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Abstract

Although dark matter in galaxies may consist of elementary particles different from those that
conform ordinary matter and that would be smoothly distributed (still undetected), primordial
black holes (PBHs) formed after the initial Big Bang are also candidates to account for a certain
fraction of mass in galaxies. In this project, we consider different populations of PBHs in the main
lens galaxy of the doubly imaged gravitationally lensed quasar FBQ 0951+2635. The observed
microlensing variability of the quasar images is compared with the microlensing variability
generated by stars and PBHs in the lens galaxy at redshift z ∼ 0.3, obtaining strong constraints
on possible PBH populations in the non-local early-type galaxy acting as a gravitational lens.

Keywords: Gravitational lensing: strong, gravitational lensing: micro, quasars: individual:
0951+2633, galaxies: halos, dark matter, primordial black holes.

Resumen

Aunque la materia oscura en las galaxias podría estar compuesta por partículas elementales
diferentes de las que forman la materia ordinaria y que estarían distribuidas de manera homogénea
(aún no detectadas), los agujeros negros primordiales (PBHs), formados después del Big Bang
inicial, también son candidatos para representar una cierta fracción de la masa en las galaxias.
En este proyecto, consideramos diferentes poblaciones de PBHs en la galaxia lente principal
del cuásar FBQ 0951+2635, que presenta dos imágenes debido al efecto lente gravitacional. La
variabilidad observada por efecto de microlente de las imágenes del cuásar es comparada con la
variabilidad generada por estrellas y PBHs en la galaxia lente a un redshift z ∼ 0.3, obteniendo
importantes restricciones sobre las posibles poblaciones de PBHs en la galaxia de tipo temprano
no local que actúa como lente gravitacional.

Palabras clave: Lente gravitacional: fuerte, lente gravitacional: microlente, cuásares:
individuales: 0951+2633, galaxias: halos, materia oscura, agujeros negros primordiales.
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Chapter 1

Introduction

1.1 Motivation

Humans have always sought to understand the cosmos and its underlying structure. Gravitational
lensing has become a valuable tool in this effort, enabling a wide range of astronomical studies,
from measuring the expansion of the universe and investigating the properties of distant galaxies
to detecting exoplanets and exploring the early universe. One important application is studying
the distribution of matter, including dark matter, which remains one of its most mysterious
components. In this context, Primordial black holes (PBHs) have been proposed as potential
candidates for dark matter, and their presence could be studied through microlensing effects on
distant quasars.

The aim of this work is to investigate whether PBHs could constitute a significant fraction
of dark matter in the universe. To achieve this, we will make use of quasar microlensing by
considering different distributions of stars and primordial black holes in a given galaxy. More
specifically, we will consider different contributions to the surface mass density of a given galaxy
that acts as the main gravitational lens on a well-studied distant quasar, comparing the predicted
extrinsic variability of the quasar (through simulations) with the observed variability through
several techniques, for which we will use new and updated data. We assume that the galaxy’s
mass is due to smoothly distributed matter (SDM; gas or dark matter particles still undetected),
a distribution of stars based on observations, and a population of PBHs with a monochromatic
mass function.

Overall, this work will explore the potential contribution of PBHs to this non-local early-type
galaxy acting as a gravitational lens, trying to shed light on their role in the context of dark
matter.
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1.2 Dark Matter

1.2.1 Historical context

Dark matter is one of the most important scientific challenges of this century. The composition of
our Universe is mostly unknown, since approximately only the 5% of it corresponds to ordinary
(baryonic) matter and the rest is constituted by the Dark Matter (DM) and Dark Energy (DE),
see Figure 1.1. These two components are present in the current ΛCDM cosmological model
to explain the origin, evolution and acceleration of the Universe [1], hence its understanding
becomes crucial on our path to comprehending how the universe works. Despite all the efforts
and researches made in this direction, its nature is still unknown.

Figure 1.1: Components of the universe [2]

It has passed nearly a century since its discovery, although it was not a new concept. Angelo
Secchi already claimed in 1877, from observations of nebulae, that there could be dark masses
scattered in space [3]. Moreover, in his attempt to measure the Milky Way mass, considering
stars as gas particles, Kelvin [4] stated that many of the stars, if not the great majority, could be
dark bodies.

It was in the 30’s when the idea of dark matter began to take shape as the astronomer
Fritz Zwicky predicted the existence of DM by weighing the clusters [5]. He tried to analyse
the distribution of galaxies within the Coma Cluster according to their radial velocities. Then,
by applying the mass-to-light ratio relationship, it was possible to determine the individual
luminosities of each galaxy and subsequently calculate the average mass of the cluster. Once at
this point, he cross checked the result of this mass and the size of the cluster and obtained the
escape velocity.

The key point was that the typical velocities of galaxies within clusters were far greater
than the cluster’s escape velocity. This implied that, under normal conditions, the galaxies
should have drifted apart, leading to the disintegration of the cluster. However, since the clusters
appeared to be stable and in equilibrium, this scenario wasn’t taking place. As a result, Zwicky
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Capítulo 1. Introduction 1.2.1 Historical context

proposed that there must be an unseen component, with significantly more mass than the visible
matter, present within the clusters to hold the galaxies together. This marked the emergence of
the concept of dark matter within the scientific community.

The other important evidence of dark matter was provided by Vera Rubin [6],[7]. She was
the first to reveal a contradiction between the predicted and observed rotation curves of spiral
galaxies. At that time, it was assumed that mass in a galaxy would be primarily concentrated
in the luminous central bulge, much like the mass in the Solar System is concentrated in the
Sun. According to Newtonian mechanics and Kepler’s laws, objects further from the center of
a gravitational system should rotate more slowly as gravitational force decreases with distance.
Thus, the rotational velocities of stars were expected to decrease as one moves farther from the
galactic center, just as planets farther from the Sun orbit more slowly.

However, Rubin’s groundbreaking observations revealed a striking difference: instead of
decreasing, the rotation velocity remained flat, or even increased, to distances well beyond the
visible edge of the galaxies. This discrepancy, shown in Figure (1.2), challenged the existing
models of galaxy dynamics.

Figure 1.2: Rotational velocities for seven galaxies as a function of distance from nucleus, obtained by
Rubin [6]

This unexpected behavior could only be explained if there is a large amount of unseen, "invisible"
matter, which now is known as dark matter, surrounding the galaxies. This dark matter provides
the additional gravitational pull needed to maintain the high rotational velocities observed at
large distances from the galactic center.
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1.2.2 Primordial black holes as dark matter candidates

Nowadays, the favoured hypothesis to describe the nature of dark matter is that it is collisionless.
There are several candidates that have been proposed to give rise to dark matter, among which
we have WIMPs (Weakly Interacting Massive Particles), MACHOs (MAssive Compact Halo
Objects) such as black holes in the galaxies halos, particles arising from the supersymmetry or
even neutrinos.

In this context, the discovery of gravitational waves from binary black hole mergers by
the LIGO/Virgo collaboration has encouraged the community to consider the possibility that
some of these BHs were of primordial origin. These hypothetical Primordial Black Holes (PBHs)
would have formed just after the Big Bang, and provide an interesting explanation of the dark
matter, since it does not require the introduction of any new exotic particles. The reason of this
renewed interest arises from the fact that these binary black holes (BBHs) had masses higher than
previously expected for black holes (BHs) of stellar origin, as well as their low spins. Therefore,
this has led researchers to consider the range of masses of LIGO experiment as an important
possible constituent of the dark matter in the universe.

As we have mentioned before, PBHs are those black holes formed in the early Universe
through a non-stellar mechanism. Some of the pioneers in the study of PBHs where Zel’dovich
and Novikov [8], who despite being limited by the lack of knowledge and observational data (which
indeed led them to an erroneous discussion), found that PBHs might form from overdensities in
the early Universe.

One of the main important works in this context was carried out by Stephen Hawking
and Bernard Carr in the 70s [9]. Their research suggested that the mass range of PBHs could
oscillate from Planck mass to several thousand times the mass of the Sun, depending on the
conditions at the time of their formation. Hawking introduced the concept of Hawking radiation,
suggesting that black holes emit radiation because of quantum phenomena near the event horizon,
suggesting that smaller PBHs could evaporate over time due to Hawking radiation while larger
ones might persist. This pioneering theory challenged the notion of black holes as entirely
opaque entities, indicating instead that they could shed mass and energy over time, potentially
evaporating if they don’t accrete additional mass from their environment. This work marked a
milestone in theoretical physics and cosmology as it laid the groundwork for future investigations
and led to the possibility of PBHs explaining DM.

Actually, PBHs satisfy all of the necessary requirements to be a good dark matter candidate
since they are cold, non-baryonic (as they were originated before nucleosynthesis and can be
produced in adequate quantities). In addition, despite emitting Hawking radiation, PBHs are
cosmologically stable (their lifetime is longer than the age of the Universe) if their initial mass is
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greater than ∼ 1015 g [10]. Moreover, unlike most other DM candidates (WIMPs, axions, sterile
neutrinos,...) PBHs are not a new exotic particle (which is undoubtedly an advantage) but its
existence is a rather natural consequence of several inflationary scenarios (although they hence
require "Beyond the Standard Model" physics).

It should be noted that, revisiting the list of black holes detected by gravitational waves
[11], a significant number of them corresponds to the range of (5-20) M⊙, hence we have
considered in the analysis a value of 10 M⊙. Despite BHs of ∼ 10M⊙ can be of stellar origin
(consequence of massive stars evolution), stellar black holes (SBHs) can only contribute with a
few per cent of the total mass in stars. As a consequence, we have considered PBH fractions of
microlenses above 10% to distinguish between PBHs with ∼ 10M⊙ and other with similar mass.
Note that we do not have this problem for the other PBHs mass analysed (10−3 and 0.1 M⊙), as
they can’t be of stellar origin.
The constraints on the fraction of DM in the form of PBHs with mass M , fpbh, are summarized
in Figure 1.3:

Figure 1.3: Constraints on the fraction of DM in the form of PBHs, fpbh, with mass M, coming from
evaporations (red), lensing (blue), gravitational waves (GW) (gray), dynamical effects (green), accretion
(light blue), CMB distortions (orange) and large-scale structure (purple), from [12].

From Figure 1.3, there are four mass windows (A, B, C, D) in which PBHs could have an
appreciable density. Nevertheless, it should be noted that these constraints correspond to
different redshifts. Furthermore, the constraints established through microlensing studies in
Figure 1.3 for the mass range (10−3 - 0.1 M⊙) correspond to observations from local galaxies
(Milky Way and Magellanic Clouds) whereas this work focuses on observations of a non-local
early-type galaxy. However, apart from being candidate to DM, the importance of PBHs is
self-evident since it might be a possible solution for other astrophysical open questions; for
instance, they could be the precursors of the supermassive black holes found at the cores of
galaxies or the intermediate-mass black holes that might reside at the centers of dwarf galaxies
[13].
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1.3 Gravitational Lensing Overview

Cosmology is continually evolving due to new discoveries in a wide variety of fields of modern
physics and astrophysics. Some of these discoveries are achieved through the gravitational
lensing effect, which provides detailed insights into the composition of galaxies and their peculiar
velocities.

Gravitational lensing is a phenomenon where the presence of a massive object, such as a
galaxy or a cluster of galaxies, bends and magnifies the light from a background source, such as
a star or quasar. This effect, that can generate multiple images of the background source, is a
natural consequence of Einstein’s General Theory of Relativity, according to which light follows
geodesics arising from the space-time curvature (caused by a given mass), much like how a lens
bends light in optics. However, this idea was conceived before Einstein. Isaac Newton already
speculated about the gravitational influence on light in 1704 in his book ’Opticks’ [14], where
he proposed that light consists of particles that would be influenced by gravity, much like any
other matter. Newton hypothesized that light particles passing near a massive object would be
deflected by its gravitational pull, although he did not provide a mathematical framework for
this effect. Later in 1784, Henry Cavendish (motivated by John Mitchell ideas related to the
reduction in the light speed by effect of gravity) calculated the Newtonian deflection of light for
the first time, although he did not publish his results [15]. It wasn’t until the beginning of the
XIXth century when these calculations were published in an official document by Johann Soldner
(1801) a German mathematician who deduced that a light ray near the solar limb would be
deflected by an angle of ∆ϕ = 0.84 arcsec [16].

