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Modelling changing patterns in the COVID-19 geographical distribution: Madrid’s 
case 
 
Abstract 
We analyse the transmission factors shaping the spatial distribution of COVID-19 
infections during the distinct phases of the pandemic first wave in Madrid, Spain, by fitting 
a spatial regression model capturing neighbourhood effects between municipalities. Our 
findings highlight that factors such as population, mobility, and tourism were instrumental 
in the days before the national lockdown. As a result, already in the early part of the 
lockdown phase, a geographical pattern emerged in the spread of the disease, along with 
the positive (negative) impact of age (wealth) on virus transmission. Thereafter, spatial 
links between municipalities weakened, as roles for mobility and tourism were eroded by 
mass quarantine. However, in the de-escalation phase, mobility reappeared, reinforcing the 
geographical pattern, an issue that policymakers must pay heed to. Indeed, a counterfactual 
analysis shows that the number of infections without the lockdown would have been 
around 170% higher. 
 
Keywords 
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Key insights 
Transmission factors shaping the spatial distribution of COVID-19 infections during the 
distinct phases of the pandemic first wave in Madrid are examined via a spatial regression 
model capturing neighbourhood effects between municipalities. Findings highlight that 
explanatory factors, which have a geographical component linked to mobility, are 
dependent and thus change according to the phase of national lockdown. As for the 
effectiveness of social distance measures, a counterfactual analysis shows that the number 
of infections without the lockdown would have been around 170% higher. 
 
1 | INTRODUCTION 
COVID-19 arguably possesses peculiarities that make it a unique and significant shock. On 
one hand, it combines, probably like no other, both demand- and supply-driven impacts. 
On the other hand, it poses a trade-off dilemma between health and economic outcomes 
because mobility-based restrictions aimed at flattening the incidence curve have led 
inevitably to reduced productivity. Its influence extends to other spheres of life, to the 
point that, as Burton (2021) has suggested, everyone nowadays is familiar with terms such 
as ‘social distancing’, ‘lockdown’, ‘flatten the curve’, ‘telework’, ‘risk group’, ‘herd 
immunity’, ‘cabin fever’, and so on. 

Consequently, numerous articles address the COVID-19 pandemic from different 
perspectives, some of which have attempted to shape the unequal and changing 
spatial/geographical distribution of the COVID-19 disease. To this end, academic efforts 
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have focused on ecological studies to analyse the determinants of COVID-19 infections 
and/or deaths. 

Contributing to such efforts, in this article we endeavour to advance a better 
understanding of the determinants of COVID-19 community transmission by 
comprehensively addressing critical points that should not be (but often have been) 
overlooked. First, different potential drivers of COVID-19 propagation have to be 
considered together due to the interactions between them, and not individually as done in 
many papers; consequently, and bearing in mind data limitations, here we propose and 
estimate a model that tries to assess the role played by some of these drivers. Second, 
spatial interactions between neighbouring areas or, more technically, the existence of 
spatial correlation/dependence, should be included in the model; this issue is core because 
the geographical location of territories matters when it comes to explaining the spread of a 
virus. Our thinking aligns with that provided by Bissell (2021, p. 157): “my wager is that 
geography matters now more than ever as we try to move forward and refashion our lives 
in the long comet tail of COVID-19.” Third, it is crucial to gauge whether, and depending 
on the phase of the pandemic, driving factors vary over time hand-in-hand with the 
application or relaxation of non-pharmaceutical interventions such as social/physical 
distancing.  

To accomplish our aim, we made several important decisions, of which perhaps the 
most significant concerns the case study. We refer both to the country/region analysed and 
to the level of disaggregation of data used. We chose the Autonomous Community of 
Madrid (Spain), and used municipal level data; although Madrid consists of 179 
municipalities, we took data for 178 of them and for the 21 districts that make up the 
municipality that bears the same name of the region (Madrid), which is disproportionately 
large to be considered as just one more.i This is an interesting case study from which 
valuable lessons can be obtained, since Madrid represents the ‘epicentre’ of the pandemic 
in Spain, one of the countries hardest hit by the virus (Arango, 2020; Páez et al., 2021; 
Trias-Llimós and Bilal, 2020). 

At this point, we focus on the first wave of the pandemic because it is, at least for the 
time being, the only wave curbed in Spain by a national lockdown (enacted on 15 March 
2020). The period under study (6 March to 21 June 2020) contains very different phases of 
the pandemic, especially in terms of non-pharmaceutical intervention measures (no 
restrictions, lockdown, de-escalation phases). Thus, the analysis is carried out for the 
whole period and for specific dates within it. That approach provides an accurate analysis 
of the evolution of the first wave of the pandemic and, more importantly, of potential 
changes in explanatory factors of virus transmission over time. This approach, in line with 
Ehlert (2020), allows us to assess how the social stratification of COVID-19 shifts between 
the different phases of the pandemic.  

