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Highlights 13 

• This study focuses on rail pads fabricated in EPDM, TPE and EVA14 

• Pads’ stiffness was predicted through Machine Learning from the working conditions15 

• The importance of each in-service condition was ascertained16 

• The dependency of each working condition on the stiffness was estimated.17 

• An application capable of predicting rail pad stiffness was developed18 

Abstract 19 

Train operations generate high impact and fatigue loads that degrade the rail infrastructure and 20 

the vehicle components. Rail pads are installed between the rails and the sleepers in order to 21 

damp the transmission of vibrations and noise and to provide flexibility to the track. These 22 

components play a crucial role in maximizing the durability of the railway assets and minimizing 23 

maintenance costs. Rail pads can be fabricated with different polymeric materials that exhibit 24 

non-linear mechanical behaviours, which strongly depend on the service conditions. Therefore, 25 

it is extremely difficult to estimate their mechanical properties, in particular the dynamic 26 

stiffness. In this work, several machine learning methodologies (multilinear regression, K nearest 27 

neighbours, regression tree, random forest, gradient boosting, multi-layer perceptron and 28 

support vector machine) were used to determine the dynamic stiffness of rail pads depending 29 

on their in-service conditions (temperature, frequency, axle load and toe load). 720 30 

experimental tests, under different realistic operating conditions, were performed to produce a 31 

dataset that was then used for the training and testing of the machine learning methods. The 32 

optimal algorithm was gradient boosting for EPDM (R2 of 0.995 and mean absolute percentage 33 

error of 5.08% in the test dataset), TPE (0.994 and 2.32%) and EVA (0.968 and 4.91%) pads. This 34 

model was implemented in an application, available for the readers of this journal, developed 35 

on the Microsoft .Net platform that allows the dynamic stiffness of the pads study to be 36 

estimated as a function of the temperature, frequency, axle load and toe load.  37 

Keywords: Railway dynamics; Sleeper pads; Machine learning; Rail service conditions; Dynamic 38 

stiffness. 39 
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1. Introduction 40 

Given present trends, global demand for transport will more than double by 2050. The transport 41 

sector is currently responsible for around one quarter of the global CO2 emissions and such 42 

growth will result in greater emissions unless profound changes are made in transportation 43 

systems to achieve energy transitions globally. Rail is considered as one of the most energy 44 

efficient modes of transport for freight and passengers and, as a consequence, it provides a 45 

means to reduce the energy use and the environmental impact associated with transport. 46 

According to the International Energy Agency [1], the rail sector carries 8% of the world’s 47 

passengers and 7% of global freight, but it represents only 2% of total transport energy demand. 48 

The reduction of operation and maintenance (O&M) costs and the minimization of incidents, 49 

which cause service delays and traffic disruption, brings very important challenges for rail 50 

transport in order to address modern society demands and to increase its attractiveness and 51 

competitiveness with respect to other means of transportation. A number of studies have been 52 

developed to understand the influence of train operations on the response of the infrastructure 53 

[2–10]. Other authors have devoted their attention to the detailed representation of the vehicle-54 

track interaction using co-simulation methodologies encompassing multibody and finite 55 

element formulations [11]. These developments enable the integration of more detailed wheel-56 

rail contact models [12–21], to consider track irregularities [22,23] and other track singularities 57 

[24–27] in the studies aiming to assess track performance and degradation evolution [28–31] 58 

under realistic operation conditions. All these studies contribute to the development of novel 59 

technology and to the reduction of O&M costs. 60 

Rail pads are the elements with the greatest influence on the track stiffness, which is a 61 

fundamental parameter for the maintenance of the track [32–38], in particular in the case of 62 

ballastless track [39,40]. One of the main difficulties encountered when developing a reliable 63 

numerical model of the mechanical response of the rail track is that the stiffness of the pads is 64 

highly influenced by the operating conditions. Although the specific influence is strongly 65 

material-dependent, some common trends have been experimentally described in the 66 

literature: stiffness increases with frequency [41–43], axle load [44] or toe load [42], and 67 

decreases with temperature [43]. Frequency can be as high as 80 kHz [45], but frequencies 68 

above 20 Hz are considered as the result of track imperfections associated with small load 69 

