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Abstract: The introduction of advanced driver assistance systems has significantly reduced vehicle
accidents by providing crucial support for high-speed driving and alerting drivers to imminent
dangers. Despite these advancements, current systems still depend on the driver’s ability to respond
to warnings effectively. To address this limitation, this research focused on developing a neural
network model for the automatic detection and classification of objects in front of a vehicle, including
pedestrians and other vehicles, using radar technology. Radar sensors were employed to detect
objects by measuring the distance to the object and analyzing the power of the reflected signals to
determine the type of object detected. Experimental tests were conducted to evaluate the performance
of the radar-based system under various driving conditions, assessing its accuracy in detecting and
classifying different objects. The proposed neural network model achieved a high accuracy rate,
correctly identifying approximately 91% of objects in the test scenarios. The results demonstrate
that this model can be used to inform drivers of potential hazards or to initiate autonomous braking
and steering maneuvers to prevent collisions. This research contributes to the development of more
effective safety features for vehicles, enhancing the overall effectiveness of driver assistance systems
and paving the way for future advancements in autonomous driving technology.

Keywords: vehicle safety; road transport; vehicle safety; intelligent traffic vehicle; radar; adas; urban
traffic; neural network

1. Introduction

Radar technology is increasingly used to detect both moving and stationary objects [1].
The word “radar”, from “radio detection and ranging”, means not only the detection of
objects, but also the evaluation of certain parameters of these objects at the same time.

Radars emit a radio pulse, which is reflected by the target and typically received at
the same position as the emitter. This “echo” allows for the extraction of a great deal of
information [2]. The reflection of radar waves varies according to their wavelength and the
shape and properties of the target. When the object is much smaller than the wavelength,
it becomes invisible to the wave, that is, the wave passes through it as if it did not exist.
When the sizes are similar, a part of the wave energy is reflected and another portion
passes through the object, resulting in the diffraction effect [3]. Early radars used very long
wavelengths, larger than the targets, which resulted in weak echo signals. Today’s radars
use small wavelengths (a few centimetres or less) that allow objects the size of a human
arm to be detected. Short-wave signals (3 kHz–30 MHz) reflect off curves and edges, just as
light flashes off a curved piece of glass. The radar cross section (RCS) of an object is a key
factor that determines the degree of reflectance of radio waves [4].
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Radar sensors can also be used to measure velocities thanks to the Doppler effect [5].
By taking advantage of the fact that the return signal from a moving target is frequency
shifted, it is possible to measure the relative velocity of the object with respect to the radar.
The velocity components perpendicular to the radar line of sight cannot be estimated by
the Doppler effect alone and would require memory to calculate them by tracking the
evolution of the target’s position [6].

It is not uncommon to find radars integrated with other sensors in order to achieve
complex applications. Some of the most noticeable uses of this technology integration include
the following:

• Object tracking and classification [7–12].
• Non-contact heart and breathing rate estimation [13–16].
• Vehicle platoon control [17–20].
• Human gait recognition [21–23].

Specifically in the vehicle research field, the development of advanced driver assistance
systems (ADASs) has led to a significant decrease in the number of traffic accidents [24,25].
ADASs commonly incorporate radar sensors to facilitate multiple tasks, such as cruise
control, to automatically slow down or speed up the vehicle to maintain a set gap with the
vehicle ahead [26]; emergency braking, where a vehicle may decelerate sharply without
driver involvement in order to avoid a potential collision [27]; blind spot detection, where
radar sensors are used to monitor the blind spots and alerts the driver in the event of a
potential collision when changing lanes [28]; parking assistance, to precisely detect an open
parking space nearby [29]; etc.