In 1911, more than a century later, Albert Einstein studied the impact of gravity on light
in his work "On the Influence of Gravity on the Propagation of Light." [17]. Nevertheless the first
value he obtained for the deflection angle was the same one Soldner calculated using Newton
mechanics, as at this time, the General Theory of Relativity had not yet been fully formulated.
In his paper, Einstein determined the deflection angle α̃ = 2GM/c2R = 0.83 arcseconds for a
light ray skimming the sun, where M and R are the mass and radius of the sun, and c and G

are the speed of light and the gravitational constant, respectively. Despite the efforts made by
Einstein and several researchers to study experimentally the deflection effect, the opposition from
the scientific community as well as external conditions (in particular the World War I), delayed
the measurement of the deflection angle at the solar limb for a few years, which paradoxically
worked in Einstein’s favor since the value he obtained was wrong. It was with the completion of
the General Theory of Relativity when he derived the correct deflection angle α̃ = 1.74 arcsec [18].

According to this theory, gravity is not just a force between masses but rather a result of
the warping of space-time by mass and energy. Light, which always travels along the shortest
path in space-time, follows geodesic lines (in a curved space-time, geodesic lines are the paths that
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are as straight as possible under the circumstances, similar to straight lines in flat space-time).
As light rays travel along these geodesic lines, they bend towards the mass that is causing
the curvature of space-time, hence altering the path light takes. This was verified by Arthur
Eddington and his group during a solar eclipse in 1919 that indeed was the second observational
confirmation of General Relativity and reinforced Einstein’s theory, which eventually changed
our understanding of how the universe works.

Nevertheless, it took more than half a century to observationally confirm this phenomenon
in other environments. In the following decades, gravitational lensing was rarely the focus
of research papers. In 1924, Chwolson proposed the concept of a "fictitious double star" and
described the symmetrical case of a star directly behind another star, resulting in a circular image
[19]. Einstein also carried out in 1936 the same discussion about the appearance of a "luminous
circle" for perfect alignment between source and lens, and two magnified images for slightly
misaligned positions. This configuration is actually known as an "Einstein-ring. In this context,
Fritz Zwicky [5], [20] suggested in 1937 that galaxies, or "extragalactic nebulae," are much more
likely to be gravitationally lensed than stars and proposed using the gravitational lens effect as a
"natural telescope".

However, the field became specially important in the 60s, with the discovery of quasars
and the development of several independent theoretical studies which demonstrated the potential
of lensing for astronomy. For instance, Sjur Refsdal [21] showed how the gravitational lens effect
could be used to determine Hubble’s constant by measuring the time delay between two lensed
images. Moreover, gravitational lensing received an important boost in 1979, when the first
double quasar was discovered and confirmed as a true gravitational lens by Walsh, Carswell, and
Weymann [22].

Since then, the field of gravitational lensing has been continuously growing and a wide
variety of phenomena have been discovered. Among these, the most notable are weak lensing
(when the gravitational lens only produces a small shift in the angular position of the source),
strong lensing (when it produces multiple images or a ring of a background source, where the
typical separation between images for a galaxy-quasar system is ∼ 1”) and microlensing (when
stars within the lensing galaxy can act as micro-lenses, generating images with separations of the
order of ∼ 10−6 ”, i.e, a microarcsecond).

1.3.1 Quasar Microlensing and Primordial Black Holes

Some galaxies have a significant activity in their central regions, where accretion towards a
supermassive black hole is most likely responsible for this activity: very high luminosity, strong
variability, etc. These cental regions are called Active Galactic Nuclei (AGN). Quasar are very
bright and distant AGN. They emit light across the entire electromagnetic spectrum, from radio
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waves to gamma rays, and exhibit variability on nearly all timescales [23]. At the center of a
quasar is a Super-Massive Black Hole (SMBH) surrounded by an accretion disk, a few light-days
in size, which is responsible for part of the continuum emission. Additionally, a region extending
hundreds of light-days contains clouds of ionized gas that produce broad emission lines. The
relatively small size of the accretion disk makes it susceptible to gravitational microlensing (ML),
hence among all the phenomena mentioned in the previous section, we are particularly interested
in quasar microlensing.

Gravitational microlensing (ML) occurs when a compact object, such as a star, black hole,
brown dwarf, or planet, passes in front of a distant light source, causing the light to bend and
create additional images. These "microlenses" produce multiple, closely spaced images of the
background source, although the separations are usually too small to be resolved by current
telescopes. Instead, microlensing events are typically observed as changes in the brightness of the
source over time.

Quasar microlensing combines these phenomena, utilizing the variability and brightness of
quasars to study the microlensing effect. When a quasar’s light is magnified by an intervening
galaxy, each of these stars (or other compact objects, like black holes, brown dwarfs, or planets)
which conform the galaxy, acts as a “compact lens” or “microlens” and produces at least one
new image of the source [24]. This creates numerous micro-images that blend into the observed
macro-image. Despite their very small separations, which are on the order of micro-arcseconds
and unresolvable with present technology, the impact of microlensing on the total flux can be
monitored through light curves which can be studied, and, as we well see, might reveal important
information about the mass distribution and abundance of compact objects present in the lens
galaxies.
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Chapter 2

Gravitational Lensing and FBQ
0951+2635

2.1 Lens Equation
Before going any further, it is useful to explain the basics of gravitational lensing, so that we can
understand the underlying physics of quasar microlensing, crucial to achieving our goal. As we
already mentioned before, gravitational lensing is based on light deflection caused by massive
objects bending spacetime. It is useful to make an initial approximation, asumming a thin lens
and a weak gravitational potential, i.e, a lens whose Newtonian gravitational potential ψ is much
smaller than c2, |ψ| ≪ c2, and that its thickness is small when compared to the total dimensions
of the optical system. It should be noted that this approximation is valid in most scenarios,
since the physical size of the lens is generally much smaller compared to the distances between
observer, lens and source. Therefore, in this approximation, the lens is well approximated by a
planar distribution of matter which is known as the lens plane. Note that the sources are also
assumed to lie on the source plane.

Thus, the distribution of the lensing matter in this context is completely characterised by
the surface density Σ, defined as the projection of the three dimensional density ρ along the line
of sight onto the lens plane. It can be expressed as:

Σ(ξ⃗) =
∫
ρ(ξ⃗, z)dz (2.1)

where ξ⃗ is a two-dimensional vector in the lens plane.

Given a distribution of mass elements on the lens plane Σ(ξ⃗) d2 ξ, it can be shown that
the total deflection angle in this approximation is obtained by summing their contributions:

−→̃
α (ξ⃗) = 4G

c2

∫ (
ξ⃗ − ξ⃗′

)
Σ
(
ξ⃗′
)

∣∣∣ξ⃗ − ξ⃗′
∣∣∣2 d2ξ′ (2.2)

We can illustrate a gravitational lens system in Figure (2.1), assuming a point source S and L to
be the center of the mass distribution, in which the deflexion in ξ⃗ is due to the whole mass being
concentrated in points ξ⃗′, and light rays emitted by the source are deflected producing (at least)
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two images (S1 and S2). In this figure, we can see the different angular diameter distances DL,
DS, DLS as well as the relevant angles.

Figure 2.1: Gravitational lens setup for a point source S and a lens L located between source and observer
O, producing two images S1 and S2. Figure made by the author.

The source S in Figure 2.1 is at an angular position β⃗ whereas ⃗̃α is the deflection angle of the
light ray coming from S (as a consequence of deflection, the observer perceives the light as it was
emitted at the angular position θ⃗). In general, the angles θ⃗, β⃗, α⃗, ⃗̃α are not be coplanar, hence
they have to be expressed in its vector form, where each angle has two components in the plane
of the sky [25].

Therefore, from Figure (2.1) and assuming that θ⃗, β⃗, ⃗̃α are small, we can obtain the following
relation:

θ⃗DS = β⃗DS + ⃗̃αDLS (2.3)

In addition, we could define the reduced deflection angle α⃗ as:

α⃗(θ⃗) = DLS

DS

⃗̃α(θ⃗),

hence Equation (2.3) is reduced to
β⃗ = θ⃗ − α⃗(θ⃗) (2.4)

which is known as the lens equation.

2.2 Lensing potential

The deflection angle can be expressed as the gradient of an effective two-dimensional scalar
potential ψ (∇⃗θψ = α⃗), known as the effective lensing potential, which is obtained by projecting
and rescaling the three-dimensional Newtonian potential on the lens plane [18]:
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ψ(θ⃗) = DLS

DLDS

2
c2

∫
Φ(r⃗)dz

where Φ(r⃗) is the Newtonian potential of the lens.

Additionally, the lensing potential satisfies an important property, as the Laplacian of ψ is
twice the convergence:

△xψ(x⃗) = 2κ(x⃗).

which is defined as a dimensionless surface density

κ(x⃗) ≡ Σ(x⃗)
Σcr

with Σcr = c2

4πG
DS

DLDLS
,

where Σcr is known as the critical surface density, a quantity that defines the lens system and
depends on the angular diameter distances.

2.3 Magnification and Distortion

Light bundles are typically deflected differently. As a consequence the shape of the sources are
distorted, and this becomes more evident when the source has no negligible apparent size. Ideally,
the shape of the images can be determined by solving the lens equation for all points within the
extended source. In particular, if the source is much smaller than the angular scale over which
the physical properties of the lens vary, the relation between source and image positions can be
locally linearized, hence the image distortion can be described by the Jacobian matrix [18]:

A = ∂β⃗

∂θ⃗
=
δij − ∂αi(θ⃗)

∂θj

 =
δij − ∂2ψ(θ⃗)

∂θi∂θj

 (2.5)

We can define the components of the external shear γ as

γ1(θ⃗) = 1
2 (ψ11 − ψ22) = γ cos(2φ)

γ2(θ⃗) = ψ12 = ψ21 = γ sin(2φ)
(2.6)

where the angle φ represents the orientation of the shear-inducing tidal force with respect to
the coordinate system. The shear quantifies the projection of the gravitational tidal field (the
gradient of the gravitational force), hence describes distortions of background sources.

Taking this into account, it can be shown [15] that the Jacobian matrix can be expressed
in terms of convergence and shear:

A =
 1 − κ− γ1 −γ2

−γ2 1 − κ+ γ1

 = (1 − κ)
 1 0

0 1

− γ

 cos 2φ sin 2φ
sin 2φ − cos 2φ

 (2.7)
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Note that the distortion induced by the convergence is isotropic as images are rescaled equally in
all directions, while the shear distorts the intrinsic shape of the source along a specific direction
(where γ = (γ2

1 + γ2
2)1/2 represents the magnitude of the shear and φ specifies its orientation).

This is shown in Figure (2.2).

Figure 2.2: Convergence and shear on a circular source. Convergence modifies the image isotropically
while shear deforms it to an ellipse. Figure made by the author.

Furthermore, apart from light distortion, another characteristic phenomena of gravitational
lensing is magnification. As we can see from Equation (2.4), a solid angle element δβ2 is
transformed into the solid angle δθ2. Given that the surface brightness is conserved (ensured by
the Liouville theorem and the absence of emission and absorbtion of photons in gravitational light
deflection [15]), the change of the solid angle under which the source is seen results in a change
in the flux received from the source, either increasing (magnifying) or decreasing (demagnifying) it.