amplitude values. Even though rail pads have a fundamental role in the attenuation of this type 70 

of frequencies, this work focuses on frequencies below 20 Hz, since this range is representative 71 

of railway transportation and are associated with the highest load amplitudes. Testing at 72 

extreme temperatures can seriously modify the response of the component, but since the 73 

railway superstructure works at environmental temperatures, the characterization has been 74 

conducted in the range between -35 and 52 ºC. 75 

Obtaining a reliable numerical prediction of the dynamic stiffness is an unresolved issue, not 76 

only because of the highly non-linear behaviour of these polymeric materials but also because 77 

of the interactions existing between the aforementioned variables [41,42,44,46–48]. Machine 78 

Learning (ML) methods are particularly well-suited for nonlinear and highly interactive data 79 

modelling. ML algorithms build a mathematical model based on a training dataset to make 80 

predictions on fresh data (testing dataset) without being explicitly programmed to perform the 81 

task. 82 

In this study, a number of ML algorithms are developed to predict the dynamic stiffness of three 83 

types of commercial rail pads, EPDM, TPE and EVA, as a function of the in-service conditions, 84 
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namely frequency, axle load, temperature and toe load. The dataset comprised 720 85 

experimental tests. The following seven algorithms were implemented for each material [49]: 86 

Multi-Linear Regression (MLR), K Nearest Neighbours (KNN), Regression Tree (RT), Random 87 

Forest (RF), Gradient Boosting (GB), Multi-Layer Perceptron (MLP) [50] and Support Vector 88 

Machine (SVM) [51,52]. 80% of the observations are randomly chosen to form the training 89 

dataset. The algorithms are optimised through three-fold cross-validation. The test dataset (20% 90 

of the cases) was used to obtain an unbiased estimation of the predictive ability of the 91 

algorithms. Specific ML methods are implemented to sort, for each of the three types of pads, 92 

the operating conditions based on their relevance and to determine the specific influence of 93 

each variable on the dynamic stiffness. 94 

The reliable ML algorithms proposed here can be used for a large number of applications. First, 95 

they can be a valuable tool for the definition of the type of rail pad to use, depending on the 96 

operating conditions. In addition, they can be very useful for the evaluation of the track 97 

conditions, increasing durability and providing information for maintenance management 98 

procedures. In this sense, these tools can be easily linked to finite element models of the 99 

infrastructure [53] in order to obtain the stress state on the track components depending on; 100 

the loads generated by the train service, the environmental conditions and the assembly 101 

settings. In this study, once the ML model with the best predictive ability had been obtained, an 102 

application to estimate the dynamic stiffness of the EPDM, TPE and EV pads characterized as a 103 

function of the operation conditions (frequency, axle load, temperature and toe load) was 104 

developed. This app is freely available for readers. 105 

The remainder of the paper is organized as follows. The materials and experimental techniques 106 

are described in section 2. The ML methods, the regression algorithms and the techniques 107 

implemented to identify the most relevant features as well as their influence on the dynamic 108 

stiffness are detailed in section 3. Section 4 is devoted to presenting the results of the analysis, 109 

their interpretation and the characteristics of the app. Finally, the conclusions of the research 110 

are summarized in section 5. 111 

2. Materials and Experimental Tests 112 

2.1. Materials 113 

In this study, three of the most commonly used materials for rail pads were selected, namely; 114 

EPDM, TPD and EVA, see Figure 1. 115 

a) EPDM: ethylene-propylene copolymer, solid rail pad of 7 mm thickness without protrusions, 116 

with a hardness of 21 HS-D. This rail pad is used, for example, in Saudi Arabia's high-speed 117 

railways. 118 

b) TPE: Polyester elastomer thermopolymer (HytrelTM), with oblong shaped protrusions, a 119 

thickness of 7 mm, medium stiffness and a hardness of 47 HS-D. This is adopted, e.g., in the 120 

Spanish high-speed railways. 121 

c) EVA: Ethylene-vinyl acetate, solid rail pad of 6 mm thickness without protrusions and a 122 

hardness of 46 HSD. This rail pad forms part of the solution adopted, for example, in the first 123 

Spanish high-speed line between Madrid and Sevilla. 124 
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(a) (b) (c) 

