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Abstract

Although dark matter in galaxies may consist of elementary particles different from those that
conform ordinary matter and that would be smoothly distributed (still undetected), primordial
black holes (PBHs) formed after the initial Big Bang are also candidates to account for a certain
fraction of mass in galaxies. In this project, we consider different populations of PBHs in the main
lens galaxy of the doubly imaged gravitationally lensed quasar FBQ 09514-2635. The observed
microlensing variability of the quasar images is compared with the microlensing variability
generated by stars and PBHs in the lens galaxy at redshift z ~ 0.3, obtaining strong constraints

on possible PBH populations in the non-local early-type galaxy acting as a gravitational lens.

Keywords: Gravitational lensing: strong, gravitational lensing: micro, quasars: individual:
0951+2633, galaxies: halos, dark matter, primordial black holes.

Resumen

Aunque la materia oscura en las galaxias podria estar compuesta por particulas elementales
diferentes de las que forman la materia ordinaria y que estarian distribuidas de manera homogénea
(atin no detectadas), los agujeros negros primordiales (PBHs), formados después del Big Bang
inicial, también son candidatos para representar una cierta fracciéon de la masa en las galaxias.
En este proyecto, consideramos diferentes poblaciones de PBHs en la galaxia lente principal
del cudasar FBQ 095142635, que presenta dos imagenes debido al efecto lente gravitacional. La
variabilidad observada por efecto de microlente de las imagenes del cuasar es comparada con la
variabilidad generada por estrellas y PBHs en la galaxia lente a un redshift z ~ 0.3, obteniendo
importantes restricciones sobre las posibles poblaciones de PBHs en la galaxia de tipo temprano

no local que actiia como lente gravitacional.

Palabras clave: Lente gravitacional: fuerte, lente gravitacional: microlente, cudasares:

individuales: 095142633, galaxias: halos, materia oscura, agujeros negros primordiales.
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Capitulo 1. Introduction

Chapter 1

Introduction

1.1 Motivation

Humans have always sought to understand the cosmos and its underlying structure. Gravitational
lensing has become a valuable tool in this effort, enabling a wide range of astronomical studies,
from measuring the expansion of the universe and investigating the properties of distant galaxies
to detecting exoplanets and exploring the early universe. One important application is studying
the distribution of matter, including dark matter, which remains one of its most mysterious
components. In this context, Primordial black holes (PBHs) have been proposed as potential
candidates for dark matter, and their presence could be studied through microlensing effects on

distant quasars.

The aim of this work is to investigate whether PBHs could constitute a significant fraction
of dark matter in the universe. To achieve this, we will make use of quasar microlensing by
considering different distributions of stars and primordial black holes in a given galaxy. More
specifically, we will consider different contributions to the surface mass density of a given galaxy
that acts as the main gravitational lens on a well-studied distant quasar, comparing the predicted
extrinsic variability of the quasar (through simulations) with the observed variability through
several techniques, for which we will use new and updated data. We assume that the galaxy’s
mass is due to smoothly distributed matter (SDM; gas or dark matter particles still undetected),
a distribution of stars based on observations, and a population of PBHs with a monochromatic

mass function.

Overall, this work will explore the potential contribution of PBHs to this non-local early-type
galaxy acting as a gravitational lens, trying to shed light on their role in the context of dark

matter.
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1.2 Dark Matter
1.2.1 Historical context

Dark matter is one of the most important scientific challenges of this century. The composition of
our Universe is mostly unknown, since approximately only the 5% of it corresponds to ordinary
(baryonic) matter and the rest is constituted by the Dark Matter (DM) and Dark Energy (DE),
see Figure 1.1. These two components are present in the current ACDM cosmological model
to explain the origin, evolution and acceleration of the Universe [1], hence its understanding
becomes crucial on our path to comprehending how the universe works. Despite all the efforts

and researches made in this direction, its nature is still unknown.

Figure 1.1: Components of the universe [2]

It has passed nearly a century since its discovery, although it was not a new concept. Angelo
Secchi already claimed in 1877, from observations of nebulae, that there could be dark masses
scattered in space [3]. Moreover, in his attempt to measure the Milky Way mass, considering
stars as gas particles, Kelvin [4] stated that many of the stars, if not the great majority, could be
dark bodies.

It was in the 30’s when the idea of dark matter began to take shape as the astronomer
Fritz Zwicky predicted the existence of DM by weighing the clusters [5]. He tried to analyse
the distribution of galaxies within the Coma Cluster according to their radial velocities. Then,
by applying the mass-to-light ratio relationship, it was possible to determine the individual
luminosities of each galaxy and subsequently calculate the average mass of the cluster. Once at
this point, he cross checked the result of this mass and the size of the cluster and obtained the

escape velocity.

The key point was that the typical velocities of galaxies within clusters were far greater
than the cluster’s escape velocity. This implied that, under normal conditions, the galaxies
should have drifted apart, leading to the disintegration of the cluster. However, since the clusters

appeared to be stable and in equilibrium, this scenario wasn’t taking place. As a result, Zwicky
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proposed that there must be an unseen component, with significantly more mass than the visible
matter, present within the clusters to hold the galaxies together. This marked the emergence of

the concept of dark matter within the scientific community.

The other important evidence of dark matter was provided by Vera Rubin [6],[7]. She was
the first to reveal a contradiction between the predicted and observed rotation curves of spiral
galaxies. At that time, it was assumed that mass in a galaxy would be primarily concentrated
in the luminous central bulge, much like the mass in the Solar System is concentrated in the
Sun. According to Newtonian mechanics and Kepler’s laws, objects further from the center of
a gravitational system should rotate more slowly as gravitational force decreases with distance.
Thus, the rotational velocities of stars were expected to decrease as one moves farther from the

galactic center, just as planets farther from the Sun orbit more slowly.

However, Rubin’s groundbreaking observations revealed a striking difference: instead of
decreasing, the rotation velocity remained flat, or even increased, to distances well beyond the
visible edge of the galaxies. This discrepancy, shown in Figure (1.2), challenged the existing

models of galaxy dynamics.
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Figure 1.2: Rotational velocities for seven galaxies as a function of distance from nucleus, obtained by
Rubin [6]

This unexpected behavior could only be explained if there is a large amount of unseen, "invisible"
matter, which now is known as dark matter, surrounding the galaxies. This dark matter provides
the additional gravitational pull needed to maintain the high rotational velocities observed at

large distances from the galactic center.
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1.2.2 Primordial black holes as dark matter candidates

Nowadays, the favoured hypothesis to describe the nature of dark matter is that it is collisionless.
There are several candidates that have been proposed to give rise to dark matter, among which
we have WIMPs (Weakly Interacting Massive Particles), MACHOs (MAssive Compact Halo
Objects) such as black holes in the galaxies halos, particles arising from the supersymmetry or

even neutrinos.

In this context, the discovery of gravitational waves from binary black hole mergers by
the LIGO/Virgo collaboration has encouraged the community to consider the possibility that
some of these BHs were of primordial origin. These hypothetical Primordial Black Holes (PBHs)
would have formed just after the Big Bang, and provide an interesting explanation of the dark
matter, since it does not require the introduction of any new exotic particles. The reason of this
renewed interest arises from the fact that these binary black holes (BBHs) had masses higher than
previously expected for black holes (BHs) of stellar origin, as well as their low spins. Therefore,
this has led researchers to consider the range of masses of LIGO experiment as an important

possible constituent of the dark matter in the universe.

As we have mentioned before, PBHs are those black holes formed in the early Universe
through a non-stellar mechanism. Some of the pioneers in the study of PBHs where Zel’dovich
and Novikov [8], who despite being limited by the lack of knowledge and observational data (which
indeed led them to an erroneous discussion), found that PBHs might form from overdensities in

the early Universe.

One of the main important works in this context was carried out by Stephen Hawking
and Bernard Carr in the 70s [9]. Their research suggested that the mass range of PBHs could
oscillate from Planck mass to several thousand times the mass of the Sun, depending on the
conditions at the time of their formation. Hawking introduced the concept of Hawking radiation,
suggesting that black holes emit radiation because of quantum phenomena near the event horizon,
suggesting that smaller PBHs could evaporate over time due to Hawking radiation while larger
ones might persist. This pioneering theory challenged the notion of black holes as entirely
opaque entities, indicating instead that they could shed mass and energy over time, potentially
evaporating if they don’t accrete additional mass from their environment. This work marked a
milestone in theoretical physics and cosmology as it laid the groundwork for future investigations
and led to the possibility of PBHs explaining DM.

Actually, PBHs satisfy all of the necessary requirements to be a good dark matter candidate
since they are cold, non-baryonic (as they were originated before nucleosynthesis and can be
produced in adequate quantities). In addition, despite emitting Hawking radiation, PBHs are

cosmologically stable (their lifetime is longer than the age of the Universe) if their initial mass is
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greater than ~ 10" g [10]. Moreover, unlike most other DM candidates (WIMPs, axions, sterile
neutrinos,...) PBHs are not a new exotic particle (which is undoubtedly an advantage) but its
existence is a rather natural consequence of several inflationary scenarios (although they hence

require "Beyond the Standard Model" physics).

It should be noted that, revisiting the list of black holes detected by gravitational waves
[11], a significant number of them corresponds to the range of (5-20) Mg, hence we have
considered in the analysis a value of 10 M. Despite BHs of ~ 10M; can be of stellar origin
(consequence of massive stars evolution), stellar black holes (SBHs) can only contribute with a
few per cent of the total mass in stars. As a consequence, we have considered PBH fractions of
microlenses above 10% to distinguish between PBHs with ~ 100, and other with similar mass.
Note that we do not have this problem for the other PBHs mass analysed (107% and 0.1 M), as
they can’t be of stellar origin.

The constraints on the fraction of DM in the form of PBHs with mass M, f,pn, are summarized

in Figure 1.3:
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Figure 1.3: Constraints on the fraction of DM in the form of PBHs, fypn, with mass M, coming from
evaporations (red), lensing (blue), gravitational waves (GW) (gray), dynamical effects (green), accretion
(light blue), CMB distortions (orange) and large-scale structure (purple), from [12].

From Figure 1.3, there are four mass windows (A, B, C, D) in which PBHs could have an
appreciable density. Nevertheless, it should be noted that these constraints correspond to
different redshifts. Furthermore, the constraints established through microlensing studies in
Figure 1.3 for the mass range (1072 - 0.1 M) correspond to observations from local galaxies
(Milky Way and Magellanic Clouds) whereas this work focuses on observations of a non-local
early-type galaxy. However, apart from being candidate to DM, the importance of PBHs is
self-evident since it might be a possible solution for other astrophysical open questions; for
instance, they could be the precursors of the supermassive black holes found at the cores of
galaxies or the intermediate-mass black holes that might reside at the centers of dwarf galaxies
[13].
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1.3 Gravitational Lensing Overview

Cosmology is continually evolving due to new discoveries in a wide variety of fields of modern
physics and astrophysics. Some of these discoveries are achieved through the gravitational
lensing effect, which provides detailed insights into the composition of galaxies and their peculiar

velocities.

Gravitational lensing is a phenomenon where the presence of a massive object, such as a
galaxy or a cluster of galaxies, bends and magnifies the light from a background source, such as
a star or quasar. This effect, that can generate multiple images of the background source, is a
natural consequence of Einstein’s General Theory of Relativity, according to which light follows
geodesics arising from the space-time curvature (caused by a given mass), much like how a lens
bends light in optics. However, this idea was conceived before Einstein. Isaac Newton already
speculated about the gravitational influence on light in 1704 in his book ’Opticks’ [14], where
he proposed that light consists of particles that would be influenced by gravity, much like any
other matter. Newton hypothesized that light particles passing near a massive object would be
deflected by its gravitational pull, although he did not provide a mathematical framework for
this effect. Later in 1784, Henry Cavendish (motivated by John Mitchell ideas related to the
reduction in the light speed by effect of gravity) calculated the Newtonian deflection of light for
the first time, although he did not publish his results [15]. It wasn’t until the beginning of the
XIXth century when these calculations were published in an official document by Johann Soldner
(1801) a German mathematician who deduced that a light ray near the solar limb would be
deflected by an angle of A¢ = 0.84 arcsec [16].