Given Equation (2.5), magnification is quantified by the inverse of the Jacobian matrix
determinant

µ = 1
det A

= 1
(1 − κ)2 − γ2 (2.8)

Note that, there are relevant locations in Equation (2.8), for which det A = 0, hence the
magnification is formally infinite µ −→ ∞. These locations are known as critical curves in the
lens plane, and the corresponding ones in the source plane are called caustics (i.e, the sources
that produce images around the critical lines are located along the caustics). As it was mentioned
previously, if the lens is strong, multiple images can be formed of the same source. The number of
these images depends on the position of the source with respect to the caustics as when the source
track crosses a caustic, a pair of highly magnified microimages either appear newly or merge and
disappear.
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2.4 Point lens model

We analyse first the simplest lens model in order to derive easily different properties of the lens
system. In this context, it can be proved that the deflection angle can be expressed only in one
dimension for axially symmetric lenses, since all light rays from the source to the observer must
lie in the plane spanned by the center of the lens, the source and the observer [15]. Therefore,
considering a point lens of mass M , it can be shown that the corresponding deflection angle of
Equation (2.2) is simplified to:

α̃ = 4GM
c2DLθ

(2.9)

Furthermore, with the previous definition of Σcr, the deflection angle for this mass distribution
can be expressed as

α̃(θ) = Σ
Σcr

θ

We can replace this deflection angle into Equation (2.4), which is reduced to,

β(θ) = θ − DLS

DLDS

4GM
c2θ

At this stage, it is useful to introduce the Einstein radius, which is defined as [15]:

RE =
√

4GM
c2

DLS

DLDS
(2.10)

It is an important magnitude in gravitational lensing that defines the angular scale in a lens
system. In particular, it sets a typical scale for separation between multiple images. For a
massive galaxy with a mass of M ∼ 1012M⊙ at a redshift of z ∼ 0.5 and a source quasar at
z ∼ 2, the Einstein radius is of a few arcoseconds. Stars within the lens galaxy also produce
gravitational lensing effects, and the corresponding separation between images would be only of
a few microarcseconds (1012M⊙ → 1M⊙). We are particularly interested in these microlensing
effects. The Einstein radius is also defined as the angular radius of the case in which the source
lies exactly behind the lens (β = 0), where we have a ring-like image as a consequence of the
symmetry, known as the Einstein ring, see Figures 3.4,3.5

However, despite the fact that a point lens model is useful to understand basic observations
in strong gravitational lensing, realistic lens models are required to accurately describe all
observational data for a galaxy-quasar lens system (see Sect.2.5).
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Figure 2.3: JWST-ER1 Einstein Ring [26] Figure 2.4: Idealized Einstein ring, digital artwork
by IncrediVFX

2.5 Realistic Model for Quasar Lensing

The point mass model explained before provides a fundamental understanding of gravitational
lensing, being an idealization that assumes the lens is a single and infinitesimally small object.
Although this simple model has proved to be useuful to introduce the fundamental concepts of
gravitational lensing, real lensing galaxies are not point-like but extended objects with complex
mass distributions. Nevertheless, lens mass models must be characterized by a number of
parameters less than or equal to the number of observational constraints, so a realistic model
incorporates an observationally-motivated rough description of the main lens galaxy along with
the gravitational effects by secondary deflectors. In this context, an isothermal ellipsoid has a
density proportional to r−2 and it is consistent with the flat rotation curves observed in the
Milky Way and other spiral galaxies (see Figure 1.2). However, deviations from isothermality
are possible, and thus, the main lens galaxy is usually described as a singular power-law ellipsoid
(SPLE) whose density (convergence) is given by the dimensionless surface [27]:

κgal(x, y) = b2−α

2 (x2 + y2/q2)1−α/2

where M(α) ∼ rα with α = 1 for the isothermal case, α < 1 steeper than isothermal and α > 1
if shallower than isothermal. Here, b is the mass scale in arcseconds and q is the projected axis
ratio. Nevertheless, a few main lens galaxies are isolated, and they usually have neighbours or
are embedded in halos of groups or clusters. These environments can play a role to explain the
observations of the lens system. In addition to the perturbations of objects or structures near the
main lens galaxy, objects or structures along the line of sight also perturb the lensing potential
[28]:

ψext ≈ r2

2 [κext + γext cos 2 (θ − θγext)] , (2.11)

where, κext is the external convergence (a uniform mass sheet with surface density Σext = κext Σcr),
γext is the external shear strength and θγext represents the direction of the external tidal shear
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(pointing towards the mass concentration producing it).

2.6 Doubly Imaged Quasar FBQ 0951+2636
The gravitational lens system FBQ 0951+2635 was discovered by [29]. The lensed quasar
is located at a redshift zqso = 1.246 [30] and the early-type lensing galaxy has a redshift
zgal = 0.260 [31]. The brightest optical image is denoted by the letter A, and the faintest
optical image is denoted by B. The relative astrometry of the image B and the main lens
galaxy (with respect to A), and the light distribution of the galaxy were also derived from
new IR HST observations [30]. Additionally, the optical light curves in the period 1999-2001
yielded a time delay of 16 ± 2d (see [30]). The discovery by [31] also reported the flux ratio
B/A = 0.21 ±0.03 at 8.4 GHz. Radio fluxes are expected to be unaffected by microlensing (large
source) and dust extinction, and taking into account the short delay of, about two weeks, the
radio flux ratio is a good proxy of the microlens magnification ratio (due to the galaxy as a whole).

Using the observational constraints of the system in the previous paragraph, as well as a
standard flat ΛCDM cosmology with M = 0.3M⊙ and ΩΛ = 0.7, [32] obtained a lens mass
solution based on a realistic lens model consisting of a SPLE and external shear (ES).

This solution allows us to obtain the total convergence (κ), the total shear strength (γ)
and the shear direction (θγ) at the positions of both quasar images (A and B; see the second row
in Table 2.1).

Approach κA γA θγA
κB γB θγB

1 0.2786 0.3800 36.28 1.1938 1.3517 49.91
2 0.4012 0.3154 36.28 1.1608 1.1219 49.91

Table 2.1: Values for the convergence κ and shear γ as well as for the shear angles θγ , which are in
degrees east of north, for both images.

In a second approach it is considered a more robust time delay of 13.3 ± 1.7 d, which relies on
optical light curves in the periods 1999−2001 and, 2008-2023, (covering 19 years of observations).

In addition, [33] performed a spectroscopy survey of galaxies along the sightline, putting
constraints on the external convergence κext. Using the new time delay and the lower limit on
κext(= 0.17) as a reference value, one can demonstrate that Ruiz-Hinojosa’s lens solution is still
usable as an "effective" solution. As the effective model (SPLE+ES) does not incorporate the
external convergence, galaxy’s mass scale and the external shear strength are overestimated
with respect to their real values b and γext. Thus, the effective solution includes the values of
b∗ = b/ (1 − κext) and γ∗

ext = γext/(1 − κext). It is also easy to show that the real convergence is
κ = κgal + κext, where κgal = (1 − κext)κ∗ and κ∗ is the effective convergence. Similarly, the real
shear strength is γ = (1 − κext) γ∗, with γ∗ being the effective shear strength (see the third row
in Table 2.1).
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Chapter 3

Methodology

3.1 Construction of the ODLC
The observed difference light curve (ODLC) is built from GLENDAMA+ light curves of FBQ
0951+2635, mainly consisting of optical magnitudes provided by observations with the Liverpool
Telescope (GLENDAMA project) and the Kaj Strand Telescope at the United States Naval
Observatory Flasftaff station (see Figure 3.1). The brightness records cover the period 2008-2023
(updated on December 1, 2023).

Figure 3.1: Observed light curves for A and B images of quasar FBQ 0951+2635 for the first approach,
with time delay removed and a displacement of 1.1 in B to see more clear both curves.

Thus, the ODLC informs us on the extrinsic (microlensing) variability of the quasar images, since
quasar intrinsic variations are removed as can be seen next. The flux of the quasar image B at
time t is given by

FB(t) = FI(t)ϵBµB(t)

where FI is the intrinsic quasar flux, ϵB is the dust extinction factor, and µB is the lens
magnification. This lens magnification might vary over time as the source quasar moves across
the sky. Additionally, taking into account the time delay between the two quasar images (dt), we
can write:

FA(t− dt) = FI(t)ϵAµA(t)
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Furthermore, if we subtract the two previous expressions and use magnitudes instead of fluxes,

B(t) − A(t− dt) = −2.5 log
[

FB(t)
FA(t− dt)

]
= −2.5 log

[
ϵBµB(t)
ϵAµA(t)

]
(3.1)

as FI is conveniently removed. By subtracting now the average (mean) level < B(t)−A(t−dt) >,
it is possible to remove dust extinction effects. Therefore,

B(t) − A(t− dt)− < B(t) − A(t− dt) >= −2.5
{
log

[
µB(t)
µA(t)

]
− < log

[
µB(t)
µA(t)

]
>

}
(3.2)

The observational data (GLENDAMA+ light curves) has allowed us to construct the ODLC (see
the left side of Equation (3.2)), which have been compared with synthetic difference light curves
(SDLCs) from simulations (magnification maps; see the right side of the Equation (3.2)).

Moreover, it can be seen from Equation (3.2) that the ODLC depends on the time delay
dt. Once at this stage, we have considered two different approaches (see Section 2.6) involving
two time delays. For the first one (dt = 16d), we have obtained the ODLC in Figure 3.2.

Figure 3.2: Observed difference light curve of quasar FBQ 0951+2635 for the first approach.

The ODLC for the second one (dt = 13.3d) is very similar to that for the first one, hence it is not
worthwhile to show such difference curve. Nevertheless, we show below both ODCLs:
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Figure 3.3: ODLCs generated with the first and second approaches

From Figure 3.3, it can be seen as we anticipated, that there is not an important difference between
both ODLCs. Furthermore, we have calculated the mean of the differences, obtaining a value of
µdiff = 0.003, which is a very low value. Additionally, the correlation coefficient between both data
has been also determined, obtaining a value of R2 = 0.996, which clearly indicates a very high
degree of similarity between the two sets of data.

3.2 Magnification Maps
Once we already have the ODLC, the next step is the contruction of synthetic difference light
curves (SDLCs) to be compared with the observed difference light curve. They will be obtained
from trajectories in magnification maps for each image, which have been made with a fortran code
that calculates magnification maps corresponding to some amount of smoothly distributed mass,
and two populations of microlenses (stars and PBHs; see [34] for a simpler version addressing a
single population of microlenses).

In the first approach to describe the lens system, the convergence is exclusively due to the
lens galaxy (κext = 0), and it can be decomposed into three contributions: smoothly distributed
matter in the galaxy halo (κsdm), stars (κstar) and PBHs (κpbh). Thus, we define the two
independent parameters fsdm = κsdm/κ (SDM Fraction) and Fpbh = κpbh

κstar+κpbh
(PBH Fraction of

microlenses). Once we set fsdm and the PBH fraction, we get that fpbh = Fpbh(1 − fsdm), and the
star fraction is given by fstar = 1 − Fpbh(1 − fsdm) − fsdm.

Therefore, we have considered three values of fsdm (0.1, 0.5 and 0.9) and three values of
Fpbh (0.1, 0.5 and 0.9). The total possible mass distributions are displayed in Table 3.1:
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Fraction #1 #2 #3 #4 #5 #6 #7 #8 #9
fsdm 0.1 0.1 0.1 0.5 0.5 0.5 0.9 0.9 0.9
Fpbh 0.1 0.5 0.9 0.1 0.5 0.9 0.1 0.5 0.9
fpbh 0.09 0.45 0.81 0.05 0.25 0.45 0.01 0.05 0.09
fstar 0.81 0.45 0.09 0.45 0.25 0.05 0.09 0.05 0.01

Table 3.1: Combinations for the parameters fsdm, fpbh and fstar.