Keeping all these considerations in mind, the rest of the article is structured as follows. 
In section 2, a brief review is presented of recent but extensive literature on the COVID-19 
pandemic. In section 3, we propose a causal model to unveil factors underlying the 
geographical distribution of the pandemic based on theoretical foundations and empirical 
work, as well as data availability. Section 4 reports the main results when applied to our 
case study. Section 5 summarises the main conclusions of the paper. 
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2 | LITERATURE REVIEW  
Since the outbreak of COVID-19, a vast amount of research based on clinical studies has 
been conducted to identify individual-level risk factors for infection. Less prevalent have 
been ecological studies on the main social, economic, and demographic factors associated 
with geographical patterns of local transmission affecting the design of comprehensive and 
coordinated actions to combat the spread and unequal impact of the virus across territories. 
Clearly, “knowledge of these factors and the ways in which they are spread is crucial, since 
at the current state of research it seems not to be possible to contain the pandemic by 
medical means alone” (Ehlert, 2020, pp. 2–3). The literature is also very diverse in terms 
of the spatial framework, methodology employed, and evidence provided.  

Starting with the spatial framework, in light of what has happened with the advance of 
the virus, we know that, despite its global character, it has different impacts across 
countries and territories within countries. Precisely because of that spatial heterogeneity 
(highlighted by Amdaoud et al. 2021), uncovering the fundamental drivers of virus 
dissemination has become a priority. Some examples of cross-country analysis of the 
spread of COVID-19 include works by Mogi and Spijker (2021) and Sannigrahi et al. 
(2020) for Europe, and Jain and Singh (2020) and Hassan et al. (2020) at a global scale. 
Conversely, studies adopting a regional perspective on the socio-economic dimension of 
the pandemic include, for instance, those by Ehlert (2020) for Germany, Buja et al. (2020) 
and Ascani et al. (2020) for Italy, Ramírez-Aldana et al. (2020) for Iran, and Orea and 
Álvarez (2020) for Spain. Finally, are papers dealing with the spread of COVID-19 at a 
municipal/district level, such as that by Plümper and Neumayer (2020) for German local 
districts, Boterman (2020) for the Netherlands, and Andersen et al. (2021) for US counties. 
Others focus attention on specific cities such as in work by Baena-Díez et al. (2020) for 
districts in Barcelona, Almagro and Orane-Hutchinson (2020) and Hamidi and Hamidi 
(2021) for neighbourhoods in New York City, Vaz (2020) for neighbourhoods in Toronto, 
Pan et al. (2021) at the borough level in London, Yip et al. (2021) with census data for 
Hong Kong, and Qiu et al. (2020) for a sample of Chinese cities. 

As for methodological considerations, traditional statistical techniques ranging from a 
straightforward correlation-based method to cluster and factor analysis to linear and 
multinomial regression approaches have been widely used to mitigate the lack of 
knowledge on the determinants of COVID-19. However, most such studies ignore the 
spatial interdependencies between the geographical areas under scrutiny, and fail to capture 
“disease transmission pathways and network effects [and to quantify] the magnitude of 
spatial spillovers” (Krisztin et al. 2020, 210). To fill this gap are several ecological studies 
using relevant and different spatial econometric techniques (Andersen et al. 2021; Arenas 
2020; Bourdin et al. 2021; Cordes and Castro 2020; Dehghan Shabani and Shahnazi 2020; 
Guliyev 2020; Krisztin et al. 2020; Mollalo et al. 2020; Orea and Álvarez 2020; Ramírez-
Aldana et al. 2020; Sannigrahi et al. 2020; Xie et al. 2020). All confirm that the rates of 
COVID-19 cases are spatially correlated. 

In terms of empirical evidence, most COVID-19 researchers have concluded that the 
virus disproportionally affects deprived communities and those with lower income levels, 
the elderly, and several ethnicities ( Andersen et al. 2021; Berkowitz et al. 2020; Hassan et 
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al. 2020; Pan et al. 2021; Plümper and Neumayer 2020; Sannigrahi et al. 2020). Some 
authors postulate that heavily urbanised areas with high CO2 emissions, high average 
temperatures, and older demographic structures are more exposed to COVID-19 risks 
(Hassan et al. 2020; Jain and Singh 2020; Ramírez-Aldana et al. 2020). Finally, other 
studies, such as that by Almagro and Orane-Hutchinson (2020), have found that in the 
early stages of the pandemic especially, some occupations channel the spread of the 
disease and workers in jobs with a high degree of physical contact are more likely to 
contract the virus. 

However, puzzling empirical findings remain to be explored. One set concerns the 
distinction between population density and population. Although counterintuitive, most 
studies conclude that infections do not seem to be significantly correlated with population 
density, but rather with population levels (Boterman 2020; Hamidi and Hamidi 2021); 
according to Hassan et al. (2020), ways of transmission are multiple even in low(er) 
density areas at social events such as funerals or family gatherings. Nevertheless, some 
studies point to a positive and significant relationship between population density and 
COVID-19 exposure (Buja et al. 2020; Mogi and Spijker 2021). More also needs to be 
done in terms of the role of public transport in the spread of the disease, and no solid 
evidence exists that the use of public transport contributes to the spread of the COVID-19 
pandemic (Almagro and Orane-Hutchinson 2020; Hamidi and Hamidi 2021). 
 
