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Due to the complexity of the radiative transfer equation, light transport problems are commonly solved
using either models under restrictive assumptions, e.g., N-flux models where infinite lateral extension is
assumed, or numerical methods. While the latter can be applied to more general cases, it is difficult to re-
late their parameters to the physical properties of the systems under study. Hence in this contribution we
present, firstly, a review of a four-flux formalism to study the light transport problem in a plane-parallel
system together with a derivation of equations to evaluate the different contributions to the total ab-
sorptance and, secondly, as a complementary tool, a Monte Carlo algorithm with a direct correspondence
between its inputs and the properties of the system. The combination of the four-flux model and the
Monte Carlo approach provides: i) all convergence warranties since the formalism has been established
as a limit and ii) new added capabilities, i.e., both temporal (transient states) and spatial (arbitrarily in-
homogeneous media) resolution. The support between the theoretical model and the numerical tool is
reciprocal since the model is utilized to set a Monte Carlo discretization criterion, while the Monte Carlo
approach is used to validate the aforementioned model. This reinforces the parallel approach used in this
work. Furthermore, we provide some examples to show its capabilities and potential, e.g., the study of
the temporal distribution of a delta-like pulse of light. © 2018 Optical Society of America

OCIS codes: (330.1690) Vision, color and visual optics, color; (300.1030) Spectroscopy, absorption; (290.7050) Scattering, turbid media;
(260.2710) Physical optics, inhomogeneous optical media; (240.6700) Optics at surfaces, surfaces.
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1. INTRODUCTION

The study of light propagation in media that scatter and absorb
light has developed an interest in many different disciplines such
as astronomy [1, 2], atmospheric physics [3–5] and remote sens-
ing [6, 7] among others. These studies usually imply solving the
radiative transfer equation (RTE) [8]. However, due to its com-
plexity, many resolution techniques and approximations have
been suggested. The four-flux model employed in this paper is
a particular case of the N-flux model approximation to solve the
RTE in systems with a plane-parallel geometry. N-flux models,
firstly described by Mudgett and Richards [9], separate light into
N contributions each one associated to an annular solid angle
depending on its angular distribution. N can indeed be very
large but models with low N present the advantage of providing
simple formulae easily utilizable for macroscopic magnitudes,
such as spectral reflectance or transmittance. Probably the most
widely used N-model is the Kubelka-Munk (KM) model [10].
The KM model was developed to study light propagation, by
splitting light into two isotropic diffuse fluxes propagating in
the forward and backward direction, in painted layers. Exten-

sions of this model include the application to fluorescing media
[11], perpendicular collimated illumination under certain con-
ditions [12], to high-absorptive media [13] or, among the most
recent extensions, the applicability to media over an arbitrary
substrate [14]. Due to its simplicity, it has been widely spread in
many technological and industrial areas, such as the paper in-
dustry [15], the paint industry [10] or printing applications [16].
Despite its numerous applications, this model has built-in limi-
tations, like the assumption of diffuse illumination, that causes
the model to fail in providing accurate results under collimated
incident illumination.

To account for collimated contributions, four-flux models in
which light is decomposed into two collimated and two diffuse
components traveling in the forward and backward directions
were proposed. Solutions using a four-flux model of light trans-
fer through a slab containing absorbing and scattering particles
in an absorbing medium have been presented in [17], [9], [18]
and [19], although the latter has become the main reference.
This approach has been improved by several authors [20–22].
There are applications of this model in diverse fields such as
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pigmented paintings [23], x-ray shielding [24], thermal barrier
coatings [25] and nanotechnology for energy applications [26].

An extension of the model to multilayer systems using a ma-
trix formalism was proposed in [27]. The problem of this exten-
sion is that it is not easily applicable since the addition of a layer
results in the addition of new four constants which increases
rapidly the complexity with the number of layers. Along analyti-
cal solutions to four-flux models, Monte Carlo (MC) approaches
have been proposed [28]. A MC approach using a multilayer
four-flux model to describe the radiative transfer across multiple
scattering media was presented in [29]. However, the MC inputs
do not have a direct relationship with the media’s properties.
In this paper, we put forward a MC approach based as well in
a multilayer four-flux model in which the probabilities of each
layer have a direct relation with the scattering and absorbing
properties.

The paper is organized as follows. In section 2 we review
the four-flux model in the case of an infinite lateral slab with
Mie scatterers embedded including an absorbing substrate, as
a generalization of the revised version presented in [14] to any
combination of collimated plus diffuse incidence. Special at-
tention is paid to the case of absorptance, for which specific ex-
pressions are shown. In section 3 a multi-layer four-flux model
based MC algorithm is presented. Comparisons with theoretical
results are conducted to study the conditions under which the
MC yields accurate results. In particular, a fine discretization
criterion and a minimum number of samples (beams) able to
guarantee convergence to the theory are provided. Section 4
contains a set of numerical and theoretical results. The results
selected satisfy two criteria: first, they validate the theoretical
expressions derived in section 2, and second, they show some
of the capabilities of the MC from its handling of the elemental
beams and the possibility of analyzing them in terms of their
history beyond the cumulative character of the reflectance and
transmittance factors. Finally, section 5 shows the conclusions
drawn from this work.

2. FOUR-FLUX MODEL REVISITED

As previously mentioned, N-flux models allow to solve the RTE
in non-emitting plane-parallel media with infinite lateral exten-
sion, i.e., lateral scattering within the media is not taken into
account thus the equation depends only on one spatial direction
(z). Indeed, they, and the four-flux model in particular, can be
derived from the scalar RTE. Although the vector RTE, which
takes into account light polarization, has long been derived [30],
currently there is not a derivation of N-flux models from the
vector RTE. Therefore, the largest source of error of these models
arises from neglecting the fact that light can be polarized. In
N-flux models light intensity is divided in N solid angles in the
coordinate system. In this paper, we focus in a particular case
known as the four-flux model.