In the second approach, the SDM fraction includes both the contribution from the lensing galaxy
(κsdmgal), and that from matter halos near the galaxy and along the line of sight, which act as
secondary deflectors (κext). More specifically, fsdm = κext/κ + fsdmgal(1 − κext/κ), and each value
we use for fsdmgal = κsdmgal/κgal, i.e, 0.1, 0.5, 0.9, leads to fsdm(A) ̸= fsdm(B). This fact is shown
in the following scheme:

fsdmgal = 0.1 → fsdm (A) = 0.48 and fsdm (B) = 0.23

fsdmgal = 0.5 → fsdm (A) = 0.71 and fsdm (B) = 0.57

fsdmgal = 0.9 → fsdm (A) = 0.94 and fsdm (B) = 0.91

Given the values of fsdmgal and Fpbh, we set the mass fraction of the galaxy in PBHs,
fpbhgal = Fpbh(1 − fsdmgal), and in stars fstargal = 1 − Fpbh(1 − fsdmgal) − fsdmgal. As in the first
approach, we take three values of Fpbh (0.1, 0.5 and 0.9).

After introducing the mass distributions, it is convenient to discuss the microlenses mass.
A power law is usually assumed for the mass function of stars, where N(M) dM ∝ M−αdM .
denotes the number of stars mith masses between M and M+dM (M1 < M < M2) and
r = M2/M1 is the maximum - to - minimum mass ratio. For example, [35] used a Salpeter
mass function (α = 2.35) with r = 100 for stars in the bulge of a local spiral galaxy, while [36]
used a Kroupa wass fruction (α = 1, 3) with r = 50 for stars in non-local, early-type galaxies.
The new microlensing simulator (modified version of that in [34]) considers both α values and
r = 50, although we have focused on α = 1.3 (e,g, [37], [38]; both inspired by the mass function
of Gould [39]). Although magnification maps are obtained for an arbitrary mean star mass
(it is not necessary to set its value), we have adopted a typical mean mass Mstar = 0.3M⊙.
Regarding the mass of the PBHs, we have assumed a monochromatic mass function (all
PBHS equal mass) and considered three different values of rpbh = log (Mpbh/Mstar). These
values are rpbh = −2.5 (Mpbh ≈ 10−3M⊙ ; giant-planet-like PBHs), rpbh = −0.5 (Mpbh ≈ 0.1M⊙ ;
red-dwarf-like PBHs) and rpbh = 1.5 (Mpbh ≈ 10M⊙ ; SBH-like PBHs).

Using 9 distributions of mass (see, e.g. Table 3.1 for the first approach) and 3 values of
the PBH mass, we have generated 27 magnification maps with a given size and resolution for
each image in the two approaches. Following [38], we built maps of 40 Einstein radii on each side,
where Einstein radius is given by RE (Mstar) =

[(
4GMstar

c2

) (
DsDLs

DL

)]1/2
= 3.76 × 1016cm. These
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maps contain 8000 × 8000 pixels.

We show below, the magnification maps corresponding to the first approach for the scenario
010125 (fsdm = 0.1, Fpbh = 0.1, rpbh = −2.5), for both images.

Figure 3.4: Magnification map for image A
in the first approach

Figure 3.5: Magnification map for image B in the
first approach

Since the source has a finite size, one must convolve the 27 initial maps with a Gaussian
brightness profile I(R) ∝ exp (−R2/2R2

S) that is characterised by a relative source radius
rS = RS/RE (Mstar). In this work, we consider the two values of rs that were measured by [38]:
rs = 0.605 (fit of optical data) and rs = 0.276 (joint fit of near IR and optical data), as well as
a smaller value of rs = 0.1 for comparison purposes (to check the feasibility of a more compact
source).

As a summary, we finally produce 81 (9 × 3 × 3) magnification maps for each image and
approach, using the parameters in Table 2.1.

We also note that the shear points towards the mass that produces it, and this radial
direction forms an angle θγ with the celestial north. The magnification map of an image is
thus constructed using a coordinate system in which the two axes coincide with the radial
and tangential directions. Therefore, the map of one of the two images must be conveniently
rotated to analyse a given source trajectory across the sky in the maps of both images (e.g
Figure 2 of [40]), and we carried out a counterclockwise rotation of all maps of the image A by
θγB

− θγB
= 13.63◦.

We show now the final magnifications maps corresponding to the same mass distribution
(fsdm = 0.1, Fpbh = 0.1, rpbh = −2.5) for both images, and considering rs = 0.605 as for the
relative source radius is concerned:
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Figure 3.6: Magnification map rotated for image
A in the first approach for rs = 0.605

Figure 3.7: Magnification map for image B in the
first approach for rs = 0.605

3.3 Construction of SDLCs
Once we have generated a rotated and convolved magnification map for image A, and a convolved
map for image B with the same mass configuration (i.e., the pair of AB maps were obtained from
the same set of values of fsdm, Fpbh and rpbh), it is possible to draw trajectories in both maps to
obtain the synthetic difference light curves, for which we have considered the source following a
straight paths in the magnification maps. We have generated 105 SDLCs in order to have enough
statistics.

Before explaining the procedure of the SDLCs construction, it is covenient to introduce
the concept of the effective transverse velocity (Ve). It provides crucial information in the time
domain, since it links the length of a path travelled by the source (in the source plane) to the
elapsed time in the observer’s rest frame. The value of Ve was estimated by [38], who obtained
Ve = 8.94 × 107 cm s−1. This effective velocity is mainly due (90% of the total) to the motion of
the lens galaxy and their stars.

As far as for the trajectory construction is concerned, we have estimated the points (xk, yk)
corresponding to N observation epochs. In particular, the point (x0, y0) corresponds to the first
observation epoch MJD0 and is assigned a time t0 = 0. Therefore, it is possible to determine
the distance travelled by the source in pixels Rk = 0.041 × tk for the time tk = MJDk − MJD0

in days. Taking this into account, it is possible generate a SDLC in the pair of AB maps by
determining the trajectory points (xk, yk):

xk = x0 +Rk cosα

yk = y0 +Rk sinα
(3.3)
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where α is chosen randomly in [0, 2π] and represents the trajectory slope. It should be noted
that although α remains the same for the pair of AB maps, the initial point (x0, y0) is random in
both maps, i.e, the two light curves in a pair of AB maps generating a given SLDC, arise from
two trajectories (one for each image map) with the same slope but different initial points.

We show in Figure 3.8 two trajectories in both maps. As one might expect from what we
explained before, the same source has random initial points in both maps but equal slope.

Figure 3.8: Two trajectories drawn in both magnification maps

It should be noted that both vector components of the trajectories in images A and B are real
numbers and as the information in maps is saved in pixels (natural numbers), we have carried out
a weighted interpolation in order to assign a magnification value at each source position (xk, yk),
as we can see in Figure 3.9, hence the magnification for the point (xk, yk) is obtained as follows:

µ = w1µ1 + w2µ2 + w3µ3 + w4µ4

w1 + w2 + w3 + w4
(3.4)

where µi and wi are the magnification and weight of the pixel i. The weights wi are obtained
depending on the distance to the four surroundings pixels centers.

Once we have assigned magnification values (µA or µB) to each point of both trajectories on the
AB maps, we can use Equation (3.2), to obtain the whole SDLC for a given mass configuration
and source size, either using approach 1 or 2. We now show in Figure 3.10 one of the 105 SDLCs
obtained for the same case analysed in previous figures (fsdm = 0.1, Fpbh = 0.1, rpbh = −2.5 for
both images, and considering rs = 0.605):

23



Capítulo 3. Methodology 3.3 Construction of SDLCs

Figure 3.9: Scheme of the weighed interpolation carried out at each source position (xk, yk). Figure made
by the author.

Figure 3.10: Best SDLC obtained for the scenario given by rs = 0.605 and considering fsdm = 0.1,
Fpbh = 0.1, rpbh = −2.5 in the first approach.

Furthermore it should be noted that the value of 105 is high enough to cover totally both
magnification maps, as we can see in Figure 3.11.
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Figure 3.11: 105 trajectories drawn in both magnification maps: the convolved and rotated map of image
A (on the left) and the convolved map of image B (on the right).

3.4 Comparison between ODLC and SDLCs
After creating 105 SDLCs for a given mass configuration and source size (in the first or second
approach), we have to compare them with the corresponding ODLC. The method followed in this
case is an statistical approach based on the Root Mean Square of Relative Residuals (RMS). This
method allows us to evaluate how well the synthetic data matches the observed. Considering
that the observed difference light curve consists of N data points, denoted as Oj, with their
corresponding errors Ej for each point, we can denote the corresponding values for the synthetic
data as Mj. Thus, the RMS for a given SDLC is determined as

RMS =

√√√√√ 1
N

N∑
j=1

(
Oj −Mj

Ej

)2

(3.5)

A value of Equation (3.5) close to 1 indicates a good fit between the observed and synthetic
data. This suggests that the synthetic light curve is consistent with the observed data within
the given uncertainties. On the contrary, a value significantly greater than 1 indicates that the
synthetic light curve does not fit the observed data well, i.e, the higher the RMS, the poorer
the fit. Moreover, note that a value substantially less than 1 indicates that the errors Ej are
significantly overestimated, because the synthetic model fits the observed data much better than
expected within the given uncertainties.

Therefore, as we have 105 different SDLCs, hence 105 RMS values, it is convenient to
study the probability distribution for a given scenario (mass configuration and source size in one
of the two approaches). This has been done by determining the mean and standard deviation
as well as constructing the corresponding histogram in order to show how often each RMS value
occurs. The ODLC-SDLC consistency threshold is set to 1.5. Thus, if the RMS distribution
includes values in the range (0.5, 1.5), the SDLC is considered consistent with the observed data.
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In contrast, if the RMS distribution does not include values close to 1, the scenario can be
considered inconsistent with the observed data.

Although a value of 1 for RMS is ideal as it indicates a perfect fit between the synthetic
model and the observed data within the given uncertainties, it is often not very realistic in
practice. This is because observed data often come with slightly biased (underestimated or
overestimated) errors that makes this perfect agreement difficult, hence expecting an RMS of
exactly 1 is overly stringent.

Thus, we have considered an interval (0.5, 1.5) to account for a slight
underestimation/overestimation of errors, the presence of a few outliers and so on. For
example, RMS = 1.5 means measured uncertainties only represent 2/3 of real errors, which
is a plausible case. However, RMS equal to 2 implies that true errors are, on average,
twice as large as the measured ones, and this is inconsistent with additional tests/studies
of the GLENDAMA+ data of FBQ 0951+2635. Thus, while an ODLC-SDLC consistency
threshold of 2 is too permissive (accepting models that don’t fit well), a threshold of 1.5 strikes
a more reasonable balance by accommodating some level of discrepancy without being too lenient.

Additionally, an important decision in the analysis was the choice of the number n of
SDLCs simulated per mass configuration. We have selected a value depending on the stability
of the RMS distribution parameters. For instance, for a given mass configuration, we got
the following results for the mean µ for six experiments with n = 20000 simulations each:
{18.8993, 18.9861, 18.9774, 18.9653, 19.0431, 18.9977}. When increasing the value of n to
n = 100000, we obtained {18.8861, 18.8774, 18.8653, 18.873618, 18.869118, 18.8993}. This was
quite satisfactory as the maximum discrepancy was 0.17%. Moreover, when we increased the
number of simulations to n = 500000, discrepancies were not reduced significantly and, as
computational cost and time were in this case considerably high, we decided to work with
n = 100000 SDLCs per configuration.
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Chapter 4

Simulations and Results

To achieve our goal, two different approaches were used for generating magnification maps (see
Section 2.6). For each approach, a total of 81 maps were created, comprising 9 mass distributions,
3 PBH masses, and 3 source sizes. The source sizes include the two values obtained [38] (rs = 0.605
and 0.276) along with a third value (rs = 0.1) added for comparison purposes, as it is expected to
produce larger short time-scale fluctuations. Additionally, for each of these two approaches, two
different schemes were used in the analysis of the corresponding simulations, as we will discuss
later.