In 1911, more than a century later, Albert Einstein studied the impact of gravity on light
in his work "On the Influence of Gravity on the Propagation of Light." [17]. Nevertheless the first
value he obtained for the deflection angle was the same one Soldner calculated using Newton
mechanics, as at this time, the General Theory of Relativity had not yet been fully formulated.
In his paper, Einstein determined the deflection angle & = 2GM/c*R = 0.83 arcseconds for a
light ray skimming the sun, where M and R are the mass and radius of the sun, and ¢ and G
are the speed of light and the gravitational constant, respectively. Despite the efforts made by
Einstein and several researchers to study experimentally the deflection effect, the opposition from
the scientific community as well as external conditions (in particular the World War I), delayed
the measurement of the deflection angle at the solar limb for a few years, which paradoxically
worked in Einstein’s favor since the value he obtained was wrong. It was with the completion of

the General Theory of Relativity when he derived the correct deflection angle & = 1.74 arcsec [18].

According to this theory, gravity is not just a force between masses but rather a result of
the warping of space-time by mass and energy. Light, which always travels along the shortest

path in space-time, follows geodesic lines (in a curved space-time, geodesic lines are the paths that
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are as straight as possible under the circumstances, similar to straight lines in flat space-time).
As light rays travel along these geodesic lines, they bend towards the mass that is causing
the curvature of space-time, hence altering the path light takes. This was verified by Arthur
Eddington and his group during a solar eclipse in 1919 that indeed was the second observational
confirmation of General Relativity and reinforced Einstein’s theory, which eventually changed

our understanding of how the universe works.

Nevertheless, it took more than half a century to observationally confirm this phenomenon
in other environments. In the following decades, gravitational lensing was rarely the focus
of research papers. In 1924, Chwolson proposed the concept of a "fictitious double star" and
described the symmetrical case of a star directly behind another star, resulting in a circular image
[19]. Einstein also carried out in 1936 the same discussion about the appearance of a "luminous
circle" for perfect alignment between source and lens, and two magnified images for slightly
misaligned positions. This configuration is actually known as an "Einstein-ring. In this context,
Fritz Zwicky [5], [20] suggested in 1937 that galaxies, or "extragalactic nebulae," are much more
likely to be gravitationally lensed than stars and proposed using the gravitational lens effect as a

"natural telescope’.

However, the field became specially important in the 60s, with the discovery of quasars
and the development of several independent theoretical studies which demonstrated the potential
of lensing for astronomy. For instance, Sjur Refsdal [21] showed how the gravitational lens effect
could be used to determine Hubble’s constant by measuring the time delay between two lensed
images. Moreover, gravitational lensing received an important boost in 1979, when the first
double quasar was discovered and confirmed as a true gravitational lens by Walsh, Carswell, and
Weymann [22].

Since then, the field of gravitational lensing has been continuously growing and a wide
variety of phenomena have been discovered. Among these, the most notable are weak lensing
(when the gravitational lens only produces a small shift in the angular position of the source),
strong lensing (when it produces multiple images or a ring of a background source, where the
typical separation between images for a galaxy-quasar system is ~ 17) and microlensing (when
stars within the lensing galaxy can act as micro-lenses, generating images with separations of the

order of ~ 1075 7 i.e, a microarcsecond).

1.3.1 Quasar Microlensing and Primordial Black Holes

Some galaxies have a significant activity in their central regions, where accretion towards a
supermassive black hole is most likely responsible for this activity: very high luminosity, strong
variability, etc. These cental regions are called Active Galactic Nuclei (AGN). Quasar are very

bright and distant AGN. They emit light across the entire electromagnetic spectrum, from radio
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waves to gamma rays, and exhibit variability on nearly all timescales [23]. At the center of a
quasar is a Super-Massive Black Hole (SMBH) surrounded by an accretion disk, a few light-days
in size, which is responsible for part of the continuum emission. Additionally, a region extending
hundreds of light-days contains clouds of ionized gas that produce broad emission lines. The
relatively small size of the accretion disk makes it susceptible to gravitational microlensing (ML),
hence among all the phenomena mentioned in the previous section, we are particularly interested

in quasar microlensing.

Gravitational microlensing (ML) occurs when a compact object, such as a star, black hole,
brown dwarf, or planet, passes in front of a distant light source, causing the light to bend and
create additional images. These "microlenses" produce multiple, closely spaced images of the
background source, although the separations are usually too small to be resolved by current
telescopes. Instead, microlensing events are typically observed as changes in the brightness of the

source over time.

Quasar microlensing combines these phenomena, utilizing the variability and brightness of
quasars to study the microlensing effect. When a quasar’s light is magnified by an intervening
galaxy, each of these stars (or other compact objects, like black holes, brown dwarfs, or planets)
which conform the galaxy, acts as a “compact lens” or “microlens” and produces at least one
new image of the source [24]. This creates numerous micro-images that blend into the observed
macro-image. Despite their very small separations, which are on the order of micro-arcseconds
and unresolvable with present technology, the impact of microlensing on the total flux can be
monitored through light curves which can be studied, and, as we well see, might reveal important
information about the mass distribution and abundance of compact objects present in the lens

galaxies.
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Chapter 2

Gravitational Lensing and FBQ
095142635

2.1 Lens Equation

Before going any further, it is useful to explain the basics of gravitational lensing, so that we can
understand the underlying physics of quasar microlensing, crucial to achieving our goal. As we
already mentioned before, gravitational lensing is based on light deflection caused by massive
objects bending spacetime. It is useful to make an initial approximation, asumming a thin lens
and a weak gravitational potential, i.e, a lens whose Newtonian gravitational potential 1) is much
smaller than ¢?, |1)| < ¢?, and that its thickness is small when compared to the total dimensions
of the optical system. It should be noted that this approximation is valid in most scenarios,
since the physical size of the lens is generally much smaller compared to the distances between
observer, lens and source. Therefore, in this approximation, the lens is well approximated by a
planar distribution of matter which is known as the lens plane. Note that the sources are also

assumed to lie on the source plane.

Thus, the distribution of the lensing matter in this context is completely characterised by
the surface density X, defined as the projection of the three dimensional density p along the line

of sight onto the lens plane. It can be expressed as:
(€)= [ pl€ 2)dz (2.1)
where 5 is a two-dimensional vector in the lens plane.

Given a distribution of mass elements on the lens plane 2(5) d® ¢, it can be shown that

the total deflection angle in this approximation is obtained by summing their contributions:

FO=" & ’_f J2E) e 2.2

_5/

We can illustrate a gravitational lens system in Figure (2.1), assuming a point source S and L to
be the center of the mass distribution, in which the deflexion in 5 is due to the whole mass being

concentrated in points é; , and light rays emitted by the source are deflected producing (at least)

10
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two images (S and S;). In this figure, we can see the different angular diameter distances Dy,

Dg, Dys as well as the relevant angles.

Sle.

A

vy v

Figure 2.1: Gravitational lens setup for a point source S and a lens L located between source and observer
O, producing two images S; and S2. Figure made by the author.

The source S in Figure 2.1 is at an angular position 5 whereas @ is the deflection angle of the
light ray coming from S (as a consequence of deflection, the observer perceives the light as it was
emitted at the angular position 5) In general, the angles 5, B’ . @, & are not be coplanar, hence
they have to be expressed in its vector form, where each angle has two components in the plane
of the sky [25].

Therefore, from Figure (2.1) and assuming that 0,/,d are small, we can obtain the following

relation:
0Ds = 3Ds + &Dyg (2.3)

In addition, we could define the reduced deflection angle & as:

hence Equation (2.3) is reduced to
f=0-—a) (2.4)

which is known as the lens equation.
2.2 Lensing potential

The deflection angle can be expressed as the gradient of an effective two-dimensional scalar
potential 1 (ﬁglﬁ = d), known as the effective lensing potential, which is obtained by projecting

and rescaling the three-dimensional Newtonian potential on the lens plane [18]:

11
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= Drs 2
W0 =55 JEGE

where ®(7) is the Newtonian potential of the lens.

Additionally, the lensing potential satisfies an important property, as the Laplacian of v is
twice the convergence:

N)(Z) = 2k(7).
which is defined as a dimensionless surface density

E(f) 02 DS
ith Yo = —x )
ST 47G Dy Dys

K(Z)

where Y., is known as the critical surface density, a quantity that defines the lens system and

depends on the angular diameter distances.
2.3 Magnification and Distortion

Light bundles are typically deflected differently. As a consequence the shape of the sources are
distorted, and this becomes more evident when the source has no negligible apparent size. Ideally,
the shape of the images can be determined by solving the lens equation for all points within the
extended source. In particular, if the source is much smaller than the angular scale over which
the physical properties of the lens vary, the relation between source and image positions can be

locally linearized, hence the image distortion can be described by the Jacobian matrix [18]:

08 (. 0aB)\ (. 9*(0)
A=%5" (5” 06, ) B (‘5” - aeiae) (2:5)

We can define the components of the external shear v as

71(0) = ; (Y11 — thaa) = 7y cos(2¢)

Y2 9) = 1g = o1 = VSin(QSD)

(2.6)

where the angle ¢ represents the orientation of the shear-inducing tidal force with respect to
the coordinate system. The shear quantifies the projection of the gravitational tidal field (the

gradient of the gravitational force), hence describes distortions of background sources.

Taking this into account, it can be shown [15] that the Jacobian matrix can be expressed

in terms of convergence and shear:

1—r— — 10 cos 2 sin 2
A= R e e i (2.7)
—Y2 l—k+m 01 sin2¢p —cos2p

12
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Note that the distortion induced by the convergence is isotropic as images are rescaled equally in

all directions, while the shear distorts the intrinsic shape of the source along a specific direction

)1/2

(where v = (v + 73 represents the magnitude of the shear and ¢ specifies its orientation).

This is shown in Figure (2.2).

Gravitational
Lensing

Convergence + Shear

Source Image

Figure 2.2: Convergence and shear on a circular source. Convergence modifies the image isotropically
while shear deforms it to an ellipse. Figure made by the author.

Furthermore, apart from light distortion, another characteristic phenomena of gravitational
lensing is magnification. As we can see from Equation (2.4), a solid angle element §3? is
transformed into the solid angle §6*. Given that the surface brightness is conserved (ensured by
the Liouville theorem and the absence of emission and absorbtion of photons in gravitational light
deflection [15]), the change of the solid angle under which the source is seen results in a change

in the flux received from the source, either increasing (magnifying) or decreasing (demagnifying) it.

Given Equation (2.5), magnification is quantified by the inverse of the Jacobian matrix

determinant
1 1

F= et A~ (1 —kK)2—~2

(2.8)

Note that, there are relevant locations in Equation (2.8), for which det.A = 0, hence the
magnification is formally infinite 4 — o0o. These locations are known as critical curves in the
lens plane, and the corresponding ones in the source plane are called caustics (i.e, the sources
that produce images around the critical lines are located along the caustics). As it was mentioned
previously, if the lens is strong, multiple images can be formed of the same source. The number of
these images depends on the position of the source with respect to the caustics as when the source
track crosses a caustic, a pair of highly magnified microimages either appear newly or merge and

disappear.