Figure 1. Rail pads studied: (a) EPDM, 7 mm thick; (b) TPD, 7 mm thick; (c) EVA, 6 mm thick 125 

2.2. Experimental Campaign 126 

The procedures defined in standards EN 13481-2 [54] and EN 13146-9 [55] are used here to 127 

obtain experimentally the dynamic stiffness (kdyn) of the rail pads under different service 128 

conditions. The procedure is schematically depicted in Figure 2(a) where 1000 sinus-type cycles 129 

are applied between Fmin and Fmax. Then, 10 cycles belonging to the last 100 cycles are selected 130 

and the average values of forces and displacements (𝐹𝑚𝑎𝑥̅̅ ̅̅ ̅̅ , 𝐹𝑚𝑖𝑛̅̅ ̅̅ ̅̅ , 𝐷𝑚𝑎𝑥̅̅ ̅̅ ̅̅ ̅, 𝐷𝑚𝑖𝑛̅̅ ̅̅ ̅̅ ) are obtained as 131 

shown in Figure 2(b). Finally, the following equation is applied to obtain the dynamic stiffness: 132 

𝑘𝑑𝑦𝑛 =
𝐹𝑚𝑎𝑥̅̅ ̅̅ ̅̅ − 𝐹𝑚𝑖𝑛̅̅ ̅̅ ̅̅

𝐷𝑚𝑎𝑥̅̅ ̅̅ ̅̅ ̅ − 𝐷𝑚𝑖𝑛̅̅ ̅̅ ̅̅
 (1) 

 133 

To simulate different assembly and operating conditions of the pads, the values of frequency, 134 

load amplitude, temperature and toe load are varied, as shown in Table 1. Fmin in Figure 2(a) 135 

corresponds to the toe load and Fmax is obtained by using the values of force amplitude defined 136 

in EN 13481-2 [54], namely 15.5, 21 and 31.5 kN. This standard also proposes three values for 137 

the frequency; 5, 10 and 20 Hz. In this study, a frequency of 2.5 Hz is also considered, as 138 

suggested by previous studies [5,56]. The Spanish standard for the definition of action on bridges 139 

considers as the minimum and maximum temperatures -35ºC and 52ºC, respectively, and the 140 

EN 13481-2 [54] defines the dynamic stiffness test temperature as 23 ± 5 ºC; to obtain regular 141 

intervals between temperatures, -35 ºC, -20 ºC, 0ºC, 20ºC and 52 ºC are considered in this 142 

research. To obtain regular intervals between temperatures, 0ºC and -20ºC are also considered. 143 

Four values for the toe load are also analyzed here. These correspond to the reference value (18 144 

kN), representing a correct assembly of the fastening system, scenarios corresponding to the 145 

fracture of the system (1 kN), an under-tightening (9 kN) or an over-tightening (25 kN). Since the 146 

experimental campaign on the three pads is carried out for four frequencies, three load 147 

amplitudes, five temperatures and four toe loads, it produces 3x4x3x5x4=720 test results. To 148 

the best of the authors' knowledge, this is the most extensive and ambitious experimental 149 

research conducted in this field. 150 
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(a) (b) 

Figure 2. (a) Experimental tests to determine the dynamic stiffness. (b) Force-displacement curve required 151 
to obtain the dynamic stiffness 152 

 153 

Table 1. Experimental parameters with influence on the mechanical response of the rail pads 154 

Frequency [Hz] Amplitude [kN] Temperature [ºC] Toe load [kN] 

2.5 15.5 -35 1 
5 21.0 -20 9 

10 31.5 0 18 
20  20 25 

  52  

 155 

3. Machine Learning Methods 156 

3.1. Machine Learning Algorithms 157 

The ML algorithms are developed and evaluated in Python [57] using the libraries Numpy [58], 158 

Pandas [59], Scikit-learn [60], Matplotlib [61] and Seaborn [62]. The dataset consists of 720 159 

instances and five features: material, frequency, load amplitude, toe load and temperature. The 160 

first variable, material, is categorical, i.e., it contains labels (‘EPDM’, ‘TPE’, ‘EVA’) rather than 161 

numeric values. Many ML methods cannot operate on categorical data but require all variables 162 

to be numeric. For this reason, the feature ‘material’ is one-hot encoded before any calculation. 163 

