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Abstract

In the design of girder-deck bridge systems, it is necessary to determine the
cross-sectional distribution of live loads between the different beams that make up the
cross section of the deck. This article introduces a novel method that allows
calculating the cross-sectional distribution of live loads on beam decks by applying a
matrix formulation that reduces the structural problem to 2 degrees of freedom for
each beam: the deflection and the rotation of the deck slab at the center of the beam’s
span. To demonstrate the proposed method, the procedures are given through three
different examples by applying loads to a bridge model. Deflection, bending moment,
and shear force of the bridge girders are calculated and discussed through the given
examples. The use of the proposed novel method of analysis will result in significant
savings in material resources and computing time and contributes in the minimization
of total costs, and it contributes in the smart modeling process for girder bridge
behavior analysis allowing to feed a bridge digital twin (DT) model based on Inverse
Modeling holding the latest updated information provided by distributed sensors. The
presented methodology contributes also to speed up real-time decision support system
(DSS) demands.

Keywords: cross-sectional load distribution, girder bridge decks, optimized matrix
method, load distribution factors, structural grillage models

1. Introduction

Girder bridge decks are a structural typology commonly used in the design of road
and railway bridges, and therefore, any optimization in their calculation has a depth
impact on the project phase. As explained in [1], the design process relies solely on the
designers’ experience, intuition, and ingenuity resulting in a depth cost material, time,
and human effort. It is very common to use structural grillage models [2–10] to
calculate the cross-sectional distribution of live loads between the different beams that
make up the cross section of the deck. Another way to deal with the design and
calculation of such decks would be to apply different formulations contained in the
bridge design standards that allow approximating the cross-sectional distribution of
the bending moment and shear stress caused by live loads through what is known as
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the load distribution factor “LDF” [11–23]. The “LDF” associated with each case study
is conditioned by the type and number of beams, their spacing and length, as well as
the existence or not of transverse diaphragms that bring transverse rigidity to the deck.

However, the LDF does not allow determining the distribution of bending stresses
on all beams; therefore, the design is oversized. The need for a method to calculate the
cross-sectional distribution across all types of beams, without resorting to complex
structural grillage models or finite element models in specific structure calculation
programs, or to approximate parametric methods based on the “LDF,” is one of the
authors’ motivations for the development of the research work that has given rise to
this article.

2. Traditional methods for girder bridge deck analysis

Structural grillage models began to be used for the analysis of cross-sectional
distribution on beams in the 1960s. These models divide the beam deck into longitu-
dinal and transverse beams (Figure 1). Longitudinal beams are responsible for pro-
viding the longitudinal bending stiffness of the deck, considering as many
longitudinal beams as beams conform to the analyzed beam deck. The structural
section of each of the longitudinal beams shall be the result of the section composed of
the beam analyzed and the effective depth of the contributing deck with that beam
[24, 25]. The cross-sectional distribution of the structural model is provided by the
cross-beams and the torsional stiffness of the longitudinal beams. The structural
section of the cross-beams corresponds to a rectangular section with an equivalent
depth to the slab thickness and a depth according to the discretization used in the
grillage models. The analysis of such structural models involves the use of specific
structure calculation programs that provide the computing power necessary for the
resolution of the proposed matrix problem.

Figure 1.
Grillage discretization: (a) girder bridge deck cross section; (b) structural grillage model.
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The use of structural grillage models allows obtaining the structural response of
girder bridge decks to live loads, adequately manifesting the cross-sectional distortion
of the girder bridge deck and the distribution of stresses on each of the longitudinal
beams that make up the deck. However, such models involve complex, time-
consuming analysis that involves the need to use specific structure calculation pro-
grams, making it necessary to use simplified methods for the start of the design process.

The concept of LDF was first introduced using empirical formulas at the American
Association of State Depthway Officials (AASHO) in 1931 [26]; these methods propose
calculating the cross-sectional distribution on beam bridge decks roughly. The LDF is
calculated from a series of formulations that parametrically treat the calculation of the
percentage of bending moment and shear stress supported by the most requested
longitudinal beam. The parameters that condition the calculation of the LDF are the
depth of the beam, the span length, the spacing, the number of beams, the position of
the load, and the beam position. This method provides an approximate value of the
maximum bending stresses on the beams but is not able to reproduce the cross-sectional
distribution of longitudinal bending between all the beams that make up the deck.

3. Proposed method for the study of the cross-sectional load distribution
on a girder bridge deck

The authors propose the use of a method that allows obtaining the cross-sectional
distribution of live loads on girder bridge decks without using empirical formulas of
LDFs or complex structural models involving the use of specific structure calculation
programs. The proposed method is based on using a virtual model that reflects the
transverse stiffness of the slab deck, supported on a series of springs that provide the
flexural stiffness Eq. (1) and torsional stiffness Eq. (2) of the longitudinal beams that
make up the girder bridge deck (Figure 2).