13
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2.4 Point lens model

We analyse first the simplest lens model in order to derive easily different properties of the lens
system. In this context, it can be proved that the deflection angle can be expressed only in one
dimension for axially symmetric lenses, since all light rays from the source to the observer must
lie in the plane spanned by the center of the lens, the source and the observer [15]. Therefore,
considering a point lens of mass M, it can be shown that the corresponding deflection angle of

Equation (2.2) is simplified to:
AGM

C2DL9

Furthermore, with the previous definition of X, the deflection angle for this mass distribution

(2.9)

a =

can be expressed as

We can replace this deflection angle into Equation (2.4), which is reduced to,

Dis 4GM
DL DS 20

p0) =0
At this stage, it is useful to introduce the Einstein radius, which is defined as [15]:

AGM Diys

Re =
B 2 DyDs

(2.10)

It is an important magnitude in gravitational lensing that defines the angular scale in a lens
system. In particular, it sets a typical scale for separation between multiple images. For a
massive galaxy with a mass of M ~ 102M, at a redshift of z ~ 0.5 and a source quasar at
z ~ 2, the Einstein radius is of a few arcoseconds. Stars within the lens galaxy also produce
gravitational lensing effects, and the corresponding separation between images would be only of
a few microarcseconds (10'2M, — 1My). We are particularly interested in these microlensing
effects. The Einstein radius is also defined as the angular radius of the case in which the source
lies exactly behind the lens (8 = 0), where we have a ring-like image as a consequence of the

symmetry, known as the Einstein ring, see Figures 3.4,3.5

However, despite the fact that a point lens model is useful to understand basic observations
in strong gravitational lensing, realistic lens models are required to accurately describe all

observational data for a galaxy-quasar lens system (see Sect.2.5).
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Figure 2.3: JWST-ER1 Einstein Ring [26] Figure 2.4: Idealized Einstein ring, digital artwork
by IncrediVFX

2.5 Realistic Model for Quasar Lensing

The point mass model explained before provides a fundamental understanding of gravitational
lensing, being an idealization that assumes the lens is a single and infinitesimally small object.
Although this simple model has proved to be useuful to introduce the fundamental concepts of
gravitational lensing, real lensing galaxies are not point-like but extended objects with complex
mass distributions. Nevertheless, lens mass models must be characterized by a number of
parameters less than or equal to the number of observational constraints, so a realistic model
incorporates an observationally-motivated rough description of the main lens galaxy along with
the gravitational effects by secondary deflectors. In this context, an isothermal ellipsoid has a
density proportional to r=2 and it is consistent with the flat rotation curves observed in the
Milky Way and other spiral galaxies (see Figure 1.2). However, deviations from isothermality
are possible, and thus, the main lens galaxy is usually described as a singular power-law ellipsoid

(SPLE) whose density (convergence) is given by the dimensionless surface [27]:

b27o¢
2(22 +y7/q?)

’fgal(xu y) =

where M (a) ~ r® with o = 1 for the isothermal case, o < 1 steeper than isothermal and o > 1
if shallower than isothermal. Here, b is the mass scale in arcseconds and ¢ is the projected axis
ratio. Nevertheless, a few main lens galaxies are isolated, and they usually have neighbours or
are embedded in halos of groups or clusters. These environments can play a role to explain the
observations of the lens system. In addition to the perturbations of objects or structures near the
main lens galaxy, objects or structures along the line of sight also perturb the lensing potential

[28]: ,

r
77Dext ~ 5 ["iext + f}/ext COs 2 (8 - Q'Yext)] ) (211)

where, Key is the external convergence (a uniform mass sheet with surface density eyt = Kext 2er ),

Yext 18 the external shear strength and 6 represents the direction of the external tidal shear

Yext
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(pointing towards the mass concentration producing it).

2.6 Doubly Imaged Quasar FBQ 095142636

The gravitational lens system FBQ 095142635 was discovered by [29]. The lensed quasar
is located at a redshift z,, = 1.246 [30] and the early-type lensing galaxy has a redshift
Zga = 0.260 [31]. The brightest optical image is denoted by the letter A, and the faintest
optical image is denoted by B. The relative astrometry of the image B and the main lens
galaxy (with respect to A), and the light distribution of the galaxy were also derived from
new IR HST observations [30]. Additionally, the optical light curves in the period 1999-2001
yielded a time delay of 16 £ 2d (see [30]). The discovery by [31] also reported the flux ratio
B/A =0.21 £0.03 at 8.4 GHz. Radio fluxes are expected to be unaffected by microlensing (large
source) and dust extinction, and taking into account the short delay of, about two weeks, the

radio flux ratio is a good proxy of the microlens magnification ratio (due to the galaxy as a whole).

Using the observational constraints of the system in the previous paragraph, as well as a
standard flat ACDM cosmology with M = 0.3M; and Q, = 0.7, [32] obtained a lens mass

solution based on a realistic lens model consisting of a SPLE and external shear (ES).

This solution allows us to obtain the total convergence (k), the total shear strength (7)
and the shear direction (6,) at the positions of both quasar images (A and B; see the second row
in Table 2.1).

Approach KA Ya 0, KB VB 0,
1 0.2786 | 0.3800 | 36.28 | 1.1938 | 1.3517 | 49.91
2 0.4012 | 0.3154 | 36.28 | 1.1608 | 1.1219 | 49.91

Table 2.1: Values for the convergence x and shear v as well as for the shear angles 6,, which are in
degrees east of north, for both images.
In a second approach it is considered a more robust time delay of 13.3 + 1.7 d, which relies on

optical light curves in the periods 1999 — 2001 and, 2008-2023, (covering 19 years of observations).

In addition, [33] performed a spectroscopy survey of galaxies along the sightline, putting
constraints on the external convergence key. Using the new time delay and the lower limit on
Kext(= 0.17) as a reference value, one can demonstrate that Ruiz-Hinojosa’s lens solution is still
usable as an 'effective" solution. As the effective model (SPLE+ES) does not incorporate the
external convergence, galaxy’s mass scale and the external shear strength are overestimated
with respect to their real values b and 7.. Thus, the effective solution includes the values of
b* = b/ (1 — Rexs) and 72, = Yext/(1 — Kext). It is also easy to show that the real convergence is
K = Kgal + Kext, Where kg = (1 — Kexy) k* and s* is the effective convergence. Similarly, the real
shear strength is v = (1 — Kex) 7", with v* being the effective shear strength (see the third row
in Table 2.1).
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Chapter 3

Methodology

3.1 Construction of the ODLC

The observed difference light curve (ODLC) is built from GLENDAMA+ light curves of FBQ
095142635, mainly consisting of optical magnitudes provided by observations with the Liverpool
Telescope (GLENDAMA project) and the Kaj Strand Telescope at the United States Naval
Observatory Flasftaff station (see Figure 3.1). The brightness records cover the period 2008-2023
(updated on December 1, 2023).

ear

2008 2009 2010 2011 w1z 2013 2014 2015 016 2017 2018 019 2020 2021 022 023

¢ qo95lA

& Qq0951B-1.1 .\
17.24 °
%
®

°

17.3 {; H

oo * ¥
RS T

55000 56000 57000 58000 59000 60000

M)D (days)

g 7| e . b
< = ® ?; ¥, “h‘ T e ++ ;’f:t- J* W* i

Figure 3.1: Observed light curves for A and B images of quasar FBQ 095142635 for the first approach,
with time delay removed and a displacement of 1.1 in B to see more clear both curves.

Thus, the ODLC informs us on the extrinsic (microlensing) variability of the quasar images, since
quasar intrinsic variations are removed as can be seen next. The flux of the quasar image B at
time t is given by

Fy(t) = Fi(t)epun(t)

where F7 is the intrinsic quasar flux, eg is the dust extinction factor, and pup is the lens
magnification. This lens magnification might vary over time as the source quasar moves across
the sky. Additionally, taking into account the time delay between the two quasar images (dt), we

can write:
FA(t — dt) = Fl(t)eAuA(t)
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Capitulo 3. Methodology 3.1 Construction of the ODLC

Furthermore, if we subtract the two previous expressions and use magnitudes instead of fluxes,

B(t) — A(t — dt) = —2.5log l%] — —25log liiﬁjm (3.1)

as Fy is conveniently removed. By subtracting now the average (mean) level < B(t) — A(t —dt) >,

it is possible to remove dust extinction effects. Therefore,

>} (3.2)

B(t) — A(t — dt)— < B(t) — A(t — dt) >= —2.5 {lOg [MB(t)] o [,UB(t)

pa(t) fa(t)

The observational data (GLENDAMA+ light curves) has allowed us to construct the ODLC (see
the left side of Equation (3.2)), which have been compared with synthetic difference light curves
(SDLCs) from simulations (magnification maps; see the right side of the Equation (3.2)).

Moreover, it can be seen from Equation (3.2) that the ODLC depends on the time delay

dt. Once at this stage, we have considered two different approaches (see Section 2.6) involving
two time delays. For the first one (dt = 16d), we have obtained the ODLC in Figure 3.2.
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Figure 3.2: Observed difference light curve of quasar FBQ 0951+2635 for the first approach.

The ODLC for the second one (dt = 13.3d) is very similar to that for the first one, hence it is not

worthwhile to show such difference curve. Nevertheless, we show below both ODClLs:
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Comparison of the two ODLCs
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Figure 3.3: ODLCs generated with the first and second approaches

From Figure 3.3, it can be seen as we anticipated, that there is not an important difference between
both ODLCs. Furthermore, we have calculated the mean of the differences, obtaining a value of
tair = 0.003, which is a very low value. Additionally, the correlation coefficient between both data
has been also determined, obtaining a value of R? = 0.996, which clearly indicates a very high

degree of similarity between the two sets of data.

3.2 Magnification Maps

Once we already have the ODLC, the next step is the contruction of synthetic difference light
curves (SDLCs) to be compared with the observed difference light curve. They will be obtained
from trajectories in magnification maps for each image, which have been made with a fortran code
that calculates magnification maps corresponding to some amount of smoothly distributed mass,
and two populations of microlenses (stars and PBHs; see [34] for a simpler version addressing a

single population of microlenses).

In the first approach to describe the lens system, the convergence is exclusively due to the
lens galaxy (kexy = 0), and it can be decomposed into three contributions: smoothly distributed

matter in the galaxy halo (Keam), stars (Kstar) and PBHs (kppn). Thus, we define the two

independent parameters fum = Ksam/r (SDM Fraction) and Fpp, = M”pﬁ (PBH Fraction of
star TRp

microlenses). Once we set fouam and the PBH fraction, we get that fopn = Fpbh(1 — feam), and the

star fraction is given by fsar = 1 — Fpbh(1 — fedm) — fsdm-

Therefore, we have considered three values of fum (0.1, 0.5 and 0.9) and three values of

Fopn (0.1, 0.5 and 0.9). The total possible mass distributions are displayed in Table 3.1:
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Fraction | #1 | #2 | #3 | #4 | #5 | #6 | #7 | #8 | #9
fsam 0.1 1 01|01 |05 |05 |05]09]09]09
Fobn 0.1 1 0509|0105 09| 01] 057109
fpbh 0.09 | 0.45 | 0.81 | 0.05 | 0.25 | 0.45 | 0.01 | 0.05 | 0.09
Jstar 0.81 [ 0.45 | 0.09 | 0.45 | 0.25 | 0.05 | 0.09 | 0.05 | 0.01

Table 3.1: Combinations for the parameters fsqm, fppn and fgar-

In the second approach, the SDM fraction includes both the contribution from the lensing galaxy
(Ksdmgal), and that from matter halos near the galaxy and along the line of sight, which act as
secondary deflectors (kex;). More specifically, fsim = Kext/K + fsdmgal(1 — Kext/r), and each value
we use for fsamgal = Fsdmgal/Fgal; 1.€, 0.1, 0.5, 0.9, leads to fiam(A) # fsam(B). This fact is shown

in the following scheme:

fodmgal = 0.1 = faam (A) =048 and  figm (B) =0.23
fsdmgal =0.5— fsdm (A) =0.71 and fsdm (B) = 0.57
feamgal = 0.9 = fuam (A) =0.94 and  fum (B) = 0.91

Given the values of fimga and Fypn, we set the mass fraction of the galaxy in PBHs,

fpbhgal = }711)bh<1 - fsdmgal)7 and in stars fstargal =1- F1pbh(1 - fsdmgal) - fsdmgal- As in the first

approach, we take three values of Fi,, (0.1, 0.5 and 0.9).