3 | THEORETICAL BACKGROUND AND PROPOSED MODEL  
 
3.1 A standard model  
 
When specifying a reference model for what drives the spatial transmission of COVID-19, 
the first major decision concerned its dependent variable. We considered the number of 
infections registered in each municipality in the 14 days prior to the date analysed with 
data collected from the Open Data Portal of the Community of Madrid.ii The rationale is 
that daily data are too volatile to support ultimate conclusions. Put differently, by using a 
variable covering a 14–day period, we can control for time-variant heterogeneity to draw 
reliable findings. Even if the problem of volatility is overcome, the number of cases 
recorded in the early days of the pandemic is an estimate that is likely highly biased 
downwards because tests were performed only on hospitalised people. For this reason, to 
assess the spread of the virus some studies use the number of excess deaths instead of the 
number of cases (Bartoszek et al. 2020). We preferred to use official data on the number of 
infections since, on one hand, discrepancies between sources regarding excess deaths were, 
at least in Spain and thus Madrid, quite remarkable and, on the other hand, reliability of 
excess deaths data at the municipal level is difficult to guarantee. 

Regarding independent variables, for the sake of simplicity we only focused our 
analysis on the so-called COVID-19 Determinants of Health Model, which represents an 
adaptation of the Kaiser Family Foundation Model (Kaiser Family Foundation 2020) 
postulated by the Public Health Outcomes and Effects of the Built Environment 
(PHOEBE) Laboratory (University of Maryland, PHOEBE Laboratory 2020). This model 
theorises the attribution of individual and social determinants to COVID-19 health 
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outcomes and therefore its empirical application, explained below, allowed us to 
understand the heterogeneous and changing spatial/geographic distribution of the 
pandemic. 

The Kaiser Family Foundation Model divides the determinants of health into six 
categories: economic environment, built environment, education environment, food 
environment, social environment, and health care environment.iii It is a general model 
designed to study the spread of COVID-19 between countries but can be adapted and thus 
employed at lower geographical levels; we mean from states/regions down to, for instance, 
neighbourhoods/households. Thus, when analysing the propagation of the pandemic within 
a region, as in our case, some existing categories must be ruled out since differences 
between units of analysis, if any, are negligible (see Hu et al. (2021) who have proposed a 
model gauging the relationship between various social factors such as housing quality, 
living conditions, travel pattern, race/ethnicity, and income). 

For our case study, three categories included in the general model were removed—
education, food and health care environments—because all municipalities have comparable 
conditions in relation to them. As for the three remaining categories, and constrained by 
data availability, we chose the following explanatory variables:  
• Inter-municipality mobility (𝑀𝑀), which could be included in the built environment 

category. It is constructed by handling big data coming from Studies on Mobility based 
on Mobile Phone published by the Spanish National Statistical Institute (INE). The 
data source provides, on a daily basis, information on the percentage of population 
moving from each to another municipality of Madrid; although we coped with some 
significant problems in the computation of these data, which are explained in depth in 
the Online Appendix 1, we reckon this variable is crucial for our analysis. Hence, 
having overcome these problems and in line with the dependent variable, we computed, 
for the whole period and each of the dates mentioned below, a variable capturing 
average inter-municipal mobility during the previous 14 days (we tried with 21 days, 
being the results roughly the same). In line with theoretical approaches assuming a link 
between mobility and disease transmission among citizens (see Kissler et al., 2020), 
our hypothesis (H1) is that the higher the mobility the higher the number of infections. 

• Population (𝑃𝑃), which could be included as a demographic structure factor in the 
category of social environment. It is defined as the number of citizens (in logs), with 
data mainly taken (as in the remaining cases hereafter) from the Statistical Institute of 
the region of Madrid, apart from those for the districts of the municipality of Madrid 
which are collected from the Madrid City Council website. The importance of this 
variable is beyond doubt since it is capturing ‘size’. It is instrumental in an ecological 
model trying to explain infections as ours, and also in models devoted to many other 
issues. By way of example, traditional gravity models of migration (see Poot et al. 
2016) assume that migratory flows between two areas are directly linked to their size in 
terms of population. Following the same assumption, our hypothesis (H2) is that highly 
populated areas are more prone to suffer from the pandemic, so a positive sign is 
expected for the estimated coefficient.iv 

• Wealth (𝑊𝑊) is an important economic environment factor. It is defined as the gross 
disposable income (in logs). By choosing this variable, we wanted to assess whether 
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people living in specific municipalities where relatively low disposable incomes prevail 
are more exposed to contagion. Several studies have concluded that the spread of 
COVID-19 is faster in poor areas (Baena-Díez et al. 2020; Kim and Bostwick 2020; 
Patel et al. 2020), because of lower levels of access to economic, educational, health, 
and social resources. In that regard, Almagro and Orane-Hutchinson (2020) also point 
to the strong presence of occupations with a high degree of social exposure/physical 
contact in the most deprived areas. Our hypothesis (H3) is, then, a negative relationship 
between the severity of the pandemic and wealth.  

• Immigration (𝐼𝐼𝑀𝑀) is a social environment factor related to issues such as inclusion or 
cohesion emphasised in the COVID-19 Determinants of Health Model. It is defined as 
the stock of foreigners (in logs). Postulated by, among others, Berkowitz et al. (2020), 
Chiu and Ojede (2020), Khalatbari-Soltani et al. (2020), Kim and Bostwick (2020) and 
Niedzwiedz et al. (2020), the idea is that racially segregated areas are more prone to 
contagion. Therefore, as a proxy for it we include an immigration variable (in line with 
Fasani and Mazza 2020). The hypothesis (H4) is now that the higher the stock of 
foreigners the higher the chance of registering a significant number of contagions.v 