The four-flux model studies a system consisting of a parallel-
planar medium, which embeds discrete homogeneous spherical
particles, placed in optical contact with a substrate. The scat-
tering and absorbing properties of the medium can be derived
from the Mie scattering theory, as proposed in [19]. In the small
particle limit, the scattering can be assumed to be isotropic. For
simplicity sake, we have assumed in the following, unless stated
otherwise, that the inclusions are sufficiently small so that the
the isotropic scattering assumption holds.

Light propagation within the slab is modeled using the fol-
lowing fluxes:

• A collimated flux traveling toward positive z direction (Ic).

• A collimated flux traveling toward negative z direction (Jc).

• A diffuse flux traveling toward positive z direction (Id).

• A diffuse flux traveling toward negative z direction (Jd).

As light is scattered within the media the total diffuse flux (Id +
Jd) increases at the expense of collimated fluxes. Figure 1 shows
a sketch of the system and the fluxes considered.
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Fig. 1. Sketch of the system and the fluxes. A finitely thick
plane-parallel light-scattering medium (thickness ≡ h) placed
in optical contact with an arbitrary substrate. Incident light
I, as well as the reflected (RI) and transmitted light (T I), are
considered to be partially collimated.

Below, we provide the solution to the RTE using a four-flux
model for this system when it is illuminated with partially colli-
mated light, i.e., light that has both a collimated and a diffuse
contribution. Expressions for the reflectance and transmittance
in the aforementioned system are provided in [23] for the case
of totally collimated incident light.

Taking into account the energy balances, the differential equa-
tions describing the system are

d Ic

dz
= −(α + β)Ic (1)

d Jc

dz
= (α + β)Jc (2)

d Id
dz

= ξ[(1− σd)α(Jd − Id)− βId] + σcαIc + (1− σc)αJc (3)

d Jd
dz

= ξ[βJd + (1− σd)α(Jd − Id)]− σcαJc − (1− σc)αIc, (4)

where α and β are the scattering and absorption coefficients per
unit length, ξ is the average path length traveled by diffuse light
as compared to collimated light, and σc and σd are the forward
scattering ratio coefficients, i.e., the amount of light scattered
into the forward hemisphere, for collimated and diffuse light
respectively. A full derivation of the solutions for the equations
is given in appendix A. Parameters involved in the four-flux
model are studied in more detail in appendix B.
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Following the approach used in [19] to solve equations (1)
to (4) we obtain an expression of each flux as a function of z

Ic(z) = c1e−ζz (5)

Jc(z) = c2eζz (6)

Jd(z) = c3 cosh(Az) + c4 sinh(Az) + c5eζz + c6e−ζz (7)

Id(z) = c7 cosh(Az) + c8 sinh(Az) + c9eζz + c10e−ζz, (8)

where only four coefficients, c1, c2, c3 and c4, are independent.
The expressions for the coefficients ci are given in appendix A.
The solutions to the differential equations are expressed in terms
of the following constants to be more concise

A = ξ
√

β[β + 2α(1− σd)] (9)

B = α[ξβσc + ξα(1− σd) + ζσc] (10)

C = α{ξ[α(1− σd) + β(1− σc)]− ζ(1− σc)} (11)

D = ξ[β + α(1− σd)] (12)

E = ξα(1− σd) = D− ξβ, (13)

where ζ = α + β is the extinction coefficient per unit length.
The total light intensity at a given z can be easily evaluated

from the sum of all fluxes which can be associated to the trans-
verse energy density U (z)

U (z) = Ic(z) + Id(z) + Jc(z) + Jd(z). (14)

From equations (5) to (8), explicit expressions for the effective
light transfer across the system can be obtained. The system’s
total reflectance and transmittance have an specular contribu-
tion (Rc, Tc), the light that has remained collimated, and a dif-
fuse contribution composed of: the collimated incident light
that is scattered (Rcd, Tcd) and the diffuse incident light (Rdd,
Tdd). Therefore, the total reflectance and transmittance can be
expressed as

R = fRc +Rd = f (Rc +Rcd) + (1− f )Rdd (15)

T = fTc + Td = f (Tc + Tcd) + (1− f )Tdd, (16)

where f is the fraction of collimated incident light. The specular
and diffuse contributions to the total reflectance are

Rc = rc12 +
(1− rc12)

2Rsce−2ζh

1− rc12Rsce−2ζh (17)

Rcd =
(1− rd21)(1− rc12)e−ζh[C0 + C1eζh + C2e−ζh]

(A2 − ζ2)(1− rc12Rsce−2ζh)DEN
(18)

Rdd = rd12 −
(1− rd21)(1− rd12)

DEN
× [ARsd cosh(Ah) + (E− RsdD) sinh(Ah)],

(19)

and the contributions to the transmittance are

Tc =
(1− rc23)(1− rc34)τc(1− rc12)e−ζh

(1− rc23rc34τ2
c )(1− rc12Rsce−2ζh)

(20)

Tcd =
[
(1− rc12)(1− rd23)(1− rd34)τde−ζh

]

× D1 cosh(Ah) + D2 sinh(Ah) + D3eζh + D4e−ζh

(1− rd32rd34τ2
d )(1− rc12Rsce−ζh)(A2 − ζ2)DEN

(21)

Tdd = − (1− rd12)(1− rd23)(1− rd34)Aτd

(1− rd32rd34τ2
d )DEN

, (22)

where rcij and rdij are the reflectance factors for collimated and
diffuse light at the interface between media i and j as indicated

in figure 1. The factors greatly depend upon whether the diffuse
flux is incident toward positive or negative z. Expressions for
evaluating the reflectance factors from media’s refractive indices
are given in appendix B. DEN is given by

DEN = A(Rsdrd21 − 1) cosh(Ah)
+ [E(Rsd + rd21)− D(1 + rd21Rsd)] sinh(Ah),

(23)

coefficients Ci and Di are given in appendix A and the multiple
boundary reflections at the substrate are taken into account in
Rsc and Rsd, the effective reflection coefficients for collimated
and diffuse radiation at the film-substrate interface,

Rsc =
rc23(1− 2rc34τ2

c ) + rc34τ2
c

1− rc23rc34τ2
c

, (24)

Rsd =
rd23 + (1− rd23 − rd32)rd34τ2

d
1− rd32rd34τ2

d
, (25)

where τc and τd are the internal transmittance coefficients, i.e.,
the fraction of light that traverses the substrate without being
absorbed, for collimated and diffuse light respectively.

