c

→ 0

as k → ∞, which yields the desired result. �

5. Supercyclic Subspaces

Let us denote by HC∞ (respectively SC∞) the subset of operators having
a closed infinite dimensional subspace whose non-zero elements are hyper-
cyclic (resp. supercyclic). In this section we characterize the extended λ-
eigenoperators of D which belong to the subset SC∞ \ HC∞.

If |λ| = 1 we know that L = Rλφ(D) has a hypercyclic subspace. Also,
if 0 < |λ| < 1 and φ(0) �= 0 then L = Rλφ(D) is not supercyclic. Finally, if
|λ| > 1 and φ has infinite zeros then L = Rλφ(D) has a hypercyclic subspace.
Thus, the results in Sects. 3 and 4 allow us to focus the study in the following
cases: 1) 0 < |λ| < 1 and φ(0) = 0; and 2) |λ| > 1 and φ has a finite number
of zeros. We fully cover both cases obtaining the following characterization:

Main result 3. Let L be an extended λ-eigenoperator of D, λ �= 1. The
following conditions are equivalent:
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1. L ∈ SC∞ \ HC∞.
2. 0 < |λ| < 1 and φ(0) = 0.

The proof of the next result uses some of the ideas applied in Proposition
3.4 and Theorem 3.6.

Theorem 5.1. Assume that L = Rλφ(D). If 0 < |λ| < 1 and φ(0) = 0, then
L ∈ SC∞\HC∞.

Proof. If φ(0) = 0 then φ(z) = zmψ(z) with ψ(0) �= 0. By taking λk =
(λmλ2m · · · λ(k−1)m)−1 as in the proof of Theorem 4.1, we get that the sequence
(λkLk) satisfies the Hypercyclicity Criterion (Theorem 2.1).

If φ has infinitely many zeros, then M0 = ker(L) is an infinite dimensional
closed subspace and, for f ∈ M0, λnLnf → 0 uniformly on compact subsets.
Then by Theorem 2.2 we obtain that the sequence λnLn has a hypercyclic
subspace. Hence L has a supercyclic subspace.

Now, let us suppose that φ has a finite number of zeros and 0 < |λ| < 1.
By Proposition 3.5 we can suppose without loss that L = RλP (D) with P a
non-constant polynomial.

Now, we will rescue some ideas of Theorem 3.6. We set ω = λ−1, and we
denote P (z) =

∑d
k=0 bkzk. For each n ∈ N we write

P (ωz)P (ω2z) · · · P (ωnz) =
nd∑

k=0

b
(n)
k zk.

Let us denote C̃n = max{|b(r)k | : 1 ≤ r ≤ n , 1 ≤ k ≤ nd}. Then

λn(RλP (D))n(zs) =
nd∑

k=0

b
(n)
k [s(s − 1) · · · (s − k + 1)]

λns

λm · · · λ(n−1)m
zs−k.

Thus, for |z| = M ≥ 1, we get

|λn(RλP (D))n(zs)| ≤ C̃n(nd + 1)snd

∣
∣
∣
∣

λns

λm · · · λ(n−1)m

∣
∣
∣
∣ Ms.

For each n we can find Mn > 0 such that, for x ≥ Mn,

(nd + 1)xdn ≤ 2x and C̃n

∣
∣
∣
∣

λnx

λm · · · λ(n−1)m

∣
∣
∣
∣ ≤ 1.

Thus, we can construct inductively a strictly increasing sequence (nj) in N

such that nj+1 ≥ Mnj
and, for s > j,

(njd + 1)nnjd
s ≤ 2ns and C̃nj

∣
∣
∣
∣

λnjns

λm · · · λ(nj−1)m

∣
∣
∣
∣ ≤ 1. (16)
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Hence, using the estimates (16), if f ∈ Nj = linearspan{zns : s > j} we
have f(z) =

∑∞
s=j+1 asz

ns and

ρM (λnj
Lnj f) = ρM

⎛

⎝λnj
Lnj

⎛

⎝
∞∑

s=j+1

asz
ns

⎞

⎠

⎞

⎠

≤
∑

s=j+1

|as|(2M)ns = ρ2M (f).