• Age (𝐴𝐴) is another demographic factor included in the social environment category. It 
is defined as the mean age of the population (we do not take logs here for the sake of 
interpretation). In this respect, and although the influence of age is broadly accepted 
(Gondim and Machado 2020), the expected sign is not straightforward. Recall that we 
are examining the first wave of the pandemic, in which the positive cases were 
primarily related to people showing symptoms and indeed attending hospitals (at that 
time, the capacity for mass testing and monitoring was considerably weak). Thus, we 
presume a direct relationship between the dependent variable and age is more likely. 
Supporting this forecast was the precarious situation of nursing homes, and residents 
were disproportionally affected by the pandemic because of a lack of personal 
protective equipment for staff. Hence, our hypothesis (H5) calls for a positive 
coefficient linked to the age variable.vi 

• Tourism (𝑇𝑇), as another built environment factor related to transportation. It is proxied 
by the number of places in hotels and other tourist establishments (in logs). A positive 
link is expected between the intensity of the pandemic and tourism since, in a scenario 
of unrestricted international travel flows, areas receiving many tourists would be likely 
to suffer a sharp increase in COVID-19 cases. Therefore, the hypothesis (H6) is that the 
stronger the weight of tourism, the higher the number of infections. 
 

At this point, having defined the set of potential determinants of the number of COVID-19 
infections, and it being obvious that they do not ‘work’ independently and that “the 
cumulative and aggregate force of these determinants” (Hu et al. 2021, p. 12) needs to be 
tested, we can propose our reference model. Such a non-spatial model would be as follows: 
 
𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑖𝑖 = 𝛼𝛼 + 𝛽𝛽1𝑀𝑀𝑖𝑖 + 𝛽𝛽2𝑃𝑃𝑖𝑖 + 𝛽𝛽3𝑊𝑊𝑖𝑖 + 𝛽𝛽4𝐼𝐼𝑀𝑀𝑖𝑖 + 𝛽𝛽5𝐴𝐴𝑖𝑖 + 𝛽𝛽6𝑇𝑇𝑖𝑖 + 𝜀𝜀𝑖𝑖                     (1) 
 
where 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 refers to the number of infections, i denotes a municipality, β are the estimated 
coefficients, and all independent variables have been denoted above. 
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3.2 An extended spatial model  
 
Equation (1) would provide an incomplete ecological model for COVID-19 infection. 
When modelling the virus incidence of reported cases there is an instrumental factor that 
should not be overlooked: the potential link between the total number of infections in a 
municipality and that in neighbouring municipalities. As noted by Kuebart and Stabler 
(2020, p. 482), “infectious diseases should be understood as socio-spatial processes with 
complex geographies.” That is to say, there is little doubt we have to consider a spatial 
extension of the benchmark model. 

The existence of spatial spillovers can indeed be considered a well-established finding 
from both theoretical and empirical perspectives. In terms of theory, Chih and Ojede 
(2020, p. 6) have noted that the COVID-19 pandemic “is expected to exhibit global spatial 
spillovers rather than being spatially independent.” From this perspective, moreover, we 
could borrow a central idea from theories of the New Economic Geography and Economic 
Growth that a key component of agglomeration forces is agglomeration itself, which 
makes agglomeration processes strongly cumulative (Baumont et al. 2001). This idea fits 
neatly with the expansion of a virus since, even if its starting spatial distribution was 
arbitrary, the outbreak of the virus would likely lead to the formation of a geographical 
cluster composed of the first infected zone and neighbouring areas. 

From an empirical point of view, why is the existence of notable spatial spillovers, 
especially in its initial stage, so relevant? Bernasco (2010, p. 118) has provided one insight, 
inasmuch as “in the explanation of social phenomena, it generally holds that the smaller 
the unit of analysis, the more urgent is the need to consider the presence of spatial 
interaction.” Therefore, if spatial diffusion processes are expected to occur between 
countries, such will be the case, and much more so, between municipalities. Concisely, the 
idea behind spatial spillovers lies in the natural occurrence of hotspots that, when time 
passes, are spread to closer areas mainly due to population mobility. 

In any event, instead of taking these matters for granted, before moving forward we 
confirmed the presence of geographical clusters by computing some spatial dependence 
statistics (Moran’s I and Geary’s C statistics), as shown in Online Appendix 2. We 
concluded that municipalities cannot be considered isolated units when specifying the 
model. Hence, a spatial ecological model capturing interactions between units should be 
proposed (for a comprehensive reference dealing with the geographical distribution of 
diseases and the use of spatial methods to model it, see Lawson 2006). 

Accordingly, we extend the model (equation 1) by considering, as an additional 
independent variable, the spatial lag of the dependent one ([𝑊𝑊𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶]𝑖𝑖 = ∑ 𝑤𝑤𝑖𝑖𝑖𝑖𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑖𝑖𝑖𝑖 ), 
being our last hypothesis (H7) that its coefficient is positive. As for the definition of this 
variable, 𝑤𝑤𝑖𝑖𝑖𝑖 denotes the elements of the distance/spatial-weight matrix W between each 
pair of municipalities i and j. Specifically, spatial weights are defined as the (standardised) 
inverse of the square of the distance between the corresponding centroids; the reason we 
use a square matrix is to impose a heavy penalty on distance, which seems to be logical 
when dealing with a unit of study as small as the municipalities. In any case, our results do 
not depend significantly on the distance matrix, as we also tried with other versions —such 
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as the contiguity matrix, the inverse of the distance, or matrices considering different cut-
offs—and the results were roughly similar to those reported below.vii Consequently, the 
proposed final spatial model we use in the next section reads as follows: 