4.1 First approach

The lens mass model we have considered consists of a main lens galaxy described by an ellipsoid
with a singular power-law density distribution (SPLE) and external shear from secondary lenses
(ES). We have firstly generated the ODLC with the most accurate delay up to date, although
it is based on old data (16 days), and compared it with SDLCs for a solution of the lens model
that is based on the 16-day delay, astrophotometric constrains from HST imaging and image
fluxes from radio observations, as well as spectroscopic redshifts of the system and a standard
flat ΛCDM cosmology.

In a first scheme, we have assumed that simulations can reproduce the entire signal of the
ODLC. Therefore, we have used the Root Mean Square (RMS) estimator to perform the analysis
and comparison between the ODLC and the SDLC, whose consistency upper limit is set to 1.5.

We carried out 105 simulations for each scenario, and we have not found any scenario
yielding SDLCs with RMS < 1.5. Therefore, the consistency probability (CP; ratio between the
number of SDLCs leading to RMS < 1.5 and total number of SDLCs studied) is zero for the 81
scenarios considered in the analysis, which actually cover a wide range of mass configurations and
source sizes. Thus, the results seem to be very poor, since about ten million (81 × 105) SDLCs
failed to reproduce the overall behaviour of the Observed Difference Light Curve (ODLC).

As an example, we show some results obtained for a source radius rs = 0.605 and a mass
configuration given by fsdm = 0.9, Fpbh = 0.5, rpbh = −0.5: the best SDLC for that scenario
(RMS = 1.65; Figure 4.1) and the corresponding distribution of RMS (Figures 4.2, 4.3).
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Figure 4.1: Best SDLC for the scenario studied together with the ODLC data

Figure 4.2: Magnification map for image A
in the first approach

Figure 4.3: Magnification map for image B in the
first approach

As far as for the other scheme is concerned, it is based on recent evidence which suggests that
rapid variability in ODLCs of lensed quasars may be correlated with intrinsic rapid variability
[41], so standard microlensing simulations cannot account for this kind of rapid variations in
ODLCs because they ignore the intrinsic quasar variability. As a consequence, our SDLCs could
only explain the slow variability observed, i.e., linear or quasi-linear gradients.

This might explain the poor results obtained in the first scheme where the SDLCs were
assumed to account for the whole behaviour of the ODLC. However, in this new scheme, we
consider that simulations can only reproduce the long time-scale variability of the ODLC, and
this long time-scale underlying variation in which we are interested (e.g. linear or quadratic law)
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is affected by uncertainties related to the fast variability and the photometric measurements. In
other words, original photometric errors must be increased by a factor RMS (linear/quadratic fit)
to account for the fast variability.

Alternatively, it is more convenient in this case to consider a larger ODLC-SDLC consistency
threshold using original photometric errors. We have carried out a linear and a quadratic fit,
calculating the corresponding RMS for both fits. We show both fits together in Figure 4.4:

Figure 4.4: Linear and quadratic fits of the ODLC

After this, the consistency threshold for the SDLCs can be set to 1.5×RMS (linear/quadratic fit)
using the original errors in the ODLC-SDLC comparisons. For the linear case, we have from Figure
4.4, RMS (linear fit) = 1.733117, whereas for the quadratic one, RMS(quadratic fit) = 1.702761,
and since both fits work similarly, with a 1.8% of discrepancy in the RMS value, they have similar
goodness, hence we take the linear fit as the slow underlying signal to compare with SDLCs. Thus,
the results obtained for the first source size with the second scheme is shown in Table 4.1.
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CP (%) µ σ Conf fsdm fstar fpbh Mpbh
15.09 7.9449 6.8907 050925 0.5 0.05 0.45 0.001
13.34 7.6703 6.7548 090525 0.9 0.05 0.05 0.001
12.87 6.1654 5.3444 090915 0.9 0.01 0.09 10
11.60 6.0298 5.1588 090925 0.9 0.01 0.09 0.001
11.34 8.0936 7.3271 090515 0.9 0.05 0.05 10
11.32 10.1358 8.84843 090105 0.9 0.09 0.01 0.1
11.91 10.6379 9.5880 050915 0.5 0.05 0.45 10
10.99 9.9448 8.4519 090115 0.9 0.09 0.01 10
10.69 9.8315 8.0147 090505 0.9 0.05 0.05 0.1
10.57 9.9532 8.4418 090125 0.9 0.09 0.01 0.001
10.20 10.1172 8.1792 010925 0.1 0.09 0.81 0.001
8.66 13.9240 12.1765 010915 0.1 0.09 0.81 10
8.52 10.5908 8.12791 090905 0.9 0.01 0.09 0.1
6.21 13.8585 10.812 050525 0.5 0.25 0.25 0.001
6.21 14.7543 11.8658 050515 0.5 0.25 0.25 10
4.67 16.7847 13.2114 010515 0.1 0.45 0.45 10
4.20 16.9342 13.0164 050115 0.5 0.45 0.05 10
3.95 16.3179 12.1677 010525 0.1 0.45 0.45 0.001
3.74 17.2535 13.2474 050105 0.5 0.45 0.05 0.1
3.63 17.7841 13.5116 050125 0.5 0.45 0.05 0.001
2.98 18.9794 14.4261 010115 0.1 0.81 0.09 10
2.69 18.8736 13.8946 010125 0.1 0.81 0.09 0.001
2.46 17.8323 12.8318 050505 0.5 0.25 0.25 0.1
2.35 20.3822 15.1015 010105 0.1 0.81 0.09 0.1
2.04 19.7391 14.1541 010505 0.1 0.45 0.45 0.1
2.01 18.1618 12.8083 050905 0.5 0.05 0.45 0.1
1.72 20.29267 14.3280 010905 0.1 0.09 0.81 0.1

Table 4.1: Consistency probabilities for all the configurations and a source radius rs = 0.605 (first
approach).

As a consequence of disregarding variations on small time scales, we now find SDLCs in good
agreement with the slow variation of the ODLC (the threshold now is 2.59 instead of 1.5).
Moreover, the difference between configurations is notable since for instance 050925 presents a
consistency probability of 15%, whereas 010905 does not reach 2%.

For instance, if we look at the less massive PBHs (rpbh = −2.5), the average RMS is
clearly correlated with fstar. An average RMS of approximately 6 corresponds to a mass fraction
in stars of 0.01 (1%), around 8 to 5%, about 10 to 9%, roughly 14 to 25%, etc. The situation
worsens as the number of stars increases, and it seems that the fraction of (less massive) PBHs
doesn’t play a significant role.

30



Capítulo 4. Simulations and Results 4.1 First approach

As an example, we show in Figure 4.5 the best SDLC obtained for the scenario 050925 (RMS
= 1.63), which, as we can see, fits considerably well the slow underlying signal and the ODLC data.

Figure 4.5: Best SDLC obtained for the best scenario 050925 (fsdm = 0.5, fstar = 0.05 and rpbh = −2.5)
and and rs = 0.605, together with the ODLC and the linear fit.

Furthermore, we show below the consistency probabilities for Table 4.1, in terms of Mpbh. They
are represented in each figure by points, where its size and colour (denoted by the colour bar)
indicate the value of CP for a given scenario. Therefore, in the following figures, we can appreciate
visually what we mentioned before regarding the dependence of the consistency probability with
the mass distribution.
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Figure 4.6: Consistency probabilities for Mpbh = 0.001M⊙ and rs = 0.605 (first approach).

Figure 4.7: Consistency probabilities for Mpbh = 0.1M⊙ and rs = 0.605 (first approach).

Figure 4.8: Consistency probabilities for Mpbh = 10M⊙ and rs = 0.605 (first approach).
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As far as for rs = 0.276 is concerned, we have obtained the following results:

CP µ σ Conf fsdm fstar fpbh Mpbh
12.28 5.8411 5.3978 090915 0.9 0.01 0.09 10
11.97 13.0029 14.3922 050915 0.5 0.05 0.45 10
10.59 9.1581 10.4328 090515 0.9 0.05 0.05 10
10.43 13.2518 13.5333 090105 0.9 0.09 0.01 0.1
9.76 13.4311 14.1017 090115 0.9 0.09 0.01 10
9.48 12.7297 13.1530 090125 0.9 0.09 0.01 0.001
8.90 14.1221 13.6695 090505 0.9 0.05 0.05 0.1
8.88 9.6128 9.7751 090525 0.9 0.05 0.05 0.001
8.24 18.4248 19.8877 010915 0.1 0.09 0.81 10
8.21 7.2666 5.7780 090925 0.9 0.01 0.09 0.001
6.22 16.4874 14.3647 090905 0.9 0.01 0.09 0.1
4.84 20.4588 18.1568 050515 0.5 0.25 0.25 10
3.53 24.2752 20.9082 010515 0.1 0.45 0.45 10
2.59 25.5019 20.9895 050115 0.5 0.45 0.05 10
2.06 26.1614 20.9364 050105 0.5 0.45 0.05 0.1
1.69 26.3315 21.1289 050125 0.5 0.45 0.05 0.001
1.47 29.3618 23.3507 010115 0.1 0.81 0.09 10
1.37 13.3708 9.8297 050925 0.5 0.05 0.45 0.001
1.34 20.8633 17.0689 050525 0.5 0.25 0.25 0.001
0.78 33.5562 25.1184 010105 0.1 0.81 0.09 0.1
0.69 31.2313 22.3376 050505 0.5 0.25 0.25 0.1
0.68 31.1520 23.1448 010125 0.1 0.81 0.09 0.001
0.67 25.4613 19.1734 010525 0.1 0.45 0.45 0.001
0.67 17.8395 12.9210 010925 0.1 0.09 0.81 0.001
0.38 34.5074 23.7598 050905 0.5 0.05 0.45 0.1
0.32 35.3162 24.4888 010505 0.1 0.45 0.45 0.1
0.17 38.8691 26.0438 010905 0.1 0.09 0.81 0.1

Table 4.2: Consistency probabilities for all configurations and a source radius rs = 0.276 (first approach).

Compared to the largest source, in this case, both mean and standard deviation have generally
increased significantly. Nevertheless, the SDLCs that best fit each configuration did so with
RMS values lower than those for the largest source. Furthermore, we can observe that some
configurations (e.g., 090915 and 050915) lead to a relatively large number of SDLCs below the
consistency threshold for both source sizes. In contrast to the previous source size, we now show
a bad SDLC for one of the worst scenarios (010505, see Table 4.2), that presented RMS = 2.55:
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Figure 4.9: Bad SDLC for one of the worst scenarios, 010505 (fsdm = 0.1, fstar = 0.45 and rpbh = −0.5)
and rs = 0.276, together with the ODLC.

Comparing Figures 4.5 and 4.9, it is clear that the fit in the latter is significantly worse than in
the former, which shows a more accurate fit to the ODLC data.

The figures corresponding to 4.2, are shown below. In this case, we can see that the
points are in general much smaller that for the largest source where the colour that highlights
is purple (low consistency probabilities). In addition, it can be seen that the points presenting
colours close to yellow or being bigger (hence with highest CP values) correspond to scenarios
with a majority contribution of SDM
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Figure 4.10: Consistency probabilities for Mpbh = 0.001M⊙ and rs = 0.276 (first approach).