It is worth noting that the expressions from [23] are recovered
if we illuminate the system with totally collimated light ( f = 1).

In this work, we derive new expressions to evaluate the sub-
strate’s contribution to the total absorptance and therefore, a
method to evaluate the different absorptance contributions. The
system’s total absorptance is simply the amount of light that is
neither reflected nor transmitted. Mathematically is given by

A = 1−R− T . (26)

Light can only be absorbed at either the film or the substrate.
Thus, A can be rewritten as a sum of the light absorbed within
the film A f and within the substrate As

A = A f +As = A f + fAsc + (1− f )Asd, (27)

where the specular, Asc, and the diffuse, Asd, contributions to
As are given by

Asc =
(1− rc12)[D1 cosh(Ah) + D2 sinh(Ah) + D3eζh + D4e−ζh]

(1− rc12Rsce−2ζh)(A2 − ζ2)DEN

+
[(1− rc23)(1− τc) + rc31τc(1− τc − rc23 + rc23τc)](1− rc12e−ζh)

(1− rc23rc34τ2
c )(1− rc12Rsce−2ζh)

(28)

Asd = − [(1− rd23)(1− τd) + rd34τd(1− τd − rd23τd)](1− rd12)A
(1− rd32rd34τ2

d )DEN
.

(29)

A derivation of equations (28) and (29) is provided at ap-
pendix A.

A. Kubelka-Munk Limit

The KM model can be understood as a limiting case of the four-
flux model in which the system is shined on with only perfectly
diffuse light. Therefore, applying the conditions necessary to
satisfy the assumptions made in the KM model, we can retrieve
the KM expressions. This comparison is conducted as a cross-
check of the equations’ derivation.

In the KM limit, the incident light is completely diffuse
( f = 0) and only the film and the substrate are considered,
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Table 1. Probabilities correspondence. Correspondence between the different probabilities considered in our MC approach and the
physical parameters of the four-flux theory.

Probability Physical parameter Description

PKcol β dz Absorption probability for a collimated beam

PKdif ξβ dz Absorption probability for a diffuse beam

PRcol rcij (Fresnel) Reflection probability for a collimated beam

PRdif rdij (Fresnel) Reflection probability for a diffuse beam

PScol
back α(1− σc)dz Backscattering probability for a collimated beam

PSdif
back ξα(1− σd)dz Backscattering probability for a diffuse beam

PScol
forward ασc dz Forward scattering probability for a collimated beam

(a)

0

absorbed

PKdif

back-reflected

PKdif + PRdif

back-scattered

PKdif + PRdif + PSdif
back

forward-scattered

1

(b)

0 PKcol PKcol + PRcol PKcol + PRcol + PScol
back PKcol + PRcol + PScol

back + PScol
forward 1

absorbed back-reflected back-scattered forward-scattered travels through

Fig. 2. Probability allocation for: (a) a diffuse beam and (b) a collimated beam.

which implies that rd12 = rd21 = rd31 = 0. Using the following
relationships between the KM coefficients and ours

Rg = rd23 = Rsd A =
√

K2 + 2KS = Sb

Tg = (1− rd23)τd D =
√

K + S

K = ξβ E = S
S = ξα(1− σd) X = h,

where Rg and Tg are the reflectance and transmittance of the
substrate, X is the thickness of the film, K and S are the KM
absorption and backscattering coefficients, b =

√
a2 − 1 and a =

1 + K/S, the KM expressions given in [14] are then recovered.

3. MONTE CARLO APPROACH

In order to simulate the four-flux theoretical model described
in figure 1, we implement a MC approach. Specifically, we
discretize the film in Nl layers and couple it to additional layers
that account for: reflections at the different interfaces (air-film,
film-substrate, substrate and substrate-air), and the absorption
at the substrate. We assign absorption, reflection and scattering
probabilities to each layer (including the substrate).

Table 1 shows the correspondence between the different prob-
abilities considered in our MC approach and the physical pa-
rameters of the four-flux theory.

Figure 2 shows the probability allocation for diffuse and colli-
mated beams, respectively. We send NT elemental light beams
to the specimen and decide their fate according to algorithm 1.

Algorithm 1 Four-flux Monte Carlo.

. Each incoming beam is initially moving to the right
while moving do

ρ← uniformly distributed random number ∈ (0, 1)
if collimated then

if ρ < PKcol then . beam absorbed

5: beam absorbed
STOP

else if ρ < (PKcol + PR) then . beam back-reflected
if moving to the right then

if first layer then
10: beam reflected (specular)

STOP
else

reverse direction
back one layer

15: else
reverse direction
move one layer

else if ρ < (PKcol + PR + PScol
back) then . beam

back-scattered
if moving to the right then

20: if first layer then
beam reflected (diffuse)
STOP

else
reverse direction

25: back one layer
collimated = false

else
reverse direction
move one layer

30: collimated = false
else if ρ < (PKcol + PR + PScol

back + PScol
forward) then .

beam forward-scattered
if moving to the right then

if last layer then
beam transmitted (diffuse)

35: STOP
else

move one layer
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collimated = false
else

40: if first layer then
beam reflected (diffuse)
STOP

else
back one layer

45: collimated = false
else . beam travels through

if moving to the right then
if last layer then

beam transmitted (specular)
50: STOP

else
move one layer

else
if first layer then

55: beam reflected (specular)
STOP

else
back one layer

else
60: Algorithm 1: Monte Carlo approach algorithm [14]

The MC simulation model outputs the total number of re-
flected, transmitted and absorbed beams, the total number of
beams hitting a given layer (associated to the transverse energy
density U (z)) and the total number of time units, a time unit is
defined as the time that a collimated beam takes to cross of a
layer of the vacuum, i.e., n = 1, of each beam before being either
reflected, transmitted or absorbed, which may be associated to
its time-of-flight (ToF).