After introducing the mass distributions, it is convenient to discuss the microlenses mass.
A power law is usually assumed for the mass function of stars, where N(M) dM oc M~*dM.
denotes the number of stars mith masses between M and M+dM (M; < M < M,) and
r = My/M, is the maximum - to - minimum mass ratio. For example, [35] used a Salpeter
mass function (o = 2.35) with » = 100 for stars in the bulge of a local spiral galaxy, while [36]
used a Kroupa wass fruction (o = 1,3) with r = 50 for stars in non-local, early-type galaxies.
The new microlensing simulator (modified version of that in [34]) considers both « values and
r = 50, although we have focused on o = 1.3 (e,g, [37], [38]; both inspired by the mass function
of Gould [39]). Although magnification maps are obtained for an arbitrary mean star mass
(it is not necessary to set its value), we have adopted a typical mean mass M., = 0.3M,,.
Regarding the mass of the PBHs, we have assumed a monochromatic mass function (all
PBHS equal mass) and considered three different values of ry,n = log (Mpbh/Mstar). These
values are rppy, = —2.5 (Mppn & 107°Mg; giant-planet-like PBHS), rppn = —0.5 (Mppn &~ 0.1Mg;
red-dwarf-like PBHs) and rppn = 1.5 (Mppn &~ 10Mg ; SBH-like PBHs).

Using 9 distributions of mass (see, e.g. Table 3.1 for the first approach) and 3 values of
the PBH mass, we have generated 27 magnification maps with a given size and resolution for
each image in the two approaches. Following [38], we built maps of 40 Einstein radii on each side,
where Einstein radius is given by Rp (M) = {<4GM“*") (DsDLS)r/2 = 3.76 x 10%cm. These

C2 DL
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maps contain 8000 x 8000 pixels.

We show below, the magnification maps corresponding to the first approach for the scenario
010125 (fsam = 0.1, Fypn = 0.1, 7ppn = —2.5), for both images.
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Figure 3.4: Magnification map for image A Figure 3.5: Magnification map for image B in the
in the first approach first approach

Since the source has a finite size, one must convolve the 27 initial maps with a Gaussian
brightness profile I(R) o< exp (—R?/2R%) that is characterised by a relative source radius
rs = Rs/Rp (M) In this work, we consider the two values of r; that were measured by [38]:
rs = 0.605 (fit of optical data) and ry = 0.276 (joint fit of near IR and optical data), as well as
a smaller value of r; = 0.1 for comparison purposes (to check the feasibility of a more compact

source).

As a summary, we finally produce 81 (9 x 3 x 3) magnification maps for each image and

approach, using the parameters in Table 2.1.

We also note that the shear points towards the mass that produces it, and this radial
direction forms an angle 6, with the celestial north. The magnification map of an image is
thus constructed using a coordinate system in which the two axes coincide with the radial
and tangential directions. Therefore, the map of one of the two images must be conveniently
rotated to analyse a given source trajectory across the sky in the maps of both images (e.g
Figure 2 of [40]), and we carried out a counterclockwise rotation of all maps of the image A by
0y, — 0y, = 13.63°.

We show now the final magnifications maps corresponding to the same mass distribution

(fsam = 0.1, Fypn = 0.1, 7ppn = —2.5) for both images, and considering r; = 0.605 as for the

relative source radius is concerned:
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Figure 3.6: Magnification map rotated for image Figure 3.7: Magnification map for image B in the
A in the first approach for ry = 0.605 first approach for r; = 0.605

3.3 Construction of SDLCs

Once we have generated a rotated and convolved magnification map for image A, and a convolved
map for image B with the same mass configuration (i.e., the pair of AB maps were obtained from
the same set of values of fiam, Fpbh and rppy), it is possible to draw trajectories in both maps to
obtain the synthetic difference light curves, for which we have considered the source following a
straight paths in the magnification maps. We have generated 10> SDLCs in order to have enough

statistics.

Before explaining the procedure of the SDLCs construction, it is covenient to introduce
the concept of the effective transverse velocity (V.). It provides crucial information in the time
domain, since it links the length of a path travelled by the source (in the source plane) to the
elapsed time in the observer’s rest frame. The value of V. was estimated by [38], who obtained
V. =8.94 x 107 cm s~!. This effective velocity is mainly due (90% of the total) to the motion of

the lens galaxy and their stars.

As far as for the trajectory construction is concerned, we have estimated the points (z, yx)
corresponding to N observation epochs. In particular, the point (xg,yo) corresponds to the first
observation epoch MJD, and is assigned a time ¢y = 0. Therefore, it is possible to determine
the distance travelled by the source in pixels R, = 0.041 x t; for the time t, = MJDy — M JD,
in days. Taking this into account, it is possible generate a SDLC in the pair of AB maps by

determining the trajectory points (x, yx):

Tr = Lo + By cosa
k 0 k (3.3)
Yr = Yo + By sina
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where « is chosen randomly in [0, 27] and represents the trajectory slope. It should be noted
that although « remains the same for the pair of AB maps, the initial point (x¢,yo) is random in
both maps, i.e, the two light curves in a pair of AB maps generating a given SLDC, arise from

two trajectories (one for each image map) with the same slope but different initial points.

We show in Figure 3.8 two trajectories in both maps. As one might expect from what we

explained before, the same source has random initial points in both maps but equal slope.

0
2000 4000 6000 8000 o] 1000 2000 3000 4000 5000 6000 7000

Figure 3.8: Two trajectories drawn in both magnification maps

It should be noted that both vector components of the trajectories in images A and B are real
numbers and as the information in maps is saved in pixels (natural numbers), we have carried out
a weighted interpolation in order to assign a magnification value at each source position (zy, yx),

as we can see in Figure 3.9, hence the magnification for the point (zy,yx) is obtained as follows:

_ Wi + wo iz + W3z + Wally
w1 + Wa + ws -+ Wy

(3.4)

where p; and w; are the magnification and weight of the pixel . The weights w; are obtained

depending on the distance to the four surroundings pixels centers.

Once we have assigned magnification values (4 or pug) to each point of both trajectories on the
AB maps, we can use Equation (3.2), to obtain the whole SDLC for a given mass configuration
and source size, either using approach 1 or 2. We now show in Figure 3.10 one of the 10° SDLCs
obtained for the same case analysed in previous figures (fsam = 0.1, Fppn = 0.1, 755, = —2.5 for

both images, and considering 75 = 0.605):
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Figure 3.9: Scheme of the weighed interpolation carried out at each source position (z, yx). Figure made

by the author.
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Figure 3.10: Best SDLC obtained for the scenario given by rs = 0.605 and considering fiqm = 0.1,
Fppn = 0.1, rppn = —2.5 in the first approach.

Furthermore it should be noted that the value of 10° is high enough to cover totally both

magnification maps, as we can see in Figure 3.11.
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Figure 3.11: 10° trajectories drawn in both magnification maps: the convolved and rotated map of image
A (on the left) and the convolved map of image B (on the right).

3.4 Comparison between ODLC and SDLCs

After creating 10° SDLCs for a given mass configuration and source size (in the first or second
approach), we have to compare them with the corresponding ODLC. The method followed in this
case is an statistical approach based on the Root Mean Square of Relative Residuals (RMS). This
method allows us to evaluate how well the synthetic data matches the observed. Considering
that the observed difference light curve consists of /N data points, denoted as O;, with their
corresponding errors F; for each point, we can denote the corresponding values for the synthetic
data as M;. Thus, the RMS for a given SDLC is determined as

1 & (0, — M\
RMS = |+ ;( - ) (3.5)
A value of Equation (3.5) close to 1 indicates a good fit between the observed and synthetic
data. This suggests that the synthetic light curve is consistent with the observed data within
the given uncertainties. On the contrary, a value significantly greater than 1 indicates that the
synthetic light curve does not fit the observed data well, i.e, the higher the RMS, the poorer
the fit. Moreover, note that a value substantially less than 1 indicates that the errors E; are
significantly overestimated, because the synthetic model fits the observed data much better than

expected within the given uncertainties.

Therefore, as we have 10° different SDLCs, hence 10° RMS values, it is convenient to
study the probability distribution for a given scenario (mass configuration and source size in one
of the two approaches). This has been done by determining the mean and standard deviation
as well as constructing the corresponding histogram in order to show how often each RMS value
occurs. The ODLC-SDLC consistency threshold is set to 1.5. Thus, if the RMS distribution

includes values in the range (0.5,1.5), the SDLC is considered consistent with the observed data.
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In contrast, if the RMS distribution does not include values close to 1, the scenario can be

considered inconsistent with the observed data.

Although a value of 1 for RMS is ideal as it indicates a perfect fit between the synthetic
model and the observed data within the given uncertainties, it is often not very realistic in
practice. This is because observed data often come with slightly biased (underestimated or
overestimated) errors that makes this perfect agreement difficult, hence expecting an RMS of

exactly 1 is overly stringent.

Thus, we have considered an interval (0.5, 1.5) to account for a slight
underestimation /overestimation of errors, the presence of a few outliers and so on. For
example, RMS = 1.5 means measured uncertainties only represent 2/3 of real errors, which
is a plausible case. However, RMS equal to 2 implies that true errors are, on average,
twice as large as the measured ones, and this is inconsistent with additional tests/studies
of the GLENDAMA+ data of FBQ 0951+2635. Thus, while an ODLC-SDLC consistency
threshold of 2 is too permissive (accepting models that don’t fit well), a threshold of 1.5 strikes

a more reasonable balance by accommodating some level of discrepancy without being too lenient.

Additionally, an important decision in the analysis was the choice of the number n of
SDLCs simulated per mass configuration. We have selected a value depending on the stability
of the RMS distribution parameters. For instance, for a given mass configuration, we got
the following results for the mean p for six experiments with n = 20000 simulations each:
{18.8993, 18.9861, 18.9774, 18.9653, 19.0431, 18.9977}. When increasing the value of n to
n = 100000, we obtained {18.8861,18.8774,18.8653,18.873618,18.869118,18.8993}. This was
quite satisfactory as the maximum discrepancy was 0.17%. Moreover, when we increased the
number of simulations to n = 500000, discrepancies were not reduced significantly and, as
computational cost and time were in this case considerably high, we decided to work with
n = 100000 SDLCs per configuration.
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Chapter 4

Simulations and Results

To achieve our goal, two different approaches were used for generating magnification maps (see
Section 2.6). For each approach, a total of 81 maps were created, comprising 9 mass distributions,
3 PBH masses, and 3 source sizes. The source sizes include the two values obtained [38] (rs = 0.605
and 0.276) along with a third value (ry = 0.1) added for comparison purposes, as it is expected to
produce larger short time-scale fluctuations. Additionally, for each of these two approaches, two
different schemes were used in the analysis of the corresponding simulations, as we will discuss

later.

4.1 First approach

The lens mass model we have considered consists of a main lens galaxy described by an ellipsoid
with a singular power-law density distribution (SPLE) and external shear from secondary lenses
(ES). We have firstly generated the ODLC with the most accurate delay up to date, although
it is based on old data (16 days), and compared it with SDLCs for a solution of the lens model
that is based on the 16-day delay, astrophotometric constrains from HST imaging and image
fluxes from radio observations, as well as spectroscopic redshifts of the system and a standard
flat ACDM cosmology.

In a first scheme, we have assumed that simulations can reproduce the entire signal of the
ODLC. Therefore, we have used the Root Mean Square (RMS) estimator to perform the analysis
and comparison between the ODLC and the SDLC, whose consistency upper limit is set to 1.5.