Thus, the conditions of Theorem 2.3 are fulfilled if we consider the se-
quence of seminorms ρn(f), and the sequences m(n) = 2n and Cn = k(n) = 1.
Since the sequence of operators (λnLn) satisfies the Hypercyclicity Criterion
(see Theorem 4.1), (λnLn) has a hypercyclic subspace. Hence L has a super-
cyclic subspace as we desired to prove. �

Now, we turn our attention to the case L = Rλφ(D) with |λ| > 1 and
φ has a finite (non empty) number of zeros. We proved in Theorem 3.9 that
in such a case all closed subspaces of hypercyclic vectors for L has finite di-
mension. And the question now is the following: by relaxing hypercyclicity
by supercyclicity, could we obtain an infinite dimensional closed subspace M1

such that x ∈ M1\{0} is supercyclic for L?
We discard the case in which φ(z) has no zeros, because in such a case

L = Rλφ(D) is a multiple of the composition operator Cλ,bf(z) = f(λz + b),
which is not supercyclic. Thus we focus our attention on the case that φ has
a finite (nonempty) number of zeros, and by Proposition 3.5 again we can
suppose that L = RλP (D) with P a non constant polynomial.

Let us point out that proving that an operator is not supercyclic is a more
complicated task than proving that it is. As we can see in the work of A. Montes
and H.N. Salas ([20]), the proofs of the non-existence of supercyclic subspaces
are even more sophisticated. In our case, the refinements are enhanced by
Fréchet spaces context and the structure of the involved operators.

We will use the following lemma, whose proof can be found in [13, Lemma
10.39], and we refer to [21] for a proof in the Banach space setting.

Lemma 5.2. Let X be a Fréchet space, F a finite-dimensional subspace of X,
ρ a continuous seminorm on X and ε > 0. Then there exists a closed subspace
H of finite codimension such that for any x ∈ F and y ∈ H

ρ(x + y) ≥ max
{

ρ(x)
1 + ε

,
ρ(y)
2 + ε

}

.

Our argument hinges on the following computations.

Lemma 5.3. Assume that m > nd and |λ| ≥ 1. If Nm = {f ∈ H(C) : f (k)(0) =
0, k ≤ m − 1}, then for any f ∈ Nm:

ρ1(f (nd)(λnz)) ≥ m!
(m − nd)!

|λ|m n
2 −n2dρ|λ|n/2(f) (17)
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Proof. If f ∈ Nm, f(z) =
∑∞

p=m apz
p, then

ρ1(f (nd))(λnz) =
∞∑

p=m

|ap|p(p − 1) · · · (p − nd + 1)|λ|n(p−nd)

≥ 1
|λ|n2d

∞∑

p=m

|ap| p!
(p − nd)!

(|λ|n/2|λ|n/2)p

≥ |λ|mn/2

|λ|n2d

m!
(m − nd)!

ρ|λ|n/2(f)

which proves inequality (17) as we desired. �

Lemma 5.4. Assume that L = RλP (D), |λ| ≥ 1, with d = deg(P ). There is a
constant B > 0 such that for any f ∈ H(C) and any n ≥ 1

|Lnf(0)| ≤ Bn ((d + 1)n − 1)!
(n − 1)!

|λ|d|λ|2d · · · |λ|(n−1)dρ1(f). (18)

Proof. Observe that

Ln = RλP (D) · · · RλP (D) = P̂n(D)Rn
λ,

and P̂n(z) := P (ωz) · · · P (ωnz). If we write P (z) =
∑d

k=0 pkzk and denote
B = maxk |pk|, then

P̂n(z) =
nd∑

m=0

a
(n)
m

m!
zm,

and using Leibniz’s formula we obtain

a(n)
m = P̂n

(m)
(0) =

∑

h1+···+hn=m

(
m

h1 · · · hn

) n∏

t=1

(ωthtpht
ht!),

from which we get

|Lnf(0)| ≤
nd∑

m=0

1
m!

∑

h1+···+hn=m

(
m

h1 · · · hn

) n∏

t=1

(|ω|tht |pht
|ht!)|DmRn

λf(0)|

≤
nd∑

m=0

1
m!