As it will be shown, the total number of incoming beams,
NT , determines the precision of the calculation, or the statistical
uncertainty, i.e., the difference between consecutive realizations
under the same simulation conditions. On the other hand, the
accuracy of the calculation, i.e., the difference between the real
and the simulated values, depends on the total number of layers,
Nl . Given that the total probability for a beam to be scattered
(absorbed) within the medium αh (βh) must be equal to the Nl
times the layers’ probability for scattering (absorption), Nl can
be defined as

Nl =
(ξ + 1)ζh− ξασdh

∑
i

Pi
, (30)

where

∑
i

Pi = PKcol + PKdif + PScol
back + PSdif

back + PScol
forward . (31)

It should be noted that the total event probability for a col-
limated (diffuse) photon is only PKcol + PScol

back + PScol
forward

(PKdif + PSdif
back) which is always≤ ∑i Pi. Therefore the criterion

given in equation (31) is even more restrictive. The total event
probability for each layer, ∑i Pi, directly determines the number
of layers needed to correctly describe the physical phenomena
taking place, and reproduce the theoretical results. Apart from
the obvious probability limit ∑i Pi ≤ 1, a convergence crite-
rion must be established. As our MC model implements the
same assumptions as the four-flux theory described in section 2,
for a first verification we compare simulated and theoretical
results of the collimated and diffuse reflectance,Rc andRd, and

transmittance, Tc and Td. Figure 3 shows the difference (in per-
centage points) between simulated and theoretical results of Tc
as a function of the number of layers and ∑i Pi. Similar results
are obtained for the other magnitudes.

10−410−310−210−1
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3

∑
Pi

∆
T c
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)

101 102 103 104

# of layers (Nl)

Fig. 3. Absolute difference (in percentage points) between sim-
ulated and theoretical results of the collimated transmittance,
as a function of Nl and ∑i Pi (top axis). Parameters: α = 0.4
mm−1, β = (1− 2α)/3 mm−1, h = 1 mm, n1 = n3 = n4 = 1.0,
n2 = 1.8, τc = 1, f = 0.5.

As can be seen in figure 3, for ∑i Pi = 0.01 the absolute differ-
ence between simulated and exact results is already stabilized,
so that we take

∑
i

Pi ≤ 0.01 (32)

as a discretization criterion. As a means to visualize the effect of
both Nl and NT on the accuracy and precision of the calculations
in a typical case, we set α = 0.5 mm−1, β = 0.05 mm−1, h = 1
mm, n1 = n4 = 1.0, n2 = 1.5, n3 = 1.0, σc = 0.5, σd = 0.5, ξ = 2,
τc = 1, τd = τ2

c , f = 1.0 and calculate Rc, Rd, Tc and Td for
several levels of discretization (growing NT , progressively lower
∑i Pi), as a function of ζh, the net extinction within the medium.
For each discretization, 100 realizations were carried out, calcu-
lating an average value together with the associated standard
deviation. This is shown in figure 4, with markers showing the
average value and error bars representing ± standard deviation.

As expected, simulated results converge (with an excellent
agreement) to theoretical ones as NT is increased and ∑i Pi is
decreased, i.e., discretization layers are made thinner for the
same specimen. Interestingly, as ∑i Pi decreases we achieve
more accuracy (average value approaches zero) while increasing
NT reduces the overall noise associated with the random number
generation (see the length of the error bars in figure 4). Moreover,
we observe that when the criterion established in equation (31)
is satisfied the differences between the theoretical and simulated
results are compatible to being null as expected.

According to these results, if not stated otherwise, from now
on all MC simulations are performed sending 100 000 elemental
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Fig. 4. Theoretical and simulated values comparison ofRc,Rd, Tc and Td as a function of the thickness with increasing extinction
(ζ = α + β with α = 10β) for different discretizations, i.e., different ∑i Pi, and number of beams (NT). Parameters: h = 1 mm,
n1 = n3 = n4 = 1.0, n2 = 1.5, τc = 1, f = 0.5.

beams to a specimen discretized with a number of layers so that
equation (32) is fulfilled.

4. RESULTS

Among the many results that can be obtained with this MC
we have focused on some with practical interest. In section A
we have examined the transverse energy density within the
film at equilibrium. The single scattering penetration depth, a
parameter that provides information about how fast collimated
light is scattered, is studied in section B. We have analyzed
the absorptance contributions for different substrates section C.
And, last but not least, the temporal distribution of an ultra-short
pulse is studied in section D.

A. Transverse energy density
The theoretical transverse energy density at a given depth can be
related to the number of total beams hitting a layer at that spe-
cific depth. Figure 5 shows a comparison between the theoretical
and simulated results of the transverse energy density relative to

I, the total incident intensity, as a function of the relative film’s
depth for several values of the ratio β/α, i.e., the ratio between
the absorption and the scattering.

The results shown are valid only under a constant incident
radiation. If the incident ration is time-dependent, i.e., I ≡ I(t),
the transverse energy density will not be generally constant over
time. Unlike the MC, analytical solutions of the four flux model
only provide information when the fluxes are at equilibrium
with the incident radiation. We show in section D an application
of the MC when the system is shined on with a time-dependent
radiation, in particular a collimated pulse of light.

The agreement between theory and simulation shown in
figure 5 is excellent. Moreover, the transverse energy density
decreases more rapidly in more absorbing media, as expected
from propagating beams.

We also observe that when the absorption is not negligible the
transverse energy density has an exponential decay as in a Beer-
Lambert case. When the scattering contribution is larger than
the absorption contribution, U is larger at smaller z. Increasing
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Fig. 5. Transverse energy density relative to the initial inten-
sity I as a function of the medium’s depth for different values
of the β/α ratio. The solid lines (markers) show the theoreti-
cal (simulated) results. Parameters: α = 1 mm−1, h = 1 mm,
n1 = n4 = 1.0, n2 = 1.5, n3 = 1.0, τc = 1, f = 0.5.

the scattering increases the number of direction changes that
light beams experience. This results in a concentration raise of
light beams near the first media interface which results in an
increase in diffuse reflectance and a decrease in the number of
photons that cross the medium.