Before processing, the five features are standardized to make them have zero-mean and unit-164 

variance (StandardScaler). This technique is generally recommended and mandatory when 165 

employing some specific algorithms [63]. The following regression algorithms have been 166 

implemented in this research: Multiple Linear Regression (MLR), K-Nearest Neighbors (KNN), 167 

Regression Tree (RT), Random Forest (RF), Gradient Boosting (GB), Support Vector Machine 168 

(SVM), and Artificial Neural Networks (ANNs, in this case, Multi-Layer Perceptron, MLP). In the 169 

following, a brief description of these algorithms is presented: 170 

• MLR is considered as a baseline algorithm for regression, i.e., a simple model which has a 171 

reasonable chance of providing decent results. In MLR, the relationship between the 172 

predictors (features) and the target / response variable is modeled through a linear equation 173 

which is fitted to the observed data. The linear nature of MLR restricts its ability to describe  174 

complex data. 175 
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• In KNN, classification or regression are conducted for a new observation by summarizing the 176 

output variable of the ‘K’ closest observations (the neighbors) with uniform weights or with 177 

weights proportional to the inverse of the distance from the query point. Classification is 178 

carried out using the mode of the neighbors while regression is usually based on the mean. 179 

The distance between instances is expressed through the Minkowski metric which depends 180 

on the power parameter, ‘p’. When p = 1, this is equivalent to using the Manhattan distance 181 

and for p=2 the Euclidean distance. 182 

• A decision tree is a flowchart-like structure in which each node splits a feature in two 183 

branches until a leaf node is reached which represents a class label or a numeric value, 184 

depending on whether a classification or regression is being conducted. In RTs, the cost 185 

function that is minimized to choose split points is the sum squared error of the samples in 186 

the training dataset. The most important advantage of RTs is that they are easy to 187 

understand and to interpret. The drawback is that they easily tend toward overfitting. To 188 

avoid overfitting, several pruning techniques are available. 189 

• SVM was originally designed as a classifier [64] but may also be used for regression and 190 

feature selection [65]. In classification, SVM determines the optimal separating hyperplane 191 

between linearly separable classes maximizing the margin, which is defined as the distance 192 

between the hyperplane and the closest points on both sides (the support vectors). For non-193 

perfectly separable classes, SVM must be modified to allow some points to be misclassified, 194 

which is achieved by introducing a “soft margin” [66]. Datasets that are highly nonlinear may 195 

in some cases be (linearly) separated after being (nonlinearly) mapped into a higher 196 

dimensional space [67]. This mapping gives rise to the kernel, which can be chosen by the 197 

user among different options such as linear, sigmoid, Gaussian or polynomial. The 198 

appropriate kernel function is selected by trial and error on the test set. In this case, SVM is 199 

referred to as kernelized SVM. 200 

• Ensemble methods combine multiple “weak classifiers” into a single “strong classifier”. A 201 

weak classifier is a classifier that performs poorly, but performs better than random 202 

guessing. Ensemble methods are classified into bagging-based and boosting-based, which 203 

are designed to reduce variance and bias, respectively. Bagging stands for Bootstrap 204 

Aggregating. RF is a widely used bagging method based on classification trees (weak 205 

learner). In RFs, each tree in the ensemble is built from a bootstrap sample of the training 206 

set. In addition, instead of using all the features, a random subset of features is selected, 207 

further randomizing the tree. In boosting, each new tree is a fit on a modified version of the 208 

original data set. Gradient Boosting trains many models in a sequential manner identifying 209 

the shortcomings of weak learners using gradients in the loss function. 210 

• ANNs are mostly used for data classification and pattern recognition [68]. A basic ANN 211 

contains a large number of neurons / nodes arranged in layers. MLP contains one or more 212 

hidden layers (apart from one input and one output layer). The nodes of consecutive layers 213 

are connected and these connections have weights associated with them. In a feedforward 214 

network, the information moves in one direction from the input nodes, through the hidden 215 

nodes (if any) to the output nodes. The output of every neuron is obtained by applying an 216 

activation function to the linear combination of inputs (weights) to the neuron. Sigmoid, 217 

tanh and ReLu (Rectified Linear Unit) are the most widely used activation functions. MLPs 218 

are trained through the backpropagation algorithm. Gradient descent, Newton, conjugate 219 

gradient and Levenberg-Marquardt are different algorithms used to train an ANN. 220 