The integration of multiple sensors in ADASs will result in a significant computa-
tional burden, which may not be feasible in real-time applications with low-cost archi-
tectures [30,31]. Although it is now relatively inexpensive to include additional sensors
in vehicles, we were curious as to whether a single sensor would be sufficient for some
applications. Moreover, concerning radar features, most are based solely on the analysis of
the distance and velocity measured from the radar, which fail to utilise the full potential
of radar sensors. While it is often forgot that the RCS of an object determines how waves
are reflected, numerous studies can been found on RCS reduction, useful for military and
defence applications [32–34]. If the RCS is sufficiently low, the object cannot be detected.
However, in detectable objects, the reflected power at a given distance will differ according
to the object properties. In [35], the RCS and Doppler signature of targets are used to
differentiate pedestrians and vehicles; however, targets can be stationary or there can be
no observable Doppler signature, which limits the practical application. In [36], machine
learning techniques are applied for target classification under static conditions. For some
advanced radars that are capable of imaging, targets can be represented by radar images,
as in [37], where targets are visualized as radar point clouds, discarding RCS and Doppler
data. Nevertheless, the aforementioned sensors are prohibitively expensive and therefore
unsuitable for inclusion in series production vehicles. The results of these works have led
to the formulation of the following hypothesis: is it possible to detect and identify vehicles
and pedestrians solely through the use of low-cost radar information such as RCS and
distance?

The objective of this paper is to design a system for detecting and identifying objects
in front of a vehicle, exclusively using two radar measurements: distance to the target and
reflected power, which is correlated with the RCS of the target. A frequency-modulated
continuous-wave (FCMW) radar was mounted on a vehicle during the experiments. A
neural network was designed to classify each pair of measurements with the appropriate
object. This information is provided to the user in order to assist them in driving. It can be
used as part of ADAS systems in order to perform the appropriate response to a given stim-
ulus. This may involve adapting the vehicle speed or performing emergency maneuvers in
hazardous situations, such as when a pedestrian crosses the road unexpectedly, thereby
enhancing safety. Potential applications of the proposed system include, but are not limited
to, adaptive cruise control, automated emergency braking systems, and collision avoidance.
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The manuscript is structured as follows: In Section 2, the fundamental principles of radar
are formulated. In Section 3, a brief description of neural networks is provided. In Section 4,
the experimental setup employed in this study is described. In Section 5, the experimental
results are processed and a neural network is trained to identify the objects detected. In
Section 6, the conclusions and future works related to this research are presented.

2. Radar Sensor

Radars emit a radio pulse, which is reflected when a target is hit. The reflected power
to the radar receiving antenna is given by the following expression:

Pr =
PtGt ArσF4

(4π)2R2
t R2

r
(1)

where Pr is the reflected power, Pt is the transmitter power, Gt is the gain of the transmitting
antenna, Ar is the effective area of the receiving antenna, σ is the radar cross section of the
target (typical RCS values are presented in Table 1), F is the pattern propagation factor (as
reference, F = 1 in a vacuum), Rt is the distance from the transmitter to the target, and Rr
is the distance from the receiver to the target. In most common applications, transmitting
and receiving antennas are located together, then Rt = Rr = R, where R is the distance to
the target.

Table 1. Typical RCS values [38,39].

Target σ (m2)

Bug 0.00001
Large bird 0.01

F-117 fighter 0.1
Human 1

Automobile 10

The use of separate transmit and receive antennas is recommended as it provides
greater sensitivity and isolation. In the case of limited space and the only option being one
common antenna, the receiver antenna can be removed. However, the received signal must
be decoupled from the shared transmit/receive path, which results in a deterioration of
data reception, with reduced sensitivity, as the received signal is fed into two ports: receive
and transmit, where it is lost.

2.1. Pulse Radar

One method for measuring the distance between a radar and an object is to transmit
a small electromagnetic pulse and subsequently measure the time taken for the echo to
return (Figure 1) [40].

Figure 1. Time-dependent shape of transmit and receive signal of a pulse radar [41].
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In order to have a good resolution, especially for objects at close range, these pulses
must be very short. The distance can be calculated as half the transit time multiplied by
the propagation speed of the pulse. The accurate estimation of distance necessitates the
utilisation of high-performance electronic components. The majority of radars utilise the
same antenna for both sending and receiving; therefore, during the transmission of the
pulse, no echo can be received. This establishes the so-called “blind distance” of the radar,
below which the radar is rendered ineffective [42].