Figure 4.11: Consistency probabilities for Mpbh = 0.1M⊙ and rs = 0.276 (first approach).

Figure 4.12: Consistency probabilities for Mpbh = 10M⊙ and rs = 0.276 (first approach).
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CP (%) µ σ Conf fsdm fstar fpbh Mpbh
12.94 15.7014 20.8100 050915 0.5 0.05 0.45 10
12.41 5.6860 6.2489 090915 0.9 0.01 0.09 10
11.13 15.6052 19.2349 090105 0.9 0.09 0.01 0.1
10.88 9.6864 13.5005 090515 0.9 0.05 0.05 10
10.44 16.0237 20.3494 090115 0.9 0.09 0.01 10
9.15 16.9575 19.3625 090505 0.9 0.05 0.05 0.1
8.99 22.7024 28.5909 010915 0.1 0.09 0.81 10
6.35 20.7338 20.9888 090905 0.9 0.01 0.09 0.1
5.21 25.4941 25.2011 050515 0.5 0.25 0.25 10
3.72 16.0259 18.0289 090125 0.9 0.09 0.01 0.001
3.59 32.0099 29.7191 010515 0.1 0.45 0.45 10
2.85 33.2533 29.4409 050115 0.5 0.45 0.05 10
2.07 34.6423 29.1510 050105 0.5 0.45 0.05 0.1
1.50 39.5888 32.6845 010115 0.1 0.81 0.09 10
0.70 46.1501 34.5815 010105 0.1 0.81 0.09 0.1
0.56 43.2696 30.9945 050505 0.5 0.25 0.25 0.1
0.29 48.0860 32.8210 050905 0.5 0.05 0.45 0.1
0.20 51.7634 33.9135 010505 0.1 0.45 0.45 0.1
0.18 35.8186 28.1831 050125 0.5 0.45 0.05 0.001
0.11 16.6780 12.8954 090525 0.9 0.05 0.05 0.001
0.06 57.4081 35.7475 010905 0.1 0.09 0.81 0.1
0.03 44.9754 32.0714 010125 0.1 0.81 0.09 0.001
0.01 17.1944 8.1345 090925 0.9 0.01 0.09 0.001

0 42.3300 24.7907 010525 0.1 0.45 0.45 0.001
0 35.4664 22.2581 050525 0.5 0.25 0.25 0.001
0 42.4706 19.5058 010925 0.1 0.09 0.81 0.001
0 34.1842 14.9270 050925 0.5 0.05 0.45 0.001

Table 4.3: Consistency probabilities for all the configurations and a source radius rs = 0.1 (first approach).

We observe once again, as we did with the previous cases, that in order to achieve a significant
CP value, an important contribution of SDM is required (around 90%), except for the case where
there is a 45% and 81% contribution from PBH, for which we have obtained notable consistency
probabilities. Nevertheless, note that no case with a significant contribution from stars presents
a relevant consistency probability. Additionally, it is worth noting that as we decrease the source
size, the CP values tend to decrease as well (note that those with the highest values, are the
ones which roughly remain the same) and that Mpbh = 10M⊙ shows the highest probabilities of
consistency.

In the corresponding figures of Table 4.3 (Figures 4.13, 4.14, 4.15), we can see that for
this source size the consistency probabilities have decreased considerably (as most of the points
are not even visible in Figures 4.13 and 4.14). In addition, as we anticipated previously, it is only
in Figure 4.15 (Mpbh = 10M⊙) when we have significant values for the consistency probabilities.
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Figure 4.13: Consistency probabilities for Mpbh = 0.001M⊙ and rs = 0.1 (first approach).

Figure 4.14: Consistency probabilities for Mpbh = 0.1M⊙ and rs = 0.1 (first approach).

Figure 4.15: Consistency probabilities for Mpbh = 10M⊙ and rs = 0.1 (first approach).
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4.2 Second approach
In this second approach, we have generated the ODLC using the delay that is most consistent
with all available data to date (13.3 days), in order to compare it with the SDLCs for the
solution of a lensing model based on a 13.3-day delay an other observational constraints, where
the SDM fraction incorporates both the contribution from the lensing galaxy itself (κsdmgal), and
the additional contribution from matter halos situated close to the galaxy and along the line
of sight, which act as secondary deflectors (κext), see Section 3.2. Considering now the initial
scheme as we did in the first approach, we got that the consistency probability is zero for every
configuration and even for a threshold of 1.7 only a few of them are non-zero, hence reinforcing
the idea that the SDLCs cannot fully reproduce the ODLC. Since the results obtained in first
scheme are redundant when compared to those obtained in the first approach, we do not revisit
the analysis.

Therefore, we have considered the linear fit as the slow underlying signal to compare with
the SDLCs, hence in this case the threshold has been increased from 1.5 to 2.74. We show below
the results obtained regarding the second scheme for the first source size.

From Table 4.4, 050925 (fsdmgal = 0.5, Fpbh = 0.9, and rpbh = −2.5) presents the highest
consistency probability (CP= 15.25%), as took place in the first approach for this source size.
In contrast, the worst scenario is 010905 (CP= 2%) corresponding to little contribution of SDM
(10%) and dominant contribution of PBHs (81%).

Furthermore, if we focus again on the less massive PBHs (rpbh = −2.5), the average RMS
is once more correlated with fstar. An average RMS of approximately 6 corresponds to a mass
fraction in stars of 0.01 (1%), around 8 to 5%, about 10 to 9%, roughly 14 to 25% and reaching
18 for 45%. Comparing the results of the two approaches for this source size, we can see that
there is one scenario extra in this second approach (090505) that presents a significant value
for the consistency probability (CP (%) > 10), i.e, except from this scenario, we have a clear
correspondence between both approaches as far as for high values for CP is concerned.
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CP (%) µ σ Conf fsdmgal fstargal fpbhgal Mpbh
15.25 8.2207 6.8802 050925 0.5 0.05 0.45 0.001
13.64 8.5075 7.4690 090525 0.9 0.05 0.05 0.001
13.36 10.6389 9.5674 050915 0.5 0.05 0.45 10
13.36 8.3123 8.1469 090915 0.9 0.01 0.09 10
13.33 9.3921 8.3226 090515 0.9 0.05 0.05 10
12.72 9.0745 7.8130 090115 0.9 0.09 0.01 10
12.62 6.0559 5.1064 090925 0.9 0.01 0.09 0.001
12.05 9.8690 8.2981 090125 0.9 0.09 0.01 0.001
11.78 9.6791 7.9398 010925 0.1 0.09 0.81 0.001
10.64 10.7311 8.8432 090105 0.9 0.09 0.01 0.1
9.44 13.4570 11.6357 010915 0.1 0.09 0.81 10
9.26 10.7358 8.3134 090505 0.9 0.05 0.05 0.1
8.52 10.8685 8.2227 090905 0.9 0.01 0.09 0.1
7.16 14.8164 12.1182 050515 0.5 0.25 0.25 10
7.09 13.8389 11.0235 050525 0.5 0.25 0.25 0.001
4.65 17.3328 13.6062 010515 0.1 0.45 0.45 10
3.97 17.5767 13.3403 050115 0.5 0.45 0.05 10
3.53 17.7718 13.1442 010525 0.1 0.45 0.45 0.001
3.30 17.7905 13.1085 050105 0.5 0.45 0.05 0.1
3.27 18.0630 13.3025 050125 0.5 0.45 0.05 0.001
2.87 17.8611 12.7613 050505 0.5 0.25 0.25 0.1
2.55 20.9620 15.6200 010115 0.1 0.81 0.09 10
2.52 20.3683 15.1645 010125 0.1 0.81 0.09 0.001
2.39 17.9556 12.5685 050905 0.5 0.05 0.45 0.1
2.36 20.2514 14.6692 010105 0.1 0.81 0.09 0.1
2.20 20.4076 14.8376 010505 0.1 0.45 0.45 0.1
2.00 20.6557 14.7333 010905 0.1 0.09 0.81 0.1

Table 4.4: Consistency probabilities for all the combinations analysed in the second approach for the size
rs = 0.605.

Additionally, comparing the following figures with those from the first approach (Figures 4.6, 4.7
and 4.8), we can see they are quite similar.
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Figure 4.16: Consistency probabilities for Mpbh = 0.001M⊙ and rs = 0.605 (second approach).

Figure 4.17: Consistency probabilities for Mpbh = 0.1M⊙ and rs = 0.605 (second approach).

Figure 4.18: Consistency probabilities for Mpbh = 10M⊙ and rs = 0.605 (second approach).
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Considering now the second source size:

CP (%) µ σ Conf fsdmgal fstargal fpbhgal Mpbh
13.42 12.7500 14.2782 050915 0.5 0.05 0.45 10
13.34 9.0553 12.0530 090915 0.9 0.01 0.09 10
12.88 11.4433 13.0124 090515 0.9 0.05 0.05 10
11.17 12.0744 12.5202 090115 0.9 0.09 0.01 10
10.72 12.9071 13.3651 090125 0.9 0.09 0.01 0.001
9.68 7.3544 5.9056 090925 0.9 0.01 0.09 0.001
9.52 11.2378 11.7065 090525 0.9 0.05 0.05 0.001
9.17 17.7124 18.6583 010915 0.1 0.09 0.81 10
9.15 14.8579 14.4778 090105 0.9 0.09 0.01 0.1
7.07 16.5960 14.8761 090505 0.9 0.05 0.05 0.1
6.22 20.1196 18.9120 050515 0.5 0.25 0.25 10
5.39 18.0061 15.0634 090905 0.9 0.01 0.09 0.1
3.19 26.1924 22.4627 010515 0.1 0.45 0.45 10
2.14 26.8277 21.2932 050115 0.5 0.45 0.05 10
1.70 27.9915 21.7661 050105 0.5 0.45 0.05 0.1
1.64 20.8974 17.4120 050525 0.5 0.25 0.25 0.001
1.56 13.8653 10.2419 050925 0.5 0.05 0.45 0.001
1.46 27.7928 21.5766 050125 0.5 0.45 0.05 0.001
0.95 32.6786 25.0285 010115 0.1 0.81 0.09 10
0.78 17.4083 12.6283 010925 0.1 0.09 0.81 0.001
0.75 33.3374 24.8743 010125 0.1 0.81 0.09 0.001
0.66 28.0134 20.9408 010525 0.1 0.45 0.45 0.001
0.64 32.7695 23.8587 010105 0.1 0.81 0.09 0.1
0.61 32.5485 22.9828 050505 0.5 0.25 0.25 0.1
0.26 37.8529 26.1102 010505 0.1 0.45 0.45 0.1
0.26 36.0418 24.1950 050905 0.5 0.05 0.45 0.1
0.14 40.4576 26.7451 010905 0.1 0.09 0.81 0.1

Table 4.5: Consistency probabilities for all the combinations analysed in the second approach for the size
rs = 0.276.

As one might infer from Table 4.5, the results are once more correlated with those in the first
approach since only one scenario in the second approach with CP> 10 does not in the first one
(090105), although these values are slightly higher in this second approach. Moreover, in this case,
the influence of the PBH masses is noticeable, as the four best scenarios present Mpbh = 10M⊙,
whereas the five worst present Mpbh = 0.1M⊙. This is reproduced in the following figures:
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Figure 4.19: Consistency probabilities for Mpbh = 0.001M⊙ and rs = 0.276 (second approach).

Figure 4.20: Consistency probabilities for Mpbh = 0.1M⊙ and rs = 0.276 (second approach).

Figure 4.21: Consistency probabilities for Mpbh = 10M⊙ and rs = 0.276 (second approach).
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We show eventually the results for the smallest source in Table 4.6, which are quite similar as
those in the first approach, following the general trend.