We carried out 10° simulations for each scenario, and we have not found any scenario
yielding SDLCs with RMS < 1.5. Therefore, the consistency probability (CP; ratio between the
number of SDLCs leading to RMS < 1.5 and total number of SDLCs studied) is zero for the 81
scenarios considered in the analysis, which actually cover a wide range of mass configurations and
source sizes. Thus, the results seem to be very poor, since about ten million (81 x 10°) SDLCs
failed to reproduce the overall behaviour of the Observed Difference Light Curve (ODLC).

As an example, we show some results obtained for a source radius ry, = 0.605 and a mass
configuration given by fsam = 0.9, Fppn = 0.5, rppn = —0.5: the best SDLC for that scenario
(RMS = 1.65; Figure 4.1) and the corresponding distribution of RMS (Figures 4.2, 4.3).

27



Capitulo 4. Simulations and Results 4.1 First approach

ODLC and Best SDLC
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Figure 4.1: Best SDLC for the scenario studied together with the ODLC data

Histogram of RMS Histogram of RMS (Zoom in [0, 2.5])
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Figure 4.2: Magnification map for image A Figure 4.3: Magnification map for image B in the
in the first approach first approach

As far as for the other scheme is concerned, it is based on recent evidence which suggests that
rapid variability in ODLCs of lensed quasars may be correlated with intrinsic rapid variability
[41], so standard microlensing simulations cannot account for this kind of rapid variations in
ODLCs because they ignore the intrinsic quasar variability. As a consequence, our SDLCs could

only explain the slow variability observed, i.e., linear or quasi-linear gradients.

This might explain the poor results obtained in the first scheme where the SDLCs were
assumed to account for the whole behaviour of the ODLC. However, in this new scheme, we
consider that simulations can only reproduce the long time-scale variability of the ODLC, and

this long time-scale underlying variation in which we are interested (e.g. linear or quadratic law)
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is affected by uncertainties related to the fast variability and the photometric measurements. In

other words, original photometric errors must be increased by a factor RMS (linear/quadratic fit)

to account for the fast variability.

Alternatively, it is more convenient in this case to consider a larger ODLC-SDLC consistency
threshold using original photometric errors. We have carried out a linear and a quadratic fit,
calculating the corresponding RMS for both fits. We show both fits together in Figure 4.4:

Comparison of Polynomial Fits

—— Linear Fit (1st Degree)
—-0.15 1 -—- Quadratic Fit (2nd Degree)
¢ ODLC Data
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f i s

0.10 + ’ |

0.15
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M)D (days)

Figure 4.4: Linear and quadratic fits of the ODLC

After this, the consistency threshold for the SDLCs can be set to 1.5xRMS (linear/quadratic fit)
using the original errors in the ODLC-SDLC comparisons. For the linear case, we have from Figure
4.4, RMS (linear fit) = 1.733117, whereas for the quadratic one, RMS(quadratic fit) = 1.702761,
and since both fits work similarly, with a 1.8% of discrepancy in the RMS value, they have similar
goodness, hence we take the linear fit as the slow underlying signal to compare with SDLCs. Thus,

the results obtained for the first source size with the second scheme is shown in Table 4.1.
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4.1 First approach

CcP (%) 1% g Conf fsdm fstar fpbh Mpbh
15.09 7.9449 6.8907 | 050925 | 0.5 | 0.05 | 0.45 | 0.001
13.34 7.6703 6.7548 | 090525 | 0.9 | 0.05 | 0.05 | 0.001
12.87 6.1654 5.3444 | 090915 | 0.9 | 0.01 | 0.09 10
11.60 6.0298 | 5.1588 | 090925 | 0.9 | 0.01 | 0.09 | 0.001
11.34 8.0936 7.3271 | 090515 | 0.9 | 0.05 | 0.05 10
11.32 10.1358 | 8.84843 | 090105 | 0.9 | 0.09 | 0.01 | 0.1
11.91 10.6379 | 9.5880 | 050915 | 0.5 | 0.05 | 0.45 10
10.99 9.9448 8.4519 | 090115 | 0.9 | 0.09 | 0.01 10
10.69 9.8315 | 8.0147 | 090505 | 0.9 | 0.05|0.05| 0.1
10.57 9.9532 | 8.4418 | 090125 | 0.9 | 0.09 | 0.01 | 0.001
10.20 10.1172 | 8.1792 | 010925 | 0.1 | 0.09 | 0.81 | 0.001
8.66 13.9240 | 12.1765 | 010915 | 0.1 | 0.09 | 0.81 10
8.52 10.5908 | 8.12791 | 090905 | 0.9 | 0.01 | 0.09 | 0.1
6.21 13.8585 | 10.812 | 050525 | 0.5 | 0.25 | 0.25 | 0.001
6.21 14.7543 | 11.8658 | 050515 | 0.5 | 0.25 | 0.25 10
4.67 16.7847 | 13.2114 | 010515 | 0.1 | 0.45 | 0.45 10
4.20 16.9342 | 13.0164 | 050115 | 0.5 | 0.45 | 0.05 10
3.95 16.3179 | 12.1677 | 010525 | 0.1 | 0.45 | 0.45 | 0.001
3.74 17.2535 | 13.2474 | 050105 | 0.5 | 0.45 [ 0.05 | 0.1
3.63 17.7841 | 13.5116 | 050125 | 0.5 | 0.45 | 0.05 | 0.001
2.98 18.9794 | 14.4261 | 010115 | 0.1 | 0.81 | 0.09 10
2.69 18.8736 | 13.8946 | 010125 | 0.1 | 0.81 | 0.09 | 0.001
2.46 17.8323 | 12.8318 | 050505 | 0.5 | 0.25 | 0.25 | 0.1
2.35 20.3822 | 15.1015 | 010105 | 0.1 | 0.81 | 0.09 | 0.1
2.04 19.7391 | 14.1541 | 010505 | 0.1 | 0.45 | 0.45| 0.1
2.01 18.1618 | 12.8083 | 050905 | 0.5 | 0.05 | 0.45 | 0.1
1.72 20.29267 | 14.3280 | 010905 | 0.1 | 0.09 | 0.81 | 0.1

Table 4.1: Consistency probabilities for all the configurations and a source radius rs = 0.605 (first

approach).

As a consequence of disregarding variations on small time scales, we now find SDLCs in good
agreement with the slow variation of the ODLC (the threshold now is 2.59 instead of 1.5).

Moreover, the difference between configurations is notable since for instance 050925 presents a

consistency probability of 15%, whereas 010905 does not reach 2%.

For instance, if we look at the less massive PBHs (rp,n = —2.5), the average RMS is

clearly correlated with fy.,. An average RMS of approximately 6 corresponds to a mass fraction
in stars of 0.01 (1%), around 8 to 5%, about 10 to 9%, roughly 14 to 25%, etc. The situation

worsens as the number of stars increases, and it seems that the fraction of (less massive) PBHs

doesn’t play a significant role.
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Capitulo 4. Simulations and Results 4.1 First approach

As an example, we show in Figure 4.5 the best SDLC obtained for the scenario 050925 (RMS
= 1.63), which, as we can see, fits considerably well the slow underlying signal and the ODLC data.

ODLC, ODLC Linear Fit and Best SDLC

—— ODLC Linear Fit
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& ODLC Data
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©
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Figure 4.5: Best SDLC obtained for the best scenario 050925 ( fsqm = 0.5, fistar = 0.05 and rpp, = —2.5)
and and rs; = 0.605, together with the ODLC and the linear fit.

Furthermore, we show below the consistency probabilities for Table 4.1, in terms of M. They
are represented in each figure by points, where its size and colour (denoted by the colour bar)
indicate the value of CP for a given scenario. Therefore, in the following figures, we can appreciate

visually what we mentioned before regarding the dependence of the consistency probability with

the mass distribution.
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Figure 4.6: Consistency probabilities for Mppy, = 0.001M, and 7y = 0.605 (first approach).
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4.1 First approach

As far as for r, = 0.276 is concerned, we have obtained the following results:

cpP K g Conf | fsam | fstar fobn | Mpbh
12.28 | 5.8411 | 5.3978 | 090915 | 0.9 | 0.01 | 0.09 10
11.97 | 13.0029 | 14.3922 | 050915 | 0.5 | 0.05 | 0.45 10
10.59 | 9.1581 | 10.4328 | 090515 | 0.9 | 0.05 | 0.05 10
10.43 | 13.2518 | 13.5333 | 090105 | 0.9 | 0.09 | 0.01 0.1
9.76 | 13.4311 | 14.1017 | 090115 | 0.9 | 0.09 | 0.01 10
9.48 | 12.7297 | 13.1530 | 090125 | 0.9 | 0.09 | 0.01 | 0.001
8.90 | 14.1221 | 13.6695 | 090505 | 0.9 | 0.05 | 0.05 0.1
8.88 | 9.6128 | 9.7751 | 090525 | 0.9 | 0.05 | 0.05 | 0.001
8.24 | 18.4248 | 19.8877 | 010915 | 0.1 | 0.09 | 0.81 10
8.21 | 7.2666 | 5.7780 | 090925 | 0.9 | 0.01 | 0.09 | 0.001
6.22 | 16.4874 | 14.3647 | 090905 | 0.9 | 0.01 | 0.09 0.1
4.84 | 20.4588 | 18.1568 | 050515 | 0.5 | 0.25 | 0.25 10
3.53 | 24.2752 | 20.9082 | 010515 | 0.1 | 0.45 | 0.45 10
2.59 | 25.5019 | 20.9895 | 050115 | 0.5 | 0.45 | 0.05 10
2.06 | 26.1614 | 20.9364 | 050105 | 0.5 | 0.45 | 0.05 0.1
1.69 | 26.3315 | 21.1289 | 050125 | 0.5 | 0.45 | 0.05 | 0.001
1.47 | 29.3618 | 23.3507 | 010115 | 0.1 | 0.81 | 0.09 10
1.37 | 13.3708 | 9.8297 | 050925 | 0.5 | 0.05 | 0.45 | 0.001
1.34 | 20.8633 | 17.0689 | 050525 | 0.5 | 0.25 | 0.25 | 0.001
0.78 | 33.5562 | 25.1184 | 010105 | 0.1 | 0.81 | 0.09 0.1
0.69 | 31.2313 | 22.3376 | 050505 | 0.5 | 0.25 | 0.25 0.1
0.68 | 31.1520 | 23.1448 | 010125 | 0.1 | 0.81 | 0.09 | 0.001
0.67 | 25.4613 | 19.1734 | 010525 | 0.1 | 0.45 | 0.45 | 0.001
0.67 | 17.8395 | 12.9210 | 010925 | 0.1 | 0.09 | 0.81 | 0.001
0.38 | 34.5074 | 23.7598 | 050905 | 0.5 | 0.05 | 0.45 0.1
0.32 | 35.3162 | 24.4888 | 010505 | 0.1 | 0.45 | 0.45 0.1
0.17 | 38.8691 | 26.0438 | 010905 | 0.1 | 0.09 | 0.81 0.1

Table 4.2: Consistency probabilities for all configurations and a source radius s = 0.276 (first approach).

Compared to the largest source, in this case, both mean and standard deviation have generally

increased significantly. Nevertheless, the SDLCs that best fit each configuration did so with

RMS values lower than those for the largest source.

Furthermore, we can observe that some

configurations (e.g., 090915 and 050915) lead to a relatively large number of SDLCs below the
consistency threshold for both source sizes. In contrast to the previous source size, we now show
a bad SDLC for one of the worst scenarios (010505, see Table 4.2), that presented RMS = 2.55:
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SDLC with RMS_RR = 2.55
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Figure 4.9: Bad SDLC for one of the worst scenarios, 010505 (fsqm = 0.1, fstar = 0.45 and Tpbh = —0.5)
and r; = 0.276, together with the ODLC.