2.2. FMCW Radar

Frequency-modulated continuous-wave (FMCW) radar represents a different ap-
proach to detect stationary objects [43–45]. The comparison of frequencies is a more
accurate and simpler method than the comparison of times. To achieve this, a sinusoidal
signal is emitted at a frequency that varies continuously over time. Consequently, when
the echo arrives, its frequency will differ from that of the original signal. By comparing
the two signals, it is possible to ascertain the elapsed time and therefore the distance to the
target (see Figure 2). The greater the frequency offset, the greater the distance, calculated
using the following formula:

R =
c0

2
T

fD
∆ f

(2)

where c0 is the speed of light, T is the sawtooth repetition time period, fD is the differential
frequency and ∆ f is the frequency deviation.

Figure 2. Time-dependent shape of transmit and receive signal of a FMCW radar with sawtooth
modulation scheme [41].

The accuracy of the measurement is dependent upon the bandwidth utilised. Further-
more, it is important to note that the laws of each country define which frequencies are
permitted and which are prohibited. In the event that the bandwidth is insufficient, two
distinct objects may be erroneously identified as a single entity, see Figure 3. A bandwidth
higher than 250 MHz is not allowed because of regulation reasons in Europe (ETSI 300-440)
and US (FCC 15.245). Therefore the best achievable resolution for the commercial radar
iSYS-4004 used in this work is limited to 60 cm [41].
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Figure 3. Example of the bandwidth effect on the commercial radar iSYS-4004 [41].

3. Neural-Network-Based Identification

Artificial neural networks are computational systems inspired by the biological neural
networks that are part of animal brains. Such systems are capable of learning to perform
tasks through the feeding of a large set of examples, typically without the need for any task-
specific rules to be programmed into them [46]. A neural network is based on a collection
of interconnected units, or nodes, which are analogous to the neurons in a biological
brain. Each connection functions in a manner analogous to synapses in a biological brain,
transmitting a signal from one artificial neuron to another. An artificial neuron that receives
a signal can process it and then signal additional artificial neurons that are connected to it.

In typical implementations, the signal at a connection between artificial neurons is a real
number, and the output of each artificial neuron is calculated by some nonlinear function of
the sum of its inputs. The connections between artificial neurons are designated as “edges”.
The weights of the artificial neurons and edges are typically adjusted as the learning process
progresses. The weight of the connection affects the strength of the signal transmitted at
that point. It is possible for artificial neurons to have a threshold, whereby the signal is only
transmitted if the aggregated signal crosses that threshold. Artificial neurons are typically
aggregated in layers. The various layers are capable of implementing distinct types of
transformations on their inputs. Signals are transmitted from the initial layer, designated the
input layer, to the final layer, the output layer. This transmission can be performed in multiple
stages, with signals passing through one or more intermediate layers.

An artificial neural network is composed of the following:

• Neurons. A neuron j (see Figure 4) that receives an input pj(k) from the predecessor
neurons has the following components:

– An activation aj(k).
– A threshold Θj, which is usually fixed, unless a learning function updates it.
– An activation function f , which evaluates the new activation in the following

instant k + 1, using aj(k), Θj, and the new input pj(k), leading to

aj(k + 1) = f (aj(k), pj(k), Θj) (3)
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Figure 4. Artificial neuron.