20% of the observations are randomly extracted to form a test dataset that was used to provide 221 

an unbiased evaluation of the models. Models are trained and the hyper-parameters are refined 222 
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using the remaining 80% of the data. 3-fold cross-validation (CV3) was used for training and 223 

validation to guarantee the ability of the algorithm to generalize and to avoid overfitting. 224 

Parameter selection and model evaluation was conducted with GridSearchCV [69]. 225 

3.2. Feature Importance and Permutation Importance 226 

The assessment of feature relevance provides insight into which factors most influence the 227 

output [70]. Feature Importance (FI) and Permutation Importance (PI) are two independent 228 

methods which only require an estimator that has been satisfactorily fitted. Both techniques are 229 

implemented in Scikit-Learn. Tree-based models, such as RF and GB, provide the FI score, which 230 

is based on the mean decrease in impurity after a split. The PI of a feature is measured as the 231 

decrease in the model score when a single feature value is randomly shuffled. Thus, the larger 232 

the drop is in the score, the higher is the relevance of the feature. The amount of randomness 233 

in FI or PI is calculated by repeating the process at random several times. 234 

3.3. Partial Dependence Plots 235 

A one-way Partial Dependence Plot (PDP) is a graph that displays the relationship between one 236 

feature and the target response. The x-axis represents the values of the feature, while the y-axis 237 

displays the partial dependence. PDPs are calculated using a model that has been previously 238 

fitted. For each value of the target feature, the PDP is obtained after marginalizing the 239 

predictions of the fitted model over the actual values of the rest of the features. Then, a 240 

distribution of values is obtained (one value for each of the instances of the dataset). This 241 

operation is repeated at intervals of values in the range of the target feature. Scikit-Learn 242 

provides a specific function to create a PDP. 243 

4. Results and Discussion 244 

4.1. Selection of the Optimal Model for each Material 245 

The coefficient of determination, R2, is selected as the regression score function for the 246 

optimization of the hyperparameters of the algorithms. These hyperparameters are listed in 247 

Table 2. 248 

Table 2. Hyperparameters obtained after optimizing each ML algorithm for each pad 249 

MLR N/A. 

KNN EPDM: 'metric': 'manhattan', 'n_neighbors': 2, 'weights': 'uniform'. 
TPE: 'metric': 'manhattan', 'n_neighbors': 2, 'weights': 'uniform'. 
EVA: 'metric': 'manhattan', 'n_neighbors': 4, 'weights': 'distance'. 

RT EPDM: 'criterion': 'mse', 'max_depth': 10, 'min_samples_leaf': 2, 
'min_samples_split': 5, 'splitter': 'best'. 
TPE: 'metric': 'manhattan', 'n_neighbors': 2, 'weights': 'uniform'. 
EVA: 'criterion': 'mse', 'max_depth': 10, 'min_samples_leaf': 2, 
'min_samples_split': 5, 'splitter': 'best'. 

RF EPDM: 'bootstrap': False, 'max_depth': 15, 'max_features': 3, 
'min_samples_split': 2, 'n_estimators': 5. 
TPE: 'bootstrap': True, 'max_depth': 10, 'max_features': 3, 
'min_samples_split': 2, 'n_estimators': 50. 
EVA: 'bootstrap': True, 'max_depth': 15, 'max_features': 3, 
'min_samples_split': 2, 'n_estimators': 10. 

GB EPDM: 'learning_rate': 0.5, 'max_depth': 6, 'max_features': 3, 
'min_samples_leaf': 5, 'min_samples_split': 2, 'n_estimators': 100. 
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TPE: 'learning_rate': 0.1, 'max_depth': 10, 'max_features': 3, 
'min_samples_leaf': 5, 'min_samples_split': 10, 'n_estimators': 500. 
EVA: 'learning_rate': 0.5, 'max_depth': 2, 'max_features': 3, 
'min_samples_leaf': 10, 'min_samples_split': 3, 'n_estimators': 500. 