Comparing Figures 4.5 and 4.9, it is clear that the fit in the latter is significantly worse than in

the former, which shows a more accurate fit to the ODLC data.

The figures corresponding to 4.2, are shown below. In this case, we can see that the
points are in general much smaller that for the largest source where the colour that highlights
is purple (low consistency probabilities). In addition, it can be seen that the points presenting
colours close to yellow or being bigger (hence with highest CP values) correspond to scenarios

with a majority contribution of SDM
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Figure 4.10: Consistency probabilities for Mppy = 0.001M and ry = 0.276 (first approach).
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Figure 4.11: Consistency probabilities for Mypy = 0.1M and ry = 0.276 (first approach).
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Figure 4.12: Consistency probabilities for Mpp, = 10M and r, = 0.276 (first approach).
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CcP (%) 1% g Conf fsdm fstar fpbh Mpbh
12.94 15.7014 | 20.8100 | 050915 | 0.5 | 0.05 | 0.45 10
12.41 5.6860 | 6.2489 | 090915 | 0.9 | 0.01 | 0.09 10
11.13 15.6052 | 19.2349 | 090105 | 0.9 | 0.09 | 0.01 | 0.1
10.88 9.6864 | 13.5005 | 090515 | 0.9 | 0.05 | 0.05 10
10.44 16.0237 | 20.3494 | 090115 | 0.9 | 0.09 | 0.01 10
9.15 16.9575 | 19.3625 | 090505 | 0.9 | 0.05 | 0.05 | 0.1
8.99 22.7024 | 28.5909 | 010915 | 0.1 | 0.09 | 0.81 10
6.35 20.7338 | 20.9888 | 090905 | 0.9 | 0.01 | 0.09 | 0.1
5.21 25.4941 | 25.2011 | 050515 | 0.5 | 0.25 | 0.25 10
3.72 16.0259 | 18.0289 | 090125 | 0.9 | 0.09 | 0.01 | 0.001
3.59 32.0099 | 29.7191 | 010515 | 0.1 | 0.45 | 0.45 10
2.85 33.2533 | 29.4409 | 050115 | 0.5 | 0.45 | 0.05 10
2.07 34.6423 | 29.1510 | 050105 | 0.5 | 0.45 | 0.05| 0.1
1.50 39.5888 | 32.6845 | 010115 | 0.1 | 0.81 | 0.09 10
0.70 46.1501 | 34.5815 | 010105 | 0.1 [ 0.81 | 0.09 | 0.1
0.56 43.2696 | 30.9945 | 050505 | 0.5 | 0.25 | 0.25| 0.1
0.29 48.0860 | 32.8210 | 050905 | 0.5 | 0.05 | 0.45 | 0.1
0.20 51.7634 | 33.9135 | 010505 | 0.1 | 0.45 | 0.45 | 0.1
0.18 35.8186 | 28.1831 | 050125 | 0.5 | 0.45 | 0.05 | 0.001
0.11 16.6780 | 12.8954 | 090525 | 0.9 | 0.05 | 0.05 | 0.001
0.06 57.4081 | 35.7475 | 010905 | 0.1 | 0.09 | 0.81 | 0.1
0.03 449754 | 32.0714 | 010125 | 0.1 | 0.81 | 0.09 | 0.001
0.01 17.1944 | 8.1345 | 090925 | 0.9 | 0.01 | 0.09 | 0.001

0 42.3300 | 24.7907 | 010525 | 0.1 | 0.45 | 0.45 | 0.001

0 35.4664 | 22.2581 | 050525 | 0.5 | 0.25 | 0.25 | 0.001

0 42.4706 | 19.5058 | 010925 | 0.1 | 0.09 | 0.81 | 0.001

0 34.1842 | 14.9270 | 050925 | 0.5 | 0.05 | 0.45 | 0.001

Table 4.3: Consistency probabilities for all the configurations and a source radius rs = 0.1 (first approach).

We observe once again, as we did with the previous cases, that in order to achieve a significant
CP value, an important contribution of SDM is required (around 90%), except for the case where
there is a 45% and 81% contribution from PBH, for which we have obtained notable consistency
probabilities. Nevertheless, note that no case with a significant contribution from stars presents
a relevant consistency probability. Additionally, it is worth noting that as we decrease the source
size, the CP values tend to decrease as well (note that those with the highest values, are the
ones which roughly remain the same) and that M, = 100, shows the highest probabilities of

consistency.

In the corresponding figures of Table 4.3 (Figures 4.13, 4.14, 4.15), we can see that for
this source size the consistency probabilities have decreased considerably (as most of the points
are not even visible in Figures 4.13 and 4.14). In addition, as we anticipated previously, it is only

in Figure 4.15 (Mppn = 10M) when we have significant values for the consistency probabilities.
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Figure 4.13: Consistency probabilities for Mppy = 0.001M and rs = 0.1 (first approach).
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Figure 4.15: Consistency probabilities for Mppn = 10Mg and 7, = 0.1 (first approach).

37



Capitulo 4. Simulations and Results 4.2 Second approach

4.2 Second approach

In this second approach, we have generated the ODLC using the delay that is most consistent
with all available data to date (13.3 days), in order to compare it with the SDLCs for the
solution of a lensing model based on a 13.3-day delay an other observational constraints, where
the SDM fraction incorporates both the contribution from the lensing galaxy itself (Ksdmgal), and
the additional contribution from matter halos situated close to the galaxy and along the line
of sight, which act as secondary deflectors (key;), see Section 3.2. Considering now the initial
scheme as we did in the first approach, we got that the consistency probability is zero for every
configuration and even for a threshold of 1.7 only a few of them are non-zero, hence reinforcing
the idea that the SDLCs cannot fully reproduce the ODLC. Since the results obtained in first
scheme are redundant when compared to those obtained in the first approach, we do not revisit

the analysis.

Therefore, we have considered the linear fit as the slow underlying signal to compare with
the SDLCs, hence in this case the threshold has been increased from 1.5 to 2.74. We show below

the results obtained regarding the second scheme for the first source size.

From Table 4.4, 050925 (fsamgal = 0.5, Fppn = 0.9, and ry,, = —2.5) presents the highest
consistency probability (CP= 15.25%), as took place in the first approach for this source size.

In contrast, the worst scenario is 010905 (CP= 2%) corresponding to little contribution of SDM
(10%) and dominant contribution of PBHs (81%).

Furthermore, if we focus again on the less massive PBHs (r,,n = —2.5), the average RMS
is once more correlated with fg ... An average RMS of approximately 6 corresponds to a mass
fraction in stars of 0.01 (1%), around 8 to 5%, about 10 to 9%, roughly 14 to 25% and reaching
18 for 45%. Comparing the results of the two approaches for this source size, we can see that
there is one scenario extra in this second approach (090505) that presents a significant value
for the consistency probability (CP (%) > 10), i.e, except from this scenario, we have a clear

correspondence between both approaches as far as for high values for CP is concerned.

38



Capitulo 4. Simulations and Results 4.2 Second approach

CP (%) I o Conf fsdmgal fstargal fpbhgal 1\/Ipbh
15.25 8.2207 | 6.8802 | 050925 0.5 0.05 0.45 | 0.001
13.64 8.5075 | 7.4690 | 090525 0.9 0.05 0.05 | 0.001
13.36 10.6389 | 9.5674 | 050915 0.5 0.05 0.45 10
13.36 8.3123 | 8.1469 | 090915 0.9 0.01 0.09 10
13.33 9.3921 | 8.3226 | 090515 0.9 0.05 0.05 10
12.72 9.0745 | 7.8130 | 090115 0.9 0.09 0.01 10
12.62 6.0559 | 5.1064 | 090925 0.9 0.01 0.09 | 0.001
12.05 9.8690 | 8.2981 | 090125 0.9 0.09 0.01 | 0.001
11.78 9.6791 | 7.9398 | 010925 0.1 0.09 0.81 | 0.001
10.64 10.7311 | 8.8432 | 090105 0.9 0.09 0.01 0.1
9.44 13.4570 | 11.6357 | 010915 0.1 0.09 0.81 10
9.26 10.7358 | 8.3134 | 090505 0.9 0.05 0.05 0.1
8.52 10.8685 | 8.2227 | 090905 0.9 0.01 0.09 0.1
7.16 14.8164 | 12.1182 | 050515 0.5 0.25 0.25 10
7.09 13.8389 | 11.0235 | 050525 0.5 0.25 0.25 | 0.001
4.65 17.3328 | 13.6062 | 010515 0.1 0.45 0.45 10
3.97 17.5767 | 13.3403 | 050115 0.5 0.45 0.05 10
3.53 17.7718 | 13.1442 | 010525 0.1 0.45 0.45 | 0.001
3.30 17.7905 | 13.1085 | 050105 0.5 0.45 0.05 0.1
3.27 18.0630 | 13.3025 | 050125 0.5 0.45 0.05 | 0.001
2.87 17.8611 | 12.7613 | 050505 0.5 0.25 0.25 0.1
2.55 20.9620 | 15.6200 | 010115 0.1 0.81 0.09 10
2.52 20.3683 | 15.1645 | 010125 0.1 0.81 0.09 | 0.001
2.39 17.9556 | 12.5685 | 050905 0.5 0.05 0.45 0.1
2.36 20.2514 | 14.6692 | 010105 0.1 0.81 0.09 0.1
2.20 20.4076 | 14.8376 | 010505 0.1 0.45 0.45 0.1
2.00 20.6557 | 14.7333 | 010905 0.1 0.09 0.81 0.1

Table 4.4: Consistency probabilities for all the combinations analysed in the second approach for the size
rs = 0.605.

Additionally, comparing the following figures with those from the first approach (Figures 4.6, 4.7

and 4.8), we can see they are quite similar.
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Figure 4.16: Consistency probabilities for Mypn = 0.001M¢, and r, = 0.605 (second approach).
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Figure 4.17: Consistency probabilities for Mppn = 0.1M and 74 = 0.605 (second approach).
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Figure 4.18: Consistency probabilities for Mppn = 10Mg and 7, = 0.605 (second approach).
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Considering now the second source size:

CP (%) H o Conf | fsamgal | fstargal | fpbhgal | Mpbh
13.42 12.7500 | 14.2782 | 050915 0.5 0.05 0.45 10
13.34 9.0553 | 12.0530 | 090915 0.9 0.01 0.09 10
12.88 11.4433 | 13.0124 | 090515 0.9 0.05 0.05 10
11.17 12.0744 | 12.5202 | 090115 0.9 0.09 0.01 10
10.72 12.9071 | 13.3651 | 090125 0.9 0.09 0.01 0.001
9.68 7.3544 | 5.9056 | 090925 0.9 0.01 0.09 0.001
9.52 11.2378 | 11.7065 | 090525 0.9 0.05 0.05 0.001
9.17 17.7124 | 18.6583 | 010915 0.1 0.09 0.81 10
9.15 14.8579 | 14.4778 | 090105 0.9 0.09 0.01 0.1
7.07 16.5960 | 14.8761 | 090505 0.9 0.05 0.05 0.1
6.22 20.1196 | 18.9120 | 050515 0.5 0.25 0.25 10
5.39 18.0061 | 15.0634 | 090905 0.9 0.01 0.09 0.1
3.19 26.1924 | 22.4627 | 010515 0.1 0.45 0.45 10
2.14 26.8277 | 21.2932 | 050115 0.5 0.45 0.05 10
1.70 27.9915 | 21.7661 | 050105 0.5 0.45 0.05 0.1
1.64 20.8974 | 17.4120 | 050525 0.5 0.25 0.25 0.001
1.56 13.8653 | 10.2419 | 050925 0.5 0.05 0.45 0.001
1.46 27.7928 | 21.5766 | 050125 0.5 0.45 0.05 0.001
0.95 32.6786 | 25.0285 | 010115 0.1 0.81 0.09 10
0.78 17.4083 | 12.6283 | 010925 0.1 0.09 0.81 0.001
0.75 33.3374 | 24.8743 | 010125 0.1 0.81 0.09 0.001
0.66 28.0134 | 20.9408 | 010525 0.1 0.45 0.45 0.001
0.64 32.7695 | 23.8587 | 010105 0.1 0.81 0.09 0.1
0.61 32.5485 | 22.9828 | 050505 0.5 0.25 0.25 0.1
0.26 37.8529 | 26.1102 | 010505 0.1 0.45 0.45 0.1
0.26 36.0418 | 24.1950 | 050905 0.5 0.05 0.45 0.1
0.14 40.4576 | 26.7451 | 010905 0.1 0.09 0.81 0.1

Table 4.5: Consistency probabilities for all the combinations analysed in the second approach for the size
rs = 0.276.