 
𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑖𝑖 = 𝛼𝛼 + 𝛽𝛽1𝑀𝑀𝑖𝑖 + 𝛽𝛽2𝑃𝑃𝑖𝑖 + 𝛽𝛽3𝑊𝑊𝑖𝑖 + 𝛽𝛽4𝐼𝐼𝑀𝑀𝑖𝑖 + 𝛽𝛽5𝐴𝐴𝑖𝑖 + 𝛽𝛽6𝑇𝑇𝑖𝑖 + 𝛽𝛽7 ∑ 𝑤𝑤𝑖𝑖𝑖𝑖𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑖𝑖𝑖𝑖 + 𝑢𝑢𝑖𝑖     (2) 
 
3.3 Some key dates 
 
We now apply the model to the whole period covering the first wave of the pandemic in 
Madrid (6 March to 21 June 2020) and, more importantly, to specific dates. We aim to 
detect changes in the explanatory factors that occur in response to non-pharmaceutical 
intervention measures to better understand the changing spatial and temporal patterns of 
COVID-19 spread. These dates are reported in Table 1.  

To summarise, we can highlight the different incidences of the virus in the Madrid 
region as a whole throughout the period analysed. In less than a month, Madrid went from 
250 cases in the 14 days prior to 6 March to almost 22,000 on 29 March. From that date 
onwards, the incidence of the virus fell until just over 1,000 cases were recorded on the 
date of the end of the state of alarm (21 June). Table 1 also shows that different non-
pharmaceutical intervention measures were implemented and withdrawn during that 
period, including the start of the state of alarm with lockdown and different de-escalation 
phases. The finding makes our case study compelling because it offers the possibility of 
detecting changes in driving factors of the pandemic that are scenario dependent. 
 
<Take in Table 1 around here> 
 
4 | RESULTS 
 
In this section, we present the results and extract the most relevant information from the 
various estimates of our proposed model (equation 2). First, Table 2 shows some 
descriptive statistics—mean, maximum, minimum, and coefficient of variation—of the 
variables included in equation (2); this is for the whole period to avoid repetition. The most 
significant feature is that inequality (last column) is much higher in the number of 
infections than in the rest of the variables. Although approximately 7,700 people were 
infected (always for a 14-day period) on average in Madrid during the first wave of the 
pandemic, some municipalities were free of COVID-19 (no cases were recorded) and some 
had an average of c.400 cases. This unequal incidence is what our model tries to explain. 
 
<Take in Table 2 around here> 
 

Table 3 reports the estimation results of our model by maximum likelihood since it has 
sound statistical properties in a spatial model for the whole period (first column) as well as 
every landmark date detailed above (remaining columns). In all cases, robust standard 
errors are used. Starting with the whole period, our findings tend to confirm several of the 
hypotheses: H1 (the role of mobility as a driver), H2 (a positive link between population 
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and infections), H3 (a negative relationship between wealth and infections), H5 (the older 
the population the higher the number of infections), and H7 (the link between neighbouring 
municipalities). The remaining hypotheses (those related to immigration H4 and tourism 
H6) do not seem to be validated for the entire period.  

 
<Take in Table 3 around here> 
 

Turning to H7 (the link between neighbouring municipalities), space matters when it 
comes to understanding factors behind the spread of the pandemic. The implied message is 
unambiguously stark: a multivariate analysis that does not consider the connection between 
nearby areas—that is, without including spatial spillovers—can be completely misleading. 
It is indeed exceptionally important when alternative scenarios are considered in terms of 
measures of social distancing.viii 

As for the remaining findings, in terms of H1 (mobility) it appears, by applying the 
estimated coefficient 𝛽𝛽2, that a 10% increase in the share of people who move regularly 
would result in about 36 new infections (in a period of 14 days) and in a context of free 
movements, each additional carrier could propagate new contagions. Our finding, hence, 
confirms the importance of adopting mobility-based restrictions.  

Our work also settles the significance of population size (H2), and more importantly, 
the role played by age (H5); for every one-year increase in the median age of a 
municipality, the results indicate that there would be seven new infections, a finding likely 
connected to the period we were studying, in which testing was very limited and confined 
to hospitals. In a different scenario of mass screening for asymptomatic patients, the results 
would probably change.ix Finally, there is some evidence suggesting that poor 
municipalities are more likely to suffer from the pandemic (H3). This finding aligns with 
other studies concluding there is a more considerable risk of infection in low-income 
communities (Hamidi and Hamidi 2021). In any case, an increase of 10% in income would 
reduce the number of infected people by just over three units, so the effect is not 
particularly strong. 

Given these general results, a crucial point mentioned above must be borne in mind: 
the results may mask significant changes over the period. Therefore, close attention has 
been needed to the rest of the columns in Table 3, after which we have drawn noteworthy 
conclusions about how leading factors in the spread of COVID-19 change as different 
preemptive measures to contain the virus are imposed/relaxed. 