MLP EPDM: 'activation': 'relu', 'alpha': 0.005, 'hidden_layer_sizes': (10, 10, 10), 
 'max_iter': 50000, 'solver': 'lbfgs'. 
TPE: activation='relu', alpha=0.005, hidden_layer_sizes=(10, 10), 
max_iter=100000, solver='lbfgs'. 
EVA: 'activation': 'relu', 'alpha': 0.0001, 'hidden_layer_sizes': (10, 10), 
 'max_iter': 25000, 'solver': 'adam'. 

SVM EPDM: 'degree': 2, 'gamma': 'auto', 'kernel': 'linear'. 
TPE: 'degree': 2, 'gamma': 'auto', 'kernel': 'linear'. 
EVA: 'degree': 2, 'gamma': 'auto', 'kernel': 'linear'. 

 250 

After optimization, the coefficient of determination (R2), Root Mean Square Error (RMSE), Mean 251 

Absolute Error (MAE) and Mean Absolute Percentage Error (MAPE) are calculated in the test 252 

dataset. This information is shown in Table 3, Table 4 and Table 5 for EPDM, TPE and EVA pads, 253 

respectively. As can be seen, GB stands out above the rest of the algorithms for all three 254 

materials. For EPDM and TPE, R2 is 0.995 while for EVA it is 0.988. Also note that, for the selected 255 

algorithms, the MAPE is between 2.3% and 6.5%. 256 

Table 3. Statistical scores in the test dataset provided by each model for the EPDM pad 257 

Algorithm R2 RMSE [kN/mm] MAE [kN/mm] MAPE [%] 

MLR 0.452 100.39 133.67 88.78 
KNN 0.628 61.58 110.14 34.76 
RT 0.923 22.75 50.07 9.24 
RF 0.965 16.45 33.66 6.18 
GB 0.995 12.36 7.39 5.08 

MLP 0.990 10.23 17.96 6.51 
SVM 0.060 81.28 175.13 30.44 

 258 

Table 4. Statistical scores in the test dataset provided by each model for the TPE pad 259 

Algorithm R2 RMSE [kN/mm] MAE [kN/mm] MAPE [%] 

MLR 0.759 40.18 52.02 17.83 
KNN 0.872 27.73 37.99 10.18 
RT 0.969 12.48 18.52 4.72 
RF 0.977 9.86 16.18 3.45 
GB 0.995 7.79 5.41 2.25 

MLP 0.994 5.8 8.02 2.32 
SVM 0.545 42.2 71.49 13.99 

 260 

Table 5. Statistical scores in the test dataset provided by each model for the EVA pad 261 

Algorithm R2 RMSE [kN/mm] MAE [kN/mm] MAPE [%] 

MLR 0.928 76.62 93.24 7.88 
KNN 0.927 67.93 93.64 7.04 
RT 0.922 75.15 97.02 7.17 
RF 0.968 50.23 62.52 4.91 
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GB 0.988 37.36 20.37 2.38 
MLP 0.927 78.3 93.72 7.97 
SVM 0.56 188.92 230.44 22.85 

 262 

Figure 3, Figure 4 and Figure 5 illustrate the prediction ability of the different ML algorithms for 263 

EPDM, TPE and EVA pads, respectively. The experimental values of stiffness are represented on 264 

the X-axis and the predictions of each of the regressors are shown on the Y-axis. Each graph 265 

includes a 1:1 line (corresponding to a perfect fitting) as well as two confidence bands separated 266 

from the centre line by a distance equal to the RMSE defined in Table 3, Table 4 and Table 5. 267 

 268 
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Figure 3. Comparison between the experimental and the predicted stiffness for each of the ML models 269 
optimized for the EPDM rail pad 270 

 271 

  

  

  

 

 

Figure 4. Comparison between the experimental and the predicted stiffness for each of the ML models 272 
optimized for the TPE rail pad 273 

 274 
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Figure 5. Comparison between the experimental and the predicted stiffness for each of the ML models 275 
optimized for the EVA rail pad 276 