As one might infer from Table 4.5, the results are once more correlated with those in the first
approach since only one scenario in the second approach with CP> 10 does not in the first one
(090105), although these values are slightly higher in this second approach. Moreover, in this case,
the influence of the PBH masses is noticeable, as the four best scenarios present My, = 10Me,

whereas the five worst present M, = 0.1Mg. This is reproduced in the following figures:
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Figure 4.19: Consistency probabilities for Mypn = 0.001M, and r, = 0.276 (second approach).
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We show eventually the results for the smallest source in Table 4.6, which are quite similar as

those in the first approach, following the general trend.

CP (%) I g Conf | fsamgal | fstargal | fpbhgal | Mpbh
14.63 14.6099 | 19.8237 | 050915 0.5 0.05 0.45 10
14.04 9.6801 | 16.3822 | 090915 0.9 0.01 0.09 10
13.88 12.7988 | 17.9370 | 090515 0.9 0.05 0.05 10
11.84 14.3969 | 18.2492 | 090115 0.9 0.09 0.01 10
9.86 21.7985 | 26.2997 | 010915 0.1 0.09 0.81 10
9.51 17.8804 | 20.5609 | 090105 0.9 0.09 0.01 0.1
7.19 20.3742 | 21.1797 | 090505 0.9 0.05 0.05 0.1
6.77 24.7930 | 26.2713 | 050515 0.5 0.25 0.25 10
5.33 23.1277 | 22.1791 | 090905 0.9 0.01 0.09 0.1
3.92 16.3073 | 18.3693 | 090125 0.9 0.09 0.01 0.001
3.26 34.6482 | 31.9371 | 010515 0.1 0.45 0.45 10
2.17 35.4320 | 29.3481 | 050115 0.5 0.45 0.05 10
1.56 36.2141 | 29.8413 | 050105 0.5 0.45 0.05 0.1
1.03 44.7637 | 34.7826 | 010115 0.1 0.81 0.09 10
0.60 46.5437 | 33.1998 | 010105 0.1 0.81 0.09 0.1
0.55 45.3393 | 32.0065 | 050505 0.5 0.25 0.25 0.1
0.19 52.1561 | 33.7830 | 050905 0.5 0.05 0.45 0.1
0.15 55.6943 | 35.8544 | 010505 0.1 0.45 0.45 0.1
0.11 37.4724 | 28.8557 | 050125 0.5 0.45 0.05 0.001
0.06 18.3219 | 15.6957 | 090525 0.9 0.05 0.05 0.001
0.04 47.8108 | 34.4214 | 010125 0.1 0.81 0.09 0.001
0.04 60.4993 | 36.4507 | 010905 0.1 0.09 0.81 0.1

0 17.1775 | 8.2810 | 090925 0.9 0.01 0.09 0.001

44 5187 | 26.9417 | 010525 0.1 0.45 0.45 0.001

35.3541 | 22.6108 | 050525 0.5 0.25 0.25 0.001

41.4340 | 18.5459 | 010925 0.1 0.09 0.81 0.001

34.2592 | 15.2915 | 050925 0.5 0.05 0.45 0.001

OO OO

Table 4.6: Consistency probabilities for all the combinations analysed in the second approach for the size
rs = 0.1.

Analogously as in the first approach, both mean and standard deviation are the highest
among the three source sizes considered. Furthermore, My, = 10M is required in this case to
present a significant consistency probability since every scenario with CP> 10 exhibit this value
for the PBHs mass.

The corresponding figures are shown below, where the point that highlights in Figure 4.24

presents an important contribution of SDM (50%) and PBHs (45%) in the lensing galaxy (which

is the scenario 050915 we have already mentioned before).
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Figure 4.22: Consistency probabilities for Mppn = 0.001M and rg = 0.1 (second approach).
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Figure 4.23: Consistency probabilities for Mppn = 0.1M and 75 = 0.1 (second approach).
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Figure 4.24: Consistency probabilities for Mppn = 10Mg and rs = 0.1 (second approach).
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Chapter 5

Conclusions

Through our study, we have shown that gravitational lensing is a crucial tool in astrophysics,
offering a unique way to explore and understand the universe. In particular, using two different
approaches, we have tried to give light and obtain constraints on possible PBH populations in
the non-local early-type galaxy acting as a gravitational lens of the doubly imaged gravitationally
lensed quasar FBQ 0951+42635.

We have obtained quite similar results in both approaches, so considering a refined time
delay between quasar images and an observationally-based external convergence does not

significantly alter the results from an early delay and the hypothesis ke = 0.

The most critical role is played by the scheme we used to analyse our microlensing simulations,
i.e., the criterion to compare synthetic (simulated) difference light curves with the observed one.
Despite analyzing 81 scenarios covering a wide range of mass distributions in the lens galaxy,
PBH masses, and source sizes, none of them are consistent with the observed extrinsic variability
on all time scales. Hence, if simulations are forced to reproduce all observed variations, we can
reject all tested PBH populations. The situation is very different if simulations should only
reproduce the underlying long time-scale variation. This second scheme is consistent with recent
results for another double quasar [41] and preliminary tests for FBQ 095142635, and leads to

encouraging conclusions.

In both approaches, it is clear that the condition for an ODLC-SDLC consistency probability
above 10% is a small contribution from stars (fyar < 10%) and a significant/dominant
contribution from smoothly distributed matter (fum = 50/90%). The only exception is a scenario
with fsam = 10%, fstar = 9%, fobh = 81%, and Myp, = 0.001 solar masses for the largest source.
Notably, the scenario with fom = 50%, foar = 5%, fopn = 45%, and Mpp, = 10 solar masses
exhibits a relatively high CP for all three source sizes. Also noteworthy is the relatively high
consistency probability for fum = 50%, fstar = 5%, fobh = 45%, My = 0.001 solar masses, and
the largest source. Furthermore, in general terms, the consistency probability decrease when the

source size is decreased.
Using our second comparison scheme, the main conclusion is that several scenarios including a

significant (and even dominant) population of primordial black holes of 0.001 or 10 solar masses

cannot be completely ruled out because they have a probability exceeding 10%.
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Esteban-Gutiérrez et al. [23] also compared optical fluxes for nine quadruply imaged quasars
(single-epoch fluxes, not light curves) and microlensing simulations for typical values of the
quasar redshift (zqso = 2), lens redshift (zg, = 0.5), and convergence and shear (k = v = 0.45).
They considered a standard population of stars in the lens galaxy, and ruled out a dominant
population of PBHs with My, = 30 solar masses (a typical mass for black holes detected
through GW experiments).  Additionally, [42] analysed light curves of six lensed quasars
spanning ~ 10 years. They explored if observed microlensing signals were consistent with
reasonable populations of stars or whether additional microlenses (e.g., PBHs) are required.
They concluded that a standard scenario without non-stellar microlenses cannot be rejected,
in contrast with a previous study by Hawkins [43], who claimed that a population of PBHs

with stellar mass is required to account for the microlensing signal in light curves of lensed quasars.

Given the results obtained in this work, it is crucial to go further and carry out more detailed
studies. One idea could be improving of the resolution of the parameter grid (fsar, Fobhs Mpbh, 's)
as a finer resolution in these parameters will allow for a more accurate exploration of their
respective influences and interdependencies, potentially leading to new insights into their roles in
galaxies. It could be also interesting to consider a distribution of My, covering a wider range
of values which could help us in improving our understanding of how different PBH mass might
affect the results. Another important direction for future research might be analyzing light curves
with a significantly greater temporal coverage, e.g ~ 25 — 30 years, hence a more robust dataset,
as well as expanding the study to include a larger number of lensing systems (quasars undergoing

lensing and microlensing effects), which could result in obtaining new and strong constraints.
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Chapter A

Appendix: Python programs

A.1 Convolution and Rotation of Magnification Maps

import numpy as np
import matplotlib.pyplot as plt
from astropy.convolution import convolve_fft, Gaussian2DKernel

from scipy import ndimage

# Input filename from the user

filename = input ("Enter the name of the .bin file (without extension):

input_file = filename + '.bin'

# Reading and showing the original map

data = np.fromfile(input_file, '<f4')

N = int(np.sqrt(len(data))) # determine image size NxN
print (N)

image = data.reshape ((N, N))

# tune appropriate vmin, vmax

I plt.imshow (image, vmin=image.mean()*0.25, vmax=image.mean () *4)

plt.title('Original Map')
.png')

plt.savefig(filename + '

plt.show ()

## Convolution with a 2D Gaussian
# rE 200 pix
0.605: Rs = 200*xrs = 121 pix #First source size

# rs

#gauss = Gaussian2DKernel (121)

Convolution with a 2D Gaussian
rE = 200 pix

rs = 0.276: Rs = 200xrs = 55.2 pix #Second source size

Convolution with a 2D Gaussian
rE 200 pix

rs = 0.1: Rs = 200*xrs = 20 pix #Third source size

gauss = Gaussian2DKernel (121)
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39| ## Carry out the convolution and save the results
| cimage = convolve_fft(image, gauss, allow_huge=True) #Convolution
'

2| conv_filename = filename + '_c.npy'

13|np.save(conv_filename, cimage)

15| plt.imshow (cimage, vmin=image.mean()*0.3, vmax=image.mean () *3)
6| # tune appropriate vmin, vmax

17| plt.colorbar ()

s/ plt.title('Convolved Map')

_c.png')

1| plt.savefig(filename + '

50| plt . show ()
s2| ##Loading the file to check it is correct

54/b = np.load(conv_filename)
55/ plt . imshow (b, vmin=image.mean()*0.3, vmax=image.mean () *3)

56| plt . show ()

58| # Counterclockwise rotation of 13.63 deg and save the results
50| crimage = ndimage.rotate(cimage, 13.63, reshape=True) #Rotation
60

silrot_filename = filename + '

_r.npy'
¢2|np.save(rot_filename, crimage)

63
64| plt .imshow (crimage, vmin=image.mean()*0.3, vmax=image.mean () *3)
65| plt.colorbar ()

66| plt.title('Rotated Map')

67| plt.savefig(filename + ' _r.png')

6s| plt.show ()
7o| ##Loading the file to check it is correct
72lc = np.load(rot_filename)

73 plt.imshow (c, vmin=image.mean () *0.3, vmax=image.mean () *3)

74| plt . show ()
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A.2 Main Program: SDLCs construction and analysis

import os

import numpy as np
import sys

import math

import matplotlib.pyplot as plt

| from scipy.optimize import curve_fit

from scipy.stats import norm

import time

# Record the start time

start_time = time.time ()
filenameA = sys.argv[1]
filenameB = sys.argv[2]
crmap = np.load(filenamel)

crmapB = np.load(filenameB)

s| # Extract the relevant part of the first file name (removing "_A_r")

base_nameA = filenameA.split('_')[0][:-1]

pi = np.pi
rows, cols

crmap.shape

scale = cols

file_path = 'q0951DLC.dat' # File containing the ODLC data
data = np.loadtxt(file_path)

coll = datal:, 0]

0j = datal:, 1]

Ej = datal:, 2]

tk = coll - col1l[0]

N = len(tk)

R_tk = 0.041 * tk

# Define the linear function for the linear fit

s|def linear_model(tk, m, b):

return m * tk + b

# Perform the linear fit

popt, pcov = curve_fit(linear_model, tk, 0j, sigma=Ej)

# Extract the fitted parameters
m, b = popt

# Generate the fitted values

0j_fit = linear_model(tk, m, b)

RMS_RR_1lin = np.sqrt(onp.sum(((0j - 0j_£fit) / Ej) =**x 2) / N)
knorm = RMS_RR_1lin
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sl threshold = 1.5 * knorm

print (£"The threshold is {threshold}.")