Kv,i ¼
48 � EIi

L3 (1)

Kt,i ¼
2 � GJi
L

(2)

where EIi = longitudinal bending stiffness of beam “i”; GJi = longitudinal torsional
stiffness of beam “i”; L = distance between bridge supports.

The proposed method considers 2 degrees of freedom for each longitudinal beam
on the bridge deck: (1) the deflection and (2) the rotation of the deck slab at the center
of the beam’s span. Figure 2 represents the structural model scheme for a girder

Figure 2.
Proposed method model for cross-sectional distribution on a girder bridge deck.

3

Simplified Matrix Calculation for Analysis of Girder-Deck Bridge Systems
DOI: http://dx.doi.org/10.5772/intechopen.102362



bridge deck composed of three longitudinal beams. The matrix approach that solves
the structural problem of the cross-sectional distribution of live loads between the
different beams that make up the deck is raised in matrix Eqs. (3), (4), (5). The
stiffness of the springs that represents the longitudinal bending and the torsional
stiffness of the longitudinal beams that make up the model corresponds to the stiff-
ness equivalent to the center of the span.

Ke ¼
EIe

L3
e
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� �
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(5)

Where EIe = transverse bending stiffness of element “e” of the upper deck slab;
Le = length of element “e” of the upper deck slab; fv,i = vertical displacement experi-
enced by longitudinal beam “i”; Ɵi = transverse rotation of the bridge deck over the
longitudinal beam “i.”

3.1 Loads applied in the center of the span of the longitudinal beams

The maximum longitudinal bending stress in each of the longitudinal beams that
make up the bridge deck corresponds to the application of a point load in the center
of the beam span. The distribution of the maximum bending moment and maximum
shear stress in the different longitudinal beams is obtained by Eqs. (6) and (7),
respectively.

Mfḿax,n ¼
Q � L

4
�

f v,n
PN

i¼1 f v,i
(6)

Qm ́ax,n ¼
Q � L

2
�

f v,n
PN

i¼1 f v,i
(7)

where Q = point load value; L = girder bridge span length.
Example 3.1.1.
In the study of the structural behavior of the bridge deck represented in Figure 3,

it is desired to know the distribution of the bending moment and the shear force in
each of the longitudinal beams generated by the application of the following load
states: (a) a point load of 300 KN in the center of the span of beam 1, and (b) a point
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load of 300 KN in the center of the span of beam 2. The girder bridge is made up of
four longitudinal beams 1.05 meters deep (two end beams and two central beams) and
an upper slab 0.25 meters thick and 16.83 meters wide. Considering the effective
width of the upper slab in each of the longitudinal beams, the inertia to the longitudi-
nal bending of the end and central beams takes the value of 0.1445 m4 and 0.1904 m4,
respectively. The longitudinal torsional inertia of the longitudinal beams takes the
value of 4.3�10�3 m4. The spacing between longitudinal beams is 5.13 meters, while
the distance between the support devices of each longitudinal beam is 25 meters. Both
the upper slab and the longitudinal beams are made of structural concrete whose
modulus of elasticity reaches 35,000 MPa.

The stiffness of the springs on which the upper slab of the bridge deck rests,
and which simulates the bending and torsional stiffness of the longitudinal beams
(Figure 4), is calculated as follows:

End beams

Kv,end ¼
48 � EIend

L3 ¼
48 � 3:5 � 107KN=m2 � 0:1445m4

25mð Þ3
¼ 15, 537KN=m

Kt,end ¼
2 � GJend

L
¼

2 �
3:5�107KN=m2

2� 1þ0:2ð Þ � 4:3 � 103m4

25m
¼ 5, 017 KN �m

KB,end ¼
kv,end 0

0 kt,end

� �

¼
15, 537 KN=m 0

0 5, 017 KN �m

� �

Figure 3.
Girder bridge deck: (a) side view of load states 1 and 2; (b) front view of load state 1; (c) front view of load
state 2.
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Central beams

Kv,c ¼
48 � EIend

L3 ¼
48 � 3:5 � 107KN=m2 � 0:1904m4

25mð Þ3
¼ 20, 472 KN=m

Kt,c ¼
2 � GJend

L
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2 �
3:5�107KN=m2

2� 1þ0:2ð Þ � 4:3 � 103m4

25m
¼ 5, 017 KN �m

KB,c ¼
kv,end 0

0 kt,end

� �

¼
20, 472 KN=m 0

0 5, 017 KN �m

� �

The mechanical characteristics of the beam elements that simulate the transverse
distribution provided by the upper slab (Figure 4) are calculated as follows:

I ¼
1

12
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Figure 4.
Proposed structural model: (a) load state 1; (b) load state 2.
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The global stiffness matrix used in the proposed method for the analysis of the
transverse distribution of live loads in girder bridge decks is obtained as follows:

KG ¼

K11 þ KB,end K12

K21 K22 þ K11 þ KB,c

0 0

0 0

0 0

0 0

K12

0 0

0 0

0 0

0 0
K21

0 0

0 0

0 0

0 0

K22 þ K11 þ KB,c K12

K21 K22 þ KB,end

0

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

@

1

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

A

The transversal distribution of each load state is obtained by planting the compat-
ibility between loads and displacements:
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Deflections (Figure 5) and rotations
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Figure 5.
Deflections of longitudinal beams in load state 1.
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Load state 2
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Deflections (Figure 6) and rotations
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Maximum bending moments
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Maximum shear forces
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3.2 Loads applied at a distance “x” from one of the supports of the longitudinal
beams

The proposed method is applicable to calculate the structural response of a girder
bridge deck to the application of a vertical load in any cross section. Using the
Maxwell-Betti reciprocity theorem [27], for the application of a point load of value “Q” at
a distance “x” from one of the two support points of a longitudinal beam, the deflection at
the center of the span is obtained by applying the formulation reflected in Eq. (8).
Likewise, the distribution of the maximum bending moment and maximum shear stress
in the different longitudinal beams is obtained by Eqs. (9) and (10), respectively.

fcl,Q xð Þ,i ¼ fv,i � sin
π � x

L

� �

(8)

Mfḿax,n ¼
Q � L� xð Þ � x

L
�

fv,n
PN

i¼1fv,i
= x≤L=2 (9)

Q ḿax,n ¼
Q � L� xð Þ

L
�

fv,n
PN

i¼1fv,i
= x≤L=2 (10)

Example 3.2.1.
In the study of the structural behavior of the bridge deck analyzed in Example

3.1.1., it is intended to know the deflection in the center of the span of the longitudinal
beams, as well as the distribution of the maximum bending moment and the maxi-
mum shear force in each of the longitudinal beams generated by the application of the
following load states: (a) a point load of 300 KN at a distance equivalent to L/3 from

Figure 6.
Deflections of longitudinal beams in load state 2.
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one of the supports of beam 1, and (b) a point load of 300 KN at a distance equivalent
to L/3 from one of the supports of beam 2 (Figure 7).
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Load state 1
Deflection in the center of the spam of the longitudinal beams
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Figure 7.
Point load of 300 KN at a distance equivalent to L/3 from one of the supports of a beam.
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Maximum shear forces
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3.3 Loads applied at any point on the bridge deck

The proposed method is applicable to calculate the transverse response of girder
bridge decks to the application of a vertical load at any point of the cross section. As in
any matrix calculation, if the vertical load acts on a section of slab between longitudi-
nal beams, the degrees of freedom of the structural model are locked and the reactions
in the locked degrees of freedom are calculated (rigid step). Subsequently, the degrees
of freedom are released and loaded with the reactions obtained in the previous step to
obtain the vertical displacement of each of the longitudinal beams that make up the
bridge deck (flexible step).

Example 3.3.1.
In the study of the structural behavior of the bridge deck analyzed in Example

3.1.1., it is intended to know the deflection in the center of the span of the longitudinal
beams, as well as the distribution of the maximum bending moment and the maxi-
mum shear force in each of the longitudinal beams generated by the application of the
load states described in Figure 8.

Rigid step (Figure 9).
The load generated by the action of the truck axles on longitudinal beams 1 and 2 is

obtained considering the compatibility between loads and movements in the upper
slab between longitudinal beams 1 and 2.
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Figure 8.
Load state generated by the actuation of a four-axle truck 70 + 110 + 100 + 100 KN: (a) plan view; (b) front view.

Figure 9.
Load state generated by the actuation of a four-axle truck. Rigid step.
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Flexible step (Figure 10).
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Figure 10.
Load state generated by the actuation of a four-axle truck. Flexible step.
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Truck axle 2
Deflection in the center of the spam of the longitudinal beams
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Truck axle 4
Deflection in the center of the spam of the longitudinal beams
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Q ḿax,n ¼
Q � L� xð Þ

L
�

f v,n
PN

i¼1 f v,i
¼

45 KN

22 KN

4 KN

�6 KN

0

B

B

B

B

@

1

C

C

C

C

A

Deflection and efforts generated by the action of the four-axle truck

f v,i ¼

�13:78 mm

�6:94 mm

�1:22 mm

1:72 mm

0

B

B

B

B

@

1

C

C

C

C

A

Mfm ́ax,i ¼

1, 323 KN �m

667 KN �m

117 KN �m

�165 KN �m

0

B

B

B

B

@

1

C

C

C

C

A

Qm ́ax,i ¼

138 KN

70 KN

12 KN

�17 KN

0

B

B

B

B

@

1

C

C

C

C

A

4. Conclusions

The proposed method for the analysis of the cross-sectional distribution of live
loads on girder bridge decks allows determining the cross-sectional distribution in
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different configurations of girder bridge decks without the need to resort to complex
calculation models that involve depth computing power and excessive analysis time.
The method is also applicable for modern synthetic materials, such plastic composites,
self-repair. The simplicity of the method allows an easy integration into optimal
bridge design strategies [28] or more heuristic approaches [29–33] to challenge today’s
competitive world intelligently.
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