∑

h1+···+hn=m

m!|λ|nm−h1−···−nhnBn|f (m)(0)|

≤ Bn|λ|d · · · |λ|(n−1)d
nd∑

m=0

(
m + n − 1

m

)

|f (m)(0)|

≤ Bn|λ|d · · · |λ|(n−1)d (nd + n − 1)!
(n − 1)!

nd∑

m=0

|f (m)(0)|
m!

≤ Bn|λ|d · · · |λ|(n−1)d (nd + n − 1)!
(n − 1)!

ρ1(f).



    2 Page 20 of 24 M. González et al. Results Math

as promised. �

Now let us prove the main result that complete the Table 3.

Theorem 5.5. Assume that L = RλP (D) and |λ| > 1. Then all closed sub-
spaces of supercyclic vectors for L have finite dimension.

Proof. We want to show that in any infinite dimensional closed subspace M ⊂
H(C) there exists f ∈ M \ {0} such that

|Lnf(0)|
ρ1(Lnf)

→ 0 as n → ∞. (19)

Thus, f is not supercyclic for L, hence L has no supercyclic subspace.
The sequence of seminorms pn(·) = ρ|λ|n/2(·) induces the topology of

H(C). Let Nn = {f ∈ H(C) : fk(0) = 0; k = 1, · · · , n − 1}, and let (mn)n be
the increasing sequence obtained in Lemma 3.7.Thus there is a constant c > 0
such that for each h ∈ Nmn

:

ρ1(Lnh) ≥ cn · |λ|d · |λ|2d · · · |λ|ndρ1(h(nd)(λnz)). (20)

By Remark 3.8, we can assume without loss that mn > dn, otherwise we
select a convenient subsequence of (mn). The idea of the proof is to construct
a sequence fn ∈ M ∩ Nmn

satisfying pn(fn) = 1
n2 for n ≥ 0 and Ljfn ∈ Hn−1

for j = 1, ..., n.
Here Hn−1 is the finite codimensional subspace guaranteed by Lemma

5.2 associated to Fn−1 = span{Ljfi : i ≤ n−1, j ≤ n}, for a prescribed ε > 0.
Indeed, we take f1 ∈ M \ {0}. Then f1 is supercyclic for L, and since

p1(f1) �= 0, we can suppose that p1(f1) = 1. Let us consider the subspace
F1 = span{Ljf1 : j = 1, 2} of finite dimension and the corresponding subspace
H1 of finite codimension guaranteed by Lemma 5.2.

Assume that f1, · · · , fn−1 have already been constructed. Let us consider
Fn−1 = span{Ljfi : i ≤ n − 1, j ≤ n} and by Hn−1 the corresponding finite
codimension subspace guaranteed by Lemma 5.2. We can assume also that the
sequene Hn is non-increasing.

Since Nmn
is of finite codimension, there exists fn ∈ (M\{0}) ∩ Nmn

,
such that Ljfn ∈ Hn−1, for 1 ≤ j ≤ n. Again fn is supercyclic and pn(fn) �= 0,
so we can suppose that pn(fn) = 1

n2 .
We claim that f =

∑∞
k=1 fk is the function in M \{0} that we are looking

for. Indeed, since fn ∈ M\{0}, pn(fn) = 1/n2 and (pn) is an increasing se-
quence of seminorms defining the topology of H(C), the series

∑∞
k=1 fk defines

an entire function f ∈ M\{0}.
Now, with this construction in hand, we estimate the denominator of

(19). First we show that ρ1(Lnf) ≥ 1
(ε+1)(ε+2)ρ1(L

nfn). Indeed

ρ1(Lnf) = ρ1

⎛

⎝Ln

⎛

⎝
n∑

j=1

fj

⎞

⎠ + Ln

⎛

⎝
∞∑

j=n+1

fj

⎞

⎠

⎞

⎠
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≥ 1
1 + ε

ρ1

⎛

⎝Ln

⎛

⎝
n−1∑

j=1

fj

⎞

⎠ + Lnfn

⎞

⎠ (21)