The most commonly used activation functions are as follows [47]:

* Sigmoid. The sigmoid activation function converts an input from range
(−∞,+∞) to the range [0, 1]. The sigmoid function is usually used in the
output layer for classification purposes. One of the benefits of the sigmoid
function is that it has a smooth derivative. The sigmoid activation function is
defined as follows:

σ(x) =
1

1 + e−x (4)

* Hyperbolic tangent. This has a similar structure to the sigmoid function;
however, the output is within the range [−1,+1]. Compared to the sigmoid
function, the hyperbolic tangent has a higher derivative. The hyperbolic
tangent function is defined as follows:

tanh(x) =
2

1 + e−2x − 1 (5)

* Rectified linear unit (ReLU). This is a frequently employed activation function
that returns the value of the input if it is positive; otherwise, it returns zero.
The ReLU function is defined as follows:

ReLU(x) = max(0, x) (6)

* Parametric leaky version of a ReLU (PReLU). In this case, instead of the
function being zero for negative inputs, it returns a small negative slope α.
The PReLU function is defined as follows:

PReLU(x) = max(0, x) + α · min(0, x) (7)

* Exponential linear unit (ELU). This function provides some improvement to
ReLU. The ELU activation function is defined as follows:

ELU(x) = max(0, x) + min
(
0, α(ex − 1)

)
(8)

* Scaled exponential linear unit (SELU). Another variation to ReLU. The SELU
activation function is defined as follows:

SELU(x) = γ ·
(

max(0, x) + min
(
0, α(ex − 1)

))
(9)

* Swish. The Swish function does not have an upper bound. The Swish function
is defined as follows:

Swish(x) =
x

1 + e−x (10)
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* Mish. A variant with a similar shape to the Swish function. The Mish function
is defined as follows:

Mish(x) = x · tanh
(
log(1 + ex)

)
(11)

– An output signal that computes the activation output

oj(t) = fout(aj(k)) (12)

In the majority of cases, the output function is the identity function.

• Connections and weights. The neural network is based on connections. Each connec-
tion transmits the output of the neuron i to the input of the neuron j. Each connection
is assigned the weight wij.

• Propagation functions. These calculate the input pj(k) to the neuron j depending on
the outputs o(k) from the predecessor neurons. A common propagation function is

pj(k) = ∑ wijoi(k) (13)

• Learning rules. The learning rule is a rule or algorithm that modifies the parameters
of the neural network in order to produce a desired outcome when presented with a
specific input. This learning process involves modifying the weights and thresholds
of variables within the network.

The network topology indicates the existence of two broad categories of artificial
neural networks, which can be distinguished by the following characteristics:

• Feedforward neural network. This is the first and simplest type. In this network, the
transfer of information occurs in a unidirectional manner, from the input layer to the
output layer, without any loops. The process of learning occurs through the updating
of connection weights in response to the processing of each piece of data, with the
subsequent evaluation of the error between the actual and expected results.

• Recurrent neural network. These networks propagate data forward, but also back-
wards, from later processing stages to earlier stages. It is possible that recurrent neural
networks may exhibit chaotic behaviour due to the backpropagation process.

The addition of further hidden layers to a neural network can enhance its performance,
enabling it to learn more complex and abstract data representations, which are beneficial for
tasks such as image recognition and natural language processing. However, this increases
the number of parameters, computational requirements, and training time. The addition of
excessive layers can result in overfitting, whereby the network performs well on training
data but poorly on test data.

The capabilities of neural networks can be broadly categorised into the following areas:

• Function approximation or regression analysis, including time series prediction, fitness
approximation and modelling.

• Classification, pattern and sequence recognition.
• Data processing, filtering and clustering.
• Robotics and control.

In order to detect and differentiate objects in the course of traffic, a neural network
is to be designed which, by means of two input parameters (distance to the target and
intensity of the signal returned by the object), is capable of determining whether the object
detected is a person, a car, or nothing relevant.

The network is then constructed with two inputs: distance to target in metres and
signal intensity in decibels; and three logical outputs: one for people, another for vehicles,
and a third for irrelevant objects. The neural network will have two layers: one in which
the neurons interpret the input values, and another, the output layer, which will provide
the logic outputs based on the output values of the previous layer. In order to obtain a
binary value for the object identification, a sigmoid activation function is to be used in the
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output layer. The network will be configured in a feedforward topology at each layer in
order to reduce its overall complexity and the time required for learning. The learning
process is supervised, which requires the training of the network with a substantial number
of previously acquired and personally processed datasets derived from experimental tests.
The greater the quantity of data utilised in the design of the network, the more reliable the
resulting model will be. Two potential outcomes may be observed:

• In the event that the network functions as intended, with a low error rate, it can be
applied to develop an autonomous driving system.