It is worth noting that the ratio U to I can be larger, and
indeed it is for highly scattering media, i.e., α �, than unity.
This is a typical result of a system in which light travels back
and forth, e.g., passive optical cavity.

B. Single scattering penetration depth
Another result from the MC that can be verified with theory
is the number of collimated beams that have experienced scat-
tering at a given layer. The amount of collimated light that
has undergone scattering between z and z + dz is equal to the
collimated intensity, i.e., the sum of the collimated fluxes, at z
multiplied by the probability of being scattered in a dz. Thus,
for a given discretization, the scattered collimated intensity is

Is(z) =Ic(z) + Jc(z)

=

(
αh
N

)
(1− rc12) f I

1− rc12Rsce−2ζh [e
−ζz + Rsce−2ζheζz] ,

(33)

where we have used equation (5) and equation (6).
From equation (33) the single scattering penetration depth,

i.e., the depth at which the intensity of the collimated radiation
inside the material falls to 1/e, can be evaluated. This magnitude
has a potential importance in tissue spectroscopy. Light rays that
undergone scattering in a biological sample can suffer single or
multiple scattering. Single scattered light arise predominantly
from the scattering at the tissue surface. On the other hand,
light that experiences more scattering events within the tissue
contains information about deeper scattering structures [31].

Here, we study the depth at which single scattering occurs
in two cases, first a film over a non-absorbing substrate and sec-
ond a free-standing film. Thus, reflections at the film/substrate

0 0.2 0.4 0.6 0.8 1

0

0.1

0.2

0.3

0.4

0.5

0.6
f = 0
f = 0.2
f = 0.4
f = 0.6
f = 0.8
f = 1

z/h

(%
)

Fig. 6. Simulated (markers) and theoretical (solid lines)
percentage of beams that have become diffuse at a given
medium’s depth for different fractions of the initially colli-
mated beams when reflections at the interface tissue/substrate
are taken into account (solid lines) and when they are not (dot-
ted lines). Parameters: α = 0.5 mm−1, β = 0.005 mm−1,
h = 1 mm, n1 = 1.0, n2 = 1.41 (refractive index of a mam-
mal tissue [32]), τc = 1.0 and, n3 = 1.5, n4 = 1 for the first and
n3 = n4 = 1.41 second case respectively, NT = 106 beams.

interface are only taken into account in the former case, i.e., the
second term in equation (33) is zero in the latter. These sys-
tems are a simple model of a tissue on a sample holder and a
free-standing tissue. Figure 6 presents theoretical and simulated
values of the percentage of collimated beams that have become
diffuse, i.e., that has undergone single scattering, in a width h/N
at a given depth z.

We observe that the number of scattered beams decreases
with increasing depth and decreasing f since there are less beams
subject to be scattered. Reflections at the substrate yield to an
overall increase of the beams scattered within the medium. The
longer they are in the medium the higher the probability for
experiencing scattering. Unsurprisingly, the largest difference
occurs at the largest z, in other words, when light is closest to
the film/substrate interface.

C. Absorption contributions
The MC enables us to tell apart between light absorbed at the
film from light absorbed at the substrate. Here we try to show
the strength of the substrate’s contribution to the total absorp-
tance. We have evaluated the amount of light absorbed at both
the film and the substrate with increasing probability for light
to be absorbed within the film (βh). Figure 7 compares the sim-
ulated results and theoretical results of the absorptances. Two
cases have been considered, one in which the absorption at the
substrate is large, figure 7 a), and other in which it is low, figure 7
b).

It is observed in figure 7 that the agreement between theory
and simulation is splendid. Moreover, the film’s absorption
contribution grows with the probability of being absorbed at the
film as expected. When βh ≥ 1, all light entering the system
is absorbed and is absorbed at the film. When the βh � 1 the
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Fig. 7. Theoretical (solid lines) and simulated (markers) results
of the total absorptance A as well as the film’s A f and sub-
strate’s As contribution to the absorptance for a low-absorbing
substrate, show in the figure at the top (τc = 0.8), and for a
high-absorbing substrate, figure at the bottom (τc = 0.2). Pa-
rameters: α = 1mm−1, h = 1mm, n1 = n4 = 1.0, n2 = 1.3,
n3 = 1.5, f = 0.5.

light absorption occurs mainly within the substrate and as βh
this contribution decreases since less light reaches the substrate.

D. Time-of-Flight (ToF)

MC also tracks the ToF of each beam, i.e., the number of time
units elapsed by each beam before it is either reflected, transmit-
ted or absorbed. This magnitude provides useful information
that it is not available analytically, e.g., the temporal distribu-
tion of a pulse of light or, equivalently, the transient state of the
magnitudesRc, Tc, etc.

As an illustrative example we have studied the temporal
distribution of an ultra-short collimated pulse incident on a het-
erogeneous system composed of two layers of different translu-
cent media over a substrate. The system under consideration is
equivalent to the system shown in figure 1 with the exception of
the film being constituted by two different media. In table 2 the
physical properties of the system studied are shown. The layer

closest to the substrate has a larger scattering and absorption
contribution than the other. This system can represent the case
of a sequence of two different coatings applied to a transparent
substrate. The system of layers is embedded in air. The pulse
can be modeled as a δ(t = 0) by sending a bunch of NT beams
at a specific time.

Table 2. System’s properties. Physical properties of the two
coatings (i = 1, 2), and the substrate (i = 3) of the system
understudy. n is the refractive index, α (β) is the scattering
(absorption) coefficient per unit length, h is the width of the
layer, and l is the number of layers in which the corresponding
medium has been discretized.

i n α
(

mm−1
)

β
(

mm−1
)

h (mm) l

1 1.5 0.1 0.1 1 502

2 1.8 1 1 1 502

3 1.5 0 0 2 1004

Let the time that a collimated beam takes to cross a layer of a
medium with refractive index n = 1, i.e., in vacuum, be a time
element ∆t. Under uniform discretization, the time elapsed by a
collimated (diffuse) beam to go through a layer with refractive
index n is tc = n∆t (td = ξn∆t). The temporal distribution of a
collimated pulse incident on the system is shown in figure 8.