≥ 1
1 + ε

1
2 + ε

ρ1 (Lnfn) (22)

For inequality (21) we have applied Lemma 5.2: Ln(
∑n

j=1 fj) ∈ Fn and
Ln(

∑∞
j=n+1 fj) ∈ Hn. And (22) follows the same way: Ln(

∑n−1
j=1 fj) ∈ Fn−1

and Lnfn ∈ Hn−1.
Next, since fn ∈ Nmn

, applying (20) to (21) and (22) we get

ρ1(Lnf) ≥ 1
1 + ε

1
2 + ε

ρ1 (Lnfn)

≥ cn1 · |λ|d · |λ|2d · · · |λ|nd

(1 + ε)(2 + ε)
ρ1(f (nd)

n (λnz)). (23)

According to Proposition 5.3, since fn ∈ Nmn
, we incorporate inequality

(17) into inequality (23) and we get

ρ1(Lnf) ≥ cn · |λ|d · |λ|2d · · · |λ|nd

(1 + ε)(2 + ε)
|λ|mnn/2

|λ|n2d

mn!
(mn − nd)!

ρ|λ|n/2(fn)

=
cn · |λ|d · |λ|2d · · · |λ|nd

(1 + ε)(2 + ε)
|λ|mnn/2

|λ|n2d

mn!
(mn − nd)!

1
n2

. (24)

Now we estimate the numerator of (19). Since mn > dn, we deduce that
Lnfj(0) = 0 for all j ≥ n. Therefore, according to Lemma 5.4, we get

|Lnf(0)| =

∣
∣
∣
∣
∣
∣
Ln

⎛

⎝
n−1∑

j=1

fj

⎞

⎠ (0)

∣
∣
∣
∣
∣
∣

≤ Bn ((d + 1)n − 1)!
(n − 1)!

|λ|d|λ|2d · · · |λ|(n−1)dρ1

⎛

⎝
n−1∑

j=1

fj

⎞

⎠

≤ Bn ((d + 1)n − 1)!
(n − 1)!

|λ|d|λ|2d · · · |λ|(n−1)d
n−1∑

j=1

pj(fj)

≤ π2

6
Bn ((d + 1)n − 1)!

(n − 1)!
|λ|d|λ|2d · · · |λ|(n−1)d. (25)

Therefore, if we compute (19) using the inequalities (24) and (25) we
obtain:

|Lnf(0)|
ρ1(Lnf)

≤ ((d + 1)n − 1)!
(n − 1)!

π2

6 Bn(1 + ε)(2 + ε)n2

cn|λ|nmn
2 +dn−dn2 , (26)

Choosing a subsequence of (mn) if necessary, we get that the sequence
(26) converges to zero, as promised. �
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hypercyclic and supercyclic subspaces. Proc. London Math. Soc. (3) 81(1), 169–
189 (2000)

[13] Grosse-Erdmann, K.-G., Peris Manguillot, A.: Linear Chaos. Springer, London
(2011)

[14] Kim, H.W., Moore, R., Pearcy, C.M.: A variation of Lomonosov’s theorem. J.
Operator Theory 2(1), 131–140 (1979)

[15] León-Saavedra, F., Müller, V.: Hypercyclic sequences of operators. Studia Math.
175(1), 1–18 (2006)

[16] León-Saavedra, F., Romero de la Rosa, M.P.: A note on frequent hypercyclicity
of operators that λ-commute with the differentiation operator. J. Math. Sci.
(N.Y.) 266(4), 615–620 (2022)

[17] León-Saavedra, F., Romero-de la Rosa, P.: Fixed points and orbits of non-
convolution operators. Fixed Point Theory Appl. 2014(221), 1–5 (2014)

[18] MacLane, G.R.: Sequences of derivatives and normal families. J. Anal. Math.
2(2), 72–87 (1952)

[19] Menet, Q.: Hypercyclic subspaces and weighted shifts. Adv. Math. 255, 305–337
(2014)
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[24] Shkarin, S.: On the set of hypercyclic vectors for the differentiation operator.
Israel J. Math. 180, 271–283 (2010)

Manuel González
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