 277 

4.2. Partial Dependence Plots 278 

It is generally known how service variables (temperature, toe load, frequency and axle load) 279 

influence the dynamic stiffness of the rail pads. For higher axle loads, the stiffness is higher. This 280 

phenomenon is explained because, for high loads, the capacity of the rail pads to deform is lower 281 

and, therefore, the rail pads have a more rigid response. On the other hand, the higher the 282 

frequency, the greater the stiffness obtained. This is explained because, if the load frequency is 283 

high, the pads have less time to adapt to the movement and, therefore, less displacements are 284 

obtained. Regarding temperature, the higher it is, the greater is the capacity to deform and, 285 
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therefore, the lower is the stiffness. Finally, in a similar way to what happens with the axle load, 286 

by increasing the toe load, the capacity of the pad to deform reduces and more rigid behaviour 287 

is observed. 288 

As mentioned before, PDPs enable answers to be obtained about how and how much the 289 

influence of each of the variables is. Figure 6, Figure 7 and Figure 8 show the PDPs of the features 290 

for the three pads. In each of the graphs, a central trend thick line is represented, which is 291 

accompanied by a number of thin lines that provide a measure of the dispersion to the central 292 

line. The dark blue line is the average value of all generated cases, while the light blue ones are 293 

random cases 294 

From Figure 6 it is observed that the evolution of the EPDM pad stiffness with both amplitude 295 

and frequency are approximately proportional. In case of temperature, it can be seen that for 296 

very low temperatures there is a significant variation. Once -20ºC is exceeded, the effect of 297 

temperature is significantly reduced. Regarding the toe load effect, it is shown that there are 298 

two clearly differentiated phases. A first one up to approximately 12 kN and another one from 299 

that value, where the influence of that toe load is accentuated. 300 

 301 

  

  
Figure 6. Partial dependence plots obtained on EPDM rail pads 302 

Figure 7 shows that the effect on TPE pads of the increase in axle load, frequency and toe load 303 

is approximately proportional. In contrast, it can be seen that the influence of temperature is 304 

greater when the temperature is lower. 305 
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Figure 7. Partial dependence plots obtained on TPE rail pads 306 

From Figure 8 it can be seen that the influence of amplitude, frequency and toe load on the EVA 307 

pad is approximately proportional within the range studied.  It can be seen that the PDP 308 

corresponding to temperature does not seem to match with what could be expected, this is 309 

because the influence of temperature is so small that it is screened by the uncertainty of the 310 

measurement.  311 

  

 .  
Figure 8. Partial dependence plots obtained on EVA rail pads 312 

 313 

4.3. Feature and Permutation Importance 314 

The results obtained with FI and PI are summarized in Table 6 and represented as bar charts in 315 

Figure 9. Both algorithms display consistent results which is evidence of reliability, provided that 316 

the fundamentals on which FI and PI are grounded are different and independent. 317 

From the analysis of Figure 9, it is possible to determine which variables (temperature, toe load, 318 

frequency and axle load) have most influence on the pads' dynamic stiffness. For the EPDM pad, 319 

these parameters are temperature and toe load.  Similarly, in the case of TPE, the parameters 320 

that have most influence on the stiffness are temperature and toe load. In the case of the EVA 321 

pad, the parameter with the greatest influence on the stiffness is temperature. It should be 322 

noted that the most influential parameters on pad behaviour are temperature and toe load and 323 

that the standard for characterizing these components only contemplates testing at different 324 

temperatures in extreme cases and does not propose any variation of the toe load. 325 

Table 6. Quantitative relevance analysis parameter for each rail pad 326 

 Feature Importance Permutation Importance 
 EPDM TPE EVA EPDM TPE EVA 

Temperature 0.630 ± 0.070 0.690 ± 0.040 0.042 ± 0.009 1.430 ± 0.370 1.440 ± 0.190 0.088 ± 0.009 
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Toe Load 0.310 ± 0.070 0.270± 0.040 0.810 ± 0.040 0.710 ± 0.090 0.620 ± 0.070 1.780 ± 0.210 
Frequency 0.041 ± 0.001 0.031 ± 0.011 0.061 ± 0.016 0.100 ± 0.050 0.070 ± 0.020 0.124 ± 0.002 
Amplitude 0.016± 0.002 0.011 ± 0.007 0.080 ± 0.030 0.028 ± 0.004 0.016 ± 0.006 0.150 ± 0.020 