The first date (6 March, Table 3) is the only one with a relatively low goodness-of-fit 
for our model (pseudo-R-square of 0.235). Indeed, only three variables turn out to be 
statistically significant (and positive), namely population, mobility, and tourism, with no 
‘geographical factor’ at this time. The message conveyed by these results is meaningful: in 
the early stages, the distribution of infections has an apparently random character difficult 
to capture in a model (low pseudo-R-square); yet it is somewhat connected to factors 
related to the flow of people between areas. In other words, apart from the fact that 
everybody, every area, can be affected, chances are greater for tourist destinations because 
of their idiosyncrasies as crowded places with people in close proximity, especially if they 
are also featured by the mobility of their local citizens. This result is consistent with the 
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evidence reported by Farzanegan et al. (2021). With a sample of more than 90 countries 
and data as of 30 April 2020, they show a higher exposure to COVID-19 for countries with 
higher international tourism flows. 

Considering the nationwide lockdown imposed on 15 March (Table 3), the main point 
is an incipient geographic pattern. The sign of the spatial lag of the dependent variable 
becomes positive and almost different from zero at the 10% level. This fact is surely 
related to the mobility variable, whose positive and significant coefficient increases. 
Additionally, income emerges as a COVID-19 driver, as expected with a negative sign. 
Apart from tourism, which still retains its importance, age emerges as a significant factor 
of COVID-19 propagation for the first time. Linking all these results, we would cautiously 
assert that a core-periphery pattern, common in other contexts, is identifiable, comprising a 
dense and well-connected core made up of tourist municipalities with a high level of 
citizen mobility, together with a periphery made up of municipalities with lower income.x 

As a rule of thumb, during the lockdown (Table 3, columns 4 and 5), the geographical 
pattern, showing the existence of spatial contagion between neighbouring municipalities, is 
getting stronger and becoming heavily significant (thus reinforcing H7). To be precise, the 
increase in the corresponding parameter is especially significant in the first part of the 
confinement period. We could state that the seed for the spread of the virus between nearby 
areas had been already planted, mainly through mobility, prior to the setting up of the 
lockdown, leaving its devastating effects afterwards. 

As expected, because of mobility restrictions and social isolation with the lockdown, 
the mobility variable (the same is true for tourism) is not statistically significant either on 
29 March (peak time) or 27 April (end of the lockdown). However, this does not mean they 
are blameless because their effects occur with a certain delay. The point is that once mobile 
citizens spread the virus between municipalities, it is difficult to stop its dissemination 
within those areas without high levels of traceability. Obviously, the problem is acute in 
highly populated areas with ageing populations (these variables are significant on both 
dates), and even more so in relatively poor areas (significant at the peak of the pandemic). 

During the de-escalation phase, on 10 May, when Phase 0 was extended for Madrid, 
the geographical pattern, while starting to lose importance, is still remarkable. Even after a 
prolonged period of limited mobility, and despite much lower overall pandemic figures, it 
is hard to clear initial hotspots. 

Moving to the analysis of the start of Phase 1, on 25 May, to avoid repetition we 
restrict our attention to the mobility variable; its coefficient becomes again positive and 
significant (at 10%; Table 3). This result conveys an explicit message: after a stay-at-home 
order, if you loosen restrictions too fast, it takes time but mobility reappears as one of the 
dominant drivers of the pandemic. In effect, in Phase 2 of the de-escalation (8 June) the 
role of mobility is getting stronger (significant at 5%) and, probably because of that, the 
link between neighbouring municipalities (coefficient of the spatial lag of the dependent 
variable) increases again. 

These observations are reinforced in relation to data pertaining to the latest date (21 
June). At the same time, income again becomes negative and significant, which we could 
interpret as a revival of the core-periphery pattern associated, in part, with mobility, 
including to remote and comparatively poor municipalities that had been almost 
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completely ‘free’ of the virus at the beginning of the wave. Accordingly, loosening of 
restrictions in the de-escalation phases seems to be paving the way for new peaks in 
infections caused, largely, by people’s mobility. Unfortunately, this finding has been 
confirmed by later pandemic waves. 

 
5 | DISCUSSION AND CONCLUSION 
 
The main aim of this article has been to uncover factors that have driven the expansion of 
the COVID-19 pandemic, taking the region of Madrid as a case study. A spatial ecological 
model was proposed and subsequently estimated for different key dates of the first wave. 
The importance of driving factors differs significantly between the various phases of the 
pandemic depending on public health measures taken to curb community transmission. 
Initially, the spread of the disease was mainly focused on highly populated municipalities 
characterised by high mobility and affluence, including from tourism. Thereafter, a spatial 
contagion process showed up in the time it took for the pandemic to expand out. 
Afterwards, mobility-based restrictions started having significant effects on the 
propagation of the pandemic, which slowed down, and led to a reduction of cross-
municipal spillovers. We think that mobility between municipalities in metropolitan areas 
contributed to the emergence of geographical clusters of municipalities at high risk of 
infection, which remained active due to difficulties in reducing disease incidence within 
their borders. In addition, areas with the largest elderly populations were the most 
vulnerable in the first stage of the pandemic, where the fight against the pandemic took the 
longest and required the most effort. There is some evidence to support the idea that 
municipalities with lower disposable income were also and remain more prone to 
pandemic surges. 

Results following the lockdown period provide lessons for the future. On one hand, in 
line with an idea put forward by Alfano and Ercolano (2020), the effectiveness of this kind 
of measures was maintained for some time even after their lifting. However, as restrictions 
were progressively loosened during the de-escalation phase, inter-municipal mobility drove 
contagion and reinforced geographical patterns involving age, deprivation, and so on. 
Therefore, policymakers should remain vigilant about people’s mobility, even, or even 
especially, in de-escalation phases. 