• In the event that the network exhibits a high number of errors, it is not reliable. In such
instances, it is necessary to attempt to modify the number of neurons in the network,
the data set with which it is trained, or the additional input parameters.

4. Experimental Setup

Figure 5 presents the architecture mounted on the vehicle. The experiments are
recorded using a Logitech C270 camera. A commercial radar model, the iSYS-4004 from
InnoSent, is employed for detecting objects. The technical specifications of the radar iSYS-
4004 are presented in Table 2. Both the camera and the radar are connected to a laptop, on
which the algorithms for object detection and identification are executed.

Figure 5. Mounting of the radar on the vehicle.

The configuration presented here is designed to detect and identify vehicles and
pedestrians in front of the vehicle. It should be noted that the radar is mounted on the
vehicle bonnet and not on the front bump, in order to ensure that the minimum detection
distance of 1.1 m is always met. The radar system is only capable of detecting the first object
in front of the vehicle, and thus, the density of vehicles and pedestrians during driving
does not affect the radar measurements.

For each object detected by the radar, two measurements must be analysed: the
distance to the target and the reflected power, which is related to the object RCS. From
that, a neural network will be designed so that it is capable of detecting and identifying
pedestrians and vehicles. Any other object must be ignored. The procedure for processing
the radar-measured information is illustrated Figure 6.
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Table 2. Technical specifications of the radar iSYS-4004 [41].

Parameter Conditions Min Max Units

Radar
Transmit frequency 24.000 24.250 GHz

Occupied bandwidth EU-Version 250 MHz
US/UK/France-Version 100 MHz

Output power (EIRP) 25 ºC 20 dBm

Sensor
Detection distance EU-Version 1.1 35 m

US/UK/F-Version 2.7 35 m
Accuracy 250 MHz bandwidth (EU) −3 3 cm

100 MHz bandwidth (US) −7.5 7.5 cm
Resolution 250 MHz bandwidth (EU) 60 mm

100 MHz bandwidth (US) 150 mm
Operating temperature −25 60 ºC

Figure 6. Processing of radar information by a neural network for object detection and identification.

A series of experiments were conducted at different times of the day (morning, after-
noon, evening, night) in the city of Santander, Spain. The experiment route is presented
in Figure 7. From the initial processing of radar data, it has been demonstrated that the
intensity of the signal returned by a vehicle is significantly greater than that returned by
a person, and that these signals are distinct from those returned by other types of objects
found on the road, such as traffic signs and rubbish bins. This is why the use of a neural
network to differentiate each detection and classify it according to the type of object that
produces it is an appropriate solution for the aim of the work. Further details will be
provided in the subsequent section.
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Figure 7. Route followed during the experiments.

5. Experimental Results

A set of 2131 different objects were detected during driving using the experimental
setup presented in Section 4. While the radar measured the distance to the target and
reflected power, the user must first identify the objects in order to train the neural network
for object detection and identification. Table 3 presents a sample of the data collected,
which will constitute the input–output data employed in the training of the network. The
first two columns are the input vectors, with the distance to the object and the intensity of
the signal reflected. The final three columns represent the desired output vectors, which
comprise three binary values indicating the type of object detected (pedestrian, vehicle or
none of the above).

Table 3. Sample input–output data from the neural network neural network.