For a delta function-like pulse, the collimated magnitudes
take non-zero values at specific times while the diffuse magni-
tudes are spread over time. This is a result of collimated beams
traveling all together as a ballistic bunch, being susceptible of
exiting the system only when it reaches the system’s edges. The
perturbation within the system due to the pulse decreases as
beams are either reflected, transmitted or absorbed. Thus, we ob-
serve in figure 8 that the (%) of beams decreases with increasing
time.

Let us analyze each magnitude individually. Regarding the
collimated reflectance (blue bars in figure 8, top), the first peak
(t = 0) corresponds to light that is reflected at the first interface.
The second contribution (t = 2n1l1 ' 1506) is due to light that
crosses the first medium, suffers a reflection at the interface
between the media and exits the system from the first interface.
The third (t = 4n1l1 ' 3013) comes from the small amount of
beams that suffers several reflections at the following interfaces:
medium 1-medium 2, medium 1-air and medium 1-medium
2. The fourth peak (t = 2(n1l1 + n2l2) ' 3317) arises due to
light that is reflected at the medium 2-substrate interface. The
following peaks can be understood using similar arguments.
Analogously, if we analyze the collimated transmittance’s peaks
(orange bars in figure 8, top) we see that the first one (t =
n1l1 + n2l2 + nsls ' 3163) corresponds to light that crosses the
whole system and goes through the last interface. The second
peak is light that reflects at the interface medium 1-medium 2,
reflects back at the interface air-medium 1 and leaves the system
from the back side (t = 2n1l1 + n2l2 + nsls ' 4669), etc.

In the case of diffuse reflectance we can see a continuous
contribution from light that enters the system, suffers multiple
scattering eventually turning around exiting the system at the
first interface. We also observe periodical enhancements. The
enhancements occur when the ballistic bunch reaches the first
interface. New diffuse beams coming from the scattering of the
collimated bunch add to the continuous background of diffuse
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Fig. 8. Response function of the system to a delta-like pulse. Histogram showing the ratio of collimated and diffuse beams that
have been either reflected or transmitted as a function of time. The bin width is equal to a time element ∆t. The total number of
incident beams utilized in this simulation is: NT = 5× 107.

beams yielding an increase in the diffuse reflectance. With regard
to the diffuse transmittance, it starts at t = n1l1 + n2(l2 − 1) +
2(n2 + nsls) ' 4670, i.e., light that has remained collimated
until experiencing scattering at the end of the medium 2 layer.
Note that, in this case, the last scattering layer does not coincide
with the last layer of the system. It behaves like the diffuse
reflectance with the exception that the enhancements occur when
the ballistic bunch arrives at the last interface.

From figure 8 it is evident that there is a time delay between
the first collimated and diffuse transmitted beams. The first
outgoing collimated beam is found at t ' 3163, while the first
diffuse beam do it at t ' 4670. This artificial difference arises
due to the fact that all the diffuse beams are set to cross the same
distance as collimated beams in double the time, i.e., taking the
average pathlength ξ = 2 for all diffuse beams instead of taking
random values with a mean value of ξ = 2 for each beam.

Note that all collimated transmitted pulses but the first one,

will be overlapped with the transmitted diffuse contribution
since they have similar intensities. On the other hand, there are
several collimated reflected pulses with a significantly larger
intensity than the reflected diffuse contribution even at time
over 6000∆t.

Figure 8 shows the system’s impulse-response function.
Therefore, the system’s response to a pulse described by a
general function of time ( f ≡ f (t)) is simply the convolu-
tion of the pulse’s function and the system’s impulse-response
function. While a time unit in our system is on the order of
∆t = h/(cl) ' 7 fs, a more realistic pulse would have a time
spread of 100 fs. In this particular case, we still would be able
to distinguish reflected and transmitted peaks, since the time
differences between the maxima of the peaks are larger than the
peaks’ time spread.
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5. CONCLUSIONS

We have reviewed the four-flux model applied to an homoge-
neous slab with scattering inclusions located on top of an absorb-
ing substrate under partially collimated incident light. We have
also calculated the transverse energy density in the slab and the
different contributions to the total absorptance. We have also
recovered the KM expressions in the limit of perfectly diffuse
incident light.

Moreover, a MC algorithm to simulate the four-flux model
has been implemented. In the MC approach the medium is
discretized in layers each of them characterized by the probabil-
ity of light undergoing reflection, absorption or scattering. We
have derived a correspondence between the physical parame-
ters involved in the four-flux model and the probabilities of the
layers. A comparison between the MC results and the four-flux
model predictions enabled us to cross-check the validity of the
expressions and the MC itself.

The MC approach has an added value, as it allows, among
other things, for the implementation of inhomogeneities in the
specimen itself or the treatment of nonlinear phenomena. It
also incorporates time, which finds application in the study of
light pulses as it has been shown in section D. Transient states
could also be studied in the framework of N-flux models by
solving equations (1) to (4) using standard numerical methods
for solving ODEs, such as Runge-Kutta. However, the Monte
Carlo has advantages with respect to other numerical methods.
In the first place, Monte Carlo is a very intuitive method. In the
case of complex systems, ODE require more boundary condi-
tions, while for MC just deals with probabilities. Furthermore,
in the case of complex systems, such as very inhomogeneous
media, convergence and computational time could be an issue
for ODE solvers. Meanwhile, for MC it would be effectively the
same problem for each light beam with, perhaps, the exception
of requiring a larger NT in order to decrease the overall noise.

Approximations to the RTE like N-flux models or numerical
simulations are commonly used in general transport problems.
A disadvantage of most numerical methods is that the corre-
spondence with the physical properties of the system is not
straightforward. We have successfully avoided that problem in
the present work.

The work presented here provides a solid frame to model
other systems and specific conditions. Prospective implemen-
tations include polarization effects (with possible Fabry-Perot
interferences), anisotropies, fluorescence, structured materials,
color effects, rough surfaces, etc. These will only be applicable as
long as the infinite lateral extension approximation inherent to
the N-flux model is satisfied. Otherwise, other RTE formalisms
will be necessary.
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A. EQUATIONS FULL DERIVATION

In this appendix we provide a detailed derivation of the equa-
tions shown in section 2.