To test this point, we conducted a straightforward counterfactual analysis. We used the 
model results for the whole period to predict what the number of contagions would have 
been without lockdown; put differently, under the assumption that the level of mobility had 
consistently remained at its values before the lockdown. We are aware of the simplicity of 
our approach, but think it can provide a view of the importance of non-pharmaceutical 
interventions and their potential order of magnitude. The result is noteworthy. The average 
number of infections for a period of 14 days was actually 7,665; in our simulation, it 
reached a value of 20,675. In other words, the number of infections would have been, 
ceteris paribus, almost 170% greater.  

Accordingly, one of the critical lessons to be drawn from this case study is that 
restrictions are going to be, to a greater or lesser extent, part of life until vaccination levels 
reach high levels (herd immunity)xi or, alternatively, COVID-19 infections have sound 
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treatments. Either way, we have established that once a geographical pattern is discernible, 
public action is critical to contain the propagation of the disease (see Karnon, 2020). 

On the basis of the foregoing, we argue that, instead of complete confinement, specific 
‘local/partial lockdowns’ mobility restrictions should be implemented because they would 
be less costly both socially and economically.xii We suggest that efforts should be 
concentrated in the most populated areas with high levels of population mobility and a 
strong tourism sector. In such areas, there should be random mass screening and teams of 
well-trained ‘trackers’ (familiar, for instance, with the area and its neighbourhoods) ready 
to act to enforce lockdowns and distancing. Done efficiently, local lockdowns might be 
enough to bring the spread of the virus under control. 

Finally, it is important to design and apply tools that enable the development of a 
spatial contagion index that serves as a reference for appraising when the speed of the 
spread of the virus between nearby areas exceeds an already established benchmark. Such 
a tool could help policymakers gauge the best time to implement pre-designed measures 
based, for the time being, on non-pharmaceutical interventions. If data were available, it 
would also be interesting to re-run the study using, for instance, neighbourhood or even 
household information. That being so, in the proposed model we could include auxiliary 
variables, such as housing quality, or information about whether or not family members are 
engaged in activities considered essential during the pandemic and/or in ‘risky’ 
occupations. Finally, a third extension would involve another potential replication for other 
regions with characteristics different from those in Madrid. In that way, we could test the 
external validity of results. In other words, we would have a more precise picture of how, 
for instance, the effectiveness of social/physical distancing interventions, as well as the 
drivers of COVID-19 spread, may depend on the sampling location.  
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TABLE 1. Key dates 

Descriptive Name Date Reasons for choosing that date 

Number of 
cases in the 
previous 14 
days (Madrid 
region) 

Before lockdown 06/03 

In our view, it is pertinent to begin with the time 
without any restrictions. We select this date since it 
is the first day with more than one municipality 
with a cumulative incidence above 25 cases per 
100,000 inhabitants (the threshold for a risk of 
contagion according to the European Centre for 
Disease Prevention and Control) 

250 

Start of lockdown 15/03 
The point in which the national government 
decides to declare the state of alarm and thereby 
limit mobility to the maximum. 

4,261 

Peak of the 
pandemic  

29/03 
It is not an arbitrary date within the confinement 
period, but that on which the cumulative incidence 
was higher during the first wave 

21,901 

End of 
lockdown/De-
escalation  
(Phase 0)* 

27/04 

By this time, the government had devised a 
coordinated plan to get ready for a kind of 
normalcy in which restrictions were progressively 
released in an orderly fashion. In Phase 0 of the de-
escalation after the lockdown, there was a slight 
relaxation of mobility restrictions (outdoor sports, 
daily one-hour walks, the opening of stores) 

8,580 

De-escalation  
(Phase 0 is 
extended) 

10/05 
Due to non-compliance with requirements, Phase 0 
was extended for two weeks in the region of 
Madrid 

3,258 

De-escalation  
(Phase 1) 

25/05 

Other mobility restrictions were removed, such as 
the opening up of terraces in bars and restaurants 
and small and medium-size shops with capacity 
limits 

1,834 

De-escalation  
(Phase 2) 

08/06 
Additional mobility restrictions were eliminated, 
especially concerning the restaurant sector 

1,483 

End of State of 
Alarm 

21/06 

Our study period ends with the moment when the 
national government declared the expiration of the 
(first) state of alarm. It implied the start of the 
‘new normality’ 

1,104 

Note: (*) Although the official date for the end of the lookdown was 4 May, we chose this earlier date 
because it is, in fact, the one from which some measures (called by the government ‘relief measures’) were 
taken to allow some mobility. 
Sources: Open Data Portal of Madrid, and own elaboration. 
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TABLE 2. Data: Descriptive statistics for the whole period 
 

Variable Mean Maximum Minimum Coefficient of 
Variation 

Number of Infections 
(𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶) 38.52 376.40 0.00 2.00 

Inter-Municipal Mobility 
(𝑀𝑀)  13.38 21.59 7.44 0.19 

Population (in logs) 
(𝑃𝑃) 8.57 12.44 3.87 0.26 

Wealth (in logs) 
(𝑊𝑊) 9.63 10.47 9.18 0.03 

Immigration (in logs) 
(𝐼𝐼𝑀𝑀) 6.33 10.80 0.00 0.39 

Age 
(𝐴𝐴) 42.14 58.44 32.89 0.10 

Tourism (in logs) 
(𝑇𝑇) 4.40 10.32 0.00 0.52 

Spatial lag of Number of Infections 
(𝑊𝑊𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶) 44.55 235.88 1.56 1.19 