CP (%) µ σ Conf fsdmgal fstargal fpbhgal Mpbh
14.63 14.6099 19.8237 050915 0.5 0.05 0.45 10
14.04 9.6801 16.3822 090915 0.9 0.01 0.09 10
13.88 12.7988 17.9370 090515 0.9 0.05 0.05 10
11.84 14.3969 18.2492 090115 0.9 0.09 0.01 10
9.86 21.7985 26.2997 010915 0.1 0.09 0.81 10
9.51 17.8804 20.5609 090105 0.9 0.09 0.01 0.1
7.19 20.3742 21.1797 090505 0.9 0.05 0.05 0.1
6.77 24.7930 26.2713 050515 0.5 0.25 0.25 10
5.33 23.1277 22.1791 090905 0.9 0.01 0.09 0.1
3.92 16.3073 18.3693 090125 0.9 0.09 0.01 0.001
3.26 34.6482 31.9371 010515 0.1 0.45 0.45 10
2.17 35.4320 29.3481 050115 0.5 0.45 0.05 10
1.56 36.2141 29.8413 050105 0.5 0.45 0.05 0.1
1.03 44.7637 34.7826 010115 0.1 0.81 0.09 10
0.60 46.5437 33.1998 010105 0.1 0.81 0.09 0.1
0.55 45.3393 32.0065 050505 0.5 0.25 0.25 0.1
0.19 52.1561 33.7830 050905 0.5 0.05 0.45 0.1
0.15 55.6943 35.8544 010505 0.1 0.45 0.45 0.1
0.11 37.4724 28.8557 050125 0.5 0.45 0.05 0.001
0.06 18.3219 15.6957 090525 0.9 0.05 0.05 0.001
0.04 47.8108 34.4214 010125 0.1 0.81 0.09 0.001
0.04 60.4993 36.4507 010905 0.1 0.09 0.81 0.1

0 17.1775 8.2810 090925 0.9 0.01 0.09 0.001
0 44.5187 26.9417 010525 0.1 0.45 0.45 0.001
0 35.3541 22.6108 050525 0.5 0.25 0.25 0.001
0 41.4340 18.5459 010925 0.1 0.09 0.81 0.001
0 34.2592 15.2915 050925 0.5 0.05 0.45 0.001

Table 4.6: Consistency probabilities for all the combinations analysed in the second approach for the size
rs = 0.1.

Analogously as in the first approach, both mean and standard deviation are the highest
among the three source sizes considered. Furthermore, Mpbh = 10M⊙ is required in this case to
present a significant consistency probability since every scenario with CP> 10 exhibit this value
for the PBHs mass.

The corresponding figures are shown below, where the point that highlights in Figure 4.24
presents an important contribution of SDM (50%) and PBHs (45%) in the lensing galaxy (which
is the scenario 050915 we have already mentioned before).
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Figure 4.22: Consistency probabilities for Mpbh = 0.001M⊙ and rs = 0.1 (second approach).

Figure 4.23: Consistency probabilities for Mpbh = 0.1M⊙ and rs = 0.1 (second approach).

Figure 4.24: Consistency probabilities for Mpbh = 10M⊙ and rs = 0.1 (second approach).
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Chapter 5

Conclusions
Through our study, we have shown that gravitational lensing is a crucial tool in astrophysics,
offering a unique way to explore and understand the universe. In particular, using two different
approaches, we have tried to give light and obtain constraints on possible PBH populations in
the non-local early-type galaxy acting as a gravitational lens of the doubly imaged gravitationally
lensed quasar FBQ 0951+2635.

We have obtained quite similar results in both approaches, so considering a refined time
delay between quasar images and an observationally-based external convergence does not
significantly alter the results from an early delay and the hypothesis κext = 0.

The most critical role is played by the scheme we used to analyse our microlensing simulations,
i.e., the criterion to compare synthetic (simulated) difference light curves with the observed one.
Despite analyzing 81 scenarios covering a wide range of mass distributions in the lens galaxy,
PBH masses, and source sizes, none of them are consistent with the observed extrinsic variability
on all time scales. Hence, if simulations are forced to reproduce all observed variations, we can
reject all tested PBH populations. The situation is very different if simulations should only
reproduce the underlying long time-scale variation. This second scheme is consistent with recent
results for another double quasar [41] and preliminary tests for FBQ 0951+2635, and leads to
encouraging conclusions.

In both approaches, it is clear that the condition for an ODLC-SDLC consistency probability
above 10% is a small contribution from stars (fstar < 10%) and a significant/dominant
contribution from smoothly distributed matter (fsdm = 50/90%). The only exception is a scenario
with fsdm = 10%, fstar = 9%, fpbh = 81%, and Mpbh = 0.001 solar masses for the largest source.
Notably, the scenario with fsdm = 50%, fstar = 5%, fpbh = 45%, and Mpbh = 10 solar masses
exhibits a relatively high CP for all three source sizes. Also noteworthy is the relatively high
consistency probability for fsdm = 50%, fstar = 5%, fpbh = 45%, Mpbh = 0.001 solar masses, and
the largest source. Furthermore, in general terms, the consistency probability decrease when the
source size is decreased.

Using our second comparison scheme, the main conclusion is that several scenarios including a
significant (and even dominant) population of primordial black holes of 0.001 or 10 solar masses
cannot be completely ruled out because they have a probability exceeding 10%.
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Esteban-Gutiérrez et al. [23] also compared optical fluxes for nine quadruply imaged quasars
(single-epoch fluxes, not light curves) and microlensing simulations for typical values of the
quasar redshift (zqso = 2), lens redshift (zgal = 0.5), and convergence and shear (κ = γ = 0.45).
They considered a standard population of stars in the lens galaxy, and ruled out a dominant
population of PBHs with Mpbh = 30 solar masses (a typical mass for black holes detected
through GW experiments). Additionally, [42] analysed light curves of six lensed quasars
spanning ∼ 10 years. They explored if observed microlensing signals were consistent with
reasonable populations of stars or whether additional microlenses (e.g., PBHs) are required.
They concluded that a standard scenario without non-stellar microlenses cannot be rejected,
in contrast with a previous study by Hawkins [43], who claimed that a population of PBHs
with stellar mass is required to account for the microlensing signal in light curves of lensed quasars.

Given the results obtained in this work, it is crucial to go further and carry out more detailed
studies. One idea could be improving of the resolution of the parameter grid (fstar, Fpbh,Mpbh, rs),
as a finer resolution in these parameters will allow for a more accurate exploration of their
respective influences and interdependencies, potentially leading to new insights into their roles in
galaxies. It could be also interesting to consider a distribution of Mpbh covering a wider range
of values which could help us in improving our understanding of how different PBH mass might
affect the results. Another important direction for future research might be analyzing light curves
with a significantly greater temporal coverage, e.g ∼ 25 − 30 years, hence a more robust dataset,
as well as expanding the study to include a larger number of lensing systems (quasars undergoing
lensing and microlensing effects), which could result in obtaining new and strong constraints.
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Chapter A

Appendix: Python programs

A.1 Convolution and Rotation of Magnification Maps

1 import numpy as np
2 import matplotlib . pyplot as plt
3 from astropy . convolution import convolve_fft , Gaussian2DKernel
4 from scipy import ndimage
5

6 # Input filename from the user
7 filename = input("Enter the name of the .bin file ( without extension ): ")
8 input_file = filename + '.bin '
9

10 # Reading and showing the original map
11 data = np. fromfile (input_file , '<f4 ')
12 N = int(np.sqrt(len(data))) # determine image size NxN
13 print(N)
14

15 image = data. reshape ((N, N))
16 # tune appropriate vmin , vmax
17 plt. imshow (image , vmin=image.mean () *0.25 , vmax=image.mean () *4)
18 plt.title('Original Map ')
19 plt. savefig ( filename + '.png ')
20 plt.show ()
21

22 ## Convolution with a 2D Gaussian
23 # rE = 200 pix
24 # rs = 0.605: Rs = 200* rs = 121 pix #First source size
25

26 #gauss = Gaussian2DKernel (121)
27

28 # Convolution with a 2D Gaussian
29 # rE = 200 pix
30 # rs = 0.276: Rs = 200* rs = 55.2 pix # Second source size
31

32 # Convolution with a 2D Gaussian
33 # rE = 200 pix
34 # rs = 0.1: Rs = 200* rs = 20 pix #Third source size
35

36 gauss = Gaussian2DKernel (121)
37



Capítulo A. Appendix: Python programs A.1 Convolution and Rotation of Magnification Maps

38

39 ## Carry out the convolution and save the results
40 cimage = convolve_fft (image , gauss , allow_huge =True) # Convolution
41

42 conv_filename = filename + '_c.npy '
43 np.save( conv_filename , cimage )
44

45 plt. imshow (cimage , vmin=image.mean () *0.3 , vmax=image.mean () *3)
46 # tune appropriate vmin , vmax
47 plt. colorbar ()
48 plt.title('Convolved Map ')
49 plt. savefig ( filename + '_c.png ')
50 plt.show ()
51

52 ## Loading the file to check it is correct
53

54 b = np.load( conv_filename )
55 plt. imshow (b, vmin=image.mean () *0.3 , vmax=image.mean () *3)
56 plt.show ()
57

58 # Counterclockwise rotation of 13.63 deg and save the results
59 crimage = ndimage . rotate (cimage , 13.63 , reshape =True) # Rotation
60

61 rot_filename = filename + '_r.npy '
62 np.save( rot_filename , crimage )
63

64 plt. imshow (crimage , vmin=image.mean () *0.3 , vmax=image.mean () *3)
65 plt. colorbar ()
66 plt.title('Rotated Map ')
67 plt. savefig ( filename + '_r.png ')
68 plt.show ()
69

70 ## Loading the file to check it is correct
71

72 c = np.load( rot_filename )
73 plt. imshow (c, vmin=image.mean () *0.3 , vmax=image.mean () *3)
74 plt.show ()
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A.2 Main Program: SDLCs construction and analysis
1 import os
2 import numpy as np
3 import sys
4 import math
5 import matplotlib . pyplot as plt
6 from scipy. optimize import curve_fit
7 from scipy.stats import norm
8 import time
9

10 # Record the start time
11 start_time = time.time ()
12

13 filenameA = sys.argv [1]
14 filenameB = sys.argv [2]
15 crmap = np.load( filenameA )
16 crmapB = np.load( filenameB )
17

18 # Extract the relevant part of the first file name ( removing "_A_r ")
19 base_nameA = filenameA .split('_')[0][: -1]
20 pi = np.pi
21 rows , cols = crmap.shape
22 scale = cols
23

24 file_path = 'q0951DLC .dat ' # File containing the ODLC data
25 data = np. loadtxt ( file_path )
26 col1 = data [:, 0]
27 Oj = data [:, 1]
28 Ej = data [:, 2]
29 tk = col1 - col1 [0]
30 N = len(tk)
31

32 R_tk = 0.041 * tk
33

34 # Define the linear function for the linear fit
35 def linear_model (tk , m, b):
36 return m * tk + b
37

38 # Perform the linear fit
39 popt , pcov = curve_fit ( linear_model , tk , Oj , sigma=Ej)
40

41 # Extract the fitted parameters
42 m, b = popt
43

44 # Generate the fitted values
45 Oj_fit = linear_model (tk , m, b)
46 RMS_RR_lin = np.sqrt(np.sum ((( Oj - Oj_fit ) / Ej) ** 2) / N)
47 knorm = RMS_RR_lin
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48 threshold = 1.5 * knorm
49 print(f"The threshold is { threshold }.")
50