Differential equations solution
The solutions to equations (1) and (2) are easily obtained by
direct integration and are given in equations (5) and (6). In
order to solve equations (3) and (4), they first need to be decou-
pled. Following [19], we compute the derivative of the sum and
subtraction of equations (3) and (4)

d2(Jd + Id)

dz2 = ξ2β[β + 2(1− σd)α](Jd + Id)

− ξ[β + 2(1− σd)α]α(Jc + Ic)

+ (1− 2σc)αζ(Jc + Ic)

(34)

d2(Jd − Id)

dz2 = ξ2β[β + 2(1− σd)α](Jd + Id)

+ ξβ(1− 2σc)α(Jc − Ic)

− αζ[Jc − Ic].

(35)

Adding and subtracting equations (34) and (35) and substitut-
ing equations (5) and (6) we obtain second order decoupled
differential equations

− d2 Jd
dz2 + A2 Jd = Bc2eζz + Cc1e−ζz (36)

− d2 Id
dz2 + A2 Id = Cc2eζz + Bc1e−ζz . (37)

Applying standard procedures to solve differential equations we
obtain equations (7) and (8), where the following relationships
hold

c5 =
Bc2

A2 − ζ2 (38)

c6 =
Cc1

A2 − ζ2 (39)

c9 =
Cc2

A2 − ζ2 (40)

c10 =
Bc1

A2 − ζ2 (41)

Initially there are four first order differential equations hence
only four ci coefficients are independent. We can derive expres-
sions for c7 and c8 in terms of c3 and c4. First, we substitute
equations (5) to (8) in equation (4) and regroup

0 = sinh(Az)[ξ(β + α(1− σd))c4 + ξ(1− σd)αc8 − Ac3]

+ cosh(Az)[ξ(β + α(1− σd))c3 + ξ(1− σd)αc7 − Ac4]

+ eζz[ξ(β + α(1− σd))c5 + ξ(1− σd)αc9 − σcαc2 − ζc5]

+ e−ζz[ξ(β + α(1− σd))c6 + ξ(1− σd)αc10 − (1− σc)αc1 − ζc6].

Isolating c7 and c8 from the first two terms:

c7 =
Dc3 − Ac4

E
(42)

c8 =
Dc4 − Ac3

E
. (43)

To find exact solutions we use the boundary conditions. The
boundary conditions at the interface z = 0 are

Ic(0) = (1− rc12) f I + rc12 Jc(0) (44)

Id(0) = (1− rd12)(1− f )I − rd21 Jd(0), (45)

where I is the incident light intensity. The boundary conditions
at z = h are

Jc(h) = Rsc Ic(h) (46)

Jd(h) = Rsd Id(h). (47)



Research Article Journal of the Optical Society of America A 11

Substituting equations (5) and (6) in equations (44) and (46) and
isolating

c1 =
(1− rc12) f I

1− rc12Rsce−2ζh (48)

c2 =
(1− rc12) f IRsce−2ζh

1− rc12Rsce−2ζh . (49)

Likewise, expressions for c3 and c4 are found substituting equa-
tions (7) and (8) in equations (45) and (47). After some lengthy
but straight-forward algebra we find

c3 = σ1 f I + σ2(1− f )I (50)

c4 = σ3 f I + σ4(1− f )I, (51)

where

σ1 =

{[
A[(C + BRsc)− Rsd(B + CRsc)]e−ζh

]

+
[
ARsd cosh(Ah) + (E− RsdD) sinh(Ah)

]

×
[
(C− rd21B)Rsce−2ζh + (B− rd21C)

]}

× (1− rc12)
[
(1− rc12Rsce−2ζh)(A2 − ζ2)DEN

]−1

(52)

σ2 =
(rd12 − 1)[ARsd cosh(Ah) + (E− RsdD) sinh(Ah)]

DEN
(53)

σ3 =

{[
(D− rd21E)

[
(C + BRsc)− Rsd(B + CRsc)

]
e−ζh

]

−
[
(E− RsdD) cosh(Ah) + ARsd sinh(Ah)

]

×
[
(C− rd21B)Rsce−2ζh + (B− rd21C)

]}

× (1− rc12)
[
(1− rc12Rsce−2ζh)(A2 − ζ2)DEN

]−1

(54)

σ4 =
(1− rd12)[(E− RsdD) cosh(Ah) + ARsd sinh(Ah)]

DEN
. (55)

Reflectance, Transmittance, Absorptance
The total reflectance has an specular and a diffuse contribution.
The specular contribution is the ratio of collimated reflected
intensity to the total incident intensity

Rc =
rc12 f I + (1− rc12)Jc(0)

I
. (56)

Substituting equations (6) and (49) in equation (56), equation (17)
is obtained. Analogously, the diffuse contribution

Rd =
rd12(1− f )I + (1− rd21)Jd(0)

I
. (57)

Substituting equations (7), (38), (39), (48) and (50) in equation (57)
and isolating the contribution from the collimated and diffuse
incident light we obtain equations (18) and (19), where

C0 = A[(C + BRsc)− Rsd(B + CRsc)] (58)

C1 = [A(BRsd − C) cosh(Ah)
+ [B(E− DRsd) + C(ERsd − D)] sinh(Ah)] (59)

C2 = Rsc[A(CRsd − B) cosh(Ah)
+ [C(E− DRsd) + B(ERsd − D)] sinh(Ah)] (60)

As well as the reflectance, the transmittance has also an spec-
ular and a diffuse contribution. In this case, the specular (diffuse)
contribution is given by the sum of all the transmitted collimated

(diffuse) rays originated due to multiple reflections within the
substrate divided by the total incident intensity.