Sources: Open Data Portal of Madrid, INE, Statistical Institute of Madrid, Madrid City Council website, and 
own elaboration. 
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TABLE 3. Number of COVID-19 infections. Some explanatory factors 
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(0.968) 
-0.19 

(0.828) 

𝐴𝐴𝑖𝑖 
6.57*** 
(0.000) 

0.10 
(0.106) 

2.80*** 
(0.001) 

19.66*** 
(0.000) 

6.82*** 
(0.000) 

2.50*** 
(0.000) 

1.50*** 
(0.000) 

1.56*** 
(0.000) 

0.90*** 
(0.000) 

𝑇𝑇𝑖𝑖 
1.43 

(0.248) 
0.25** 
(0.048) 

3.06** 
(0.012) 

1.54 
(0.686) 

0.13 
(0.935) 

0.32 
(0.659) 

0.02 
(0.940) 

-0.60 
(0.215) 

-0.01 
(0.972) 

� 𝑤𝑤𝑖𝑖𝑖𝑖𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑖𝑖
𝑖𝑖

 
0.54*** 
(0.000) 

-0.02 
(0.936) 

0.41 
(0.135) 

0.58*** 
(0.000) 

0.64*** 
(0.000) 

0.54*** 
(0.000) 

0.38*** 
(0.007) 

0.54*** 
(0.000) 

0.65*** 
(0.000) 

Pseudo-R-
square 

0.778 0.235 0.512 0.747 0.801 0.726 0.698 0.668 0.655 

Log-
Likelihood 

-996.06 -518.29 -988.81 -1228.45 -1000.40 -836.07 -723.19 -729.10 -584.50 

Number 
observ. 

199 199 199 199 199 199 199 199 199 

Notes: *** Significant at 1%; ** Significant at 5%; * Significant at 10%. 
Cinf Number of infections; α Constant term; M Inter-municipal mobility; P Population; W Wealth; IM 
Immigration; A Age; T Tourism; 𝑤𝑤𝑖𝑖𝑖𝑖  Elements of the spatial-weight matrix W between each pair of 
municipalities i and j. 
Sources: Open Data Portal of Madrid, INE, Statistical Institute of Madrid, Madrid City Council website, and 
own elaboration. 
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Endnotes 
 
i. There is inevitably a trade-off here, since the higher the level of disaggregation, the lower the availability of 

data. Given this problem, we chose municipal data for two reasons. On the one hand, to try to minimise the 
so-called ecological fallacy (drawing conclusions about small units from empirical results at higher levels 
of aggregation). On the other hand, because it is the maximum level of disaggregation for which the quality 
of the data is high.  

ii. To assess the expansion of the disease, we consider the number of cases is more suitable than the number of 
deaths. 

iii. Likewise, Stojkoski et al. (2020) propose a model with six very similar categories: Healthcare Infrastructure, 
National Health Statistics, Economic Performance, Societal Characteristics, Demographic Structure, and 
Natural Environment. 

iv. It is quite clear, however, that this is not the sole factor. As indicated by Boterman (2020) for the case of 
The Netherlands, the geography of the pandemic is more complex. We try to capture its complexity in our 
proposed model. 

v. As indicated by a referee, the inclusion of immigration could cause endogeneity and/or at least correlation 
problems among the predictors of the model. In any case, when the immigration variable is excluded, the 
results obtained are basically the same. 

vi. Another variable we thought about was the size house or, as it is commonly called, crowding ratio, defined 
as the average number of people per principal housing. It is straightforward that the contagion probabilities 
between people living in the same house are the highest. However, the reason why we ultimately did not 
include it is that we found multicollinearity problems with Age. 

vii. Another option, not addressed in this paper, would be to use the connectivity between municipalities rather 
than the physical distance to compute the distance matrix (see, for example, Iacus et al. 2020). 

viii. This conclusion also underlies mathematical models of infectious diseases. In this field, it is worth 
mentioning the lack of ability of traditional compartmental epidemiological models, compared to network 
models, to adequately explain the speed of spread of COVID-19 disease between individuals (Komaroca 
and Wodarz 2020). This is another way of capturing, from a different perspective, the same idea: the need 
to include spillover effects between neighbouring areas when modelling. 

ix. Throughout the sample period, not only Madrid but also Spanish strategy was simply testing symptomatic 
patients. This strategy may be suboptimal, as indicated by Padula (2020), but at that time there was a 
noticeable problem of lack of resources. 

x. As noted by several studies such as Ascani et al. (2020), Ramírez-Aldana et al. (2020) and Amdaoud et al. 
(2021), largest cities, especially those close to international major airports, are usually the origin of the 
COVID-19 outbreak, creating a major spatial hotspot from which the virus propagates to other peripheral 
areas. 

xi. There is much debate as to when herd immunity would be achieved. Although vaccination is not the only 
relevant factor, it seems that the target figure in this respect is around 70%. 

xii. Although beyond the scope of this paper, a quite important point related to this issue has to do with the 
ability of municipality governments, typically under-resourced and subject to jurisdictional constraints, to 
deal with innovative governance initiatives, either alone or in networked alliances (McGuirk et al. 2021).  

                                                           