Distance (m) Power Reflected Irrelevant Object Pedestrian Vehicle

8.65 80.58 1 0 0
8.73 65.23 1 0 0
9.75 65.46 1 0 0
2.69 82.52 0 1 0
3.09 82.17 0 1 0
5.07 79.04 0 1 0
5.10 77.52 0 1 0
5.75 91.48 0 0 1
5.92 88.20 0 0 1
6.09 89.50 0 0 1
6.2 89.09 0 0 1

6.82 73.81 0 0 1

The collected data are then interpreted using the Deep Learning Toolbox from Matlab
version 2024a, resulting in the generation of a neural network that contains 30 neurons
in a hidden layer and 3 neurons in the output layer. A training set with 70% of the data
is used to train the network, a validation set with 20% of the data is used to validate the
generated network, and a test set with the remaining 10% of the data is used to test the
performance of the network. During the training process, the data division is random,
the training method chosen is the scaled conjugate gradient, and cross-entropy is selected
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as a performance indicator. Classes 1, 2 and 3 denote irrelevant objects, pedestrians, and
vehicles, respectively. The network constructed from the dataset returned the confusion
matrices presented in Figure 8, which indicates an overall 91.1% identification performance.
Subsequent trials employed a residual neural network, resulting in an accuracy of 81%.
Notably, this value is considerably inferior to the proposed solution, and thus, the use of a
residual neural network was discarded.

Figure 8. Training, validation, test, and global confusion matrices.

The true positive rate (TPR) against the false positive rate (FPR) of the proposed
network is presented using the receiver operating characteristic curve (ROC), shown in
Figure 9. It is important to note that pedestrians and vehicles are never misidentified as
irrelevant objects. Furthermore, there are no irrelevant objects misidentified as pedestrians
or vehicles. Although pedestrians can be misidentified as vehicles, this is not a severe
issue: in the event that a pedestrian is erroneously identified as a vehicle, a possible safety
protocol would adopt a cautious approach, such as slowing down or stopping, to avoid
collisions. This conservative approach ensures that safety is maintained despite occasional
classification errors.



Vehicles 2024, 6 1196

Figure 9. ROC curve of the neural network.

After the network had been designed, it was implemented on the vehicle architecture
in order to detect objects in real time and to assist the driver, as seen in Figure 10. The
aforementioned results have demonstrated the veracity of the hypothesis that it is possible
to detect and identify vehicles and pedestrians solely through the use of low-cost radar
information such as RCS and distance, which validates our work.

Figure 10. On-screen display of radar data. Distance and type of objects.
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6. Discussion and Conclusions

A pedestrian and vehicle detection and identification system has been developed
based on a FCMW radar and a neural network. The radar provides the distance and
intensity of the signal reflected by the nearest object, which constitute the input vector to
the network. The network outputs a vector of three binary components, each corresponding
to one of the possible classes (pedestrian, vehicle or irrelevant objects).

A high success rate in identification has been achieved (91.1% overall); additionally, the
low false positive rate observed in the experiments reflects the robustness of the radar-based
object detection system in avoiding incorrect hazard alerts. However, there is still room for
improvement, and it would be beneficial to conduct further research before the system can be
implemented commercially. One possible modification to the network structure would be to in-
crease the number of layers and/or neurons per layer. Furthermore, deep learning techniques
could even be used to process the raw signal provided by the radar (with the consequent
computational cost), which would significantly improve the identification capability.

The successful implementation of the neural network model to process radar data sig-
nifies a step forward in developing autonomous driving systems that do not solely depend
on driver intervention. This advancement paves the way for more sophisticated safety
features, such as autonomous braking and steering maneuvers, which could significantly
reduce the risk of collisions. Furthermore, this research highlights the potential for further
enhancements in radar-based detection systems through the refinement of neural network
algorithms and the expansion of the range of detectable objects and scenarios.

As a part of future work, the acquired data will be employed by ADAS to facilitate
the generation of an appropriate response, such as deceleration, cessation of motion, or
the execution of an evasive manoeuvre in the event of potential collisions according to
the object type. Furthermore, event-triggering and fault detection mechanisms should
be designed to filter the data and detect potential errors [48–50]. In addition, to increase
the versatility of the proposed method, the neural network can be improved by including
weather data such as temperature as an input.
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PReLU Parametric Rectified Linear Unit
Radar Radio Detection And Ranging
RCS Radar Cross Section
ReLU Rectified Linear Unit
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SELU Scaled Exponential Linear Unit
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