Tc = Tsc
Ic(h)

I
= [

(1− rc23)(1− rc34)τc

(1− rc23rc34τ2
c )

]
Ic(h)

I
(61)

Td = Tsd
Id(h)

I
= [

(1− rd23)(1− rd34)

1− rd32rd34τ2
d

]
Id(h)

I
. (62)

Substituting equation (5) in equation (61) and equation (8) in
equation (62) and isolating the different contributions we get
equations (20) to (22), where

D1 = A
[
(rd21C− B) + Rsc(rd21B− C)

]
(63)

D2 = (E− rd21D)(C + BRsc)− (D− rd21E)(B + CRsc) (64)

D3 = A(B− rd21C) (65)

D4 = ARsc(C− rd21B). (66)

As stated in section 2, the total absorptance may be split up
into two contributions, one arising from the absorption within
the film and the other within the substrate. The absorption at
the substrate, As, can be evaluated from

As =
Ad Id(h) + Ac Ic(h)

I
, (67)

where Ad and Ac are the diffuse and collimated light absorbed
inside the substrate, given by

Ad = 1− Rsd − Tsd

=
(1− rd23)(1− τd) + rd34τd(1− τd − rd23τd)

1− rd32rd34τ2
d

(68)

Ac = 1− Rsc − Tsc

=
(1− rc23)(1− τc) + rc34τc(1− τc − rc23τc)

1− rc23rc34τ2
c

. (69)

Substituting equations (5), (8), (68) and (69) in equation (67), we
obtain the expressions for As given in equations (27) to (29).

B. PARAMETERS OF THE FOUR-FLUX MODEL

The four-flux model requires many parameters whose values are
not trivial. Thus in this appendix we review the physics behind
each of them.

Average pathlength parameter
The average pathlength parameter ξ, also known as the average
crossing parameter, provides the relative distance traveled by
the diffuse light compared to collimated light. The value of ξ fol-
lows from its definition for two specific cases: under collimated
radiation ξ = 1 and under perfectly diffuse incident radiation
ξ = 2. However, ξ does not have to be constant. If the scattering
is not isotropic, the assumption of a constant ξ constitutes a
source of error within the model since the anisotropy between
the angular distribution of the forward and backward diffuse
radiation is not taken into account.

Mathematically, a light beam, whose direction forms an angle
θ with the z-axis, travels a distance ∆L which is 1/ cos θ larger
than ∆z, the distance traveled by a collimated beam. Averaging
both sides over the intensity radiation field and integrating over
the forward hemisphere the average pathlength can be evaluated
with

ξ(z) =

1∫
0

I
(
z, µ
)

dµ

1∫
0

µI
(
z, µ
)

dµ

. (70)
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Due to the difficulty in evaluating equation (70) it has usually
been considered constant [19] or as a fitting parameter. In certain
cases there are explicit formulae for ξ, e.g., in the case of films
containing spherical particles in a nonabsorbing matrix [33], in
other cases its value has been studied with numerical methods
[34]. We have set this parameter to ξ = 2 to avoid complications.

Scattering and absorption coefficients per unit length
The relative energy lost by a collimated beam flowing perpendic-
ularly to an infinitesimal slab dz due to scattering (absorption)
is related to the scattering (absorption) coefficient by α dz (β dz).
In general, α and β depend on the properties of the material
and are usually phenomenological parameters. In the case of a
nonabsorbing medium with homogeneous spherical inclusions
α and β can be evaluated from Mie-Lorenz theory

α =
η

V
Csca , (71)

β =
η

V
Cabs , (72)

where η is the filling fraction, V is the particle volume and, Csca
and Cabs are the scattering and absorption cross sections of the
inclusions [23].

Forward scattering ratios
The forward scattering ratio is simply the relative amount of
light scattered in the forward hemisphere within the media. This
value is different for collimated (σc) and diffuse light (σd). In the
case of collimated light, σc equals the amount of light scattered
in the forward direction over the total scattered light, which can
be evaluated using

σc =

1∫
0

p(µ)dµ

1∫
−1

p(µ)dµ

, (73)

where p(µ) is the phase function. In the case of diffuse light the
evaluation is more cumbersome since the forward hemisphere
with respect to the beam direction does not coincide with the
medium’s forward hemisphere. σd is commonly evaluated
numerically but there are analytical expressions for specific
cases, e.g., a non-absorbing medium with absorbing-scattering
particles [20].

The assumption that σc = σd has been made [19]. This
approximation does not hold except for limit cases such as
isotropic scattering. We have assumed this configuration, hence
the values σc = σd = 0.5 have been used in all computations.

Reflectances at the interfaces
Usually we have information relative to the refractive indices of
the different media rather than the reflectances at each interface.
However, these magnitudes are easily related by the Fresnel
equation. The reflectance at the interface between medium i and
medium j for a light beam with angle of incidence θi is

rs(θi) =

∣∣∣∣∣
nj cos θi − ni cos θj

nj cos θi + ni cos θj

∣∣∣∣∣

2

(74)

for parallel polarization and

rp =

∣∣∣∣∣
nj cos θj − ni cos θi

nj cos θj + ni cos θi

∣∣∣∣∣

2

(75)

for perpendicular polarization, where ni and nj are the refractive
indices of the media and θj is the angle of refraction which can be
evaluated using the Snell law [35]. For unpolarized collimated
light the reflectance at the interface is

rcij =
1
2

(
rs + rp

)
(76)

with θi = θp = 0. In the case of diffuse light, multiple incident
directions have to be taken into account. Therefore, we average
the Fresnel factors over all possible angles of incidence [36]

rdij =
1
2

π/2∫

0

[rs(α) + rp(α)] sin(2α)dα (77)

Transmittances across the substrate
In addition to the absorption within the film, there can be ab-
sorption in the substrate. The substrate’s absorption can be
characterize by the transmittance τ across the substrate, i.e.,
the fraction of light that crosses the substrate without being ab-
sorbed. Since diffuse light covers more distance to travel the
same distance than collimated light, τd 6= τc. The transmittance
of a material is related to the attenuation coefficient, α(z), by the
following expression

τ = exp

(
−
∫ l

0
α(z)dz

)
, (78)

where l is the material’s length. Assuming constant attenuation
over the whole substrate, i.e., a constant attenuation coefficient,
the substrate’s internal collimated and diffuse transmittances
are related by

τd = τ
ξ
c . (79)

We have applied this relationship throughout all the paper.
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