 327 

  
EPDM 

  
TPE 

  
EVA 

Figure 9. Quantitative relevance analysis parameter for each rail pad 328 

 329 

4.4. Application for the implementation of the optimal ML algorithm  330 

An application was created on the Microsoft .Net platform. The Visual Studio 2017 development 331 

environment was used with the C# programming language. The user interface is based on 332 

Windows Forms. The operating requirements are a 64-bit computer with .Net Framework 4.7 or 333 

higher (for example, any 64-bit Windows 10 computer meets this requirement). Click Once 334 

technology was used to deploy and download this application via Web. This mechanism enables 335 

the app to be updated. The predictive machine learning model has been created using the 336 

ML.Net library. It is an open source multiplatform library [71]. The algorithm employed was an 337 
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efficient implementation of the Gradient Boosting algorithm called MART [72,73]. This 338 

application can be downloaded from the following link: “http://www.cuartas.es/railpad/” in 339 

Microsoft Edge. 340 

5. Conclusions and Future Developments 341 

At present, there are no models, neither analytical nor numerical, that enable the dynamic 342 

stiffness of rail pads to be obtained depending on the assembly and operation conditions. 343 

However, this would be helpful because the polymeric materials used to manufacture these 344 

pads display a highly non-linear mechanical response and interactions among the service 345 

variables occur. Previous studies have experimentally obtained the influence of one or another 346 

of these variables. But this experimental information, scarce and dispersed, has not enabled 347 

reliable models to be produced. 348 

The experimental scope of the present work includes a total of 720 dynamic tests carried out on 349 

three of the most common pad materials. The difficulties in modelling the response of these 350 

materials using conventional procedures justify the adoption of alternative data-driven 351 

methodologies. For this purpose, several machine learning algorithms are implemented and 352 

optimized. Gradient Boosting was found to be the optimal algorithm for the three materials. In 353 

general, Random Forest, which is also an ensemble method, and Multilayer Perceptron have 354 

provided very notable results. The ability of Gradient Boosting is highlighted by the coefficient 355 

of determination and mean absolute percentage error in the test dataset, which are 356 

0.995/5.08%, 0.995/2.25% and 0.988/2.38%, for EPDM, TPE and EVA, respectively.  357 

Two alternative methodologies, feature importance and permutation importance, which enable 358 

the features to be sorted by order of importance, are also implemented. These procedures 359 

provide consistent results. Temperature and toe load are the variables that most influence the 360 

dynamic stiffness of EPDM and TPE, while toe load is the most relevant feature for EVA. Overall, 361 

toe load is the most influential parameter, regardless of the material tested. This result is 362 

particularly remarkable since the standards that define the experimental conditions for 363 

determination of the dynamic stiffness of rail pads do not take it into account. In the authors’ 364 

opinion, the experimental and analytical evidence provided by this study is sufficient to motivate 365 

a possible update of the standards currently in force. 366 

This information is useful for track design and for providing information about the maintenance 367 

procedures to the infrastructure managers. In addition, the algorithms developed here can be 368 

easily coupled with finite element models that include all the track components. This would 369 

enable the determination of the overall impact of the variables considered here, temperature, 370 

axle load, toe load and frequency on the infrastructure behaviour. These developments would 371 

support the optimization of the maintenance tasks and contribute to increasing the durability of 372 

tracks. 373 

Considering the potential interest of the results of this research for the railway industry, an 374 

application implementing the optimal Machine Learning algorithm was developed. This 375 

application enables the prediction of the dynamic stiffness of the rail pads covered in this study 376 

(manufactured either in EPDM, TPE or EVA) from the operating conditions. 377 

In this paper, a methodology combining laboratory testing with machine learning algorithms has 378 

been implemented. This combination has provided a computational mechanical model for each 379 

of the materials. This technique can be extended to model other mechanical properties 380 

particularly difficult to be described in analytical terms. In this sense, this research is currently 381 
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being extended, modifying the values of frequency and load amplitude to analyse, not only the 382 

stiffness, but also the damping capacity of each kind of rail pad. 383 
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