51 # Plot the original data and the linear fit
52 plt. figure ( figsize =(10 , 6))
53 plt. errorbar (tk , Oj , yerr=Ej , fmt='o', label='Observed Data ')
54 plt.plot(tk , Oj_fit , label='Linear Fit ', color='red ')
55 plt. xlabel ('tk ')
56 plt. ylabel ('Oj ')
57 plt. legend ()
58 plt.gca (). invert_yaxis () # Invert Y-axis
59 fit_path = os.path.join(output_dir , 'linear_fit .png ')
60 plt. savefig ( fit_path ) # Save the figure before displaying it
61 plt.show ()
62 plt.close ()
63

64 valid_results = []
65 Mk_components_A = [[] for _ in range(len(R_tk))]
66

67 rowsB , colsB = crmapB .shape
68 scaleB = colsB
69

70 valid_results_B = []
71 Mk_components_B = [[] for _ in range(len(R_tk))]
72

73 # Define the number of simulations
74 Nsim = 100000
75

76 RMS_RR_values = []
77 # List to store valid SDLC data
78 valid_SDLCdata_SDLCS = []
79 valid_SDLCdata_SDLCS_strict = []
80 min_RMS_RR = float('inf ')
81 best_SDLC = None
82 Nsimv = 0
83

84 for sim in range(Nsim):
85 while True:
86

87 #We first create the trajectories
88 x0 = np. random . uniform (0, scale)
89 y0 = np. random . uniform (0, scale)
90 phi = np. random . uniform (0, 2 * np.pi)
91

92 xk = x0 + R_tk * np.cos(phi)
93 yk = y0 + R_tk * np.sin(phi)
94

95 x0_B = np. random . uniform (0, scaleB )
96 y0_B = np. random . uniform (0, scaleB )
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97 xk_B = x0_B + R_tk * np.cos(phi)
98 yk_B = y0_B + R_tk * np.sin(phi)
99

100 if np.any(xk < 0) or np.any(xk >= scale) or \
101 np.any(yk < 0) or np.any(yk >= scale):
102 continue
103 if np.any(xk_B < 0) or np.any(xk_B >= scaleB )\
104 or np.any(yk_B < 0) or np.any(yk_B >= scaleB ):
105 continue
106

107 Mk = np.zeros(len(xk))
108 Mk_B = np.zeros(len(xk_B))
109

110 #We carry out the weighed interpolation
111 for idx in range(len(xk)):
112 x_current = xk[idx]
113 y_current = yk[idx]
114 floor_x = math.floor( x_current )
115 floor_y = math.floor( y_current )
116

117 if floor_x + 1 >= rows or floor_y + 1 >= cols:
118 continue
119

120 d1k = math.sqrt (( x_current - floor_x ) ** 2 \
121 + ( y_current - floor_y ) ** 2)
122 d2k = math.sqrt (( x_current - ( floor_x + 1)) ** 2 \
123 + ( y_current - floor_y ) ** 2)
124 d3k = math.sqrt (( x_current - floor_x ) ** 2 +\
125 ( y_current - ( floor_y + 1)) ** 2)
126 d4k = math.sqrt (( x_current - ( floor_x + 1)) ** 2\
127 + ( y_current - ( floor_y + 1)) ** 2)
128 W1 = 1 - d1k
129 W2 = 1 - d2k
130 W3 = 1 - d3k
131 W4 = 1 - d4k
132 M1 = crmap[floor_x , floor_y ]
133 M2 = crmap[ floor_x + 1, floor_y ]
134 M3 = crmap[floor_x , floor_y + 1]
135 M4 = crmap[ floor_x + 1, floor_y + 1]
136 Mk[idx] = (M1 * W1 + M2 * W2 + M3 * W3 + M4 * W4) / (W1 + W2 \
137 +W3 + W4)
138

139 for idx in range(len(xk_B)):
140 x_current = xk_B[idx]
141 y_current = yk_B[idx]
142 floor_x = math.floor( x_current )
143 floor_y = math.floor( y_current )
144

145 if floor_x + 1 >= rowsB or floor_y + 1 >= colsB:
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146 continue
147

148 d1k_B = math.sqrt (( x_current - floor_x ) ** 2 + \
149 ( y_current - floor_y ) ** 2)
150 d2k_B = math.sqrt (( x_current - ( floor_x + 1)) ** 2\
151 + ( y_current - floor_y ) ** 2)
152 d3k_B = math.sqrt (( x_current - floor_x ) ** 2 \
153 + ( y_current - ( floor_y + 1)) ** 2)
154 d4k_B = math.sqrt (( x_current - ( floor_x + 1)) ** 2 \
155 + ( y_current - ( floor_y + 1)) ** 2)
156 W1_B = 1 - d1k_B
157 W2_B = 1 - d2k_B
158 W3_B = 1 - d3k_B
159 W4_B = 1 - d4k_B
160 M1_B = crmapB [floor_x , floor_y ]
161 M2_B = crmapB [ floor_x + 1, floor_y ]
162 M3_B = crmapB [floor_x , floor_y + 1]
163 M4_B = crmapB [ floor_x + 1, floor_y + 1]
164 Mk_B[idx] = (M1_B * W1_B + M2_B * W2_B + M3_B * W3_B + M4_B * W4_B)\
165 / (W1_B + W2_B + W3_B + W4_B)
166

167 if not np.any(Mk == 0) and not np.any(Mk_B == 0):
168 break
169

170 # Check values before calculating SDLCdata
171 if np.any(Mk <= 0) or np.any(Mk_B <= 0):
172 print(f" Simulation {sim }: Invalid values found in Mk or Mk_B.")
173 continue
174

175 Nsimv += 1 # Increment the count of valid simulations
176

177 valid_results . append (Mk)
178 for idx in range(len(Mk)):
179 Mk_components_A [idx ]. append (Mk[idx ])
180 valid_results_B . append (Mk_B)
181 for idx in range(len(Mk_B)):
182 Mk_components_B [idx ]. append (Mk_B[idx ])
183

184 #We create the SDLC
185 SDLCdata = -2.5 * (np.log(Mk_B / Mk) - np.mean(np.log(Mk_B / Mk)))
186

187 # Calculate RMS_RR for each SDLC
188 RMS_RR = np.sqrt(np.mean ((( Oj - SDLCdata ) / Ej) ** 2))
189 RMS_RR_values . append ( RMS_RR )
190

191 # Save SDLC information if RMS_RR < 1.7
192 if RMS_RR < threshold :
193 valid_SDLCdata_SDLCS . append ( SDLCdata )
194 print(f"The RMS is: { RMS_RR }")
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195 print(f"The recalculated threshold is: { threshold }")
196 if RMS_RR < 2:
197 valid_SDLCdata_SDLCS_strict . append ( SDLCdata )
198 if RMS_RR < min_RMS_RR :
199 min_RMS_RR = RMS_RR
200 best_SDLC = SDLCdata
201

202 #Show the results and figures for the 100000 SDLCs
203

204 print(f'Number of valid simulations : {Nsimv}')
205 print(f'The minimum RMS value is: { min_RMS_RR }')
206 # Create a histogram of RMS_RR values with a bin width of 0.5
207 bin_width = 0.5
208 bins = np. arange (0, max( RMS_RR_values ) + 1, bin_width )
209 hist , edges = np. histogram ( RMS_RR_values , bins=bins)
210 bin_centers = 0.5 * (edges [: -1] + edges [1:])
211

212 # Normalize the histogram
213 hist_normalized = hist / Nsimv
214

215 plt. figure ( figsize =(10 , 6))
216 plt.bar( bin_centers , hist_normalized , width=bin_width , align='center '\
217 , alpha =0.7 , color='b')
218 plt. xlabel ('RMS_RR ')
219 plt. ylabel ('P( RMS_RR )')
220 plt.title('Histogram of RMS_RR ')
221 plt. axvline (x=1, color='r', linestyle ='dashed ', linewidth =2)
222 plt. axvline (x=threshold , color='r', linestyle ='dashed ', linewidth =2)
223

224 # Create a custom tick vector [0, 2, 5, 10, 15, 20, 30, 40, ...]
225 xticks_custom = [0, 2, 5] + list(range (10, int(max( bin_centers )) + 10, 10))
226

227 # Set the x-axis ticks using the custom vector
228 plt. xticks ( xticks_custom )
229 plt.show ()
230 plt.close ()
231

232 # Histogram with zoom in the range [0.5 , 2]
233 bin_width = 0.2
234 zoom_bins = np. arange (0.5 , threshold + 1 + bin_width , bin_width )
235 zoom_hist , zoom_edges = np. histogram ( RMS_RR_values , bins= zoom_bins )
236 zoom_bin_centers = 0.5 * ( zoom_edges [: -1] + zoom_edges [1:])
237

238 # Normalize the zoomed histogram
239 zoom_hist_normalized = zoom_hist / Nsimv
240

241 plt.bar( zoom_bin_centers , zoom_hist_normalized , width=bin_width ,\
242 align='center ', alpha =0.7 , color='g')
243 plt. xlabel ('RMS_RR ')
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244 plt. ylabel ('P( RMS_RR )')
245 plt.title('Histogram of RMS_RR (Zoom in [0.5 , 2]) ')
246 plt. axvline (x=1, color='r', linestyle ='dashed ', linewidth =2)
247 plt. axvline (x=threshold , color='r', linestyle ='dashed ', linewidth =2)
248

249 # Set x-axis ticks to correspond to the range [0.5 , 2]
250 plt. xticks (np. arange (1, 2.5, 0.2))
251

252 plt. savefig ( zoom_histogram_path )
253 plt.show ()
254 plt.close ()
255

256 # Calculate the mean and standard deviation of RMS_RR
257 mean_RMS_RR = np.mean( RMS_RR_values )
258 std_RMS_RR = np.std( RMS_RR_values )
259

260 print(f'Mean RMS_RR : { mean_RMS_RR }')
261 print(f'Standard deviation of RMS_RR : { std_RMS_RR }')
262 print(f'Number of valid simulations : {Nsimv}')
263 print(f'Number of SDLCs with RMS_RR < { threshold }: {len( valid_SDLCdata_SDLCS )}')
264 print(f'Number of SDLCs with RMS_RR < 2: {len( valid_SDLCdata_SDLCS_strict )}')
265

266 # Plot and save the complete graph
267 plt. figure ( figsize =(10 , 6))
268 plt. errorbar (tk , Oj , yerr=Ej , fmt='o', label='ODLC Data ')
269 plt.plot(tk , Oj_fit , label='ODLC Linear Fit ', color='red ')
270 if best_SDLC is not None:
271 plt.plot(tk , best_SDLC , label='Best SDLC ', color='green ')
272 plt. xlabel ('tk ')
273 plt. ylabel ('Values ')
274 plt. legend ()
275 plt.title('ODLC , ODLC Linear Fit and Best SDLC ')
276 plt.gca (). invert_yaxis () # Invert Y-axis
277 sdlc_path = os.path.join(output_dir , 'CompleteGraph .png ')
278 plt. savefig ( sdlc_path )
279 plt.show ()
280 plt.close ()
281

282 # Plot and save the SDLC with the lowest RMS_RR along with the ODLC data
283 plt. figure ( figsize =(10 , 6))
284 plt. errorbar (tk , Oj , yerr=Ej , fmt='o', label='ODLC Data ')
285 if best_SDLC is not None:
286 plt.plot(tk , best_SDLC , label='Best SDLC ', color='green ')
287 plt. xlabel ('tk ')
288 plt. ylabel ('Values ')
289 plt. legend ()
290 plt.title('ODLC and Best SDLC ')
291 plt.gca (). invert_yaxis () # Invert Y-axis
292 sdlc_path = os.path.join(output_dir , 'GraphWithODLC .png ')
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293 plt. savefig ( sdlc_path )
294 plt.show ()
295 plt.close ()
296

297 # Record the end time
298 end_time = time.time ()
299

300 # Calculate the elapsed time
301 elapsed_time = end_time - start_time
302

303 # Display the elapsed time
304 print(f" Elapsed time: { elapsed_time } seconds ")
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