# Plot the original data and the linear fit
plt.figure(figsize=(10, 6))

plt.errorbar (tk, 0j, yerr=Ej, fmt='o', label='Observed Data')
plt.plot(tk, 0j_fit, label='Linear Fit', color='red"')
plt.xlabel ('tk')

plt.ylabel ('0j")

plt.legend ()

plt.gca() .invert_yaxis () # Invert Y-axis

fit_path = os.path.join(output_dir, 'linear_fit.png')
plt.savefig(fit_path) # Save the figure before displaying it
plt.show ()

plt.close ()

valid_results = []

5| Mk_components_A = [[] for _ in range(len(R_tk))]

7lrowsB, colsB = crmapB.shape

scaleB = colsB

(]
[[] for _ in range(len(R_tk))]

valid_results_B

Mk _components_B

# Define the number of simulations

Nsim = 100000

RMS_RR_values = []

# List to store valid SDLC data
valid_SDLCdata_SDLCS = []
valid_SDLCdata_SDLCS_strict = []
min_RMS_RR = float('inf')
best_SDLC = None

Nsimv = O

for sim in range(Nsim):

while True:

#We first create the trajectories

x0 = np.random.uniform(0, scale)

yO0 = np.random.uniform(0, scale)

phi = np.random.uniform(0, 2 * np.pi)
xk = x0 + R_tk * np.cos(phi)

yk = yO + R_tk * np.sin(phi)

x0_B = np.random.uniform(0, scaleB)
yO_B = np.random.uniform(0, scaleB)

54
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xk_B
yk_B

x0_B + R_tk * np.cos(phi)
yO_B + R_tk * np.sin(phi)

if np.any(xk < 0) or np.any(xk >= scale) or \

np.any(yk < 0) or np.any(yk >= scale):
continue

if np.any(xk_B < 0) or np.any(xk_B >= scaleB)\

or np.any(yk_B < 0) or np.any(yk_B >= scaleB):

continue

Mk = np.zeros(len(xk))
Mk_B = np.zeros(len(xk_B))

#We carry out the weighed interpolation
for idx in range(len(xk)):

xk[idx]

yk[idx]

math.floor (x_current)

X_current

y_current

floor_x

floor_y math.floor (y_current)

if floor_x + 1 >= rows or floor_y + 1 >= c

continue

dlk = math.sqrt((x_current - floor_x) ** 2

+ (y_current - floor_y) **x 2)
d2k = math.sqrt((x_current - (floor_x + 1)
+ (y_current - floor_y) **x 2)

d3k = math.sqrt((x_current - floor_x) *x 2
(y_current - (floor_y + 1)) *x* 2)

d4k = math.sqrt((x_current - (floor_x + 1)
+ (y_current - (floor_y + 1)) ** 2)

Wil dilk

w2 = 1 - d2k

W3 = 1 - d3k

w4 = 1 - dék

M1 = crmap[floor_x, floor_y]

I
-
|

M2 = crmap[floor_x + 1, floor_yl
M3 = crmap[floor_x, floor_y + 1]
M4 = crmap[floor_x + 1, floor_y + 1]

ols:

\

) k% 2\

+\

) k% 2\

Mk[idx] = (M1 * W1 + M2 * W2 + M3 * W3 + M4 * W4) / (W1 + W2 \

+W3 + W4)

for idx in range(len(xk_B)):
xk_B[idx]
yk_B[idx]

math.floor (x_current)

X_current

y_current

floor_x

floor_y math.floor (y_current)

if floor_x + 1 >= rowsB or floor_y + 1 >=

25
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146 continue
147
148 d1k_B = math.sqrt((x_current - floor_x) ** 2 + \

149 (y_current - floor_y) ** 2)

150 d2k_B = math.sqrt ((x_current - (floor_x + 1)) **x 2\
151 + (y_current - floor_y) *x 2)

152 d3k_B = math.sqrt ((x_current - floor_x) ** 2 \

153 + (y_current - (floor_y + 1)) ** 2)

154 d4k_B = math.sqrt ((x_current - (floor_x + 1)) **x 2 \
155 + (y_current - (floor_y + 1)) ** 2)

156 Wi_B =1 - di1k_B

157 W2_B =1 - d2k_B

158 W3 B = 1 - d3k_B

159 W4 _ B = 1 - d4k_B

160 M1_B = crmapB[floor_x, floor_yl

161 M2_B = crmapB[floor_x + 1, floor_y]

162 M3_B = crmapB[floor_x, floor_y + 1]

163 M4_B = crmapB[floor_x + 1, floor_y + 1]

164 Mk_B[idx] = (M1_B * Wi_B + M2_B * W2_B + M3_B * W3_B + M4_B * W4_B)
165 / (W1_B + W2_B + W3_B + W4_B)

166
167 if not np.any(Mk == 0) and not np.any(Mk_B == 0):

168 break

170 # Check values before calculating SDLCdata
171 if np.any(Mk <= 0) or np.any(Mk_B <= 0):
172 print (f"Simulation {sim}: Invalid values found in Mk or Mk_B.")

173 continue

174

175 Nsimv += 1 # Increment the count of valid simulations
176

177 valid_results.append (Mk)

178 for idx in range(len(Mk)):

179 Mk_components_A[idx].append (Mk[idx])

180 valid_results_B.append (Mk_B)

181 for idx in range(len(Mk_B)):

182 Mk_components_B[idx].append (Mk_B[idx])

183

184 #We create the SDLC

185 SDLCdata = -2.5 * (np.log(Mk_B / Mk) - np.mean(np.log(Mk_B / Mk)))
86

187 # Calculate RMS_RR for each SDLC

188 RMS_RR = np.sqrt(np.mean(((0j - SDLCdata) / Ej) *xx*x 2))
189 RMS_RR_values.append (RMS_RR)

190
191 # Save SDLC information if RMS_RR < 1.7
192 if RMS_RR < threshold:

193 valid_SDLCdata_SDLCS.append (SDLCdata)
194 print (£"The RMS is: {RMS_RR}")
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print (f"The recalculated threshold is: {threshold}")
if RMS_RR < 2:
valid_SDLCdata_SDLCS_strict.append(SDLCdata)
if RMS_RR < min_ RMS RR:
min_RMS_RR = RMS_RR
best_SDLC = SDLCdata

#Show the results and figures for the 100000 SDLCs
print (f 'Number of valid simulations: {Nsimvl}')

print (f 'The minimum RMS value is: {min_RMS_RR}')
# Create a histogram of RMS_RR values with a bin width of 0.5

71bin_width = 0.5

bins = np.arange (0, max (RMS_RR_values) + 1, bin_width)

2000 hist, edges = np.histogram(RMS_RR_values, bins=bins)

bin_centers = 0.5 * (edges[:-1] + edges([1:])

# Normalize the histogram

hist_normalized = hist / Nsimv

5|plt.figure (figsize=(10, 6))

;| plt.bar(bin_centers, hist_normalized, width=bin_width, align='center'\

, alpha=0.7, color='b"')

215 plt.xlabel ('RMS_RR ')

plt.ylabel ('P(RMS_RR) ')
plt.title('Histogram of RMS_RR')
plt.axvline(x=1, color='r', linestyle='dashed', linewidth=2)

plt.axvline (x=threshold, color='r', linestyle='dashed', linewidth=2)

# Create a custom tick vector [0, 2, 5, 10, 15, 20, 30, 40, ...]

225 xticks_custom = [0, 2, 5] + list(range(10, int(max(bin_centers)) + 10, 10))

# Set the x-axis ticks using the custom vector

| plt.xticks (xticks_custom)

plt.show ()
plt.close ()

2|# Histogram with zoom in the range [0.5, 2]

bin_width = 0.2
zoom_bins = np.arange(0.5, threshold + 1 + bin_width, bin_width)
235 zoom_hist, zoom_edges = np.histogram(RMS_RR_values, bins=zoom_bins)
| zoom_bin_centers = 0.5 * (zoom_edges[:-1] + zoom_edges[1:])

3| # Normalize the zoomed histogram

zoom_hist_normalized = zoom_hist / Nsimv
plt.bar(zoom_bin_centers, zoom_hist_normalized, width=bin_width,\

align="'center', alpha=0.7, color='g')
plt.xlabel ('RMS_RR')
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plt.ylabel ('P(RMS_RR) ')
plt.title('Histogram of RMS_RR (Zoom in [0.5, 2])"')

| plt.axvline (x=1, color='r', linestyle='dashed', linewidth=2)

| plt.axvline (x=threshold, color='r', linestyle='dashed', linewidth=2)

# Set x-axis ticks to correspond to the range [0.5, 2]

plt.xticks (np.arange(l, 2.5, 0.2))

plt.savefig(zoom_histogram_path)

253 plt . show ()

260

261

262

263

264

265

266

plt.close ()

;| # Calculate the mean and standard deviation of RMS_RR

mean_RMS_RR = np.mean(RMS_RR_values)
std_RMS_RR = np.std(RMS_RR_values)

print (f 'Mean RMS_RR: {mean_RMS_RR}')

print (£ 'Standard deviation of RMS_RR: {std_RMS_RR}')

print (£ 'Number of valid simulations: {Nsimv}')

print (£ 'Number of SDLCs with RMS_RR < {threshold}: {len(valid_SDLCdata_SDLCS)1}'
print (f 'Number of SDLCs with RMS_RR < 2: {len(valid_SDLCdata_SDLCS_strict)}')

# Plot and save the complete graph

7|plt.figure(figsize=(10, 6))

plt.errorbar(tk, 0j, yerr=Ej, fmt='o', label='0ODLC Data')
plt.plot(tk, 0j_fit, label='O0ODLC Linear Fit', color='red')
if best_SDLC is not None:

plt.plot(tk, best_SDLC, label='Best SDLC', color='green')
plt.xlabel ('tk')
plt.ylabel('Values')
plt.legend ()

275 plt.title ('ODLC, ODLC Linear Fit and Best SDLC')

76| plt.gca () .invert_yaxis () # Invert Y-axis

sdlc_path = os.path.join(output_dir, 'CompleteGraph.png')

s|plt.savefig(sdlc_path)

plt.show ()
plt.close ()

# Plot and save the SDLC with the lowest RMS_RR along with the ODLC data
plt.figure(figsize=(10, 6))

2sa| plt . errorbar (tk, 0j, yerr=Ej, fmt='o', label='0ODLC Data')

288

289

290

291

292

5/1f best_SDLC is not None:

plt.plot(tk, best_SDLC, label='Best SDLC', color='green')

7| plt.xlabel ('tk")

plt.ylabel ('Values')

plt.legend ()

plt.title('0ODLC and Best SDLC')

plt.gca() .invert_yaxis() # Invert Y-axis

sdlc_path = os.path.join(output_dir, 'GraphWithODLC.png')
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203| plt.savefig(sdlc_path)
204 plt . show ()

205 plt.close ()

296
297| # Record the end time
20| end_time = time.time ()
299
300l # Calculate the elapsed time

301l elapsed_time = end_time - start_time
302

303 # Display the elapsed time

soa| print (f"Elapsed time: {elapsed_time} seconds")

29
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